CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;17 of 17 results for author: <span class="mathjax">Clark, A S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Clark%2C+A+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Clark, A S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Clark%2C+A+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Clark, A S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20201">arXiv:2407.20201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20201">pdf</a>, <a href="https://arxiv.org/format/2407.20201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Methane Sensing via Unbalanced Nonlinear Interferometry using a CMOS Camera </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dong%2C+J">Jinghan Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+A+C">Arthur C. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Haichen Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jingrui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+W">Weijie Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Rarity%2C+J+G">John G. Rarity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20201v2-abstract-short" style="display: inline;"> Here we present a high-sensitivity, rapid, and low-cost method for methane sensing based on a nonlinear interferometer. This method utilizes signal photons generated by stimulated parametric down-conversion (ST-PDC), enabling the use of a silicon detector to capture high-precision methane absorption spectra in the mid-infrared region. By controlling the system loss, we achieve more significant cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20201v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20201v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20201v2-abstract-full" style="display: none;"> Here we present a high-sensitivity, rapid, and low-cost method for methane sensing based on a nonlinear interferometer. This method utilizes signal photons generated by stimulated parametric down-conversion (ST-PDC), enabling the use of a silicon detector to capture high-precision methane absorption spectra in the mid-infrared region. By controlling the system loss, we achieve more significant changes in visibility, thereby increasing sensitivity. The methane concentration within a gas cell is determined accurately. In addition, ST-PDC enables long-distance sensing and the capability to measure low ambient methane concentrations in the real world. A low-cost CMOS camera is employed to capture spatial interference fringes, ensuring fast and efficient detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20201v2-abstract-full').style.display = 'none'; document.getElementById('2407.20201v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13389">arXiv:2403.13389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13389">pdf</a>, <a href="https://arxiv.org/format/2403.13389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-frame transmission and phase imaging using off-axis holography with undetected photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pearce%2C+E">Emma Pearce</a>, <a href="/search/physics?searchtype=author&amp;query=Wolley%2C+O">Osian Wolley</a>, <a href="/search/physics?searchtype=author&amp;query=Mekhail%2C+S+P">Simon P. Mekhail</a>, <a href="/search/physics?searchtype=author&amp;query=Gregory%2C+T">Thomas Gregory</a>, <a href="/search/physics?searchtype=author&amp;query=Gemmell%2C+N+R">Nathan R. Gemmell</a>, <a href="/search/physics?searchtype=author&amp;query=Oulton%2C+R+F">Rupert F. Oulton</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Phillips%2C+C+C">Chris C. Phillips</a>, <a href="/search/physics?searchtype=author&amp;query=Padgett%2C+M+J">Miles J. Padgett</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13389v2-abstract-short" style="display: inline;"> Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13389v2-abstract-full').style.display = 'inline'; document.getElementById('2403.13389v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13389v2-abstract-full" style="display: none;"> Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables reconstruction of both transmission and phase images at the infrared wavelength from a single interferogram, and hence a single frame, recorded in the visible. This eliminates the need for phase stepping and multiple acquisitions, thereby greatly reducing total measurement time for imaging with long acquisition times at low flux or enabling video-rate imaging at higher flux. With this single-frame acquisition technique, we are able to reconstruct transmission images of an object in the infrared beam with a signal-to-noise ratio of $1.78\,\pm\,0.06$ at 10 frames per second, and record a dynamic scene in the infrared beam at 33 frames per second. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13389v2-abstract-full').style.display = 'none'; document.getElementById('2403.13389v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, references added to page 1</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06225">arXiv:2307.06225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06225">pdf</a>, <a href="https://arxiv.org/format/2307.06225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTCON.507154">10.1364/OPTCON.507154 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Practical quantum imaging with undetected photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pearce%2C+E">Emma Pearce</a>, <a href="/search/physics?searchtype=author&amp;query=Gemmell%2C+N+R">Nathan R. Gemmell</a>, <a href="/search/physics?searchtype=author&amp;query=Fl%C3%B3rez%2C+J">Jefferson Fl贸rez</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jiaye Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Oulton%2C+R+F">Rupert