CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 909 results for author: <span class="mathjax">Wang, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Wang%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.17996">arXiv:2503.17996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.17996">pdf</a>, <a href="https://arxiv.org/format/2503.17996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Identifying Ising and percolation phase transitions based on KAN method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Dian Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+W">Weibing Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jianmin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.17996v1-abstract-short" style="display: inline;"> Modern machine learning, grounded in the Universal Approximation Theorem, has achieved significant success in the study of phase transitions in both equilibrium and non-equilibrium systems. However, identifying the critical points of percolation models using raw configurations remains a challenging and intriguing problem. This paper proposes the use of the Kolmogorov-Arnold Network, which is based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17996v1-abstract-full').style.display = 'inline'; document.getElementById('2503.17996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.17996v1-abstract-full" style="display: none;"> Modern machine learning, grounded in the Universal Approximation Theorem, has achieved significant success in the study of phase transitions in both equilibrium and non-equilibrium systems. However, identifying the critical points of percolation models using raw configurations remains a challenging and intriguing problem. This paper proposes the use of the Kolmogorov-Arnold Network, which is based on the Kolmogorov-Arnold Representation Theorem, to input raw configurations into a learning model. The results demonstrate that the KAN can indeed predict the critical points of percolation models. Further observation reveals that, apart from models associated with the density of occupied points, KAN is also capable of effectively achieving phase classification for models where the sole alteration pertains to the orientation of spins, resulting in an order parameter that manifests as an external magnetic flux, such as the Ising model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17996v1-abstract-full').style.display = 'none'; document.getElementById('2503.17996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pagees, 9 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.17762">arXiv:2503.17762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.17762">pdf</a>, <a href="https://arxiv.org/format/2503.17762">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quasiparticle interference and spectral function of the UTe$_2$ superconductive surface band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cr%C3%A9pieux%2C+A">Adeline Cr茅pieux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pangburn%2C+E">Emile Pangburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuqiu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhussupbekov%2C+K">Kuanysh Zhussupbekov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carroll%2C+J+P">Joseph P. Carroll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Bin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+C+S">J. C. S茅amus Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%A9pin%2C+C">Catherine P茅pin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bena%2C+C">Cristina Bena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.17762v1-abstract-short" style="display: inline;"> We compute the (0-11) surface spectral function, the surface density of states (DOS), and the quasiparticle interference (QPI) patterns, both in the normal state and superconducting (SC) state of UTe$_2$. We consider all possible non-chiral and chiral order parameters (OPs) that could in principle describe the superconductivity in this compound. We describe the formation of surface states whose ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17762v1-abstract-full').style.display = 'inline'; document.getElementById('2503.17762v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.17762v1-abstract-full" style="display: none;"> We compute the (0-11) surface spectral function, the surface density of states (DOS), and the quasiparticle interference (QPI) patterns, both in the normal state and superconducting (SC) state of UTe$_2$. We consider all possible non-chiral and chiral order parameters (OPs) that could in principle describe the superconductivity in this compound. We describe the formation of surface states whose maximum intensity energy depends on the nature of the pairing. We study also the QPI patterns resulting from the scattering of these surface states. We show that the main feature distinguishing between various OPs is a QPI peak that is only observed experimentally in the superconducting state. The energy dispersion and the stability of this peak is consistent among the non-chiral OPs only with a $B_{3u}$ pairing. Moreover, $B_{3u}$ is the only non-chiral pairing that shows a peak at zero energy in the DOS, consistent with the experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17762v1-abstract-full').style.display = 'none'; document.getElementById('2503.17762v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.17761">arXiv:2503.17761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.17761">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Imaging Odd-Parity Quasiparticle Interference in the Superconductive Surface State of UTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuqiu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhussupbekov%2C+K">Kuanysh Zhussupbekov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carroll%2C+J+P">Joseph P. Carroll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Bin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaolong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pangburn%2C+E">Emile Pangburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crepieux%2C+A">Adeline Crepieux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepin%2C+C">Catherine Pepin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broyles%2C+C">Christopher Broyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+S">Sheng Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N+P">Nicholas P. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+S">Shanta Saha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">Johnpierre Paglione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bena%2C+C">Cristina Bena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+C+S">J. C. S茅amus Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.17761v1-abstract-short" style="display: inline;"> Although no known material definitely exhibits intrinsic topological superconductivity, where a spin-triplet electron pairing potential $螖(k)$ has odd parity, UTe2 is now the leading candidate. Ideally, the parity of $螖(k)$ might be established by using Bogoliubov quasiparticle interference (QPI) imaging, a recognized technique for $螖(k)$ determination in complex superconductors. However, odd-pari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17761v1-abstract-full').style.display = 'inline'; document.getElementById('2503.17761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.17761v1-abstract-full" style="display: none;"> Although no known material definitely exhibits intrinsic topological superconductivity, where a spin-triplet electron pairing potential $螖(k)$ has odd parity, UTe2 is now the leading candidate. Ideally, the parity of $螖(k)$ might be established by using Bogoliubov quasiparticle interference (QPI) imaging, a recognized technique for $螖(k)$ determination in complex superconductors. However, odd-parity superconductors should support a topological quasiparticle surface band (QSB) on crystal termination surfaces only for energies within the superconductive energy gap. The QPI should then be dominated by the QSB electronic structure and only reveal bulk $螖(k)$ characteristics excursively. Here, by using a superconducting scan-tip to achieve $\sim$ 10 $渭$eV energy resolution QPI for UTe2 studies, we discover and visualize the in-gap quasiparticle interference patterns of its QSB. QPI visualization then yields a characteristic sextet $q_{i}:i$ = 1-6 of interference wavevectors from which we establish QSB dispersions, and their existence only for energies $|E| \leq 螖_{\text{max}}$ within the range of Fermi momenta projected onto the (0-11) crystal surface. Quantitative evaluation of this sextet $q_{i}$ then demonstrates precisely how the QSB is projected from the subtending bulk Fermi surface. Finally, a novel theoretical framework has been developed to predict the QPI signatures of a topological QSB at this (0-11) surface. Its predictions are demonstrably consistent with the experimental results if the bulk $螖(k)$ exhibits time-reversal conserving, odd-parity, a-axis nodal, B3u symmetry. Ultimately, these new techniques adumbrate a novel spectroscopic approach to identification of intrinsic topological superconductors and their superconductive topological surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17761v1-abstract-full').style.display = 'none'; document.getElementById('2503.17761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.16934">arXiv:2503.16934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.16934">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable Magneto-optical Kerr effect in two-dimensional non-collinear antiferromagnetic material HfFeCl6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Di Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+N">Ning Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+H">Haoshen Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shan-Shan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.16934v1-abstract-short" style="display: inline;"> With the development of two-dimensional (2D) magnetic materials, magneto-optical Kerr effect (MOKE) is widely used to measure ferromagnetism in 2D systems. Although this effect is usually inactive in antiferromagnets (AFM), recent theoretical studies have demonstrated that the presence of MOKE relies on the symmetry of the system and antiferromagnets with noncollinear magnetic order can also induc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16934v1-abstract-full').style.display = 'inline'; document.getElementById('2503.16934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.16934v1-abstract-full" style="display: none;"> With the development of two-dimensional (2D) magnetic materials, magneto-optical Kerr effect (MOKE) is widely used to measure ferromagnetism in 2D systems. Although this effect is usually inactive in antiferromagnets (AFM), recent theoretical studies have demonstrated that the presence of MOKE relies on the symmetry of the system and antiferromagnets with noncollinear magnetic order can also induce a significant MOKE signal even without a net magnetization. However, this phenomenon is rarely studied in 2D systems due to a scarcity of appropriate materials hosting noncollinear AFM order. Here, based on first-principles calculations, we investigate the HfFeCl6 monolayer with noncollinear Y-AFM ground states, which simultaneously breaks the time-reversal (T) and time-inversion (TI) symmetry, activating the MOKE even though with zero net magnetic moment. In addition, four different MOKE spectra can be obtained