CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 187 results for author: <span class="mathjax">Han, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Han%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Han, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Han%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Han, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09429">arXiv:2411.09429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09429">pdf</a>, <a href="https://arxiv.org/format/2411.09429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> AI-driven inverse design of materials: Past, present and future </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiao-Qi Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin-De Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Meng-Yuan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+B">Bo-Wen Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+P">Peng-Jie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Ze-Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09429v3-abstract-short" style="display: inline;"> The discovery of advanced materials is the cornerstone of human technological development and progress. The structures of materials and their corresponding properties are essentially the result of a complex interplay of multiple degrees of freedom such as lattice, charge, spin, symmetry, and topology. This poses significant challenges for the inverse design methods of materials. Humans have long e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09429v3-abstract-full').style.display = 'inline'; document.getElementById('2411.09429v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09429v3-abstract-full" style="display: none;"> The discovery of advanced materials is the cornerstone of human technological development and progress. The structures of materials and their corresponding properties are essentially the result of a complex interplay of multiple degrees of freedom such as lattice, charge, spin, symmetry, and topology. This poses significant challenges for the inverse design methods of materials. Humans have long explored new materials through a large number of experiments and proposed corresponding theoretical systems to predict new material properties and structures. With the improvement of computational power, researchers have gradually developed various electronic structure calculation methods, such as the density functional theory and high-throughput computational methods. Recently, the rapid development of artificial intelligence technology in the field of computer science has enabled the effective characterization of the implicit association between material properties and structures, thus opening up an efficient paradigm for the inverse design of functional materials. A significant progress has been made in inverse design of materials based on generative and discriminative models, attracting widespread attention from researchers. Considering this rapid technological progress, in this survey, we look back on the latest advancements in AI-driven inverse design of materials by introducing the background, key findings, and mainstream technological development routes. In addition, we summarize the remaining issues for future directions. This survey provides the latest overview of AI-driven inverse design of materials, which can serve as a useful resource for researchers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09429v3-abstract-full').style.display = 'none'; document.getElementById('2411.09429v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04407">arXiv:2411.04407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pressure-Induced Superconductivity at 18.2 K in CuIr2S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bijuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yuhao Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+W">Wen Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+M">Meiling Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yu Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+H">Hirofumi Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Y">Yen-Fa Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Dongzhou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+Y">Youwen Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jinlong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liuxiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">Hong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nei%2C+J">Jia-cai Nei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Ho-kwang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04407v2-abstract-short" style="display: inline;"> Attaining superconducting critical temperatures (Tc) beyond the limit around 14 K observed thus far in spinel compounds AB2X4 (A, B = transition metals, X = O/chalcogen) could elucidate interaction intricacies and inform materials design. This work spotlights CuIr2S4, which exhibits a distinct metal-insulator transition below 230 K, as an unconventional candidate for activation under high pressure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04407v2-abstract-full').style.display = 'inline'; document.getElementById('2411.04407v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04407v2-abstract-full" style="display: none;"> Attaining superconducting critical temperatures (Tc) beyond the limit around 14 K observed thus far in spinel compounds AB2X4 (A, B = transition metals, X = O/chalcogen) could elucidate interaction intricacies and inform materials design. This work spotlights CuIr2S4, which exhibits a distinct metal-insulator transition below 230 K, as an unconventional candidate for activation under high pressure. Through transport, diffraction, and spectroscopy experiments conducted at pressures up to 224 GPa, we unveil pressure-tuning that suppressed CuIr2S4&#39;s transition, yielding two superconducting phases with an un-precedented Tc for spinels. Initially, 3.8 K onset rose monotonically, reaching 18.2 K at 133 GPa. Unexpectedly, a distinct phase with Tc = 2.2 K distinctly emerged at higher pressures, intimating unconventional couplings. Our findings suggest that both geometric frustration and electron-electron interactions play crucial roles in the superconductivity observed in CuIr2S4. The findings stretch perceived temperature limits in spinels and provide structure-property insights to guide the optimiza-tion of quantum materials interactions for tailored targeted functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04407v2-abstract-full').style.display = 'none'; document.getElementById('2411.04407v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 gifures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12545">arXiv:2410.12545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12545">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unambiguous identification of the indirect band nature of atomically thin hexagonal boron nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Lei Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuqing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+N">Ning Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+J">Junxi Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xionghui Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huaiyuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhuoxian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiangyan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guoping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jianming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+L">Lun Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+W">Weikun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bo Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12545v1-abstract-short" style="display: inline;"> Atomically thin hexagonal boron nitride (h-BN), especially monolayer, has garnered increasing attention due to its intriguing optical and light-matter-interaction properties. However, its intrinsic optical properties and electronic band structure, have long remained elusive. In this study, near-resonance excited deep-UV photoluminescence/Raman spectroscopy and deep-UV reflectance contrast spectros&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12545v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12545v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12545v1-abstract-full" style="display: none;"> Atomically thin hexagonal boron nitride (h-BN), especially monolayer, has garnered increasing attention due to its intriguing optical and light-matter-interaction properties. However, its intrinsic optical properties and electronic band structure, have long remained elusive. In this study, near-resonance excited deep-UV photoluminescence/Raman spectroscopy and deep-UV reflectance contrast spectroscopy are utilized to experimentally investigate the optical properties of atomically thin h-BN across various layer numbers. It is revealed that the absence of luminescence in 1-3 layers h-BN is indicative of their indirect band gap nature, rectifying previously adopted identification of a direct band gap in monolayer BN. Notably, band-edge luminescence signals and indirect bandgap absorption start to appear in 4-layer, and the luminescence intensity increases with the number of layers, suggesting that interlayer interactions and periodicity along the z-axis enhance phonon-assisted indirect bandgap transition, even in the 4-layer case, and furthermore indicating the formation process of flat bands at the K and M valleys as the periodicity along the z direction increases. Additionally, the prominent resonance Raman signals in atomically thin h-BN underscore strong electron-phonon coupling in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12545v1-abstract-full').style.display = 'none'; document.getElementById('2410.12545v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09376">arXiv:2410.09376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09376">pdf</a>, <a href="https://arxiv.org/format/2410.09376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Elastic properties of Cu-6wt\%Ag alloy wires for pulsed magnets investigated by ultrasonic techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Ziyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+T">Tianyi Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+W">Wenqi Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+K">Kangjian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Y">Yupeng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jianfeng Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shaozhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+T">Tao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Lin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaotao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yongkang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Liang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09376v1-abstract-short" style="display: inline;"> Conductor materials with good mechanical performance as well as high electrical- and thermal-conductivities are particularly important to break through the current bottle-neck limit ($\sim 100$ T) of pulsed magnets. Here we perform systematic studies on the elastic properties of the Cu-6wt%Ag alloy wires, a promising candidate material for the new-generation pulsed magnets, by employing two indepe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09376v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09376v1-abstract-full" style="display: none;"> Conductor materials with good mechanical performance as well as high electrical- and thermal-conductivities are particularly important to break through the current bottle-neck limit ($\sim 100$ T) of pulsed magnets. Here we perform systematic studies on the elastic properties of the Cu-6wt%Ag alloy wires, a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques - resonant ultrasound spectroscopy (RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu-6wt%Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this chance to test the availability of our newly-built ultrasound pulse-echo facility at Wuhan National High Magnetic Field Center (WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu-6wt%Ag alloy wire remains excellent without anomalous softening under extreme conditions, e.g., ultra-high magnetic field up to 50 T, nitrogen / helium cryogenic liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09376v1-abstract-full').style.display = 'none'; document.getElementById('2410.09376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10945">arXiv:2409.10945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10945">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.actamat.2023.119429">10.1016/j.actamat.2023.119429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of atomically displacive transformation out of the boundary-reconstructive phase competition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Q">Qingqi Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zhiwei Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaolei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+G">Guangheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10945v1-abstract-short" style="display: inline;"> During the phase transitions, diverse states evolve with multiplex phenomena arising from the critical competition. In this study, a displacive martensitic transformation with a lattice shear distortion was unexpectedly observed at the reconstructive phase boundary that usually connects multiple phases without crystallographic relation, in a Ni-Co-Mn-V all-d-metal alloy system. Experiments and the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10945v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10945v1-abstract-full" style="display: none;"> During the phase transitions, diverse states evolve with multiplex phenomena arising from the critical competition. In this study, a displacive martensitic transformation with a lattice shear distortion was unexpectedly observed at the reconstructive phase boundary that usually connects multiple phases without crystallographic relation, in a Ni-Co-Mn-V all-d-metal alloy system. Experiments and theoretical calculations suggest that the parent phase becomes increasingly unstable when approaching the phase boundary. The lattice-distorted transformation with moderate first-order nature survives due to the critical phase competition from the structural frustration, in which the comparable energy and the diminished formation preference of different phases emerge. In this critical state, the phase selection including the martensitic phase transformation can be tuned by external fields such as rapid cooling, annealing and magnetic field. Our research reveals a novel manner to destabilize the parent phase, through which one could attain new functional materials based on the phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10945v1-abstract-full').style.display = 'none'; document.getElementById('2409.10945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figs</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Materialia,262,2024,119429 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08065">arXiv:2409.08065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08065">pdf</a>, <a href="https://arxiv.org/format/2409.08065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> InvDesFlow: An AI search engine to explore possible high-temperature superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiao-Qi Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+Z">Zhenfeng Ouyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+P">Peng-Jie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Ze-Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08065v2-abstract-short" style="display: inline;"> The discovery of new superconducting materials, particularly those exhibiting high critical temperature ($T_c$), has been a vibrant area of study within the field of condensed matter physics. Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases. However, the known materials only scratch the surface of the extensive array&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08065v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08065v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08065v2-abstract-full" style="display: none;"> The discovery of new superconducting materials, particularly those exhibiting high critical temperature ($T_c$), has been a vibrant area of study within the field of condensed matter physics. Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases. However, the known materials only scratch the surface of the extensive array of possibilities within the realm of materials. Here, we develop InvDesFlow, an AI search engine that integrates deep model pre-training and fine-tuning techniques, diffusion models, and physics-based approaches (e.g., first-principles electronic structure calculation) for the discovery of high-$T_c$ superconductors. Utilizing InvDesFlow, we have obtained 74 dynamically stable materials with critical temperatures predicted by the AI model to be $T_c \geq$ 15 K based on a very small set of samples. Notably, these materials are not contained in any existing dataset. Furthermore, we analyze trends in our dataset and individual materials including B$_4$CN$_3$ (at 5 GPa) and B$_5$CN$_2$ (at ambient pressure) whose $T_c$s are 24.08 K and 15.93 K, respectively. We demonstrate that AI technique can discover a set of new high-$T_c$ superconductors, outline its potential for accelerating discovery of the materials with targeted properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08065v2-abstract-full').style.display = 'none'; document.getElementById('2409.08065v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 17 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03415">arXiv:2409.03415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03415">pdf</a>, <a href="https://arxiv.org/format/2409.03415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic spin filtering by an altermagnetic barrier in magnetic tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+B">Boyuan Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Leina Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03415v1-abstract-short" style="display: inline;"> The spin filtering effect, distinct decaying lengths experienced by oppositely spin-polarized electrons in a magnetic barrier, generally occurs in ferromagnetic (FM) insulators or semiconductors. With the rise of altermagnetic (ALM) materials which exhibit similar capability of spin-polarizing electrons with ferromagnets, it is a nature question whether the ALM insulators or semiconductors can als&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03415v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03415v1-abstract-full" style="display: none;"> The spin filtering effect, distinct decaying lengths experienced by oppositely spin-polarized electrons in a magnetic barrier, generally occurs in ferromagnetic (FM) insulators or semiconductors. With the rise of altermagnetic (ALM) materials which exhibit similar capability of spin-polarizing electrons with ferromagnets, it is a nature question whether the ALM insulators or semiconductors can also act as unique barriers for the spin splitting effect. Here, through first-principles calculations, we investigated the complex band structure of the ALM insulator FeF$_2$ and found that it possesses an anisotropic spin filtering effect: along the [001] direction of FeF$_2$, a current remains spin-neutral but has locally nonvanishing spin polarizations in the momentum space; moreover, along the [110] direction of FeF$_2$, a current will be globally spin-polarized by different attenuation lengths of oppositely spin-polarized electrons. Leveraging this anisotropic spin filtering effect, we designed two types of MTJs with the ALM barrier: ALM electrode/ALM insulator barrier/non-magnetic (NM) electrode and FM electrode/ALM insulator barrier/NM electrode, using RuO$_2$(001)/FeF$_2$/IrO$_2$ and CrO$_2$(110)/FeF$_2$/IrO$_2$ as the corresponding prototypes, respectively. We found that these two proposed MTJs exhibited the tunneling magnetoresistance (TMR) ratios of 216\% and 3956\%, by matching the conduction channels of the electrodes and the spin-resolved lowest decay rate of the barrier in the momentum space. Our work deepens and generalizes understanding toward the spin filtering effect for the rising ALM insulators and semiconductors, and broadens applications of the AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03415v1-abstract-full').style.display = 'none'; document.getElementById('2409.03415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06174">arXiv:2408.06174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06174">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Emergent superconductivity and pair density wave at antiphase boundaries of charge density wave order in kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Z">Zhongyi Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuhan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chengmin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06174v1-abstract-short" style="display: inline;"> Central to the layered kagome lattice superconductors AV3Sb5 (A = K, Cs, Rb) is a cascade of novel quantum states triggered by an unconventional charge density wave (CDW) order. The three-dimensional (3D) order involves a 2x2x2 phase coherent stacking of 2x2 charge density modulations in the kagome plane at low temperatures, exhibiting a CDW energy gap and evidence for time-reversal symmetry break&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06174v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06174v1-abstract-full" style="display: none;"> Central to the layered kagome lattice superconductors AV3Sb5 (A = K, Cs, Rb) is a cascade of novel quantum states triggered by an unconventional charge density wave (CDW) order. The three-dimensional (3D) order involves a 2x2x2 phase coherent stacking of 2x2 charge density modulations in the kagome plane at low temperatures, exhibiting a CDW energy gap and evidence for time-reversal symmetry breaking. Here we report the discovery of emergent superconductivity and primary pair density wave (PDW) at the antiphase boundaries and stacking faults of bulk CDW order. We find that the 蟺-phase shift dislocations can naturally appear on the surface as the Cs atoms form 2x2 superstructures that are out of phase with the bulk CDW. An incipient narrow band of surface states inside bulk CDW gap emerge close to the Fermi level where a particle-hole symmetric energy gap develops. We demonstrate that the energy gap originates from a novel quasi-2D kagome superconducting state (Tc ~ 5.4 K) intertwined with bulk CDW order, exhibiting an unprecedented vortex core spectrum and spatial modulations of the superconducting gap consistent with a 4x4 PDW. Intriguingly, the 2D kagome superconductivity is shown to be tunable on and off by atomically manipulating the Cs atoms on the surface. Our findings provide fresh new insights for understanding the interplay between the unconventional CDW and superconductivity in kagome metals and a pathway for atomic manipulation and topological defects engineering of quantum many-body states in correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06174v1-abstract-full').style.display = 'none'; document.getElementById('2408.06174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20511">arXiv:2407.20511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20511">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Building spin-1/2 antiferromagnetic Heisenberg chains with diaza-nanographenes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xiaoshuai Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henriques%2C+J+C+G">Jo茫o C. G. Henriques</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yixuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palma%2C+C">Carlos-Andres Palma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+S">Shixuan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Ji Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fern%C3%A1ndez-Rossier%2C+J">Joaqu铆n Fern谩ndez-Rossier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xinliang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20511v1-abstract-short" style="display: inline;"> Understanding and engineering the coupling of spins in nanomaterials is of central importance for designing novel devices. Graphene nanostructures with 蟺-magnetism offer a chemically tunable platform to explore quantum magnetic interactions. However, realizing spin chains bearing controlled odd-even effects with suitable nanographene systems is challenging. Here, we demonstrate the successful on-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20511v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20511v1-abstract-full" style="display: none;"> Understanding and engineering the coupling of spins in nanomaterials is of central importance for designing novel devices. Graphene nanostructures with 蟺-magnetism offer a chemically tunable platform to explore quantum magnetic interactions. However, realizing spin chains bearing controlled odd-even effects with suitable nanographene systems is challenging. Here, we demonstrate the successful on-surface synthesis of spin-1/2 antiferromagnetic Heisenberg chains with parity-dependent magnetization based on antiaromatic diaza-hexa-peri-hexabenzocoronene (diaza-HBC) units. Using distinct synthetic strategies, two types of spin chains with different terminals were synthesized, both exhibiting a robust odd-even effect on the spin coupling along the chain. Combined investigations using scanning tunneling microscopy, non-contact atomic force microscopy, density functional theory calculations, and quantum spin models confirmed the structures of the diaza-HBC chains and revealed their magnetic properties, which has an S = 1/2 spin per unit through electron donation from the diaza-HBC core to the Au(111) substrate. Gapped excitations were observed in even-numbered chains, while enhanced Kondo resonance emerged in odd-numbered units of odd-numbered chains due to the redistribution of the unpaired spin along the chain. Our findings provide an effective strategy to construct nanographene spin chains and unveil the odd-even effect in their magnetic properties, offering potential applications in nanoscale spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20511v1-abstract-full').style.display = 'none'; document.getElementById('2407.20511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17495">arXiv:2406.17495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17495">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Topological Bimerons in Monolayer CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+B">Baishun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Picozzi%2C+S">Silvia Picozzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17495v1-abstract-short" style="display: inline;"> The rich and fascinating physics of topological spin textures in van der Waals two-dimensional magnets has motivated recent growing interests, though a comprehensive understanding remains elusive. Here, in atomistic simulations on monolayer CrSBr, we find two magnetic phases emerging under non-equilibrium conditions at distinct temperatures, a standard ferromagnetic transition Tc and a lower tempe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17495v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17495v1-abstract-full" style="display: none;"> The rich and fascinating physics of topological spin textures in van der Waals two-dimensional magnets has motivated recent growing interests, though a comprehensive understanding remains elusive. Here, in atomistic simulations on monolayer CrSBr, we find two magnetic phases emerging under non-equilibrium conditions at distinct temperatures, a standard ferromagnetic transition Tc and a lower temperature T*. Moreover, the real-space analysis of the spin texture reveals the emergence of metastable topological bimeron defects below T*, showing an algebraic-like decaying spin-spin correlation function. The Dzyaloshinskii-Moriya interaction, induced by the local site asymmetry in the centrosymmetric CrSBr monolayer, is proved to be the origin of the bimerons formation. Furthermore, the increasing bimerons density upon increasing the cooling rate follows a Kibble-Zurek behavior, suggesting a handle to drive and control topological bimerons below T*. Our results put forward CrSBr as an important candidate for the investigation of the dynamical behavior of bimerons in vdW magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17495v1-abstract-full').style.display = 'none'; document.getElementById('2406.17495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11485">arXiv:2405.11485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11485">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48636-z">10.1038/s41467-024-48636-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Multiferroicity in Single-Layer CuCrSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yueqi Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+A">Aomiao Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhicheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K">Kang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+L">Lihong Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xuedong Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K">Kehui Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+X">Xuezeng Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Changzheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+B">Baojie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11485v1-abstract-short" style="display: inline;"> Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11485v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11485v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11485v1-abstract-full" style="display: none;"> Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe$_2$, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe$_2$ is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11485v1-abstract-full').style.display = 'none'; document.getElementById('2405.11485v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 4252 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17326">arXiv:2403.17326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17326">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the origin of unconventional moire ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+R">Ruirui Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhuoxian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiangyan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qianling Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+Z">Zhuangzhuang Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+C">Chunrui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+J">Jinhai Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+B">Bo Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z+V">Zheng Vitto Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+Z">Zizhao Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jianming Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17326v1-abstract-short" style="display: inline;"> Interfacial ferroelectricity emerges in heterostructures consisting of nonpolar van der Waals (vdW) layers, greatly expanding the scope of two dimensional ferroelectrics. In particular, the unconventional moire ferroelectricity observed in bilayer graphene/boron nitride (BN) heterostructures, exhibits promising functionalities with topological current, superconductivity and synaptic responses. How&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17326v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17326v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17326v1-abstract-full" style="display: none;"> Interfacial ferroelectricity emerges in heterostructures consisting of nonpolar van der Waals (vdW) layers, greatly expanding the scope of two dimensional ferroelectrics. In particular, the unconventional moire ferroelectricity observed in bilayer graphene/boron nitride (BN) heterostructures, exhibits promising functionalities with topological current, superconductivity and synaptic responses. However, the debate about its mechanism - correlation driven charge transfer between two graphene layers - limits device reproducibility and hence large-scale production. Here by designing a single-layer graphene encapsulated by lattice-mismatched WSe2, we identify the ferroelectricity as stemming from - instead of graphene moire bands - the particular BN, where interfacial sliding ferroelectricity must play a role. With similar structures, multilayer twisted MoS2 is found to reproduce the ferroelectricity. The key is a conductive moire ferroelectric, where the screened gate and the pinned domain wall together result in unchanged electronic states, i.e. anomalous screening. The intimate connection to interfacial sliding ferroelectricity thus provides advantages of diverse choices of constituent materials and robust polarization switching while preserving the unique anomalous screening, paving the way to reproducible and reliable memory-based devices in artificial intelligence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17326v1-abstract-full').style.display = 'none'; document.getElementById('2403.17326v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16931">arXiv:2403.16931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16931">pdf</a>, <a href="https://arxiv.org/format/2403.16931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202403274">10.1002/adma.202403274 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Embedded skyrmion bags