F. Oulton</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Phillips%2C+C+C">Chris C. Phillips</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06225v1-abstract-short" style="display: inline;"> Infrared (IR) imaging is invaluable across many scientific disciplines, from material analysis to diagnostic medicine. However, applications are often limited by detector cost, resolution and sensitivity, noise caused by the thermal IR background, and the cost, portability and tunability of infrared sources. Here, we describe a compact, portable, and low-cost system that is able to image objects a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06225v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06225v1-abstract-full" style="display: none;"> Infrared (IR) imaging is invaluable across many scientific disciplines, from material analysis to diagnostic medicine. However, applications are often limited by detector cost, resolution and sensitivity, noise caused by the thermal IR background, and the cost, portability and tunability of infrared sources. Here, we describe a compact, portable, and low-cost system that is able to image objects at IR wavelengths without an IR source or IR detector. This imaging with undetected photons (IUP) approach uses quantum interference and correlations between entangled photon pairs to transfer image information from the IR to the visible, where it can be detected with a standard silicon camera. We also demonstrate a rapid analysis approach to acquire both phase and transmission image information. These developments provide an important step towards making IUP a commercially viable technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06225v1-abstract-full').style.display = 'none'; document.getElementById('2307.06225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08832">arXiv:2205.08832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08832">pdf</a>, <a href="https://arxiv.org/format/2205.08832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Loss compensated and enhanced mid-infrared interaction-free sensing with undetected photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gemmell%2C+N+R">Nathan R. Gemmell</a>, <a href="/search/physics?searchtype=author&amp;query=Florez%2C+J">Jefferson Florez</a>, <a href="/search/physics?searchtype=author&amp;query=Pearce%2C+E">Emma Pearce</a>, <a href="/search/physics?searchtype=author&amp;query=Czerwinski%2C+O">Olaf Czerwinski</a>, <a href="/search/physics?searchtype=author&amp;query=Phillips%2C+C+C">Chris C. Phillips</a>, <a href="/search/physics?searchtype=author&amp;query=Oulton%2C+R+F">Rupert F. Oulton</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08832v1-abstract-short" style="display: inline;"> Sensing with undetected photons enables the measurement of absorption and phase shifts at wavelengths different from those detected. Here, we experimentally map the balance and loss parameter space in a non-degenerate nonlinear interferometer, showing the recovery of sensitivity despite internal losses at the detection wavelength. We further explore an interaction-free operation mode with a detect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08832v1-abstract-full').style.display = 'inline'; document.getElementById('2205.08832v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08832v1-abstract-full" style="display: none;"> Sensing with undetected photons enables the measurement of absorption and phase shifts at wavelengths different from those detected. Here, we experimentally map the balance and loss parameter space in a non-degenerate nonlinear interferometer, showing the recovery of sensitivity despite internal losses at the detection wavelength. We further explore an interaction-free operation mode with a detector-to-sample incident optical power ratio of &gt;200. This allows changes in attowatt levels of power at 3.4 $渭$m wavelength to be detected at 1550 nm, immune to the level of thermal black-body background. This reveals an ultra-sensitive infrared imaging methodology capable of probing samples effectively `in the dark&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08832v1-abstract-full').style.display = 'none'; document.getElementById('2205.08832v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08927">arXiv:2202.08927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08927">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38262-6">10.1038/s41467-023-38262-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Acceleration and adiabatic expansion of multi-state fluorescence from a nanofocus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=G%C3%BCsken%2C+N+A">Nicholas A. G眉sken</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+M">Ming Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Zapf%2C+M">Maximilian Zapf</a>, <a href="/search/physics?searchtype=author&amp;query=Nielsen%2C+M+P">Michael P. Nielsen</a>, <a href="/search/physics?searchtype=author&amp;query=Dichtl%2C+P">Paul Dichtl</a>, <a href="/search/physics?searchtype=author&amp;query=R%C3%B6der%2C+R">Robert R枚der</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Maier%2C+S+A">Stefan A. Maier</a>, <a href="/search/physics?searchtype=author&amp;query=Ronning%2C+C">Carsten Ronning</a>, <a href="/search/physics?searchtype=author&amp;query=Oulton%2C+R+F">Rupert F Oulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08927v1-abstract-short" style="display: inline;"> Since Purcell&#39;s seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. Indeed, optical resonators such as microcavities and plasmonic nanostructures offer excellent control but only over a limited spectral range. Strategies to tune