in the four permutation states of spin chirality and crystal chirality. The MOKE spectra are switchable when reversing both crystal and spin chirality. Our study provides a material platform to explore the MOKE effect and can potentially be used for electrical readout of AFM states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16934v1-abstract-full').style.display = 'none'; document.getElementById('2503.16934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.13213">arXiv:2503.13213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.13213">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Emergent charge-transfer ferromagnetism and Fractional Chern states in moir茅 MoTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+X">Xumin Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Cheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jiayong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+P">Pengfei Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yixin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shaozheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bohan Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Renjie He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Shengwei Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.13213v1-abstract-short" style="display: inline;"> Two-dimensional moire materials present unprecedented opportunities to explore quantum phases of matter arising from the interplay of band topology and strong correlations.One of the most striking examples is the recent observation of fractional quantum anomalous Hall (FQAH) effect in twisted bilayer MoTe$_2$ (tMoTe2) with relatively large twist angles(~3.7deg-3.9deg). The electronic ground states&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13213v1-abstract-full').style.display = 'inline'; document.getElementById('2503.13213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.13213v1-abstract-full" style="display: none;"> Two-dimensional moire materials present unprecedented opportunities to explore quantum phases of matter arising from the interplay of band topology and strong correlations.One of the most striking examples is the recent observation of fractional quantum anomalous Hall (FQAH) effect in twisted bilayer MoTe$_2$ (tMoTe2) with relatively large twist angles(~3.7deg-3.9deg). The electronic ground states are usually expected to be sensitive to the twist angle, as the twist angle determines the electron bandwidth and correlation strength in the moire system. Here, we report the observation of unexpected competing magnetic ground states in tMoTe2 moire superlattice, on which balance can be tipped by both twist angle and electric field (E). Specifically, we observed anomalous antiferromagnetic (AFM) ground states with zero Hall resistance at both v_h=1 and 2/3, at intermediate twist angles ~3deg. The AFM orders are suppressed by applying vertical E, and emergent charge-transfer ferromagnetism accompanied by integer Chern insulator (ICI) or fractional Chern insulator (FCI) states are observed near the critical E (E_c) of moire superlattice symmetry transition. Our results demonstrate tMoTe2 as a fascinating platform for exploring unexpected correlated phases with nontrivial topology and fractional excitations and point to electric-field-controlled ultralow-power spin-valleytronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13213v1-abstract-full').style.display = 'none'; document.getElementById('2503.13213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.08278">arXiv:2503.08278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.08278">pdf</a>, <a href="https://arxiv.org/format/2503.08278">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Neural network learning of multi-scale and discrete temporal features in directed percolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jianmin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Dian Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.08278v1-abstract-short" style="display: inline;"> Neural network methods are increasingly applied to solve phase transition problems, particularly in identifying critical points in non-equilibrium phase transitions, offering more convenience compared to traditional methods. In this paper, we analyze the (1+1)-dimensional and (2+1)-dimensional directed percolation models using an autoencoder network. We demonstrate that single-step configurations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08278v1-abstract-full').style.display = 'inline'; document.getElementById('2503.08278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.08278v1-abstract-full" style="display: none;"> Neural network methods are increasingly applied to solve phase transition problems, particularly in identifying critical points in non-equilibrium phase transitions, offering more convenience compared to traditional methods. In this paper, we analyze the (1+1)-dimensional and (2+1)-dimensional directed percolation models using an autoencoder network. We demonstrate that single-step configurations after reaching steady state can replace traditional full configurations for learning purposes. This approach significantly reduces data size and accelerates training time.Furthermore, we introduce a multi-input branch autoencoder network to extract shared features from systems of different sizes. The neural network is capable of learning results from finite-size scaling. By modifying the network input to include configurations at discrete time steps, the network can also capture temporal information, enabling dynamic analysis of non-equilibrium phase boundaries. Our proposed method allows for high-precision identification of critical points using both spatial and temporal features. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08278v1-abstract-full').style.display = 'none'; document.getElementById('2503.08278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.07093">arXiv:2503.07093</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous Meets Topological Hall Effect in Cr2Ge2Te6 Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xiaofan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yaqing Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jiawei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+R">Renjun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiabei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Siqi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jingkuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qian Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Wanting Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+F">Fuzhuo Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Siqing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+B">Bingxian Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yongqiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayorov%2C+A+S">Alexander S. Mayorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">Konstantin S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Baigeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Geliang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.07093v2-abstract-short" style="display: inline;"> Introducing topologically protected skyrmions in graphene holds significant importance for developing high-speed, low-energy spintronic devices. Here, we present a centrosymmetric ferromagnetic graphene/trilayer Cr2Ge2Te6/graphene heterostructure, demonstrating the anomalous and topological Hall effect due to the magnetic proximity effect. Through gate voltage control, we effectively tune the emer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.07093v2-abstract-full').style.display = 'inline'; document.getElementById('2503.07093v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.07093v2-abstract-full" style="display: none;"> Introducing topologically protected skyrmions in graphene holds significant importance for developing high-speed, low-energy spintronic devices. Here, we present a centrosymmetric ferromagnetic graphene/trilayer Cr2Ge2Te6/graphene heterostructure, demonstrating the anomalous and topological Hall effect due to the magnetic proximity effect. Through gate voltage control, we effectively tune the emergence and size of skyrmions. Micromagnetic simulations reveal the formation of skyrmions and antiskyrmions, which respond differently to external magnetic fields, leading to oscillations in the topological Hall signal. Our findings provide a novel pathway for the formation and manipulation of skyrmions in centrosymmetric two-dimensional magnetic systems, offering significant insights for developing topological spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.07093v2-abstract-full').style.display = 'none'; document.getElementById('2503.07093v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">There is a dispute over the ownership of the intellectual property involved. Differences exist with collaborators, research institutions, or other relevant parties regarding the ownership and use of the research results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04366">arXiv:2503.04366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.04366">pdf</a>, <a href="https://arxiv.org/format/2503.04366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Twisted heterobilayer photonic crystal based on stacking and selective etching of 2D materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuhang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shaofeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+S">Shuo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiulai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+C">Chenjiang Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04366v1-abstract-short" style="display: inline;"> Nanophotonic devices with moir茅 superlattice is currently attracting broad interest due to the unique periodicity and high efficiency control of photons. Till now, experimental investigations mainly focus on the single layer device, i.e., two or more layers of photonic crystal patterns are merged and etched in a single layer of material. By comparison, twisted photonic crystal with multilayer mate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04366v1-abstract-full').style.display = 'inline'; document.getElementById('2503.04366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04366v1-abstract-full" style="display: none;"> Nanophotonic devices with moir茅 superlattice is currently attracting broad interest due to the unique periodicity and high efficiency control of photons. Till now, experimental investigations mainly focus on the single layer device, i.e., two or more layers of photonic crystal patterns are merged and etched in a single layer of material. By comparison, twisted photonic crystal with multilayer materials raises challenges in the nanofabrication technology, because the growth of upper layer material usually requires a smooth bottom layer without nanostructures. Hereby, we fabricate twisted heterobilayer photonic crystal in the graphite/Si$_3$N$_4$ heterostructure. We use dry transfer method to stack the graphite on top of bottom Si$_3$N$_4$ with pre-etched photonic crystal patterns. Selective dry etching recipes are used to etch two photonic crystal layers individually, which improves the quality and accuracy in alignment. The cavity photonic mode at the visible wavelength $\sim 700$ nm arsing from the moir茅 site is clearly observed in experiment. These results reveal the experimental diagram of heterobilayer