in thin films of chiral magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savchenko%2C+A+S">Andrii S. Savchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+F">Fengshan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiselev%2C+N+S">Nikolai S. Kiselev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rybakov%2C+F+N">Filipp N. Rybakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaodong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunin-Borkowski%2C+R+E">Rafal E. Dunin-Borkowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16931v1-abstract-short" style="display: inline;"> Magnetic skyrmions are topologically nontrivial spin configurations that possess particle-like properties. Earlier research was mainly focused on a specific type of skyrmion with topological charge Q = -1. However, theoretical analyses of two-dimensional chiral magnets have predicted the existence of skyrmion bags -- solitons with arbitrary positive or negative topological charge. Although such sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16931v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16931v1-abstract-full" style="display: none;"> Magnetic skyrmions are topologically nontrivial spin configurations that possess particle-like properties. Earlier research was mainly focused on a specific type of skyrmion with topological charge Q = -1. However, theoretical analyses of two-dimensional chiral magnets have predicted the existence of skyrmion bags -- solitons with arbitrary positive or negative topological charge. Although such spin textures are metastable states, recent experimental observations have confirmed the stability of isolated skyrmion bags in a limited range of applied magnetic fields. Here, by utilizing Lorentz transmission electron microscopy, we show the extraordinary stability of skyrmion bags in thin plates of B20-type FeGe. In particular, we show that skyrmion bags embedded within a skyrmion lattice remain stable even in zero or inverted external magnetic fields. A robust protocol for nucleating such embedded skyrmion bags is provided. Our results agree perfectly with micromagnetic simulations and establish thin plates of cubic chiral magnets as a powerful platform for exploring a broad spectrum of topological magnetic solitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16931v1-abstract-full').style.display = 'none'; document.getElementById('2403.16931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 2024, 2403274 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15912">arXiv:2403.15912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15912">pdf</a>, <a href="https://arxiv.org/format/2403.15912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07211-8">10.1038/s41586-024-07211-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the dual quantum spin Hall insulator by density-tuned correlations in a van der Waals monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+T+S">Thomas Siyuan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strasser%2C+A">Alex Strasser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiangxu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiwitz%2C+M">Michael Geiwitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shehabeldin%2C+M">Mohamed Shehabeldin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belosevich%2C+V">Vsevolod Belosevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zihan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiaofeng Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">Ni Ni</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15912v1-abstract-short" style="display: inline;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15912v1-abstract-full" style="display: none;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH insulator with quantized edge conductance remains rare, let alone that with significant correlations. In this work, we report a novel dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator that aligns with single-particle band structure calculations, manifesting enhanced nonlocal transport and quantized helical edge conductance. Interestingly, upon introducing electrons from charge neutrality, TaIrTe4 only shows metallic behavior in a small range of charge densities but quickly goes into a new insulating state, entirely unexpected based on TaIrTe4&#39;s single-particle band structure. This insulating state could arise from a strong electronic instability near the van Hove singularities (VHS), likely leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state, marked by the revival of nonlocal transport and quantized helical edge conduction. Our observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands via CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'none'; document.getElementById('2403.15912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures, submitted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13427">arXiv:2403.13427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13427">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of non-volatile anomalous Nernst effect in altermagnet with collinear N茅el vector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xizhi Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wenqing He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuxiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jiankun Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenxuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feng Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13427v1-abstract-short" style="display: inline;"> Anomalous Nernst effect (ANE), a widely investigated transverse thermoelectric effect that converts waste heat into electrical energy with remarkable flexibility and integration capability, has been extended to antiferromagnets with non-collinear spin texture recently. ANE in compensated magnet with collinear N茅el vector will bring more opportunities to construct magnetic-field-immune and ultrafas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13427v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13427v1-abstract-full" style="display: none;"> Anomalous Nernst effect (ANE), a widely investigated transverse thermoelectric effect that converts waste heat into electrical energy with remarkable flexibility and integration capability, has been extended to antiferromagnets with non-collinear spin texture recently. ANE in compensated magnet with collinear N茅el vector will bring more opportunities to construct magnetic-field-immune and ultrafast transverse thermoelectric converters, but remains unachieved for long. It is due to the degenerated band structure of traditional collinear compensated magnet excludes non-zero Berry curvature. Here, we realize non-volatile ANE in altermagnet Mn5Si3 thin film with collinear Neel vector, whose unique alternating spin-splitting band structure plays vital role in creating non-zero Berry curvature and hotpots of anomalous Nernst conductivity near band intersections. Interestingly, ANE is relatively weak in stoichiometric Mn5Si3, but undergoes a sixfold enhancement through strategically raising the Fermi level by additional Mn doping, indicating sensitive intrinsic influence from specific location of the Fermi level on ANE in altermagnet. Moreover, our investigation reveals a unique Neel-vector-dependent temperature-scaling relationship of anomalous Nernst conductivity in Mn5Si3. Our work not only fills a longstanding gap by confirming the presence of non-volatile ANE in collinear compensated magnet, but also enlightens thermoelectric physics related to exotic spin-splitting band structure in altermagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13427v1-abstract-full').style.display = 'none'; document.getElementById('2403.13427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09395">arXiv:2403.09395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09395">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-50330-z">10.1038/s41467-024-50330-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of a distinct collective mode in Kagome superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Bin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuhan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">Hongqin Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09395v2-abstract-short" style="display: inline;"> The collective modes of the superconducting order parameter fluctuation can provide key insights into the nature of the superconductor. Recently, a family of superconductors has emerged in non-magnetic kagome material AV3Sb5 (A=K, Rb, Cs), exhibiting fertile emergent phenomenology. However, the collective behaviors of Cooper pairs have not been studied. Here, we report a distinct collective mode i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09395v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09395v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09395v2-abstract-full" style="display: none;"> The collective modes of the superconducting order parameter fluctuation can provide key insights into the nature of the superconductor. Recently, a family of superconductors has emerged in non-magnetic kagome material AV3Sb5 (A=K, Rb, Cs), exhibiting fertile emergent phenomenology. However, the collective behaviors of Cooper pairs have not been studied. Here, we report a distinct collective mode in CsV3-xTaxSb5 using scanning tunneling microscope/spectroscopy. The spectral line-shape is well-described by one isotropic and one anisotropic superconducting gap, and a bosonic mode due to electron-mode coupling. With increasing x, the two gaps move closer in energy, merge into two isotropic gaps of equal amplitude, and then increase synchronously. The mode energy decreases monotonically to well below 2螖 and survives even after the charge density wave order is suppressed. We propose the interpretation of this collective mode as Leggett mode between different superconducting components or the Bardasis-Schrieffer mode due to a subleading superconducting component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09395v2-abstract-full').style.display = 'none'; document.getElementById('2403.09395v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 6109 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11519">arXiv:2402.11519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11519">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Formation and manipulation of diatomic rotors at the symmetry-breaking surfaces of kagome superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11519v1-abstract-short" style="display: inline;"> Artificial molecular rotors and motors hold great promise for functional nanomachines, but constructing diatomic rotors, crucial for these machines, is challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom revolves around a Cs atom at the Sb surface of the newly-discovered kagome superconductor C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11519v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11519v1-abstract-full" style="display: none;"> Artificial molecular rotors and motors hold great promise for functional nanomachines, but constructing diatomic rotors, crucial for these machines, is challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom revolves around a Cs atom at the Sb surface of the newly-discovered kagome superconductor CsV3Sb5. The rotation rate is controlled by bias voltage between the rotor and scanning tunneling microscope (STM) tip. The spatial distribution of rates exhibits C2 symmetry, might linked to the symmetry-breaking charge orders of CsV3Sb5. We have expanded rotor construction to include different transition metals (Cr, Fe, V) and alkali metals (Cs, K). Remarkably, designed configurations of rotors are achieved through STM manipulation. Rotor orbits and quantum states are precisely controlled by tunning inter-rotor distance. Our findings establish a novel platform for the atomically precise fabrication of atomic motors on symmetry-breaking quantum materials, paving the way for advanced nanoscale devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11519v1-abstract-full').style.display = 'none'; document.getElementById('2402.11519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08872">arXiv:2402.08872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08872">pdf</a>, <a href="https://arxiv.org/format/2402.08872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Slow-Wave Hybrid Magnonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+C">Changchun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+S">Shihao Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+C">Chen Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pishehvar%2C+A">Amin Pishehvar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+D">Dafei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jornet%2C+J+M">Josep M. Jornet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhen%2C+B">Bo Zhen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiamian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08872v1-abstract-short" style="display: inline;"> Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this work, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08872v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08872v1-abstract-full" style="display: none;"> Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this work, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08872v1-abstract-full').style.display = 'none'; document.getElementById('2402.08872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15918">arXiv:2401.15918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15918">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.01.036">10.1016/j.scib.2024.01.036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable vortex bound states in multiband CsV3Sb5-derived kagome superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Pengfei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15918v1-abstract-short" style="display: inline;"> Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface dependent vortex core states have been observed in the newly discovered kagome superconductors CsV3Sb5. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15918v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15918v1-abstract-full" style="display: none;"> Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface dependent vortex core states have been observed in the newly discovered kagome superconductors CsV3Sb5. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface states, its origin remains elusive. In this study, we present observations of tunable vortex bound states (VBSs) in two chemically doped kagome superconductors Cs(V1-xTrx)3Sb5 (Tr=Ta or Ti), using low temperature scanning tunneling microscopy/spectroscopy. The CsV3Sb5-derived kagome superconductors exhibit full gap pairing superconductivity accompanied by the absence of long range charge orders, in contrast to pristine CsV3Sb5. Zero energy conductance maps demonstrate a field-driven continuous reorientation transition of the vortex lattice, suggesting multiband superconductivity. The Ta doped CsV3Sb5 displays the conventional cross shaped spatial evolution of Caroli de Gennes Matricon bound states, while the Ti doped CsV3Sb5 exhibits a sharp, non split zero bias conductance peak (ZBCP) that persists over a long distance across the vortex. The spatial evolution of the non split ZBCP is robust against surface effects and external magnetic field but is related to the doping concentrations. Our study reveals the tunable VBSs in multiband chemically doped CsV3Sb5 system and offers fresh insights into previously reported Y shaped ZBCP in a non quantum limit condition at the surface of kagome superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15918v1-abstract-full').style.display = 'none'; document.getElementById('2401.15918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Science Bulletin DOI:10.1016/j.scib.2024.01.036</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00499">arXiv:2401.00499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00499">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S">Sihao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhaoxin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunlong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00499v3-abstract-short" style="display: inline;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'inline'; document.getElementById('2401.00499v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00499v3-abstract-full" style="display: none;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that uses enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limits the use of high-precision potential energy functions for simulations. To address this issue, we present a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allows for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a Carbonyl insertion reaction catalyzed by Manganese. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'none'; document.getElementById('2401.00499v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17413">arXiv:2312.17413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17413">pdf</a>, <a href="https://arxiv.org/ps/2312.17413">ps</a>, <a href="https://arxiv.org/format/2312.17413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> In-Plane Magnon Valve Effect in Magnetic Insulator/Heavy Metal/ Magnetic Insulator Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tianyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17413v1-abstract-short" style="display: inline;"> We propose an in-plane magnon valve (MV), a sandwich structure composed of ferromagnetic insulator/heavy metal/ferromagnetic insulator (MI/HM/MI). When the magnetizations of the two MI layers are parallel, the longitudinal conductance in the HM layer is greater than that in the antiparallel state according to the magnetic proximity effect, termed as the in-plane magnon valve effect. We investigate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17413v1-abstract-full').style.display = 'inline'; document.getElementById('2312.17413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17413v1-abstract-full" style="display: none;"> We propose an in-plane magnon valve (MV), a sandwich structure composed of ferromagnetic insulator/heavy metal/ferromagnetic insulator (MI/HM/MI). When the magnetizations of the two MI layers are parallel, the longitudinal conductance in the HM layer is greater than that in the antiparallel state according to the magnetic proximity effect, termed as the in-plane magnon valve effect. We investigate the dependence of MV ratio (MVR), which is the relative change in longitudinal conductance between the parallel and antiparallel MV states, on the difference in electronic structure between magnetized and non-magnetized metal atoms, revealing that MVR can reach 100%. Additionally, the dependence of MVR on the thickness of metal layer is analyzed, revealing an exponential decrease with increasing thickness. Then we investigate the dependence of HM layer conductance on the relative angle between the magnetizations of two MI layers, illustrating the potential of MV as a magneto-sensitive magnonic sensor. We also investigate the effect of Joule heating on the measurement signal based on the spin Seebeck effect. Two designed configurations are proposed according to whether the electron current is parallel or perpendicular to the magnetization of the MI layer. In the parallel configuration, the transverse voltage differs between the parallel and antiparallel MV states. While in the perpendicular configuration, the longitudinal resistance differs. Quantitative numerical results indicate the feasibility of detecting a voltage signal using the first configuration in experiments. Our work contributes valuable insights for the design, development and integration of magnon devices <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17413v1-abstract-full').style.display = 'none'; document.getElementById('2312.17413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10660">arXiv:2312.10660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10660">pdf</a>, <a href="https://arxiv.org/format/2312.10660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cryogenic hybrid magnonic circuits based on spalled YIG thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horn%2C+C">Connor Horn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenmann%2C+D">Daniel Rosenmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+M">Miguel Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guha%2C+S">Supratik Guha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10660v2-abstract-short" style="display: inline;"> Yttrium iron garnet (YIG) magnonics has sparked extensive research interests toward harnessing magnons (quasiparticles of collective spin excitation) for signal processing. In particular, YIG magnonics-based hybrid systems exhibit great potentials for quantum information science because of their wide frequency tunability and excellent compatibility with other platforms. However, the broad applicat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10660v2-abstract-full').style.display = 'inline'; document.getElementById('2312.10660v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10660v2-abstract-full" style="display: none;"> Yttrium iron garnet (YIG) magnonics has sparked extensive research interests toward harnessing magnons (quasiparticles of collective spin excitation) for signal processing. In particular, YIG magnonics-based hybrid systems exhibit great potentials for quantum information science because of their wide frequency tunability and excellent compatibility with other platforms. However, the broad application and scalability of thin-film YIG devices in the quantum regime has been severely limited due to the substantial microwave loss in the host substrate for YIG, gadolinium gallium garnet (GGG), at cryogenic temperatures. In this study, we demonstrate that substrate-free YIG thin films can be obtained by introducing the controlled spalling and layer transfer technology to YIG/GGG samples. Our approach is validated by measuring a hybrid device consisting of a superconducting resonator and a spalled YIG film, which gives a strong coupling feature indicating the good coherence of our system. This advancement paves the way for enhanced on-chip integration and the scalability of YIG-based quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10660v2-abstract-full').style.display = 'none'; document.getElementById('2312.10660v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08918">arXiv:2312.08918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08918">pdf</a>, <a href="https://arxiv.org/format/2312.08918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.035106">10.1103/PhysRevB.109.035106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Insulator-to-metal Mott transition facilitated by lattice deformation in monolayer $伪$-RuCl$_3$ on graphite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaohu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takuma%2C+O">Ogasawara Takuma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Huaxue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chongli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Junhai Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanigaki%2C+K">Katsumi Tanigaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+R">Rui-Rui Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08918v1-abstract-short" style="display: inline;"> Creating heterostructures with graphene/graphite is a practical method for charge-doping $伪$-RuCl$_3$, but not sufficient to cause the insulator-to-metal transition. In this study, detailed scanning tunneling microscopy/spectroscopy measurements on $伪$-RuCl$_3$ with various lattice deformations reveal that both in-plane and out-of-plane lattice distortions may collapse the Mott-gap in the case of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08918v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08918v1-abstract-full" style="display: none;"> Creating heterostructures with graphene/graphite is a practical method for charge-doping $伪$-RuCl$_3$, but not sufficient to cause the insulator-to-metal transition. In this study, detailed scanning tunneling microscopy/spectroscopy measurements on $伪$-RuCl$_3$ with various lattice deformations reveal that both in-plane and out-of-plane lattice distortions may collapse the Mott-gap in the case of monolayer $伪$-RuCl$_3$ in proximity to graphite, but have little impact on its bulk form alone. In the Mott-Hubbard framework, the transition is attributed to the lattice distortion-facilitated substantial modulation of the electron correlation parameter. Observation of the orbital textures on a highly compressed monolayer $伪$-RuCl$_3$ flake on graphite provides valuable evidence that electrons are efficiently transferred from the heterointerface into Cl3$p$ orbitals under the lattice distortion. It is believed that the splitting of Ru $t_{2g}$ bands within the trigonal distortion of Ru-Cl-Ru octahedra bonds generated the electrons transfer pathways. The increase of the Cl3$p$ states enhance the hopping integral in the Mott-Hubbard bands, resulting in the Mott-transition. These findings suggest a new route for implementing the insulator-to-metal transition upon doping in $伪$-RuCl$_3$ by deforming the lattice in addition to the formation of heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08918v1-abstract-full').style.display = 'none'; document.getElementById('2312.08918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, Accepted for publication in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 035106(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08687">arXiv:2312.08687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08687">pdf</a>, <a href="https://arxiv.org/format/2312.08687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c04103">10.1021/acs.nanolett.3c04103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-optical effects of an artificially-layered ferromagnetic topological insulator with T$_C$ of 160 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xingyue Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+H+T">Hee Taek Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+S">Seongshik Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08687v2-abstract-short" style="display: inline;"> Magnetic topological insulator is a fertile platform to study the interplay between magnetism and topology. The unique electronic band structure can induce exotic transport and optical properties. However, a comprehensive optical study in both near-infrared frequency and terahertz frequency has been lacking. Here, we report magneto-optical effects from a heterostructure of Cr-incorporated topologi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08687v2-abstract-full').style.display = 'inline'; document.getElementById('2312.08687v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08687v2-abstract-full" style="display: none;"> Magnetic topological insulator is a fertile platform to study the interplay between magnetism and topology. The unique electronic band structure can induce exotic transport and optical properties. However, a comprehensive optical study in both near-infrared frequency and terahertz frequency has been lacking. Here, we report magneto-optical effects from a heterostructure of Cr-incorporated topological insulator, CBST. We use 800 nm magneto-optical Kerr effect to reveal a ferromagnetic order in the CBST film with a high transition temperature at 160 K. We also use time-domain terahertz polarimetry to reveal a terahertz Faraday rotation of 1.5 mrad and Kerr rotation of 5.1 mrad at 2 K. The calculated terahertz Hall conductance is 0.42 $e^2/h$. Our work shows the optical responses of an artificially layered magnetic topological insulator, paving the way towards high-temperature quantum anomalous Hall effect via heterostructure engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08687v2-abstract-full').style.display = 'none'; document.getElementById('2312.08687v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01271">arXiv:2312.01271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01271">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.205156">10.1103/PhysRevB.109.205156 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic properties of nickelate superconductor R3Ni2O7 with oxygen vacancies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+X">Xuelei Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiangru Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaojun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+X">Xiaohong Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01271v1-abstract-short" style="display: inline;"> The discovery of superconductivity in La3Ni2O7 has attracted significant research interest in the field of nickelate superconductors. Despite extensive studies on pristine La3Ni2O7, the impact of oxygen vacancies (VO), a common type of intrinsic defect in oxides, on electronic structures and superconductivity in La3Ni2O7 remains unclear. In this article, we identify the most energetically favorabl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01271v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01271v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01271v1-abstract-full" style="display: none;"> The discovery of superconductivity in La3Ni2O7 has attracted significant research interest in the field of nickelate superconductors. Despite extensive studies on pristine La3Ni2O7, the impact of oxygen vacancies (VO), a common type of intrinsic defect in oxides, on electronic structures and superconductivity in La3Ni2O7 remains unclear. In this article, we identify the most energetically favorable location for VO formation as the oxygen atom connecting the NiO6 bilayer, resulting in a significant reduction in the lattice constant along the c-axis. Interestingly, the electronic structure undergoes notable changes, particularly for the Ni dz2 and Ni dx2-y2 orbitals. The Ni dz2 orbitals change from partially filled in the pristine La3Ni2O7 to completely filled in the presence of VO, leading to a considerable decrease of its proportion near the Fermi level. Conversely, the proportion of Ni dx2-y2 states increases due to the orbital localization and slight upward shift. Additionally, we observe a significant increase in the hopping of intra-bilayer Ni dz2 orbitals when the VO exists, but with an opposite sign, which differs greatly from the previous understanding. The inter-orbital hopping between Ni dz2 and Ni dx2-y2 orbitals also changes its sign in the presence of VO. Our results indicate that the formation of VO may be harmful to the superconductivity in La3Ni2O7, given the general assumption for the critical role of Ni dz2 in generating superconductivity. Furthermore, we suggest that Ce3Ni2O7, which shares similar electronic structures to La3Ni2O7 but has a larger lattice volume, may be a better candidate for nickelate superconductor due to its lower VO concentration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01271v1-abstract-full').style.display = 'none'; document.getElementById('2312.01271v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14936">arXiv:2311.14936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14936">pdf</a>, <a href="https://arxiv.org/format/2311.14936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single-image based deep learning for precise atomic defects identification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kangshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaocang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+Y">Yanhui Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y">Yuan Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junxian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+J">Jing-Yang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+L">Lin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wenchao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Z">Zhiyi Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+G">Guolin Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiaoxu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14936v1-abstract-short" style="display: inline;"> Defect engineering has been profoundly employed to confer desirable functionality to materials that pristine lattices inherently lack. Although single atomic-resolution scanning transmission electron microscopy (STEM) images are widely accessible for defect engineering, harnessing atomic-scale images containing various defects through traditional image analysis methods is hindered by random noise&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14936v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14936v1-abstract-full" style="display: none;"> Defect engineering has been profoundly employed to confer desirable functionality to materials that pristine lattices inherently lack. Although single atomic-resolution scanning transmission electron microscopy (STEM) images are widely accessible for defect engineering, harnessing atomic-scale images containing various defects through traditional image analysis methods is hindered by random noise and human bias. Yet the rise of deep learning (DL) offering an alternative approach, its widespread application is primarily restricted by the need for large amounts of training data with labeled ground truth. In this study, we propose a two-stage method to address the problems of high annotation cost and image noise in the detection of atomic defects in monolayer 2D materials. In the first stage, to tackle the issue of data scarcity, we employ a two-state transformation network based on U-GAT-IT for adding realistic noise to simulated