CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;9 of 9 results for author: <span class="mathjax">Major, K D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Major%2C+K+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Major, K D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Major%2C+K+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Major, K D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01735">arXiv:2408.01735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01735">pdf</a>, <a href="https://arxiv.org/format/2408.01735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Something from Nothing: A Theoretical Framework for Enhancing or Enabling Cooling of a Mechanical Resonator via the anti-Stokes or Stokes Interaction and Zero-Photon Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">Jack Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Cryer-Jenkins%2C+E+A">Evan A. Cryer-Jenkins</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+A">Arjun Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Enzian%2C+G">Georg Enzian</a>, <a href="/search/physics?searchtype=author&amp;query=Szczykulska%2C+M">Magdalena Szczykulska</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+A+C">Anthony C. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Rathee%2C+H">Harsh Rathee</a>, <a href="/search/physics?searchtype=author&amp;query=Svela%2C+A+%C3%98">Andreas 脴. Svela</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+A+K+C">Anthony K. C. Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Beige%2C+A">Almut Beige</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%B8lmer%2C+K">Klaus M酶lmer</a>, <a href="/search/physics?searchtype=author&amp;query=Vanner%2C+M+R">Michael R. Vanner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01735v2-abstract-short" style="display: inline;"> We develop a theoretical framework to describe how zero-photon detection may be utilized to enhance laser cooling via the anti-Stokes interaction and, somewhat surprisingly, enable cooling via the Stokes interaction commonly associated with heating. Our description includes both pulsed and continuous measurements as well as optical detection efficiency and open-system dynamics. For both cases, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01735v2-abstract-full').style.display = 'inline'; document.getElementById('2408.01735v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01735v2-abstract-full" style="display: none;"> We develop a theoretical framework to describe how zero-photon detection may be utilized to enhance laser cooling via the anti-Stokes interaction and, somewhat surprisingly, enable cooling via the Stokes interaction commonly associated with heating. Our description includes both pulsed and continuous measurements as well as optical detection efficiency and open-system dynamics. For both cases, we discuss how the cooling depends on the system parameters such as detection efficiency and optomechanical cooperativity, and we study the continuous-measurement-induced dynamics, contrasting to single-photon detection events. For the Stokes case, we explore the interplay between cooling and heating via optomechanical parametric amplification, and we find the efficiency required to cool a mechanical oscillator via zero-photon detection. This work serves as a companion article to the recent experiment [E. A. Cryer-Jenkins, K. D. Major, et al., arXiv:2408.01734 (2024)], which demonstrated enhanced laser cooling of a mechanical oscillator via zero-photon detection on the anti-Stokes signal. The framework developed here provides new approaches for cooling mechanical resonators that can be applied to a wide range of areas including nonclassical state preparation, quantum thermodynamics, and avoiding the often unwanted heating effects of parametric amplification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01735v2-abstract-full').style.display = 'none'; document.getElementById('2408.01735v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01734">arXiv:2408.01734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01734">pdf</a>, <a href="https://arxiv.org/format/2408.01734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Something from Nothing: Enhanced Laser Cooling of a Mechanical Resonator via Zero-Photon Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cryer-Jenkins%2C+E+A">Evan A. Cryer-Jenkins</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">Jack Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Enzian%2C+G">Georg Enzian</a>, <a href="/search/physics?searchtype=author&amp;query=Szczykulska%2C+M">Magdalena Szczykulska</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+A">Arjun Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+A+C">Anthony C. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Rathee%2C+H">Harsh Rathee</a>, <a href="/search/physics?searchtype=author&amp;query=Svela%2C+A+%C3%98">Andreas 脴. Svela</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+A+K+C">Anthony K. C. Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Beige%2C+A">Almut Beige</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%B8lmer%2C+K">Klaus M酶lmer</a>, <a href="/search/physics?searchtype=author&amp;query=Vanner%2C+M+R">Michael R. Vanner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01734v2-abstract-short" style="display: inline;"> Throughout quantum science and technology, measurement is used as a powerful resource for nonlinear operations and quantum state engineering. In particular, single-photon detection is commonly employed for quantum-information applications and tests of fundamental physics. By contrast, and perhaps counter-intuitively, measurement of the absence of photons also provides useful information, and offer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01734v2-abstract-full').style.display = 'inline'; document.getElementById('2408.01734v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01734v2-abstract-full" style="display: none;"> Throughout quantum science and technology, measurement is used as a powerful resource for nonlinear operations and quantum state engineering. In particular, single-photon detection is commonly employed for quantum-information applications and tests of fundamental physics. By contrast, and perhaps counter-intuitively, measurement of the absence of photons also provides useful information, and offers significant potential for a wide range of new experimental directions. Here, we propose and experimentally demonstrate cooling of a mechanical resonator below its laser-cooled mechanical occupation via zero-photon detection on the anti-Stokes scattered optical field and verify this cooling through heterodyne measurements. Our measurements are well captured by a stochastic master equation and the techniques introduced here open new avenues for cooling, quantum thermodynamics, quantum state engineering, and quantum measurement and control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01734v2-abstract-full').style.display = 'none'; document.getElementById('2408.01734v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 5 pages, 2 figures. Supplemental: 6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11490">arXiv:2307.11490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11490">pdf</a>, <a href="https://arxiv.org/format/2307.11490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.501089">10.1364/OPTICA.501089 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second-Order Coherence Across the Brillouin Lasing Threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cryer-Jenkins%2C+E+A">E. A. Cryer-Jenkins</a>, <a href="/search/physics?searchtype=author&amp;query=Enzian%2C+G">G. Enzian</a>, <a href="/search/physics?searchtype=author&amp;query=Freisem%2C+L">L. Freisem</a>, <a href="/search/physics?searchtype=author&amp;query=Moroney%2C+N">N. Moroney</a>, <a href="/search/physics?searchtype=author&amp;query=Price%2C+J+J">J. J. Price</a>, <a href="/search/physics?searchtype=author&amp;query=Svela%2C+A+%C3%98">A. 脴. Svela</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">K. D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Vanner%2C+M+R">M. R. Vanner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11490v1-abstract-short" style="display: inline;"> Brillouin-Mandelstam scattering is one of the most accessible nonlinear optical phenomena and has been widely studied since its theoretical discovery one hundred years ago. The scattering mechanism is a three-wave mixing process between two optical fields and one acoustic field and has found a broad range of applications spanning microscopy to ultra-narrow-linewidth lasers. Building on the success&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11490v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11490v1-abstract-full" style="display: none;"> Brillouin-Mandelstam scattering is one of the most accessible nonlinear optical phenomena and has been widely studied since its theoretical discovery one hundred years ago. The scattering mechanism is a three-wave mixing process between two optical fields and one acoustic field and has found a broad range of applications spanning microscopy to ultra-narrow-linewidth lasers. Building on the success of utilizing this nonlinearity at a classical level, a rich avenue is now being opened to explore Brillouin scattering within the paradigm of quantum optics. Here, we take a key step in this direction by employing quantum optical techniques yet to be utilized for Brillouin scattering to characterize the second-order coherence of Stokes scattering across the Brillouin lasing threshold. We use a silica microsphere resonator and single-photon counters to observe the expected transition from bunched statistics of thermal light below the lasing threshold to Poissonian statistics of coherent light above the threshold. Notably, at powers approaching the lasing threshold, we also observe super-thermal statistics, which arise due to instability and a ``flickering&#39;&#39; in and out of lasing as the pump field is transiently depleted. The statistics observed across the transition, including the ``flickering&#39;&#39;, are a result of the full nonlinear three-wave mixing process and cannot be captured by a linearized model. These measurements are in good agreement with numerical solutions of the three-wave Langevin equations and are well demarcated by analytical expressions for the instability and the lasing thresholds. These results demonstrate that applying second-order-coherence and photon-counting measurements to Brillouin scattering provides new methods to advance our understanding of Brillouin scattering itself and progress toward quantum-state preparation and characterization of acoustic modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11490v1-abstract-full').style.display = 'none'; document.getElementById('2307.11490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main (8 pages, 2 figures) + Supplementary (6 pages, 1 figures), Submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 10, 1432 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14133">arXiv:2007.14133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14133">pdf</a>, <a href="https://arxiv.org/format/2007.14133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-20915-z">10.1038/s41467-021-20915-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent characterisation of a single molecule in a photonic black box </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Schofield%2C+R+C">Ross C. Schofield</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+L">Lin Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Ovvyan%2C+A">Anna Ovvyan</a>, <a href="/search/physics?searchtype=author&amp;query=Nur%2C+S">Salahuddin Nur</a>, <a href="/search/physics?searchtype=author&amp;query=Koppens%2C+F+H+L">Frank H. L. Koppens</a>, <a href="/search/physics?searchtype=author&amp;query=Toninelli%2C+C">Costanza Toninelli</a>, <a href="/search/physics?searchtype=author&amp;query=Pernice%2C+W+H+P">Wolfram H. P. Pernice</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14133v1-abstract-short" style="display: inline;"> Extinction spectroscopy is a powerful tool for demonstrating the coupling of a single quantum emitter to a photonic structure. However, it can be challenging in all but the simplest of geometries to deduce an accurate value of the coupling efficiency from the measured spectrum. Here we develop a theoretical framework to deduce the coupling efficiency from the measured transmission and reflection s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14133v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14133v1-abstract-full" style="display: none;"> Extinction spectroscopy is a powerful tool for demonstrating the coupling of a single quantum emitter to a photonic structure. However, it can be challenging in all but the simplest of geometries to deduce an accurate value of the coupling efficiency from the measured spectrum. Here we develop a theoretical framework to deduce the coupling efficiency from the measured transmission and reflection spectra without precise knowledge of the photonic environment. We then consider the case of a waveguide interrupted by a transverse cut in which an emitter is placed. We apply that theory to a silicon nitride waveguide interrupted by a gap filled with anthracene that is doped with dibenzoterrylene molecules. We describe the fabrication of these devices, and experimentally characterise the waveguide coupling of a single molecule in the gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14133v1-abstract-full').style.display = 'none'; document.getElementById('2007.14133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 page article with 3 figures and 6 page supplementary information with 3 figures. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 706 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08452">arXiv:2007.08452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08452">pdf</a>, <a href="https://arxiv.org/format/2007.08452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.14.044046">10.1103/PhysRevApplied.14.044046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-photon-level sub-Doppler pump-probe spectroscopy of rubidium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Burdekin%2C+P">Paul Burdekin</a>, <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Newbold%2C+R">Rielly Newbold</a>, <a href="/search/physics?searchtype=author&amp;query=Hoggarth%2C+R+A">Rowan A. Hoggarth</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08452v1-abstract-short" style="display: inline;"> We propose and demonstrate pump-probe spectroscopy of rubidium absorption which reveals the sub-Doppler hyperfine structure of the $^{5}$S$_{1/2} \leftrightarrow$ $^{5}$P$_{3/2}$ (D2) transitions. The counter propagating pump and probe lasers are independently tunable in frequency, with the probe operating at the single-photon-level. The two-dimensional spectrum measured as the laser frequencies a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08452v1-abstract-full').style.display = 'inline'; document.getElementById('2007.08452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08452v1-abstract-full" style="display: none;"> We propose and demonstrate pump-probe spectroscopy of rubidium absorption which reveals the sub-Doppler hyperfine structure of the $^{5}$S$_{1/2} \leftrightarrow$ $^{5}$P$_{3/2}$ (D2) transitions. The counter propagating pump and probe lasers are independently tunable in frequency, with the probe operating at the single-photon-level. The two-dimensional spectrum measured as the laser frequencies are scanned shows fluorescence, Doppler-broadened absorption dips and sub-Doppler features. The detuning between the pump and probe lasers allows compensation of the Doppler shift for all atomic velocities in the room temperature vapor, meaning we observe sub-Doppler features for all atoms in the beam. We detail a theoretical model of the system which incorporates fluorescence, saturation effects and optical pumping and compare this with the measured spectrum, finding a mean absolute percentage error of 4.17\%. In the future this technique could assist in frequency stabilization of lasers, and the single-photon-level probe could be replaced by a single photon source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08452v1-abstract-full').style.display = 'none'; document.getElementById('2007.08452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 page paper, 4 page supplemental material. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 14, 044046 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02831">arXiv:2005.02831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02831">pdf</a>, <a href="https://arxiv.org/format/2005.02831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OME.396942">10.1364/OME.396942 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polymer-encapsulated organic nanocrystals for single photon emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schofield%2C+R+C">Ross C. Schofield</a>, <a href="/search/physics?searchtype=author&amp;query=Bogusz%2C+D+P">Dominika P. Bogusz</a>, <a href="/search/physics?searchtype=author&amp;query=Hoggarth%2C+R+A">Rowan A. Hoggarth</a>, <a href="/search/physics?searchtype=author&amp;query=Nur%2C+S">Salahuddin Nur</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02831v1-abstract-short" style="display: inline;"> We demonstrate an emulsion-polymerisation technique to embed dibenzoterrylene-doped anthracene nanocrystals in polymethyl methacrylate (PMMA) nanocapsules. The nanocapsules require no further protection after fabrication and are resistant to sublimation compared to unprotected anthracene. The room temperature emission from single dibenzoterrylene molecules is stable and when cooled to cryogenic te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02831v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02831v1-abstract-full" style="display: none;"> We demonstrate an emulsion-polymerisation technique to embed dibenzoterrylene-doped anthracene nanocrystals in polymethyl methacrylate (PMMA) nanocapsules. The nanocapsules require no further protection after fabrication and are resistant to sublimation compared to unprotected anthracene. The room temperature emission from single dibenzoterrylene molecules is stable and when cooled to cryogenic temperatures we see no change in their excellent optical properties compared to existing growth methods. These now robust nanocapsules have potential for surface functionalisation and integration into nanophotonic devices, where the materials used are compatible with incorporation in polymer-based designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02831v1-abstract-full').style.display = 'none'; document.getElementById('2005.02831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Mater. Express 10, 1586-1596 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.06321">arXiv:1905.06321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.06321">pdf</a>, <a href="https://arxiv.org/format/1905.06321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5110275">10.1063/1.5110275 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid plasmonic waveguide coupling of photons from a single molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Nielsen%2C+M+P">Michael P. Nielsen</a>, <a href="/search/physics?searchtype=author&amp;query=Cambiasso%2C+J">Javier Cambiasso</a>, <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Reardon%2C+C">Christopher Reardon</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+T+F">Thomas F. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Oulton%2C+R+F">Rupert F. Oulton</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.06321v1-abstract-short" style="display: inline;"> We demonstrate the emission of photons from a single molecule into a hybrid gap plasmon waveguide (HGPW). Crystals of anthracene, doped with dibenzoterrylene (DBT), are grown on top of the waveguides. We investigate a single DBT molecule coupled to the plasmonic region of one of the guides, and determine its in-plane orientation, excited state lifetime and saturation intensity. The molecule emits&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06321v1-abstract-full').style.display = 'inline'; document.getElementById('1905.06321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.06321v1-abstract-full" style="display: none;"> We demonstrate the emission of photons from a single molecule into a hybrid gap plasmon waveguide (HGPW). Crystals of anthracene, doped with dibenzoterrylene (DBT), are grown on top of the waveguides. We investigate a single DBT molecule coupled to the plasmonic region of one of the guides, and determine its in-plane orientation, excited state lifetime and saturation intensity. The molecule emits light into the guide, which is remotely out-coupled by a grating. The second-order auto-correlation and cross-correlation functions show that the emitter is a single molecule and that the light emerging from the grating comes from that molecule. The coupling efficiency is found to be $尾_{WG}=11.6(1.5)\%$. This type of structure is promising for building new functionality into quantum-photonic circuits, where localised regions of strong emitter-guide coupling can be interconnected by low-loss dielectric guides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06321v1-abstract-full').style.display = 'none'; document.getElementById('1905.06321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 page article. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Photonics 4, 086101 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.10115">arXiv:1803.10115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.10115">pdf</a>, <a href="https://arxiv.org/format/1803.10115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2399-6528/aaf09a">10.1088/2399-6528/aaf09a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient excitation of dye molecules for single photon generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schofield%2C+R+C">Ross C. Schofield</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.10115v3-abstract-short" style="display: inline;"> A reliable photon source is required for many aspects of quantum technology. Organic molecules are attractive for this application because they can have high quantum yield and can be photostable, even at room temperature. To generate a photon with high probability, a laser must excite the molecule efficiently. We develop a simple model for that efficiency and discuss how to optimise it. We demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10115v3-abstract-full').style.display = 'inline'; document.getElementById('1803.10115v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.10115v3-abstract-full" style="display: none;"> A reliable photon source is required for many aspects of quantum technology. Organic molecules are attractive for this application because they can have high quantum yield and can be photostable, even at room temperature. To generate a photon with high probability, a laser must excite the molecule efficiently. We develop a simple model for that efficiency and discuss how to optimise it. We demonstrate the validity of our model through experiments on a single dibenzoterrylene (DBT) molecule in an anthracene crystal. We show that the excitation probability cannot exceed 75\% at room temperature, but can increase to over 99\% if the sample is cooled to liquid nitrogen temperature. The possibility of high photon generation efficiency with only modest cooling is a significant step towards a reliable photon source that is simple and practical. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10115v3-abstract-full').style.display = 'none'; document.getElementById('1803.10115v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article (8 pages), Supplementary material (4 pages). Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Commun. 2, 115027 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01277">arXiv:1602.01277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01277">pdf</a>, <a href="https://arxiv.org/format/1602.01277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.24.005615">10.1364/OE.24.005615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Polisseni%2C+C">Claudio Polisseni</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+K+D">Kyle D. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Boissier%2C+S">Sebastien Boissier</a>, <a href="/search/physics?searchtype=author&amp;query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Hinds%2C+E+A">E. A. Hinds</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01277v1-abstract-short" style="display: inline;"> Single organic molecules offer great promise as bright, reliable sources of identical single photons on demand, capable of integration into solid-state devices. It has been proposed that such molecules in a crystalline organic matrix might be placed close to an optical waveguide for this purpose, but so far there have been no demonstrations of sufficiently thin crystals, with a controlled concentr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01277v1-abstract-full').style.display = 'inline'; document.getElementById('1602.01277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01277v1-abstract-full" style="display: none;"> Single organic molecules offer great promise as bright, reliable sources of identical single photons on demand, capable of integration into solid-state devices. It has been proposed that such molecules in a crystalline organic matrix might be placed close to an optical waveguide for this purpose, but so far there have been no demonstrations of sufficiently thin crystals, with a controlled concentration of suitable dopant molecules. Here we present a method for growing very thin anthracene crystals from super-saturated vapour, which produces crystals of extreme flatness and controlled thickness. We show how this crystal can be doped with a widely adjustable concentration of dibenzoterrylene (DBT) molecules and we examine the optical properties of these molecules to demonstrate their suitability as quantum emitters in nanophotonic devices. Our measurements show that the molecules are available in the crystal as single quantum emitters, with a well-defined polarisation relative to the crystal axes, making them amenable to alignment with optical nanostructures. We find that the radiative lifetime and saturation intensity vary little within the crystal and are not in any way compromised by the unusual matrix environment. We show that a large fraction of these emitters are able to deliver more than $10^{12}$ photons without photo-bleaching, making them suitable for real applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01277v1-abstract-full').style.display = 'none'; document.getElementById('1602.01277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 24(5), 5615-5627 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10