nanophotonic devices and open the way to design flexibility and control of photons in new degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04366v1-abstract-full').style.display = 'none'; document.getElementById('2503.04366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.03407">arXiv:2503.03407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.03407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Engineering excitonic metal-insulator transitions in ultra-thin doped copper sulfides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haiyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yashi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+C">Changcang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jianyang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhenhua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.03407v1-abstract-short" style="display: inline;"> Exciton condensation in the absence of optical excitation is proposed in 1960s to occur in a semiconductor at low temperatures when the binding energy of excitons overcomes the band gap or in a semimetal with weakly screened coulomb interaction, giving rise to an excitonic insulating state. However, it has been challenging to establish experimental realization in a natural material as the interact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.03407v1-abstract-full').style.display = 'inline'; document.getElementById('2503.03407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.03407v1-abstract-full" style="display: none;"> Exciton condensation in the absence of optical excitation is proposed in 1960s to occur in a semiconductor at low temperatures when the binding energy of excitons overcomes the band gap or in a semimetal with weakly screened coulomb interaction, giving rise to an excitonic insulating state. However, it has been challenging to establish experimental realization in a natural material as the interacting electron-hole pockets rely on the band structures which are difficult to be delicately controlled. Here, we demonstrate an excitonic insulating phase formed in ultra-thin copper sulfide films by effectively tuning the band structure via changing the composition of Cu and S in the system. Using angle-resolved photoemission spectroscopy (ARPES), we observed a continuous band renormalization and opening of a full gap at low temperatures over a wide range of doping. The electronic origin of the metal-insulator transition is supported by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) measurements, which show no indication of superlattice modulation and lattice symmetry breaking. The evidence of excitonic insulator is further provided by carrier density dependent transitions, a combined effect of electron screening and Coulomb interaction strength. Our findings demonstrate the tunability of the band structure of copper sulfides, allowing for new opportunities to study exotic quantum phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.03407v1-abstract-full').style.display = 'none'; document.getElementById('2503.03407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.02478">arXiv:2503.02478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.02478">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Charge Transport in A-site Ordered Perovskite Derivatives A2A&#39;Bi2I9 (A = Cs; A&#39;= Ag, Cu): A First-Principles Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuhan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Siyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+P">Peng Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shihao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+G">Gang Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.02478v1-abstract-short" style="display: inline;"> Recent experiments have synthesized Cs2AgBi2I9 by partially substituting Cs+ with Ag+ at the A-site of Cs3Bi2I9, resulting in enhanced charge transport properties compared to Cs3Bi2I9. However, the atomic-scale mechanisms behind this enhancement remain unclear. In this work, we investigate the carrier transport mechanisms in Cs2A&#39;Bi2I9 (A&#39; = Ag, Cu) using first-principles calculations and Boltzman&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02478v1-abstract-full').style.display = 'inline'; document.getElementById('2503.02478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.02478v1-abstract-full" style="display: none;"> Recent experiments have synthesized Cs2AgBi2I9 by partially substituting Cs+ with Ag+ at the A-site of Cs3Bi2I9, resulting in enhanced charge transport properties compared to Cs3Bi2I9. However, the atomic-scale mechanisms behind this enhancement remain unclear. In this work, we investigate the carrier transport mechanisms in Cs2A&#39;Bi2I9 (A&#39; = Ag, Cu) using first-principles calculations and Boltzmann transport calculations. Our results reveal that A-site ordered Cs2A&#39;Bi2I9 exhibits carrier mobilities that are 3-4 times higher than those of Cs3Bi2I9 within the 100-500 K temperature range. We identify polar phonon scattering as the dominant mechanism limiting mobility. Furthermore, the enhanced out-of-plane carrier mobility in Cs2A&#39;Bi2I9, particularly between 100 and 200K, leads to reduced mobility anisotropy. These improvements are mainly due to the shorter A&#39;-I bond lengths and increased Ag+/Cu+ s-I p orbital coupling. Notably, substitution with Cu+ results in a further reduction in the band gap and enhanced hole mobility compared to Ag+ substitution in Cs3Bi2I9. Further analysis reveals that the significant increase in carrier mobility in Cs2A&#39;Bi2I9 can be largely explained by the smaller carrier effective masses (m*) and weaker Fr枚hlich coupling strengths (伪), resulting in a lower polar mass 伪(m*/me), compared to Cs3Bi2I9. Our study provides valuable insights into the transport properties of Bi-based perovskite derivatives, paving the way for their future applications in optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02478v1-abstract-full').style.display = 'none'; document.getElementById('2503.02478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00460">arXiv:2503.00460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.00460">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Cryogen-free low-temperature photoemission electron microscopy for high-resolution nondestructive imaging of electronic phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shaoshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chuan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+C">Chengjian Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Q">Qi Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiaopeng Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+C">Changxi Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00460v1-abstract-short" style="display: inline;"> Quantum materials exhibit phases such as superconductivity at low temperatures, yet imaging their phase transition dynamics with high spatial resolution remains challenging due to conventional tools&#39; limitations - scanning tunneling microscopy offers static snapshots, while transmission electron microscopy lacks band sensitivity. Photoemission electron microscopy (PEEM) can resolve band structures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00460v1-abstract-full').style.display = 'inline'; document.getElementById('2503.00460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00460v1-abstract-full" style="display: none;"> Quantum materials exhibit phases such as superconductivity at low temperatures, yet imaging their phase transition dynamics with high spatial resolution remains challenging due to conventional tools&#39; limitations - scanning tunneling microscopy offers static snapshots, while transmission electron microscopy lacks band sensitivity. Photoemission electron microscopy (PEEM) can resolve band structures in real/reciprocal spaces rapidly, but suffering from insufficient resolution for (near)atomic-scale quantum physics due to the unstable cooling designs. Here, we developed cryogen-free low-temperature PEEM (CFLT-PEEM) achieving 21.1 K stably. CFLT-PEEM attains a record-breaking resolution of 4.48 nm without aberration correction, enabling direct visualization of surface-state distribution characteristics along individual atomic steps. The advancement lies in narrowing the segment of band structures for imaging down to 160 meV, which minimizes the chromatic aberration of PEEM. CFLT-PEEM enables rapid, nondestructive high-resolution imaging of cryogenic electronic structures, positioning it as a powerful tool for physics and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00460v1-abstract-full').style.display = 'none'; document.getElementById('2503.00460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This submission is a single PDF file containing the main text and Supplementary Information. The document is 23 pages long and includes 12 figures. The Supplementary Information begins on page 15</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17083">arXiv:2502.17083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17083">pdf</a>, <a href="https://arxiv.org/format/2502.17083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechanical non-reciprocity programmed by shear jamming in soft composite solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuaihu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zemin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yiqiu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wenqi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17083v1-abstract-short" style="display: inline;"> Mechanical non-reciprocity-manifested as asymmetric responses to opposing mechanical stimuli-has traditionally been achieved through intricate structural nonlinearities in metamaterials. However, continuum solids with inherent non-reciprocal mechanics remain underexplored, despite their promising potential for applications such as wave guiding, robotics, and adaptive materials. Here, we introduce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17083v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17083v1-abstract-full" style="display: none;"> Mechanical non-reciprocity-manifested as asymmetric responses to opposing mechanical stimuli-has traditionally been achieved through intricate structural nonlinearities in metamaterials. However, continuum solids with inherent non-reciprocal mechanics remain underexplored, despite their promising potential for applications such as wave guiding, robotics, and adaptive materials. Here, we introduce a design principle by employing the shear jamming transition from granular physics to engineering non-reciprocal mechanics in soft composite solids. Through the control of the interplay between inclusion contact networks and matrix elasticity, we achieve tunable, direction-dependent asymmetry in both shear and normal mechanical responses. In addition to static regimes, we demonstrate programmable non-reciprocal dynamics by combining responsive magnetic profiles with the anisotropic characteristics of shear-jammed systems. This strategy enables asymmetric spatiotemporal control over motion transmission, a previously challenging feat in soft materials. Our work establishes a novel paradigm for designing non-reciprocal matter, bridging granular physics with soft material engineering to realize functionalities essential for mechano-intelligent systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17083v1-abstract-full').style.display = 