images with pre-located ground truth labels, thereby infinitely expanding the training dataset. In the second stage, atomic defects in monolayer 2D materials are effectively detected with high accuracy using U-Net models trained with the data generated in the first stage, avoiding random noise and human bias issues. In both stages, we utilize segmented unit-cell-level images to simplify the model&#39;s task and enhance its accuracy. Our results demonstrate that not only sulfur vacancies, we are also able to visualize oxygen dopants in monolayer MoS2, which are usually overwhelmed by random background noise. As the training was based on a few segmented unit-cell-level realistic images, this method can be readily extended to other 2D materials. Therefore, our results outline novel ways to train the model with minimized datasets, offering great opportunities to fully exploit the power of machine learning (ML) applicable to a broad materials science community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14936v1-abstract-full').style.display = 'none'; document.getElementById('2311.14936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14300">arXiv:2311.14300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14300">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of unconventional van der Waals multiferroics near room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yangliu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haipeng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaocang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chendi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+N">Nanshu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiaoxu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+L">Longjiang Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+B">Bo Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14300v2-abstract-short" style="display: inline;"> The search for two-dimensional (2D) van der Waals (vdW) multiferroics is an exciting yet challenging endeavor. Room-temperature 2D vdW few-layer multiferroic is a much bigger insurmountable obstacle. Here we report the discovery of an unconventional 2D vdW multiferroic with out-of-plane ferroelectric polarization and long-range magnetic orders in trilayer NiI2 device from 10 K to 295 K. The evolut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14300v2-abstract-full').style.display = 'inline'; document.getElementById('2311.14300v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14300v2-abstract-full" style="display: none;"> The search for two-dimensional (2D) van der Waals (vdW) multiferroics is an exciting yet challenging endeavor. Room-temperature 2D vdW few-layer multiferroic is a much bigger insurmountable obstacle. Here we report the discovery of an unconventional 2D vdW multiferroic with out-of-plane ferroelectric polarization and long-range magnetic orders in trilayer NiI2 device from 10 K to 295 K. The evolutions of magnetic domains with magnetic field, and the evolutions between ferroelectric and antiferroelectric phase have been unambiguously observed. More significantly, we realize a robust mutual control of magnetism and ferroelectricity at room temperature. The magnetic domains are manipulated by a small voltage ranging from 1 V to 6 V at 0 T and 295 K. This work opens opportunities for exploring multiferroic physics at the limit of few atomic layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14300v2-abstract-full').style.display = 'none'; document.getElementById('2311.14300v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 14J60 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.2; I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11505">arXiv:2311.11505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11505">pdf</a>, <a href="https://arxiv.org/ps/2311.11505">ps</a>, <a href="https://arxiv.org/format/2311.11505">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum-well resonances caused by partial confinement in MgO-based magnetic tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L+N">L. N. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+B+Y">B. Y. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W+Z">W. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X+F">X. F. Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11505v2-abstract-short" style="display: inline;"> Quantum-well resonance is achieved through partial confinement in magnetic tunnel junctions (MTJs), which provides an additional operable degree of freedom to regulate quantum-well levels. Using Al/Fe/MgO/Fe/Al and Ag/Al/Fe/MgO/Fe/Al/Ag MTJs as examples, via first-principles calculations, we demonstrate that the partial confinement of $螖_1$ electron at Al/Fe interface and the full confinement at F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11505v2-abstract-full').style.display = 'inline'; document.getElementById('2311.11505v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11505v2-abstract-full" style="display: none;"> Quantum-well resonance is achieved through partial confinement in magnetic tunnel junctions (MTJs), which provides an additional operable degree of freedom to regulate quantum-well levels. Using Al/Fe/MgO/Fe/Al and Ag/Al/Fe/MgO/Fe/Al/Ag MTJs as examples, via first-principles calculations, we demonstrate that the partial confinement of $螖_1$ electron at Al/Fe interface and the full confinement at Fe/MgO interface combine to produce quantum-well resonances in Fe. The quantum-well levels of Fe can be periodically adjusted by two degrees of freedom: Fe and Al thickness. The oscillation period obtained from conductance $G_{\uparrow\uparrow}$ is 2.13 ML Fe (9 ML Al), close to 2.25 ML Fe (8.33 ML Al) calculated by bcc-Fe (fcc-Al) band. The combination of long and short periods enables quantum-well levels to be finely adjusted. An ultrahigh optimistic TMR effect of $3.05\times10$$^5$\% is achieved. Our results provides a new path for designing and applying quantum-well resonances in spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11505v2-abstract-full').style.display = 'none'; document.getElementById('2311.11505v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09098">arXiv:2311.09098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09098">pdf</a>, <a href="https://arxiv.org/format/2311.09098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Broad-Wavevector Spin Pumping of Flat-Band Magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinlong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jilei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">William Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+L">Lutong Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jihao Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+G">Guibin Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuelin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+R">Rundong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Jing Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansermet%2C+J">Jean-Philippe Ansermet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Haiming Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09098v1-abstract-short" style="display: inline;"> We report the experimental observation of large spin pumping signals in YIG/Pt system driven by broad-wavevector spin-wave spin current. 280 nm-wide microwave inductive antennas offer broad-wavevector excitation which, in combination with quasi-flatband of YIG, allows a large number of magnons to participate in spin pumping at a given frequency. Through comparison with ferromagnetic resonance spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09098v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09098v1-abstract-full" style="display: none;"> We report the experimental observation of large spin pumping signals in YIG/Pt system driven by broad-wavevector spin-wave spin current. 280 nm-wide microwave inductive antennas offer broad-wavevector excitation which, in combination with quasi-flatband of YIG, allows a large number of magnons to participate in spin pumping at a given frequency. Through comparison with ferromagnetic resonance spin pumping, we attribute the enhancement of the spin current to the multichromatic magnons. The high efficiency of spin current generation enables us to uncover nontrivial propagating properties in ultra-low power regions. Additionally, our study achieves the spatially separated detection of magnons, allowing the direct extraction of the decay length. The synergistic combination of the capability of broad-wavevector excitation, enhanced voltage signals, and nonlocal detection provides a new avenue for the electrical exploration of spin waves dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09098v1-abstract-full').style.display = 'none'; document.getElementById('2311.09098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19505">arXiv:2310.19505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19505">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Transmission infrared micro-spectroscopic study of individual human hair </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yuhan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xinxin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+X">Xiufang Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+X">Xiang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19505v1-abstract-short" style="display: inline;"> Understanding the optical transmission property of human hair, especially in the infrared regime, is vital in physical, clinical, and biomedical research. However, the majority of infrared spectroscopy on human hair is performed in the reflection mode, which only probes the absorptance of the surface layer. The direct transmission spectrum of individual hair without horizontal cut offers a rapid a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19505v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19505v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19505v1-abstract-full" style="display: none;"> Understanding the optical transmission property of human hair, especially in the infrared regime, is vital in physical, clinical, and biomedical research. However, the majority of infrared spectroscopy on human hair is performed in the reflection mode, which only probes the absorptance of the surface layer. The direct transmission spectrum of individual hair without horizontal cut offers a rapid and non-destructive test of the hair cortex but is less investigated experimentally due to the small size and strong absorption of the hair. In this work, we conduct transmission infrared micro-spectroscopic study on individual human hair. By utilizing direct measurements of the transmission spectrum using a Fourier-transform infrared microscope, the human hair is found to display prominent band filtering behavior. The high spatial resolution of infrared micro-spectroscopy further allows the comparison among different regions of hair. In a case study of adult-onset Still&#39;s disease, the corresponding infrared transmission exhibits systematic variations of spectral weight as the disease evolves. The geometry effect of the internal hair structure is further quantified using the finite-element simulation. The results imply that the variation of spectral weight may relate to the disordered microscopic structure variation of the hair cortex during the inflammatory attack. Our work reveals the potential of hair infrared transmission spectrum in tracing the variation of hair cortex retrospectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19505v1-abstract-full').style.display = 'none'; document.getElementById('2310.19505v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13363">arXiv:2310.13363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13363">pdf</a>, <a href="https://arxiv.org/format/2310.13363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.166706">10.1103/PhysRevLett.133.166706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualization of Skyrmion-Superconducting Vortex Pairs in a Chiral-Magnet-Superconductor Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yong-Jie Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+A">Ang Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+B">Bin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Biao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+G">X. G. Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13363v2-abstract-short" style="display: inline;"> Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been pu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13363v2-abstract-full').style.display = 'inline'; document.getElementById('2310.13363v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13363v2-abstract-full" style="display: none;"> Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been put forward on constructing skyrmion-vortex pairs in heterostructures of chiral magnets and superconductors. Nevertheless, how to generate skyrmion-vortex pairs in a controllable way experimentally remains a significant challenge. We have designed a heterostructure of a chiral magnet and superconductor [Ta/Ir/CoFeB/MgO]7/Nb in which zero field N茅el-type skyrmions can be stabilized and the superconducting vortices can couple with the skyrmions when Nb is in the superconducting state. We have directly observed the formation of skyrmion-superconducting vortex pairs that is dependent on the direction of the applied magnetic field. Our results provide an effective method to manipulate the quantum states of skyrmions with the help of superconducting vortices, which can be used to explore new routines to control the skyrmions for spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13363v2-abstract-full').style.display = 'none'; document.getElementById('2310.13363v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 166706(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01027">arXiv:2310.01027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.01027">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Elemental Ferroelectric Topological Insulator in $蠄$-bismuthene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xuening Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frauenheim%2C+T">Thomas Frauenheim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+F">Fulu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+P">Pei Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01027v2-abstract-short" style="display: inline;"> Ferroelectric quantum spin Hall insulator (FEQSHI) exhibits coexisting ferroelectricity and time-reversal symmetry protected edge states, holding fascinating prospects for inviting both scientific and application advances, especially in two dimensions. However, all of the previously demonstrated FEQSHIs consist two or more constituent elements. We herein propose the $蠄$-bismuthene, an uncharted al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01027v2-abstract-full').style.display = 'inline'; document.getElementById('2310.01027v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01027v2-abstract-full" style="display: none;"> Ferroelectric quantum spin Hall insulator (FEQSHI) exhibits coexisting ferroelectricity and time-reversal symmetry protected edge states, holding fascinating prospects for inviting both scientific and application advances, especially in two dimensions. However, all of the previously demonstrated FEQSHIs consist two or more constituent elements. We herein propose the $蠄$-bismuthene, an uncharted allotrope of bilayer Bi (110), to be the first example of 2D elemental FEQSHI. It is demonstrated that $蠄$-bismuthene harbors measurable ferroelectric polarization and nontrivial band gap with moderate switching barrier, which are highly beneficial for the detection and observation of the ferroelectric topologically insulating states. In addition, all-angle auxetic behavior with giant negative Poisson&#39;s ratio and ferroelectric controllable persistent spin helix in $蠄$-bismuthene are also discussed. The emergent elemental FEQSHI represents a novel domain for both fundamental physics and technological innovation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01027v2-abstract-full').style.display = 'none'; document.getElementById('2310.01027v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09561">arXiv:2309.09561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09561">pdf</a>, <a href="https://arxiv.org/ps/2309.09561">ps</a>, <a href="https://arxiv.org/format/2309.09561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.034038">10.1103/PhysRevApplied.21.034038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal facet orientated Altermagnets for detecting ferromagnetic and antiferromagnetic states by giant tunneling magnetoresistance effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+B">Boyuan Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Leina Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09561v2-abstract-short" style="display: inline;"> Emerging altermagnetic materials with vanishing net magnetizations and unique band structures have been envisioned as an ideal electrode to design antiferromagnetic tunnel junctions. Their momentum-resolved spin splitting in band structures defines a spin-polarized Fermi surface, which allows altermagnetic materials to polarize current as a ferromagnet, when the current flows along specific direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09561v2-abstract-full').style.display = 'inline'; document.getElementById('2309.09561v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09561v2-abstract-full" style="display: none;"> Emerging altermagnetic materials with vanishing net magnetizations and unique band structures have been envisioned as an ideal electrode to design antiferromagnetic tunnel junctions. Their momentum-resolved spin splitting in band structures defines a spin-polarized Fermi surface, which allows altermagnetic materials to polarize current as a ferromagnet, when the current flows along specific directions relevant to their altermagnetism. Here, we design an Altermagnet/Insulator barrier/Ferromagnet junction, renamed as altermagnetic tunnel junction (ATMTJ), using RuO$_2$/TiO$_2$/CrO$_2$ as a prototype. Through first-principles calculations, we investigate the tunneling properties of the ATMTJ along the [001] and [110] directions, which shows that the tunneling magnetoresistance (TMR) is almost zero when the current flows along the [001] direction, while it can reach as high as 6100\% with current flows along the [110] direction. The spin-resolved conduction channels of the altermagnetic RuO$_2$ electrode are found responsible for this momentum-dependent (or transport-direction-dependent) TMR effect. Furthermore, this ATMTJ can also be used to readout the N茅el vector of the altermagnetic electrode RuO$_2$. Our work promotes the understanding toward the altermagnetic materials and provides an alternative way to design magnetic tunnel junctions with ultrahigh TMR ratios and robustness of the altermagnetic electrode against external disturbance, which broadens the application avenue for antiferromagnetic spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09561v2-abstract-full').style.display = 'none'; document.getElementById('2309.09561v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02821">arXiv:2308.02821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02821">pdf</a>, <a href="https://arxiv.org/format/2308.02821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Probing the fractional quantum Hall phases in valley-layer locked bilayer MoS$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Siwen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jinqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cr%C3%A9pel%2C+V">Valentin Cr茅pel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xingguang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tongyao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanwen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiangyan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhengyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+S">Senyang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaosheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sac%C3%A9p%C3%A9%2C+B">Benjamin Sac茅p茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jianming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z+V">Zheng Vitto Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02821v2-abstract-short" style="display: inline;"> Semiconducting transition-metal dichalcogenides (TMDs) exhibit high mobility, strong spin-orbit coupling, and large effective masses, which simultaneously leads to a rich wealth of Landau quantizations and inherently strong electronic interactions. However, in spite of their extensively explored Landau levels (LL) structure, probing electron correlations in the fractionally filled LL regime has no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02821v2-abstract-full').style.display = 'inline'; document.getElementById('2308.02821v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02821v2-abstract-full" style="display: none;"> Semiconducting transition-metal dichalcogenides (TMDs) exhibit high mobility, strong spin-orbit coupling, and large effective masses, which simultaneously leads to a rich wealth of Landau quantizations and inherently strong electronic interactions. However, in spite of their extensively explored Landau levels (LL) structure, probing electron correlations in the fractionally filled LL regime has not been possible due to the difficulty of reaching the quantum limit. Here, we report evidence for fractional quantum Hall (FQH) states at filling fractions 4/5 and 2/5 in the lowest LL of bilayer MoS$_{2}$, manifested in fractionally quantized transverse conductance plateaus accompanied by longitudinal resistance minima. We further show that the observed FQH states sensitively depend on the dielectric and gate screening of the Coulomb interactions. Our findings establish a new FQH experimental platform which are a scarce resource: an intrinsic semiconducting high mobility electron gas, whose electronic interactions in the FQH regime are in principle tunable by Coulomb-screening engineering, and as such, could be the missing link between atomically thin graphene and semiconducting quantum wells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02821v2-abstract-full').style.display = 'none'; document.getElementById('2308.02821v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15728">arXiv:2307.15728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15728">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Selective Manipulation and Tunneling Spectroscopy of Broken-Symmetry Quantum Hall States in a Hybrid-edge Quantum Point Contact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jaden Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xihe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15728v3-abstract-short" style="display: inline;"> We present a device architecture of hybrid-edge and dual-gated quantum point contact. We demonstrate improved electrostatic control over the separation, position, and coupling of each broken-symmetry compressible strip in graphene. Via low-temperature magneto-transport measurement, we demonstrate selective manipulation over the evolution, hybridization, and transmission of arbitrarily chosen quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15728v3-abstract-full').style.display = 'inline'; document.getElementById('2307.15728v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15728v3-abstract-full" style="display: none;"> We present a device architecture of hybrid-edge and dual-gated quantum point contact. We demonstrate improved electrostatic control over the separation, position, and coupling of each broken-symmetry compressible strip in graphene. Via low-temperature magneto-transport measurement, we demonstrate selective manipulation over the evolution, hybridization, and transmission of arbitrarily chosen quantum Hall states in the channel. With gate-tunable tunneling spectroscopy, we characterize the energy gap of each symmetry-broken quantum Hall state with high resolution on the order of ~0.1 meV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15728v3-abstract-full').style.display = 'none'; document.getElementById('2307.15728v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15680">arXiv:2307.15680</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15680">pdf</a>, <a href="https://arxiv.org/format/2307.15680">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pseudogap Behavior in the Local Spinon Spectrum of Power-Law Diverging Multichannel Kondo Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zuodong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Danqing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiangfan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xinloong Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15680v2-abstract-short" style="display: inline;"> Motivated by the emergence of higher-order van Hove singularities (VHS) with power-law divergent density of states (DOS) ($蟻_c(蠅)=蟻_0/|蠅|^{r}$, $0&lt;r&lt;1$) in materials, we investigate a multichannel Kondo model involving conduction electrons near the higher-order van Hove filling. This model considers $M$ channel and $N$ spin degrees of freedom. Employing a renormalization group analysis and dynamic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15680v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15680v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15680v2-abstract-full" style="display: none;"> Motivated by the emergence of higher-order van Hove singularities (VHS) with power-law divergent density of states (DOS) ($蟻_c(蠅)=蟻_0/|蠅|^{r}$, $0&lt;r&lt;1$) in materials, we investigate a multichannel Kondo model involving conduction electrons near the higher-order van Hove filling. This model considers $M$ channel and $N$ spin degrees of freedom. Employing a renormalization group analysis and dynamical large-$N$ approach, our results reveal a crossover from a non-Fermi liquid to pseudogap behavior in the spectral properties of the local impurity at the overscreened fixed point. We precisely determine the conditions under which the crossover occurs, either by tuning the exponent $r$ or the ratio $魏=M/N$ to a critical value. This pseudogap phase of spinon exhibits distinct physical properties that could have an impact on the properties of real systems. The results of this study provide novel insights into the non-Fermi liquid and pseudogap behaviors observed in strongly correlated systems and offer a playground to study the interplay between higher-order van Hove singularities and multichannel Kondo physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15680v2-abstract-full').style.display = 'none'; document.getElementById('2307.15680v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 fugures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05904">arXiv:2307.05904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05904">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Twofold Symmetry Observed in Bi$_{2}$Te$_{3}$/FeTe Interfacial Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xinru Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+H">Hailang Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+T">Tianluo Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+B">Bin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+K">Kaige Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zijin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+H">Hangyu Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+H">Hongtao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Fei Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei-Qiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+J">Jia-Wei Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05904v2-abstract-short" style="display: inline;"> Superconducting pairing symmetry are crucial in understanding the microscopic superconducting mechanism of a superconductor. Here we report the observation of a twofold superconducting gap symmetry in an interfacial superconductor Bi$_{2}$Te$_{3}$/FeTe, by employing quasiparticle interference (QPI) technique in scanning tunneling microscopy and macroscopic magnetoresistance measurements. The QPI p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05904v2-abstract-full').style.display = 'inline'; document.getElementById('2307.05904v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05904v2-abstract-full" style="display: none;"> Superconducting pairing symmetry are crucial in understanding the microscopic superconducting mechanism of a superconductor. Here we report the observation of a twofold superconducting gap symmetry in an interfacial superconductor Bi$_{2}$Te$_{3}$/FeTe, by employing quasiparticle interference (QPI) technique in scanning tunneling microscopy and macroscopic magnetoresistance measurements. The QPI patterns corresponding to energies inside and outside the gap reveal a clear anisotropic superconducting gap. Furthermore, both the in-plane angle-dependent magnetoresistance and in-plane upper critical field exhibit a clear twofold symmetry. This twofold symmetry align with the Te-Te direction in FeTe, which weakens the possible generation by bi-collinear antiferromagnetism order. Our finding provides key information in further understanding of the topological properties in Bi$_{2}$Te$_{3}$/FeTe superconducting system and propels further theoretical interests in the paring mechanism in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05904v2-abstract-full').style.display = 'none'; document.getElementById('2307.05904v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02780">arXiv:2306.02780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02780">pdf</a>, <a href="https://arxiv.org/format/2306.02780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Stochastic p-Bits Based on Spin-Orbit Torque Magnetic Tunnel Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X+H">X. H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M+K">M. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C+H">C. H. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Z">Y. Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X+M">X. M. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S+Q">S. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J+H">J. H. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G+Q">G. Q. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X+F">X. F. Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02780v1-abstract-short" style="display: inline;"> Stochastic p-Bit devices play a pivotal role in solving NP-hard problems, neural network computing, and hardware accelerators for algorithms such as the simulated annealing. In this work, we focus on Stochastic p-Bits based on high-barrier magnetic tunnel junctions (HB-MTJs) with identical stack structure and cell geometry, but employing different spin-orbit torque (SOT) switching schemes. We cond&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02780v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02780v1-abstract-full" style="display: none;"> Stochastic p-Bit devices play a pivotal role in solving NP-hard problems, neural network computing, and hardware accelerators for algorithms such as the simulated annealing. In this work, we focus on Stochastic p-Bits based on high-barrier magnetic tunnel junctions (HB-MTJs) with identical stack structure and cell geometry, but employing different spin-orbit torque (SOT) switching schemes. We conducted a comparative study of their switching probability as a function of pulse amplitude and width of the applied voltage. Through experimental and theoretical investigations, we have observed that the Y-type SOT-MTJs exhibit the gentlest dependence of the switching probability on the external voltage. This characteristic indicates superior tunability in randomness and enhanced robustness against external disturbances when Y-type SOT-MTJs are employed as stochastic p-Bits. Furthermore, the random numbers generated by these Y-type SOT-MTJs, following XOR pretreatment, have successfully passed the National Institute of Standards and Technology (NIST) SP800-22 test. This comprehensive study demonstrates the high performance and immense potential of Y-type SOT-MTJs for the implementation of stochastic p-Bits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02780v1-abstract-full').style.display = 'none'; document.getElementById('2306.02780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04088">arXiv:2305.04088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.04088">pdf</a>, <a href="https://arxiv.org/format/2305.04088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Atomically-precise Vacancy-assembled Quantum Antidots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+H">Hanyan Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahalingam%2C+H">Harshitra Mahalingam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinzhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Z">Zhizhan Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yixuan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noori%2C+K">Keian Noori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dulal%2C+D">Dikshant Dulal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongfei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+P">Pin Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tianhao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+C">Chenliang Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+A+C+H">Antonio Castro H. Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">Kostya S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodin%2C+A">Aleksandr Rodin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04088v1-abstract-short" style="display: inline;"> Patterning antidots (&#34;voids&#34;) into well-defined antidot lattices creates an intriguing class of artificial structures for the periodic modulation of 2D electron systems, leading to anomalous transport properties and exotic quantum phenomena as well as enabling the precise bandgap engineering of 2D materials to address technological bottleneck issues. However, realizing such atomic-scale quantum an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04088v1-abstract-full').style.display = 'inline'; document.getElementById('2305.04088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04088v1-abstract-full" style="display: none;"> Patterning antidots (&#34;voids&#34;) into well-defined antidot lattices creates an intriguing class of artificial structures for the periodic modulation of 2D electron systems, leading to anomalous transport properties and exotic quantum phenomena as well as enabling the precise bandgap engineering of 2D materials to address technological bottleneck issues. However, realizing such atomic-scale quantum antidots (QADs) is infeasible by current nanolithographic techniques. Here, we report an atomically-precise bottom-up fabrication of a series of atomic-scale QADs with elegantly engineered quantum states through a controllable assembly of a chalcogenide single vacancy (SV) in 2D PtTe2, a type-II Dirac semimetal. Te SVs as atomic-scale &#34;antidots&#34; undergo thermal migration and assembly into highly-ordered SV lattices spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of SVs in QADs strengthens the cumulative repulsive potential and consequently enhances collective interference of multiple-pocket scattered quasiparticles inside QADs, creating multi-level quantum hole states with tunable gap from telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of QADs are symmetry-protected and thus survive upon atom-by-atom oxygen substitutional doping. Therefore, SV-assembled QADs exhibit unprecedented robustness and property tunability, which not only holds the key to their future applications but also embody a wide variety of material technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04088v1-abstract-full').style.display = 'none'; document.getElementById('2305.04088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00824">arXiv:2305.00824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00824">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46729-3">10.1038/s41467-024-46729-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically-precise engineering of spin-orbit polarons in a kagome magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Yuqing Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Bin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuhan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yao Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00824v2-abstract-short" style="display: inline;"> Atomically-precise engineering of defects in topological quantum materials, which is essential for constructing new artificial quantum materials with exotic properties and appealing for practical quantum applications, remains challenging due to the hindrances in modifying complex lattice with atomic precision. Here, we report the atomically-precise engineering of the vacancy-localized spin-orbital&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00824v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00824v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00824v2-abstract-full" style="display: none;"> Atomically-precise engineering of defects in topological quantum materials, which is essential for constructing new artificial quantum materials with exotic properties and appealing for practical quantum applications, remains challenging due to the hindrances in modifying complex lattice with atomic precision. Here, we report the atomically-precise engineering of the vacancy-localized spin-orbital polarons (SOP) in a kagome magnetic Weyl semimetal Co3Sn2S2, using scanning tunneling microscope. We achieve the step-by-step repairing of the selected vacancies, which results in the formation of artificial sulfur vacancy with elaborate geometry. We find that that the bound states localized around the vacancies experience a symmetry-dependent energy shift towards Fermi level with increasing vacancy size. Strikingly, as vacancy size increases, the localized magnetic moments of SOPs are tunable and ultimately extended to the negative magnetic moments resulting from spin-orbit coupling in the kagome flat band. These findings establish a new platform for engineering atomic quantum states in topological quantum materials, offering potential for kagome-lattice-based spintronics and quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00824v2-abstract-full').style.display = 'none'; document.getElementById('2305.00824v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 2301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14673">arXiv:2304.14673</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14673">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00110">10.1021/acs.nanolett.3c00110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning multiple Landau Quantization in Transition-Metal Dichalcogenide with Strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xian%2C+G">Guoyu Xian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+X">Xiangbo Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+G">Guojian Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chengmin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Banggui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14673v1-abstract-short" style="display: inline;"> Landau quantization associated with the quantized cyclotron motion of electrons under magnetic field provides the effective way to investigate topologically protected quantum states with entangled degrees of freedom and multiple quantum numbers. Here we report the cascade of Landau quantization in a strained type-II Dirac semimetal NiTe2 with spectroscopic-imaging scanning tunneling microscopy. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14673v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14673v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14673v1-abstract-full" style="display: none;"> Landau quantization associated with the quantized cyclotron motion of electrons under magnetic field provides the effective way to investigate topologically protected quantum states with entangled degrees of freedom and multiple quantum numbers. Here we report the cascade of Landau quantization in a strained type-II Dirac semimetal NiTe2 with spectroscopic-imaging scanning tunneling microscopy. The uniform-height surfaces exhibit single-sequence Landau levels (LLs) at a magnetic field originating from the quantization of topological surface state (TSS) across the Fermi level. Strikingly, we reveal the multiple sequence of LLs in the strained surface regions where the rotation symmetry is broken. Firstprinciples calculations demonstrate that the multiple LLs attest to the remarkable lifting of the valley degeneracy of TSS by the in-plane uniaxial or shear strains. Our findings pave a pathway to tune multiple degrees of freedom and quantum numbers of TMDs via strain engineering for practical applications such as high-frequency rectifiers, Josephson diode and valleytronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14673v1-abstract-full').style.display = 'none'; document.getElementById('2304.14673v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nano Letters 23, 3274 (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13400">arXiv:2304.13400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13400">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c03085">10.1021/acs.nanolett.3c03085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Fluctuation Spin Hall Effect in Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+C">Chi Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoyue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+T">Tianyi Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+J">Jianying Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chenyang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Jing Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+Z">Zhenchao Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+N">Ning Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagaosa%2C+N">Naoto Nagaosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yuan Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13400v1-abstract-short" style="display: inline;"> The spin Hall effect (SHE) can generate a pure spin current by an electric current, which is promisingly used to electrically control magnetization. To reduce power consumption of this control, a giant spin Hall angle (SHA) in the SHE is desired in low-resistivity systems for practical applications. Here, critical spin fluctuation near the antiferromagnetic (AFM) phase-transition is proved as an e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13400v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13400v1-abstract-full" style="display: none;"> The spin Hall effect (SHE) can generate a pure spin current by an electric current, which is promisingly used to electrically control magnetization. To reduce power consumption of this control, a giant spin Hall angle (SHA) in the SHE is desired in low-resistivity systems for practical applications. Here, critical spin fluctuation near the antiferromagnetic (AFM) phase-transition is proved as an effective mechanism to create an additional part of SHE, named as fluctuation spin Hall effect (FSHE). This FSHE enhances the SHA due to the AFM spin fluctuation between conduction electrons and local spins. We detect the FSHE with the inverse and direct spin Hall effect (ISHE and DSHE) set-up and their temperature (T) dependences in the Cr/MgO/Fe magnetic tunnel junctions (MTJs). The SHA is significantly enhanced when temperature is approached to the N茅el temperature (T_N) and has a peak value of -0.34 at 200 K near T_N. This value is higher than the room-temperature value by 240% and comparable to that of heavy metals Ta and W. Furthermore, the spin Hall resistivity of Cr well fits the modeled T-dependence when T approaches T_N from low temperatures, implying the AFM spin fluctuation nature of strong SHA enhancement. Thus, this study demonstrates the critical spin fluctuation as a prospective way of increasing SHA and enriches the AFM material candidates for spin-orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13400v1-abstract-full').style.display = 'none'; document.getElementById('2304.13400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06431">arXiv:2304.06431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06431">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45859-y">10.1038/s41467-024-45859-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon promoted charge density wave in topological kagome metal ScV$_{6}$Sn$_{6}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junzhang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yinxiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">Dariusz Jakub Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tianchen Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teyssier%2C+J">J茅r茅mie Teyssier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multian%2C+V">Volodymyr Multian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhouyi Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">Soohyeon Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plokhikh%2C+I">Igor Plokhikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xinloong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicholas Clark Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jiaxin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06431v1-abstract-short" style="display: inline;"> Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention due to their unique properties and intricate interplay with exotic correlated phenomena, topological and symmetry-breaking states. However, the origin of the CDW order remains a topic of debate. The discovery of ScV$_{6}$Sn$_{6}$, a vanadium-based bilayer kagome metal exhibiting an in-plane&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06431v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06431v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06431v1-abstract-full" style="display: none;"> Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention due to their unique properties and intricate interplay with exotic correlated phenomena, topological and symmetry-breaking states. However, the origin of the CDW order remains a topic of debate. The discovery of ScV$_{6}$Sn$_{6}$, a vanadium-based bilayer kagome metal exhibiting an in-plane $\sqrt{3}$ x $\sqrt{3} $ $\textit{R}$30$掳$ CDW order with time-reversal symmetry breaking, provides a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering measurements and density functional theory to investigate the electronic structures and phonon modes of ScV$_{6}$Sn$_{6}$ and their evolution with temperature. We identify topologically nontrivial Dirac surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS near the K point exhibiting nesting wave vectors in proximity to the $\sqrt{3}$ x $\sqrt{3}$ $\textit{R}$30$掳$ CDW wave vector. Additionally, Raman measurements indicate a strong intrinsic electron-phonon coupling in ScV$_{6}$Sn$_{6}$, as evidenced by the presence of a two-phonon mode and a large frequency amplitude mode. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV$_{6}$Sn$_{6}$ and provide important insights into the fascinating correlation phenomena observed in kagome metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06431v1-abstract-full').style.display = 'none'; document.getElementById('2304.06431v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 1658 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02248">arXiv:2304.02248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02248">pdf</a>, <a href="https://arxiv.org/format/2304.02248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.014432">10.1103/PhysRevB.108.014432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Threshold current of field-free perpendicular magnetization switching using anomalous spin-orbit torque </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">TianYi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">CaiHua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">XiuFeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02248v2-abstract-short" style="display: inline;"> Spin-orbit torque (SOT) is a candidate technique in next generation magnetic random-access memory (MRAM). Recently, experiments show that some material with low-symmetric crystalline or magnetic structures can generate anomalous SOT that has an out-of-plane component, which is crucial in switching perpendicular magnetization of adjacent ferromagnetic (FM) layer in the field-free condition. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02248v2-abstract-full').style.display = 'inline'; document.getElementById('2304.02248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02248v2-abstract-full" style="display: none;"> Spin-orbit torque (SOT) is a candidate technique in next generation magnetic random-access memory (MRAM). Recently, experiments show that some material with low-symmetric crystalline or magnetic structures can generate anomalous SOT that has an out-of-plane component, which is crucial in switching perpendicular magnetization of adjacent ferromagnetic (FM) layer in the field-free condition. In this work, we analytically derive the threshold current of field-free perpendicular magnetization switching using the anomalous SOT. And we numerically calculate the track of the magnetic moment in a FM free layer when an applied current is smaller and greater than the threshold current. After that, we study the applied current dependence of the switching time and the switching energy consumption, which shows the minimum energy consumption decreases as out-of-plane torque proportion increases. Then we study the dependences of the threshold current on anisotropy strength, out-of-plane torque proportion, FM free layer thickness and Gilbert damping constant, and the threshold current shows negative correlation with the out-of-plane torque proportion and positive correlation with the other three parameters. Finally, we demonstrate that when the applied current is smaller than the threshold current, although it cannot switch the magnetization of FM free layer, it can still equivalently add an effective exchange bias field H_{bias} on the FM free layer. The H_{bias} is proportional to the applied current J_{SOT}, which facilitates the determination of the anomalous SOT efficiency. This work helps us to design new spintronic devices that favor field-free switching perpendicular magnetization using the anomalous SOT, and provides a way to adjust the exchange bias field, which is helpful in controlling FM layer magnetization depinning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02248v2-abstract-full').style.display = 'none'; document.getElementById('2304.02248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01930">arXiv:2304.01930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01930">pdf</a>, <a href="https://arxiv.org/format/2304.01930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Full quantum theory for magnon transport in two-sublattice magnetic insulators and magnon junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">TianYi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">XiuFeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01930v1-abstract-short" style="display: inline;"> Magnon, as elementary excitation in magnetic systems, can carry and transfer angular momentum. Due to the absence of Joule heat during magnon transport, researches on magnon transport have gained considerable interests over the past decade. Recently, a full quantum theory has been employed to investigate magnon transport in ferromagnetic insulators (FMIs). However, the most commonly used magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01930v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01930v1-abstract-full" style="display: none;"> Magnon, as elementary excitation in magnetic systems, can carry and transfer angular momentum. Due to the absence of Joule heat during magnon transport, researches on magnon transport have gained considerable interests over the past decade. Recently, a full quantum theory has been employed to investigate magnon transport in ferromagnetic insulators (FMIs). However, the most commonly used magnetic insulating material in experiments, yttrium iron garnet (YIG), is a ferrimagnetic insulator (FIMI). Therefore, a full quantum theory for magnon transport in FIMI needs to be established. Here, we propose a Green&#39;s function formalism to compute the magnon bulk and interface current in both FIMIs and antiferromagnetic insulators (AFMIs). We investigate the spatial distribution and temperature dependence of magnon current in FIMIs and AFMIs generated by temperature or spin chemical potential step. In AFMIs, magnon currents generated by temperature step in the two sublattices cancel each other out. Subsequently, we numerically simulate the magnon junction effect using the Green&#39;s function formalism, and result shows near 100\% magnon junction ratio. This study demonstrates the potential for investigating magnon transport in specific magnonic devices using a full quantum theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01930v1-abstract-full').style.display = 'none'; document.getElementById('2304.01930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01001">arXiv:2304.01001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01001">pdf</a>, <a href="https://arxiv.org/format/2304.01001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of spin-wave moir茅 edge and cavity modes in twisted magnetic lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madami%2C+M">Marco Madami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jilei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+H">Hao Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+R">Rundong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yizhan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wenqing He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+L">Lutong Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuelin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinlong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K">Ka Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansermet%2C+J">Jean-Philippe Ansermet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gubbiotti%2C+G">Gianluca Gubbiotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Haiming Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01001v1-abstract-short" style="display: inline;"> We report the experimental observation of the spin-wave moir茅 edge and cavity modes using Brillouin light scattering spectro-microscopy in a nanostructured magnetic moir茅 lattice consisting of two twisted triangle antidot lattices based on an yttrium iron garnet thin film. Spin-wave moir茅 edge modes are detected at an optimal twist angle and with a selective excitation frequency. At a given twist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01001v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01001v1-abstract-full" style="display: none;"> We report the experimental observation of the spin-wave moir茅 edge and cavity modes using Brillouin light scattering spectro-microscopy in a nanostructured magnetic moir茅 lattice consisting of two twisted triangle antidot lattices based on an yttrium iron garnet thin film. Spin-wave moir茅 edge modes are detected at an optimal twist angle and with a selective excitation frequency. At a given twist angle, the magnetic field acts as an additional degree of freedom for tuning the chiral behavior of the magnon edge modes. Micromagnetic simulations indicate that the edge modes emerge within the original magnonic band gap and at the intersection between a mini-flatband and a propagation magnon branch. Our theoretical estimate for the Berry curvature of the magnon-magnon coupling suggests a non-trivial topology for the chiral edge modes and confirms the key role played by the dipolar interaction. Our findings shed light on the topological nature of the magnon edge mode for emergent moir茅 magnonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01001v1-abstract-full').style.display = 'none'; document.getElementById('2304.01001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14903">arXiv:2303.14903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14903">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-08227-w">10.1038/s41586-024-08227-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Inter-valley Electron-Phonon Coupling in Magic-Angle Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nuckolls%2C+K+P">Kevin P. Nuckolls</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+S">Shuhan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+W">Wangqian Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+D">Dillon Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+M">Myungchul Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+R+L">Ryan L. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+S">Shanmei He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">Ding Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+C">Chenyue Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Haoran Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">Hanbo Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Han Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chu Li</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14903v2-abstract-short" style="display: inline;"> The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked enormous research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, utilizing angle-resolved photoemission spectroscopy with micrometer spatial resolutio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14903v2-abstract-full').style.display = 'inline'; document.getElementById('2303.14903v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14903v2-abstract-full" style="display: none;"> The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked enormous research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, utilizing angle-resolved photoemission spectroscopy with micrometer spatial resolution, we have revealed flat band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride (hBN) substrate11. These replicas exhibit uniform energy spacing, approximately 150 +- 15 meV apart, indicative of strong electron-boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hBN or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat band replicas in superconducting MATBG are attributed to the strong coupling between flat band electrons and an optical phonon mode at the graphene K point, facilitated by inter-valley scattering. These findings, although do not necessarily put electron phonon coupling as the main driving force for the superconductivity in MATBG, unravel the unique electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which the superconductivity is derived. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14903v2-abstract-full').style.display = 'none'; document.getElementById('2303.14903v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 636, 342 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00875">arXiv:2303.00875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00875">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05907-x">10.1038/s41586-023-05907-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nodeless electron pairing in CsV$_3$Sb$_5$-derived kagome superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yigui Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mine%2C+A">Akifumi Mine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Najafzadeh%2C+S">Sahand Najafzadeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+D">Debarchan Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mielke%2C+C">Charles Mielke III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">Rustem Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">Hubertus Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suzuki%2C+T">Takeshi Suzuki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xinloong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+T">Takeshi Kondo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">Shik Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okazaki%2C+K">Kozo Okazaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00875v1-abstract-short" style="display: inline;"> The newly discovered kagome superconductors represent a promising platform for investigating the interplay between band topology, electronic order, and lattice geometry. Despite extensive research efforts on this system, the nature of the superconducting ground state remains elusive. In particular, consensus on the electron pairing symmetry has not been achieved so far, in part owing to the lack o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00875v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00875v1-abstract-full" style="display: none;"> The newly discovered kagome superconductors represent a promising platform for investigating the interplay between band topology, electronic order, and lattice geometry. Despite extensive research efforts on this system, the nature of the superconducting ground state remains elusive. In particular, consensus on the electron pairing symmetry has not been achieved so far, in part owing to the lack of a momentum-resolved measurement of the superconducting gap structure. Here we report the direct observation of a nodeless, nearly isotropic, and orbital-independent superconducting gap in the momentum space of two exemplary CsV$_3$Sb$_5$-derived kagome superconductors -- Cs(V$_{0.93}$Nb$_{0.07}$)$_3$Sb$_5$ and Cs(V$_{0.86}$Ta$_{0.14}$)$_3$Sb$_5$, using ultrahigh resolution and low-temperature angle-resolved photoemission spectroscopy (ARPES). Remarkably, such a gap structure is robust to the appearance or absence of charge order in the normal state, tuned by isovalent Nb/Ta substitutions of V. Moreover, we observe a signature of the time-reversal symmetry (TRS) breaking inside the superconducting state, which extends the previous observation of TRS-breaking CDW in the kagome lattice. Our comprehensive characterizations of the superconducting state provide indispensable information on the electron pairing of kagome superconductors, and advance our understanding of unconventional superconductivity and intertwined electronic orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00875v1-abstract-full').style.display = 'none'; document.getElementById('2303.00875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 617, 488 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04489">arXiv:2302.04489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04489">pdf</a>, <a href="https://arxiv.org/format/2302.04489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Robust topological superconductivity in spin-orbit coupled systems at higher-order van Hove filling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xinloong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+J">Jun Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fu-chun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04489v1-abstract-short" style="display: inline;"> Van Hove singularities (VHSs) in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities. It is also known that a nontrivial Berry phase derived from spin-orbit coupling (SOC) can introduce an intriguing decoration into the interactions and thus alter correlated phenomena. However, it is unclear how and what type of new physics can emerge in a syst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04489v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04489v1-abstract-full" style="display: none;"> Van Hove singularities (VHSs) in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities. It is also known that a nontrivial Berry phase derived from spin-orbit coupling (SOC) can introduce an intriguing decoration into the interactions and thus alter correlated phenomena. However, it is unclear how and what type of new physics can emerge in a system featured by the interplay between VHSs and the Berry phase. Here, based on a general Rashba model on the square lattice, we comprehensively explore such an interplay and its significant influence on the competing electronic instabilities by performing a parquet renormalization group analysis. Despite the existence of a variety of comparable fluctuations in the particle-particle and particle-hole channels associated with higher-order VHSs, we find that the chiral $p \pm ip$ pairings emerge as two stable fixed trajectories within the generic interaction parameter space, namely the system becomes a robust topological superconductor. The chiral pairings stem from the hopping interaction induced by the nontrivial Berry phase. The possible experimental realization and implications are discussed. Our work sheds new light on the correlated states in quantum materials with strong SOC and offers fresh insights into the exploration of topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04489v1-abstract-full').style.display = 'none'; document.getElementById('2302.04489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02906">arXiv:2302.02906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.02906">pdf</a>, <a href="https://arxiv.org/format/2302.02906">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.184504">10.1103/PhysRevB.107.184504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced nematicity emerging from higher-order van Hove singularities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xinloong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02906v2-abstract-short" style="display: inline;"> Motivated by the experimental identification of a higher-order van Hove singularity (VHS) in AV$_3$Sb$_5$ kagome metals, we study electronic instabilities of 2D lattice models with higher-order VHS and flavor degeneracy. In contrast to conventional VHSs, the larger power-law density of states and the weaker nesting propensity of higher-order VHSs conspire together to generate distinct competing in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02906v2-abstract-full').style.display = 'inline'; document.getElementById('2302.02906v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02906v2-abstract-full" style="display: none;"> Motivated by the experimental identification of a higher-order van Hove singularity (VHS) in AV$_3$Sb$_5$ kagome metals, we study electronic instabilities of 2D lattice models with higher-order VHS and flavor degeneracy. In contrast to conventional VHSs, the larger power-law density of states and the weaker nesting propensity of higher-order VHSs conspire together to generate distinct competing instabilities. After discussing the occurrence of higher-order VHSs on square and kagome lattice models, we perform unbiased renormalization group calculations to study competing instabilities and find a rich phase diagram containing ferromagnetism, anti-ferromagnetism, superconductivity and Pomeranchuk orders. Remarkably, there is a generic transition from superconductivity to a $d$-wave Pomeranchuk order with increasing flavor number. Implications for the intriguing quantum states of AV$_3$Sb$_5$ kagome metals are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02906v2-abstract-full').style.display = 'none'; document.getElementById('2302.02906v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Han%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10