both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08927v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08927v1-abstract-full" style="display: none;"> Since Purcell&#39;s seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. Indeed, optical resonators such as microcavities and plasmonic nanostructures offer excellent control but only over a limited spectral range. Strategies to tune both emission and the resonator are often required, which preclude the possibility of enhancing multiple transitions simultaneously. In this letter, we report a more than 590-fold radiative emission enhancement across the telecommunications emission band of Erbium-ions in silica using a single non-resonant plasmonic waveguide. Our plasmonic waveguide uses a novel reverse nanofocusing approach to efficiently collect emission, making these devices brighter than all non-plasmonic control samples considered. Remarkably, the high broadband Purcell factor allows us to resolve the Stark-split electric dipole transitions, which are typically only observed under cryogenic conditions. Simultaneous Purcell enhancement of multiple quantum states is of interest for photonic quantum networks as well as on-chip data communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08927v1-abstract-full').style.display = 'none'; document.getElementById('2202.08927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 2719 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 14, Article number: 2719 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14133">arXiv:2007.14133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14133">pdf</a>, <a href="https://arxiv.org/format/2007.14133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-20915-z">10.1038/s41467-021-20915-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent characterisation of a single molecule in a photonic black box </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Schofield%2C+R+C">Ross C. Schofield</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+L">Lin Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Ovvyan%2C+A">Anna Ovvyan</a>, <a href="/search/physics?searchtype=author&amp;query=Nur%2C+S">Salahuddin Nur</a>, <a href="/search/physics?searchtype=author&amp;query=Koppens%2C+F+H+L">Frank H. L. Koppens</a>, <a href="/search/physics?searchtype=author&amp;query=Toninelli%2C+C">Costanza Toninelli</a>, <a href="/search/physics?searchtype=author&amp;query=Pernice%2C+W+H+P">Wolfram H. P. Pernice</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14133v1-abstract-short" style="display: inline;"> Extinction spectroscopy is a powerful tool for demonstrating the coupling of a single quantum emitter to a photonic structure. However, it can be challenging in all but the simplest of geometries to deduce an accurate value of the coupling efficiency from the measured spectrum. Here we develop a theoretical framework to deduce the coupling efficiency from the measured transmission and reflection s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14133v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14133v1-abstract-full" style="display: none;"> Extinction spectroscopy is a powerful tool for demonstrating the coupling of a single quantum emitter to a photonic structure. However, it can be challenging in all but the simplest of geometries to deduce an accurate value of the coupling efficiency from the measured spectrum. Here we develop a theoretical framework to deduce the coupling efficiency from the measured transmission and reflection spectra without precise knowledge of the photonic environment. We then consider the case of a waveguide interrupted by a transverse cut in which an emitter is placed. We apply that theory to a silicon nitride waveguide interrupted by a gap filled with anthracene that is doped with dibenzoterrylene molecules. We describe the fabrication of these devices, and experimentally characterise the waveguide coupling of a single molecule in the gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14133v1-abstract-full').style.display = 'none'; document.getElementById('2007.14133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 page article with 3 figures and 6 page supplementary information with 3 figures. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 706 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08452">arXiv:2007.08452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08452">pdf</a>, <a href="https://arxiv.org/format/2007.08452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.14.044046">10.1103/PhysRevApplied.14.044046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-photon-level sub-Doppler pump-probe spectroscopy of rubidium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Burdekin%2C+P">Paul Burdekin</a>, <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Newbold%2C+R">Rielly Newbold</a>, <a href="/search/physics?searchtype=author&amp;query=Hoggarth%2C+R+A">Rowan A. Hoggarth</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08452v1-abstract-short" style="display: inline;"> We propose and demonstrate pump-probe spectroscopy of rubidium absorption which reveals the sub-Doppler hyperfine structure of the $^{5}$S$_{1/2} \leftrightarrow$ $^{5}$P$_{3/2}$ (D2) transitions. The counter propagating pump and probe lasers are independently tunable in frequency, with the probe operating at the single-photon-level. The two-dimensional spectrum measured as the laser frequencies a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08452v1-abstract-full').style.display = 'inline'; document.getElementById('2007.08452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08452v1-abstract-full" style="display: none;"> We propose and demonstrate pump-probe spectroscopy of rubidium absorption which reveals the