'none'; document.getElementById('2502.17083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16846">arXiv:2502.16846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16846">pdf</a>, <a href="https://arxiv.org/format/2502.16846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Carrier Emission and Capture Competition mediated A(n)BC Recombination Model in Semiconductors with Multi-Level Defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+S">Su-Huai Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+X">Xin-Gao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16846v1-abstract-short" style="display: inline;"> The ABC model has been widely used to describe the carrier recombination rate, in which the rate of non-radiative recombination assisted by deep-level defects is assumed to depend linearly on excess carrier density $螖n$, leading to a constant recombination coefficient A. However, for multi-level defects that are prevalent in semiconductors, we demonstrate here that the rate should depend nonlinear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16846v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16846v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16846v1-abstract-full" style="display: none;"> The ABC model has been widely used to describe the carrier recombination rate, in which the rate of non-radiative recombination assisted by deep-level defects is assumed to depend linearly on excess carrier density $螖n$, leading to a constant recombination coefficient A. However, for multi-level defects that are prevalent in semiconductors, we demonstrate here that the rate should depend nonlinearly on $螖n$. When $螖n$ varies, the carrier capture and emission of defects can change the defect density distribution in different charge states, which can further change the carrier capture and emission rates of the defects and thus make the recombination rate depend non-linearly on $螖n$, leading to an $A(n)$ function. However, in many recent calculation studies on carrier recombination rate of multi-level defects, only carrier capture was considered while carrier emission from defect levels was neglected, causing incorrect charge-state distribution and misleading linear dependence of the rate on $螖n$. For $\text{V}_{\text{Ga}}$-$\text{O}_{\text{N}}$ in GaN and $\text{Pb}_\text{I}$ in CsPbI$_3$, our calculations showed that neglecting the carrier emission can cause the recombination rate underestimation by more than 8 orders of magnitude when $螖n$ is $10^{15}$ cm$^{-3}$. Our findings suggest that the recent studies on carrier recombination assisted by multi-level defects should be revisited with carrier emission considered, and the widely-used $ABC$ model should be reformed into the $A(n)BC$ model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16846v1-abstract-full').style.display = 'none'; document.getElementById('2502.16846v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15143">arXiv:2502.15143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.15143">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c06281">10.1021/acs.nanolett.4c06281 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stable Neel-Twisted Skyrmion Bags in a van der Waals Magnet Fe3-xGaTe2 at Room Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jialiang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaodong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+L">Lingyao Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yongsen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+S">Sheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huanhuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+Y">Yajiao Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shouguo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jin Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15143v1-abstract-short" style="display: inline;"> Magnetic skyrmion bags with diverse topological charges Q, offer prospects for future spintronic devices based on freedom of Q. While their emergence in van der Waals magnets holds the potential in developing Q-based 2D topological spintronics. However, previous room-temperature skyrmion bags necessitate special anisotropy engineering through disorder Fe intercalation, and the stable phase diagram&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15143v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15143v1-abstract-full" style="display: none;"> Magnetic skyrmion bags with diverse topological charges Q, offer prospects for future spintronic devices based on freedom of Q. While their emergence in van der Waals magnets holds the potential in developing Q-based 2D topological spintronics. However, previous room-temperature skyrmion bags necessitate special anisotropy engineering through disorder Fe intercalation, and the stable phase diagram for skyrmion bags across room temperature regions is lacking. Here, we demonstrate the observation and electrical manipulation of room temperature skyrmion bags in Fe3-xGaTe2 without specially designed Fe intercalation. Combining the pulsed currents with the assistance of magnetic fields, skyrmion bags with various topological charges are generated and annihilated. Especially double nested skyrmion bags are also discovered at room temperature. The stable temperature-field diagram of skyrmion bags has been established. We also demonstrate the electrical-controlled topological phase transformations of skyrmion bags. Our results will provide novel insights for the design of 2D skyrmion-based high-performance devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15143v1-abstract-full').style.display = 'none'; document.getElementById('2502.15143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nano Letters DOI: 10.1021/acs.nanolett.4c06281</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14347">arXiv:2502.14347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14347">pdf</a>, <a href="https://arxiv.org/format/2502.14347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202415012">10.1002/advs.202415012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a new phase in thin flakes of KV$_{3}$Sb$_{5}$ under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zheyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yip%2C+K+Y">King Yau Yip</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsui%2C+Y+K">Ying Kit Tsui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poon%2C+T+F">Tsz Fung Poon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsang%2C+C+W">Chun Wai Tsang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pourret%2C+A">Alexandre Pourret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seyfarth%2C+G">Gabriel Seyfarth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knebel%2C+G">Georg Knebel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+K+T">Kwing To Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W+C">Wing Chi Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goh%2C+S+K">Swee K. Goh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14347v1-abstract-short" style="display: inline;"> We report results of magnetotransport measurements on KV$_3$Sb$_5$ thin flakes under pressure. Our zero-field electrical resistance reveals an additional anomaly emerging under pressure ($p$), marking a previously unidentified phase boundary $T^{\rm \ast}$($p$). Together with the established $T_{\rm CDW}(p)$ and $T_c(p)$, denoting the charge-density-wave transition and a superconducting transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14347v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14347v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14347v1-abstract-full" style="display: none;"> We report results of magnetotransport measurements on KV$_3$Sb$_5$ thin flakes under pressure. Our zero-field electrical resistance reveals an additional anomaly emerging under pressure ($p$), marking a previously unidentified phase boundary $T^{\rm \ast}$($p$). Together with the established $T_{\rm CDW}(p)$ and $T_c(p)$, denoting the charge-density-wave transition and a superconducting transition, respectively, the temperature-pressure phase diagram of KV$_3$Sb$_5$ features a rich interplay among multiple phases. The Hall coefficient evolves reasonably smoothly when crossing the $T^{\rm \ast}$ phase boundary compared with the variation when crossing $T_{\rm CDW}$, indicating the preservation of the pristine electronic structure. The mobility spectrum analysis provides further insights into distinguishing different phases. Finally, our high-pressure quantum oscillation studies up to 31 T combined with density functional theory calculations further demonstrate that the new phase does not reconstruct the Fermi surface, confirming that the translational symmetry of the pristine metallic state is preserved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14347v1-abstract-full').style.display = 'none'; document.getElementById('2502.14347v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures. Advanced Science (2025)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10972">arXiv:2502.10972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10972">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Density-dependent spin susceptibility and effective mass in monolayer MoSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+T">Tongtong Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10972v1-abstract-short" style="display: inline;"> Atomically thin MoSe2 is a promising platform for investigating quantum phenomena due to its large effective mass, high crystal quality, and strong spin-orbit coupling. In this work, we demonstrate a triple-gate device design with bismuth contacts, enabling reliable ohmic contact down to low electron densities, with a maximum Hall mobility of approximately 22,000 cm2/Vs. Low-temperature transport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10972v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10972v1-abstract-full" style="display: none;"> Atomically thin MoSe2 is a promising platform for investigating quantum phenomena due to its large effective mass, high crystal quality, and strong spin-orbit coupling. In this work, we demonstrate a triple-gate device design with bismuth contacts, enabling reliable ohmic contact down to low electron densities, with a maximum Hall mobility of approximately 22,000 cm2/Vs. Low-temperature transport measurements illustrate metal-insulator transitions, and density-dependent quantum oscillation sequences. Enhanced spin susceptibility and density-dependent effective mass are observed, attributed to interaction effects and valley polarization. These findings establish monolayer MoSe2 as a versatile platform for further exploring interaction-driven quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10972v1-abstract-full').style.display = 'none'; document.getElementById('2502.10972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08099">arXiv:2502.08099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08099">pdf</a>, <a href="https://arxiv.org/format/2502.08099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Feshbach spectroscopy of ultracold mixtures of $^{6}{\rm Li}$ and $^{164}{\rm Dy}$ atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+K">Ke Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yu-Yang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Ji-Hong Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Yu-Zhao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+H">Hong-Chi Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Ao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+X">Xing-Can Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08099v1-abstract-short" style="display: inline;"> We report on the observation of Feshbach resonances in ultracold $^6\mathrm{Li}$-$^{164}\mathrm{Dy}$ mixtures, where $^6\mathrm{Li}$ atoms are respectively prepared in their three lowest spin states, and $^{164}\mathrm{Dy}$ atoms are prepared in their lowest energy state. We observe 21 interspecies scattering resonances over a magnetic field range from 0 to \SI{702}{\gauss} using atom loss spectro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08099v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08099v1-abstract-full" style="display: none;"> We report on the observation of Feshbach resonances in ultracold $^6\mathrm{Li}$-$^{164}\mathrm{Dy}$ mixtures, where $^6\mathrm{Li}$ atoms are respectively prepared in their three lowest spin states, and $^{164}\mathrm{Dy}$ atoms are prepared in their lowest energy state. We observe 21 interspecies scattering resonances over a magnetic field range from 0 to \SI{702}{\gauss} using atom loss spectroscopy, three of which exhibit relatively broad widths. These broad resonances provide precise control over the interspecies interaction strength, enabling the study of strongly interacting effects in $^6\mathrm{Li}$-$^{164}\mathrm{Dy}$ mixtures. Additionally, we observe a well-isolated interspecies resonance at 700.1 G, offering a unique platform to explore novel impurity physics, where heavy dipolar $^{164}\mathrm{Dy}$ atoms are immersed in a strongly interacting Fermi superfluid of $^6\mathrm{Li}$ atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08099v1-abstract-full').style.display = 'none'; document.getElementById('2502.08099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07664">arXiv:2502.07664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07664">pdf</a>, <a href="https://arxiv.org/format/2502.07664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Classification of Gapped Domain Walls of Topological Orders in 2+1 dimensions: A Levin-Wen Model Realization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yanyan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Siyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuting Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07664v1-abstract-short" style="display: inline;"> This paper introduces a novel systematic construction of gapped domain walls (GDWs) within the Levin-Wen (LW) model, advancing our understanding of topological phases. By gluing two LW models along their open sides in a compatible way, we achieve a complete GDW classification by subsets of bulk input data, encompassing $e$-$m$ exchanging GDWs. A generalized bimodule structure is introduced to capt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07664v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07664v1-abstract-full" style="display: none;"> This paper introduces a novel systematic construction of gapped domain walls (GDWs) within the Levin-Wen (LW) model, advancing our understanding of topological phases. By gluing two LW models along their open sides in a compatible way, we achieve a complete GDW classification by subsets of bulk input data, encompassing $e$-$m$ exchanging GDWs. A generalized bimodule structure is introduced to capture domain-wall excitations. Furthermore, we demonstrate that folding along any GDW yields a gapped boundary (GB) described by a Frobenius algebra of the input UFC for the folded model, thus bridging GDW and GB classifications within a unified framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07664v1-abstract-full').style.display = 'none'; document.getElementById('2502.07664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23+20 pages, 4+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06177">arXiv:2502.06177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.06177">pdf</a>, <a href="https://arxiv.org/format/2502.06177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-025-00742-x">10.1038/s41535-025-00742-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of metastable lattice distortion free charge density wave at photoinduced interface via TRARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+S">Shaofeng Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Binshuo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shichong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lingxiao Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haoran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiongyu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianzhe Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wentao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06177v1-abstract-short" style="display: inline;"> The interplay between different degrees of freedom governs the emergence of correlated electronic states in quantum materials, with charge density waves (CDW) often coexisting with other exotic phases. Under thermal equilibrium, traditional CDW states are consequentially accompanied by structural phase transitions. In contrast, ultrafast photoexcitation allows access to exotic states where a singl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06177v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06177v1-abstract-full" style="display: none;"> The interplay between different degrees of freedom governs the emergence of correlated electronic states in quantum materials, with charge density waves (CDW) often coexisting with other exotic phases. Under thermal equilibrium, traditional CDW states are consequentially accompanied by structural phase transitions. In contrast, ultrafast photoexcitation allows access to exotic states where a single degree of freedom dominates in the time domain, enabling the study of underlying physics without interference. Here, we report the realization of a long-lived metastable CDW state without lattice distortion at the photoinduced interfaces in GdTe3 using time- and angle-resolved photoemission spectroscopy. After optical excitation above the CDW melting threshold, we identified emerged metastable interfaces through inverting the CDW-coupled lattice distortions, with lifetimes on the order of 10 picoseconds. These photoinduced interfaces represent a novel CDW state lacking the usual amplitude mode and lattice distortions, allowing quantification of the dominant role of electronic instabilities in CDW order. This work provides a new approach to disentangling electronic instabilities from electron-phonon coupling using a nonequilibrium method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06177v1-abstract-full').style.display = 'none'; document.getElementById('2502.06177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 Pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 10,16 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05960">arXiv:2502.05960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05960">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electric field control of nonlinear Hall effect in Weyl semimetal TaIrTe4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiaju Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+L">Lujun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanghui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lina Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+W">Wei Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Ping Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shuang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pu%2C+Y">Yong Pu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05960v1-abstract-short" style="display: inline;"> The nonlinear Hall effect (NLHE), as an important probe to reveal the symmetry breaking in topological properties of materials, opens up a new dimension for exploring the energy band structure and electron transport mechanism of quantum materials. Current studies mainly focus on the observation of material intrinsic the NLHE or inducing the NLHE response by artificially constructing corrugated/twi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05960v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05960v1-abstract-full" style="display: none;"> The nonlinear Hall effect (NLHE), as an important probe to reveal the symmetry breaking in topological properties of materials, opens up a new dimension for exploring the energy band structure and electron transport mechanism of quantum materials. Current studies mainly focus on the observation of material intrinsic the NLHE or inducing the NLHE response by artificially constructing corrugated/twisted twodimensionalmaterial systems. Notably, the modulation of NLHE signal strength, a core parameter of device performance, has attracted much attention, while theoretical predictions suggest that an applied electric field can achieve the NLHE enhancement through modulation of the Berry curvature dipole (BCD). Here we report effective modulation the magnitude and sign of the NLHE by applying additional constant electric fields of different directions and magnitudes in the semimetal TaIrTe4. The NLHE response strength is enhanced by 168 times compared to the intrinsic one at 4 K when the additional constant electric field of -0.5 kV/cm is applied to the b-axis of TaIrTe4 and the through a.c. current is parallel to the TaIrTe4 a-axis. Scaling law analysis suggests that the enhancement may be the result of the combined effect of the electric field on the intrinsic BCD and disorder scattering effect of TaIrTe4. This work provides a means to study the properties of TaIrTe4, as well as a valuable reference for the study of novel electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05960v1-abstract-full').style.display = 'none'; document.getElementById('2502.05960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05736">arXiv:2502.05736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05736">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Control of Third-order Nonlinear Optical Properties of Gold Nanoparticle/Liquid Crystal Composites under External Electric Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shengwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gharbi%2C+M+A">Mohamed Amine Gharbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yelleswarapu%2C+C+S">Chandra S Yelleswarapu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05736v2-abstract-short" style="display: inline;"> This study investigates the dynamic control of third-order nonlinear optical absorption properties of gold nanoparticles (AuNPs) dispersed in nematic liquid crystals (LC). By leveraging the reconfigurable nature of liquid crystals under external electric fields, we demonstrate the ability to manipulate AuNP alignment, dimer formation, and subsequently the plasmon coupling effects. Planar oriented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05736v2-abstract-full').style.display = 'inline'; document.getElementById('2502.05736v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05736v2-abstract-full" style="display: none;"> This study investigates the dynamic control of third-order nonlinear optical absorption properties of gold nanoparticles (AuNPs) dispersed in nematic liquid crystals (LC). By leveraging the reconfigurable nature of liquid crystals under external electric fields, we demonstrate the ability to manipulate AuNP alignment, dimer formation, and subsequently the plasmon coupling effects. Planar oriented and degenerate LC cells were prepared, and their optical responses under varying electric fields were characterized using polarization microscopy, UV-VIS spectroscopy, and Z-scan techniques. In planar cells, the applied electric field reorients LC molecules and AuNPs, influencing plasmon coupling and the nonlinear absorption. Conversely, degenerate cells exhibit more complex behaviors due to multiple LC alignment directions. These findings illustrate the potential of AuNP/nematic LC systems for creating tunable photonic devices responsive to external stimuli. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05736v2-abstract-full').style.display = 'none'; document.getElementById('2502.05736v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02806">arXiv:2502.02806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02806">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electronic origin of stability of 2D 1H-phase Janus transition metal dichalcogenides and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+J">Ji-Chun Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zi-Xuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jun-Qi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J">Jianhang Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+H">Hui Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+S">X. S. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+G">Gui-Fang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wangyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+W">Wei-Qing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02806v1-abstract-short" style="display: inline;"> Janus transition metal dichalcogenides (JTMDs) monolayers have emerged as a new paradigm to broaden the family of two-dimensional (2D) materials. Despite numerous theoretical predictions of JTMDs, their experimental realization remains scarce, most probably due to intrinsic structural fragility. We identify a dependence of the structural stability of 1H-phase JTMDs on the transition metal group, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02806v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02806v1-abstract-full" style="display: none;"> Janus transition metal dichalcogenides (JTMDs) monolayers have emerged as a new paradigm to broaden the family of two-dimensional (2D) materials. Despite numerous theoretical predictions of JTMDs, their experimental realization remains scarce, most probably due to intrinsic structural fragility. We identify a dependence of the structural stability of 1H-phase JTMDs on the transition metal group, with Group-VIB-based monolayers exhibiting robust stability, as evidenced by the successful synthesized MoSSe and WSSe. The group-dependent stability arises from the competition between metal-ligand ionic bonding and ligand-ligand covalent bonding, as well as the high-energy d-electron orbital splitting. We propose an electron configuration that describes the interactions of electrons near the Fermi level to correlate the stability, and introduce an electron compensation strategy to stabilize certain unstable JTMDs systems. Guided by the electronic origin of stability, we predict a family of stable 2D Janus transition metal halides with intrinsic ferromagnetic valley properties. This work bridges the gap between electronic structure and stability predictions, and extends the design rules for synthesizing 2D Janus materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02806v1-abstract-full').style.display = 'none'; document.getElementById('2502.02806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02485">arXiv:2502.02485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02485">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Flexible radio-frequency transistors exceeding 100 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+F">Fan Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tian Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">Haotian Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+L">Lanyue Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Qianlan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wanyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Ruyi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+T">Tianshun Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yufan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+G">Guanhua Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S+X">Shan X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pop%2C+E">Eric Pop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+L">Lian-Mao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Youfan Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02485v2-abstract-short" style="display: inline;"> The advent of 6G communication demands seamlessly integrated terminals operating above 100 GHz with low power consumption for human-centric applications. In this work, we report high-performance, flexible radio-frequency (RF) transistors based on aligned carbon nanotube (CNT) arrays, achieving, for the first time, as-measured current gain cutoff frequency ($f_{\mathrm{T}}$) and power gain cutoff f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02485v2-abstract-full').style.display = 'inline'; document.getElementById('2502.02485v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02485v2-abstract-full" style="display: none;"> The advent of 6G communication demands seamlessly integrated terminals operating above 100 GHz with low power consumption for human-centric applications. In this work, we report high-performance, flexible radio-frequency (RF) transistors based on aligned carbon nanotube (CNT) arrays, achieving, for the first time, as-measured current gain cutoff frequency ($f_{\mathrm{T}}$) and power gain cutoff frequency ($f_{\mathrm{max}}$) both exceeding 100 GHz. Electro-thermal co-design improves both heat dissipation and RF performance, despite the low thermal conductivity of the flexible substrate. The transistors deliver 0.947 mA/ $\mathrm渭$m on-state current and 0.728 mS/ $\mathrm渭$m transconductance. Peak extrinsic $f_{\mathrm{T}}$ and $f_{\mathrm{max}}$ reach 152 GHz and 102 GHz, with low power consumption of 199 mW/mm and 147 mW/mm, respectively, setting new performance records for flexible CNT-based RF transistors by nearly 100$\times$, outperforming all other flexible RF devices. Additionally, flexible RF amplifiers achieve output power of 64 mW/mm and power gain of 11 dB in the K-band (18 GHz), marking a significant milestone in the development of flexible RF technologies for next-generation wireless communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02485v2-abstract-full').style.display = 'none'; document.getElementById('2502.02485v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01501">arXiv:2502.01501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01501">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Damage of bilayer structure in La3Ni2O7-d induced by high pO2 annealing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yulin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+N">Ning Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+L">Longlong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Gongting Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yunong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+W">Wenyong Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Qiang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01501v1-abstract-short" style="display: inline;"> The discovery of superconductivity with onset temperature of ~80 K in pressurized bilayer Ruddlesden-Popper La3Ni2O7-d has attracted much attention. Despite intense research, determination of the exact oxygen content and understanding of the relationship between superconductivity and oxygen content remain a big challenge. Here, we report a systematical study on the structure and physical propertie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01501v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01501v1-abstract-full" style="display: none;"> The discovery of superconductivity with onset temperature of ~80 K in pressurized bilayer Ruddlesden-Popper La3Ni2O7-d has attracted much attention. Despite intense research, determination of the exact oxygen content and understanding of the relationship between superconductivity and oxygen content remain a big challenge. Here, we report a systematical study on the structure and physical properties of La3Ni2O7-d polycrystalline powders which were prepared using sol-gel method at ambient pressure and then annealed under various oxygen pressure. We found that high pO2 annealing with slow cooling results in a new phase, which can be modeled using the hybrid single-layer-trilayer La3Ni2O7 or the tetragonal bilayer La3Ni2O7. Scanning transmission electron microscopy (STEM) measurements revealed significant single layers and trilayers after high oxygen pressure annealing, evidencing damage of the bilayer structure. The superconducting transition under high pressure became weak for high pO2 annealed samples, which is consistent with the damage of the bilayer structure. Our results reveal that the bilayer structure is fragile and post-annealing under near atmosphere pressure of oxygen is suitable to maintain bilayer structure and increase oxygen content at the same time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01501v1-abstract-full').style.display = 'none'; document.getElementById('2502.01501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01005">arXiv:2502.01005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01005">pdf</a>, <a href="https://arxiv.org/format/2502.01005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Noise-resilient solid host for electron qubits above 100 mK </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C+S">Christopher S. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dizdar%2C+B">Brennan Dizdar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yizhong Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+Y">Yutian Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+W">Wei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xianjing Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+D">Dafei Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01005v2-abstract-short" style="display: inline;"> Cryogenic solid neon has recently emerged as a pristine solid host for single electron qubits. At ~10 mK temperatures, electron-on-solid-neon (eNe) charge qubits have exhibited exceptionally long coherence times and high operation fidelities. To advance this platform towards a scalable quantum information architecture, systematic characterization of its noise feature is imperative. Here, we show t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01005v2-abstract-full').style.display = 'inline'; document.getElementById('2502.01005v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01005v2-abstract-full" style="display: none;"> Cryogenic solid neon has recently emerged as a pristine solid host for single electron qubits. At ~10 mK temperatures, electron-on-solid-neon (eNe) charge qubits have exhibited exceptionally long coherence times and high operation fidelities. To advance this platform towards a scalable quantum information architecture, systematic characterization of its noise feature is imperative. Here, we show the remarkable resilience of solid neon against charge and thermal noises when eNe qubits are operated away from the charge-insensitive sweet-spot and at elevated temperatures. Without optimizing neon growth, the measured charge (voltage) noise on solid neon is already orders of magnitude lower than that in most stringently grown semiconductors, rivaling the best records to date. Up to 400 mK, the eNe charge qubits operated at ~5 GHz can maintain their echo coherence times over 1 microsecond. These observations highlight solid neon as an ideal host for quantum information processing at higher temperatures and larger scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01005v2-abstract-full').style.display = 'none'; document.getElementById('2502.01005v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18885">arXiv:2501.18885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.18885">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct Visualization of an Incommensurate Unidirectional Charge Density Wave in La$_4$Ni$_3$O$_{10}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingzhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+J">Jiashuo Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yinghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Ziyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiakang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enkang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuanji Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+R">Ruotong Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Dong-Lai Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zengyi Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Ya-Jun Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18885v1-abstract-short" style="display: inline;"> Superconductivity emerges in both La$_3$Ni$_2$O$_7$ and La$_4$Ni$_3$O$_{10}$ under high pressure by suppressing their density-wave transitions, but critical temperature (Tc) differs significantly between these two compounds. To gain deeper insights into the distinct superconducting states, it is essential to unravel the nature of the density-wave states at ambient pressure, a topic that remains la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18885v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18885v1-abstract-full" style="display: none;"> Superconductivity emerges in both La$_3$Ni$_2$O$_7$ and La$_4$Ni$_3$O$_{10}$ under high pressure by suppressing their density-wave transitions, but critical temperature (Tc) differs significantly between these two compounds. To gain deeper insights into the distinct superconducting states, it is essential to unravel the nature of the density-wave states at ambient pressure, a topic that remains largely unexplored. Here, using scanning tunneling microscopy/spectroscopy (STM/STS), we report the direct visualization of an incommensurate unidirectional charge density wave (CDW) in La$_4$Ni$_3$O$_{10}$ in real space. The density of states (DOS) is strongly depleted near $E_F$, indicating the opening of a CDW gap of $2螖 \approx 71$ meV, which is unfavorable for the formation of superconductivity at ambient pressure. We propose that the CDW arises from Fermi surface nesting, and is likely a subsidiary phase of a spin density wave. Compared to La$_3$Ni$_2$O$_7$, the weaker electronic correlation in La$_4$Ni$_3$O$_{10}$ is likely one reason for the lower $T_c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18885v1-abstract-full').style.display = 'none'; document.getElementById('2501.18885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17367">arXiv:2501.17367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.17367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-field Breakdown and Thermal Characterization of Indium Tin Oxide Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">Haotian Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yuan-Mau Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pe%C3%B1a%2C+T">Tara Pe帽a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fultz-Waters%2C+S">Sydney Fultz-Waters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jimin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6ro%C4%9Flu%2C+%C3%87">脟a臒谋l K枚ro臒lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahid%2C+S">Sumaiya Wahid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Newcomb%2C+C+J">Christina J. Newcomb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y+S">Young Suh Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+H+-+P">H. -S. Philip Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S+X">Shan X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pop%2C+E">Eric Pop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17367v1-abstract-short" style="display: inline;"> Amorphous oxide semiconductors are gaining interest for logic and memory transistors compatible with low-temperature fabrication. However, their low thermal conductivity and heterogeneous interfaces suggest that their performance may be severely limited by self-heating, especially at higher power and device densities. Here, we investigate the high-field breakdown of amorphous indium tin oxide (ITO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17367v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17367v1-abstract-full" style="display: none;"> Amorphous oxide semiconductors are gaining interest for logic and memory transistors compatible with low-temperature fabrication. However, their low thermal conductivity and heterogeneous interfaces suggest that their performance may be severely limited by self-heating, especially at higher power and device densities. Here, we investigate the high-field breakdown of amorphous indium tin oxide (ITO) transistors with scanning thermal microscopy (SThM) and multiphysics simulations. The ITO devices break irreversibly at channel temperatures of ~180 掳C and ~340 掳C on SiO${_2}$ and HfO${_2}$ substrates, respectively, but failure appears primarily caused by thermally-induced compressive strain near the device contacts. Combining SThM measurements with simulations allows us to estimate a thermal boundary conductance (TBC) of 35 ${\pm}$ 12 MWm${^-}$${^2}$K${^-}$${^1}$ for ITO on SiO${_2}$, and 51 ${\pm}$ 14 MWm${^-}$${^2}$K${^-}$${^1}$ for ITO on HfO${_2}$. The latter also enables significantly higher breakdown power due to better heat dissipation and closer thermal expansion matching. These findings provide valuable insights into the thermo-mechanical limitations of ITO devices, paving the way for more reliable and high-performance amorphous oxide transistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17367v1-abstract-full').style.display = 'none'; document.getElementById('2501.17367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16636">arXiv:2501.16636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16636">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pair Wavefunction Symmetry in UTe2 from Zero-Energy Surface State Visualization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Q">Qiangqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuqiu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carroll%2C+J+P">Joseph P. Carroll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhussupbekov%2C+K">Kuanysh Zhussupbekov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broyles%2C+C">Christopher Broyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+S">Sheng Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N+P">Nicholas P. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+S">Shanta Saha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">Johnpierre Paglione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaolong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+C+S">J. C. S茅amus Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16636v2-abstract-short" style="display: inline;"> Although nodal spin-triplet topological superconductivity appears probable in UTe2, its superconductive order-parameter $螖_k$ remains unestablished. In theory, a distinctive identifier would be the existence of a superconductive topological surface band (TSB), which could facilitate zero-energy Andreev tunneling to an s-wave superconductor, and also distinguish a chiral from non-chiral $螖_k$ via e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16636v2-abstract-full').style.display = 'inline'; document.getElementById('2501.16636v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16636v2-abstract-full" style="display: none;"> Although nodal spin-triplet topological superconductivity appears probable in UTe2, its superconductive order-parameter $螖_k$ remains unestablished. In theory, a distinctive identifier would be the existence of a superconductive topological surface band (TSB), which could facilitate zero-energy Andreev tunneling to an s-wave superconductor, and also distinguish a chiral from non-chiral $螖_k$ via enhanced s-wave proximity. Here we employ s-wave superconductive scan-tips and detect intense zero-energy Andreev conductance at the UTe2 (0-11) termination surface. Imaging reveals sub-gap quasiparticle scattering interference signatures with a-axis orientation. The observed zero-energy Andreev peak splitting with enhanced s-wave proximity, signifies that $螖_k$ of UTe2 is a non-chiral state: B1u, B2u or B3u. However, if the quasiparticle scattering along the a-axis is internodal, then a non-chiral B3u state is the most consistent for UTe2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16636v2-abstract-full').style.display = 'none'; document.getElementById('2501.16636v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 5 figures, to appear in Science (2025)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15350">arXiv:2501.15350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15350">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.4c13166">10.1021/jacs.4c13166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pyrochlore NaYbO2: A potential Quantum Spin Liquid Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+L">Longlong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teat%2C+S+J">Simon J. Teat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiaoran Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shi-lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+J">Jiazheng Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zhaohui Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+C">Chengwang Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+X">Xutang Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15350v1-abstract-short" style="display: inline;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15350v1-abstract-full" style="display: none;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the first time. Synchrotron X-ray single crystal diffraction unambiguously determined that the newfound beta-NaYbO2 belongs to the three-dimensional pyrochlore structure characterized by the R-3m space group, corroborated by synchrotron X-ray and neutron powder diffraction and pair distribution function. Magnetic measurements revealed no long-range magnetic order or spin glass behavior down to 0.4 K with a low boundary spin frustration factor of 17.5, suggesting a potential QSL ground state. Under high magnetic fields, the potential QSL state was broken and spins order. Our findings reveal that NaYbO2 is a fertile playground for studying novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'none'; document.getElementById('2501.15350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited author&#39;s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soon</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the American Chemical Society 147, 5693-5702 