sub-Doppler hyperfine structure of the $^{5}$S$_{1/2} \leftrightarrow$ $^{5}$P$_{3/2}$ (D2) transitions. The counter propagating pump and probe lasers are independently tunable in frequency, with the probe operating at the single-photon-level. The two-dimensional spectrum measured as the laser frequencies are scanned shows fluorescence, Doppler-broadened absorption dips and sub-Doppler features. The detuning between the pump and probe lasers allows compensation of the Doppler shift for all atomic velocities in the room temperature vapor, meaning we observe sub-Doppler features for all atoms in the beam. We detail a theoretical model of the system which incorporates fluorescence, saturation effects and optical pumping and compare this with the measured spectrum, finding a mean absolute percentage error of 4.17\%. In the future this technique could assist in frequency stabilization of lasers, and the single-photon-level probe could be replaced by a single photon source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08452v1-abstract-full').style.display = 'none'; document.getElementById('2007.08452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 page paper, 4 page supplemental material. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 14, 044046 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02831">arXiv:2005.02831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02831">pdf</a>, <a href="https://arxiv.org/format/2005.02831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OME.396942">10.1364/OME.396942 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polymer-encapsulated organic nanocrystals for single photon emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schofield%2C+R+C">Ross C. Schofield</a>, <a href="/search/physics?searchtype=author&amp;query=Bogusz%2C+D+P">Dominika P. Bogusz</a>, <a href="/search/physics?searchtype=author&amp;query=Hoggarth%2C+R+A">Rowan A. Hoggarth</a>, <a href="/search/physics?searchtype=author&amp;query=Nur%2C+S">Salahuddin Nur</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02831v1-abstract-short" style="display: inline;"> We demonstrate an emulsion-polymerisation technique to embed dibenzoterrylene-doped anthracene nanocrystals in polymethyl methacrylate (PMMA) nanocapsules. The nanocapsules require no further protection after fabrication and are resistant to sublimation compared to unprotected anthracene. The room temperature emission from single dibenzoterrylene molecules is stable and when cooled to cryogenic te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02831v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02831v1-abstract-full" style="display: none;"> We demonstrate an emulsion-polymerisation technique to embed dibenzoterrylene-doped anthracene nanocrystals in polymethyl methacrylate (PMMA) nanocapsules. The nanocapsules require no further protection after fabrication and are resistant to sublimation compared to unprotected anthracene. The room temperature emission from single dibenzoterrylene molecules is stable and when cooled to cryogenic temperatures we see no change in their excellent optical properties compared to existing growth methods. These now robust nanocapsules have potential for surface functionalisation and integration into nanophotonic devices, where the materials used are compatible with incorporation in polymer-based designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02831v1-abstract-full').style.display = 'none'; document.getElementById('2005.02831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Mater. Express 10, 1586-1596 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.06321">arXiv:1905.06321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.06321">pdf</a>, <a href="https://arxiv.org/format/1905.06321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5110275">10.1063/1.5110275 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid plasmonic waveguide coupling of photons from a single molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Nielsen%2C+M+P">Michael P. Nielsen</a>, <a href="/search/physics?searchtype=author&amp;query=Cambiasso%2C+J">Javier Cambiasso</a>, <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Reardon%2C+C">Christopher Reardon</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+T+F">Thomas F. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Oulton%2C+R+F">Rupert F. Oulton</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.06321v1-abstract-short" style="display: inline;"> We demonstrate the emission of photons from a single molecule into a hybrid gap plasmon waveguide (HGPW). Crystals of anthracene, doped with dibenzoterrylene (DBT), are grown on top of the waveguides. We investigate a single DBT molecule coupled to the plasmonic region of one of the guides, and determine its in-plane orientation, excited state lifetime and saturation intensity. The molecule emits&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06321v1-abstract-full').style.display = 'inline'; document.getElementById('1905.06321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.06321v1-abstract-full" style="display: none;"> We demonstrate the emission of photons from a single molecule into a hybrid gap plasmon waveguide (HGPW). Crystals of anthracene, doped with dibenzoterrylene (DBT), are grown on top of the waveguides. We investigate a single DBT molecule coupled to the plasmonic region of one of the guides, and determine its in-plane orientation, excited state lifetime and saturation intensity. The molecule emits light into the guide, which is remotely out-coupled by a grating. The second-order auto-correlation and cross-correlation functions show that the emitter is a single molecule and that the light emerging from the grating comes from that molecule. The coupling efficiency is found to be $尾_{WG}=11.6(1.5)\%$. This type of structure is promising for building new functionality into quantum-photonic circuits, where localised regions of strong emitter-guide coupling can be interconnected by low-loss dielectric guides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06321v1-abstract-full').style.display = 'none'; document.getElementById('1905.06321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 page article. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Photonics 4, 086101 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.10115">arXiv:1803.10115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.10115">pdf</a>, <a href="https://arxiv.org/format/1803.10115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2399-6528/aaf09a">10.1088/2399-6528/aaf09a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient excitation of dye molecules for single photon generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schofield%2C+R+C">Ross C. Schofield</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.10115v3-abstract-short" style="display: inline;"> A reliable photon source is required for many aspects of quantum technology. Organic molecules are attractive for this application because they can have high quantum yield and can be photostable, even at room temperature. To generate a photon with high probability, a laser must excite the molecule efficiently. We develop a simple model for that efficiency and discuss how to optimise it. We demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10115v3-abstract-full').style.display = 'inline'; document.getElementById('1803.10115v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.10115v3-abstract-full" style="display: none;"> A reliable photon source is required for many aspects of quantum technology. Organic molecules are attractive for this application because they can have high quantum yield and can be photostable, even at room temperature. To generate a photon with high probability, a laser must excite the molecule efficiently. We develop a simple model for that efficiency and discuss how to optimise it. We demonstrate the validity of our model through experiments on a single dibenzoterrylene (DBT) molecule in an anthracene crystal. We show that the excitation probability cannot exceed 75\% at room temperature, but can increase to over 99\% if the sample is cooled to liquid nitrogen temperature. The possibility of high photon generation efficiency with only modest cooling is a significant step towards a reliable photon source that is simple and practical. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10115v3-abstract-full').style.display = 'none'; document.getElementById('1803.10115v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article (8 pages), Supplementary material (4 pages). Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Commun. 2, 115027 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01277">arXiv:1602.01277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01277">pdf</a>, <a href="https://arxiv.org/format/1602.01277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.24.005615">10.1364/OE.24.005615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Polisseni%2C+C">Claudio Polisseni</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01277v1-abstract-short" style="display: inline;"> Single organic molecules offer great promise as bright, reliable sources of identical single photons on demand, capable of integration into solid-state devices. It has been proposed that such molecules in a crystalline organic matrix might be placed close to an optical waveguide for this purpose, but so far there have been no demonstrations of sufficiently thin crystals, with a controlled concentr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01277v1-abstract-full').style.display = 'inline'; document.getElementById('1602.01277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01277v1-abstract-full" style="display: none;"> Single organic molecules offer great promise as bright, reliable sources of identical single photons on demand, capable of integration into solid-state devices. It has been proposed that such molecules in a crystalline organic matrix might be placed close to an optical waveguide for this purpose, but so far there have been no demonstrations of sufficiently thin crystals, with a controlled concentration of suitable dopant molecules. Here we present a method for growing very thin anthracene crystals from super-saturated vapour, which produces crystals of extreme flatness and controlled thickness. We show how this crystal can be doped with a widely adjustable concentration of dibenzoterrylene (DBT) molecules and we examine the optical properties of these molecules to demonstrate their suitability as quantum emitters in nanophotonic devices. Our measurements show that the molecules are available in the crystal as single quantum emitters, with a well-defined polarisation relative to the crystal axes, making them amenable to alignment with optical nanostructures. We find that the radiative lifetime and saturation intensity vary little within the crystal and are not in any way compromised by the unusual matrix environment. We show that a large fraction of these emitters are able to deliver more than $10^{12}$ photons without photo-bleaching, making them suitable for real applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01277v1-abstract-full').style.display = 'none'; document.getElementById('1602.01277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 24(5), 5615-5627 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.3511">arXiv:1412.3511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.3511">pdf</a>, <a href="https://arxiv.org/ps/1412.3511">ps</a>, <a href="https://arxiv.org/format/1412.3511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.91.013837">10.1103/PhysRevA.91.013837 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing optical Bragg scattering for single-photon frequency conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lefrancois%2C+S">Simon Lefrancois</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.3511v1-abstract-short" style="display: inline;"> We develop a systematic theory for optimising single-photon frequency conversion using optical Bragg scattering. The efficiency and phase-matching conditions for the desired Bragg scattering conversion as well as spurious scattering and modulation instability are identified. We find that third-order dispersion can suppress unwanted processes, while dispersion above the fourth order limits the maxi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3511v1-abstract-full').style.display = 'inline'; document.getElementById('1412.3511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.3511v1-abstract-full" style="display: none;"> We develop a systematic theory for optimising single-photon frequency conversion using optical Bragg scattering. The efficiency and phase-matching conditions for the desired Bragg scattering conversion as well as spurious scattering and modulation instability are identified. We find that third-order dispersion can suppress unwanted processes, while dispersion above the fourth order limits the maximum conversion efficiency. We apply the optimisation conditions to frequency conversion in highly nonlinear fiber, silicon nitride waveguides and silicon nanowires. Efficient conversion is confirmed using full numerical simulations. These design rules will assist the development of efficient quantum frequency conversion between multicolour single photon sources for integration in complex quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3511v1-abstract-full').style.display = 'none'; document.getElementById('1412.3511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 91, 013837 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0809">arXiv:1412.0809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.0809">pdf</a>, <a href="https://arxiv.org/format/1412.0809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep12557">10.1038/srep12557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jizan%2C+I">Iman Jizan</a>, <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Chae%2C+C+J">Chang Joon Chae</a>, <a href="/search/physics?searchtype=author&amp;query=Liscidini%2C+M">Marco Liscidini</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0809v1-abstract-short" style="display: inline;"> The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterization. A promising tool for such characterization uses the classical stimulated process, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0809v1-abstract-full').style.display = 'inline'; document.getElementById('1412.0809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0809v1-abstract-full" style="display: none;"> The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterization. A promising tool for such characterization uses the classical stimulated process, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a $蠂^{(2)}$ integrated source in A.~Eckstein \emph{et al.}, Laser Photon. Rev. \textbf{8}, L76 (2014). In this work we extend these results to $蠂^{(3)}$ sources, demonstrating spectral correlation measurements via stimulated four-wave mixing for the first time in a integrated optical waveguide, namely a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that additional resolution can be gained when compared to traditional coincidence measurements. As pump pulse duration can influence the degree of spectral entanglement, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral entanglement regardless of pump pulse duration, and cements its place as an essential characterization method for the development of future quantum integrated devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0809v1-abstract-full').style.display = 'none'; document.getElementById('1412.0809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 5, 12557 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.7202">arXiv:1402.7202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.7202">pdf</a>, <a href="https://arxiv.org/format/1402.7202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.201400027">10.1002/lpor.201400027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid photonic circuit for multiplexed heralded single photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meany%2C+T">Thomas Meany</a>, <a href="/search/physics?searchtype=author&amp;query=Ngah%2C+L+A">Lutfi A. Ngah</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+R+J">Robert J. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a>, <a href="/search/physics?searchtype=author&amp;query=Alibart%2C+O">Olivier Alibart</a>, <a href="/search/physics?searchtype=author&amp;query=Tanzilli%2C+S">S茅bastien Tanzilli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.7202v1-abstract-short" style="display: inline;"> A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (&gt;1 MHz) fibre coupled electro-optic switches. Hybr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7202v1-abstract-full').style.display = 'inline'; document.getElementById('1402.7202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.7202v1-abstract-full" style="display: none;"> A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (&gt;1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7202v1-abstract-full').style.display = 'none'; document.getElementById('1402.7202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, double column, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser Photonics Rev. 8, No. 3, L42-L46 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.4498">arXiv:1307.4498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.4498">pdf</a>, <a href="https://arxiv.org/format/1307.4498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep03087">10.1038/srep03087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-photon absorption limits to heralded single photon sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Husko%2C+C+A">Chad A. Husko</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=De+Rossi%2C+A">Alfredo De Rossi</a>, <a href="/search/physics?searchtype=author&amp;query=Combrie%2C+S">Sylvain Combrie</a>, <a href="/search/physics?searchtype=author&amp;query=Lehoucq%2C+G">Gaelle Lehoucq</a>, <a href="/search/physics?searchtype=author&amp;query=Rey%2C+I+H">Isabella H. Rey</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+T+F">Thomas F. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.4498v1-abstract-short" style="display: inline;"> Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse these sources in the presence of multi-photon processes for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4498v1-abstract-full').style.display = 'inline'; document.getElementById('1307.4498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.4498v1-abstract-full" style="display: none;"> Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse these sources in the presence of multi-photon processes for the first time. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We devise a new figure of merit, the quantum utility (QMU), enabling direct comparison and optimisation of single photon sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4498v1-abstract-full').style.display = 'none'; document.getElementById('1307.4498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures, 12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 3, 3087 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.7278">arXiv:1305.7278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.7278">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms3582">10.1038/ncomms3582 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrated spatial multiplexing of heralded single photon sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Rey%2C+I+H">Isabella H. Rey</a>, <a href="/search/physics?searchtype=author&amp;query=Vo%2C+T+D">Trung D. Vo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jiakun He</a>, <a href="/search/physics?searchtype=author&amp;query=Shahnia%2C+S">Shayan Shahnia</a>, <a href="/search/physics?searchtype=author&amp;query=Reardon%2C+C">Christopher Reardon</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+T+F">Thomas F. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.7278v1-abstract-short" style="display: inline;"> The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4%&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7278v1-abstract-full').style.display = 'inline'; document.getElementById('1305.7278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.7278v1-abstract-full" style="display: none;"> The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7278v1-abstract-full').style.display = 'none'; document.getElementById('1305.7278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 4, 2582 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.1688">arXiv:1011.1688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.1688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3549744">10.1063/1.3549744 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of correlated photon pairs in a chalcogenide As2S3 waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">C. Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+G+D">G. D. Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=Peruzzo%2C+A">A. Peruzzo</a>, <a href="/search/physics?searchtype=author&amp;query=Lobino%2C+M">M. Lobino</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">A. S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D+-">D. -Y. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">S. J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Natarajan%2C+C+M">C. M. Natarajan</a>, <a href="/search/physics?searchtype=author&amp;query=Tanner%2C+M+G">M. G. Tanner</a>, <a href="/search/physics?searchtype=author&amp;query=Hadfield%2C+R+H">R. H. Hadfield</a>, <a href="/search/physics?searchtype=author&amp;query=Dorenbos%2C+S+N">S. N. Dorenbos</a>, <a href="/search/physics?searchtype=author&amp;query=Zijlstra%2C+T">T. Zijlstra</a>, <a href="/search/physics?searchtype=author&amp;query=Zwiller%2C+V">V. Zwiller</a>, <a href="/search/physics?searchtype=author&amp;query=Thompson%2C+M+G">M. G. Thompson</a>, <a href="/search/physics?searchtype=author&amp;query=Rarity%2C+J+G">J. G. Rarity</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Luther-Davies%2C+B">B. Luther-Davies</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">B. J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Brien%2C+J+L">J. L. O&#39;Brien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.1688v1-abstract-short" style="display: inline;"> We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to accidental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.1688v1-abstract-full" style="display: none;"> We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to accidental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.1688v1-abstract-full').style.display = 'none'; document.getElementById('1011.1688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 98, 051101 (2011) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10