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12875">arXiv:2501.12875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12875">pdf</a>, <a href="https://arxiv.org/format/2501.12875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Super-enhanced Sensitivity in Non-Hermitian Systems at Infernal Points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shu-Xuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zhongbo Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12875v1-abstract-short" style="display: inline;"> The emergence of exceptional points in non-Hermitian systems represents an intriguing phenomenon characterized by the coalescence of eigenenergies and eigenstates. When a system approaches an exceptional point, it exhibits a heightened sensitivity to perturbations compared to the conventional band degeneracy observed in Hermitian systems. This sensitivity, manifested in the splitting of the eigene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12875v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12875v1-abstract-full" style="display: none;"> The emergence of exceptional points in non-Hermitian systems represents an intriguing phenomenon characterized by the coalescence of eigenenergies and eigenstates. When a system approaches an exceptional point, it exhibits a heightened sensitivity to perturbations compared to the conventional band degeneracy observed in Hermitian systems. This sensitivity, manifested in the splitting of the eigenenergies, is amplified as the order of the exceptional point increases. Infernal points constitute a unique subclass of exceptional points, distinguished by their order escalating with the expansion of the system&#39;s size. In this paper, we show that, when a non-Hermitian system is at an infernal point, a perturbation of strength $蔚$, which couples the two opposing boundaries of the system, causes the eigenenergies to split according to the law $\sqrt[k]蔚$, where $k$ is an integer proportional to the system&#39;s size. Utilizing the perturbation theory of Jordan matrices, we demonstrate that the exceptional sensitivity of the eigenenergies at infernal points to boundary-coupling perturbations is a ubiquitous phenomenon, irrespective of the specific form of the non-Hermitian Hamiltonians. Notably, we find that this phenomenon remains robust even when the system deviates slightly from the infernal point. The universal nature and robustness of this phenomenon suggest potential applications in enhancing sensor sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12875v1-abstract-full').style.display = 'none'; document.getElementById('2501.12875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 + 3 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12616">arXiv:2501.12616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12616">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity in undoped HfO2 down to one-unit-cell on Si substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">He Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yongjie Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+S">Subi Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+D">Da Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhaolong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12616v1-abstract-short" style="display: inline;"> Hafnium oxide (HfO2), particularly at low-dimensional scales, exhibits extensive promising applications in ultrahigh density devices like low-power logic and non-volatile memory devices due to its compatibility with current semiconductor technology1-5. However, achieving ferroelectricity (FE) at ultimate scale especially in undoped HfO2 remains challenging as the non-centrosymmetric FE phase, so-c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12616v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12616v1-abstract-full" style="display: none;"> Hafnium oxide (HfO2), particularly at low-dimensional scales, exhibits extensive promising applications in ultrahigh density devices like low-power logic and non-volatile memory devices due to its compatibility with current semiconductor technology1-5. However, achieving ferroelectricity (FE) at ultimate scale especially in undoped HfO2 remains challenging as the non-centrosymmetric FE phase, so-called O-III (space group: Pca21) is metastable and FE has a strong tendency of depolarization with the decrease in thickness6. Up to now, this phase has usually stabilized via doping with other elements7-9. But the minimum film thickness is still limited to 1 nm, about 2-unit-cell, to keep FE8. Thinner and undoped films, conducive to further miniature device size and avoid contamination during deposition process, have been a challenge to fabricate on Si substrates. Herein, we report the robust FE observed in undoped HfO2 ultrathin films directly grown on Si substrate via atomic layer deposition (ALD) and post-heat treat in vacuum. The so-fabricated ferroelectric O-III phase contains about 4.48 at% oxygen vacancy, is robust even monoclinic phase (space group: P21/c) coexists. The spontaneous and switchable polarization is remarkably stable, still surviving even in films down to 0.5 nm (one-unit-cell). Our results show the robust FE O-III phase can be obtained in films down to one-unit-cell in thickness on Si, providing a practical way to fabricating this important material in thickness limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12616v1-abstract-full').style.display = 'none'; document.getElementById('2501.12616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04649">arXiv:2501.04649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04649">pdf</a>, <a href="https://arxiv.org/format/2501.04649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Extracting the spin excitation spectrum of a fermionic system using a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vilchez-Estevez%2C+L">Lucia Vilchez-Estevez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santos%2C+R+A">Raul A. Santos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sabrina Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gambetta%2C+F+M">Filippo Maria Gambetta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04649v1-abstract-short" style="display: inline;"> Understanding low-energy excitations in fermionic systems is crucial for their characterization. They determine the response of the system to external weak perturbations, its dynamical correlation functions, and provide mechanisms for the emergence of exotic phases of matter. In this work, we study the spin excitation spectra of the 1D Fermi-Hubbard model using a digital quantum processor. Introdu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04649v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04649v1-abstract-full" style="display: none;"> Understanding low-energy excitations in fermionic systems is crucial for their characterization. They determine the response of the system to external weak perturbations, its dynamical correlation functions, and provide mechanisms for the emergence of exotic phases of matter. In this work, we study the spin excitation spectra of the 1D Fermi-Hubbard model using a digital quantum processor. Introducing a protocol that is naturally suited for simulation on quantum computers, we recover the retarded spin Green&#39;s function from the time evolution of simple observables after a specific quantum quench. We exploit the robustness of the protocol to perturbations of the initial state to minimize the quantum resources required for the initial state preparation, and to allocate the majority of them to a Trotterized time-dynamics simulation. This, combined with the intrinsic resilience to noise of the protocol, allows us to accurately reconstruct the spin excitation spectrum for large instances of the 1D Fermi-Hubbard model without making use of expensive error mitigation techniques, using up to 30 qubits of an IBM Heron r2 device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04649v1-abstract-full').style.display = 'none'; document.getElementById('2501.04649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 13 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04289">arXiv:2501.04289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04289">pdf</a>, <a href="https://arxiv.org/format/2501.04289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Defect Phonon Renormalization during Nonradiative Multiphonon Transitions in Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Junjie Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+X">Xin-Gao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04289v1-abstract-short" style="display: inline;"> As a typical nonradiative multiphonon transition in semiconductors, carrier capture at defects is critical to the performance of semiconductor devices. Its transition rate is usually calculated using the equal-mode approximation, which assumes that phonon modes and frequencies remain unchanged before and after the transition. Using the carbon substitutional defect ($\text{C}_\text{N}$) in GaN as a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04289v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04289v1-abstract-full" style="display: none;"> As a typical nonradiative multiphonon transition in semiconductors, carrier capture at defects is critical to the performance of semiconductor devices. Its transition rate is usually calculated using the equal-mode approximation, which assumes that phonon modes and frequencies remain unchanged before and after the transition. Using the carbon substitutional defect ($\text{C}_\text{N}$) in GaN as a benchmark, here we demonstrate that the phonon renormalization can be significant during defect relaxation, which causes errors as large as orders of magnitude in the approximation. To address this issue, we consider (i) Duschinsky matrix connecting the initial-state and final-state phonons, which accounts for the changes in phonon modes and frequencies; and (ii) the off-diagonal contributions in total transition matrix element, which incorporates the cross terms of electron-phonon interactions between different modes. With this improvement, the calculated transition rates show agreements with experimental results within an order of magnitude. We believe the present method makes one step forward for the accurate calculation of multiphonon transition rate, especially in cases with large defect relaxations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04289v1-abstract-full').style.display = 'none'; document.getElementById('2501.04289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01838">arXiv:2501.01838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01838">pdf</a>, <a href="https://arxiv.org/format/2501.01838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad925d">10.1088/1674-1056/ad925d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic band structures of topological kagome materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Man Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Huan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shancai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01838v1-abstract-short" style="display: inline;"> The kagome lattice has garnered significant attention due to its ability to host quantum spin Fermi liquid states. Recently, the combination of unique lattice geometry, electron-electron correlations, and adjustable magnetism in solid kagome materials has led to the discovery of numerous fascinating quantum properties. These include unconventional superconductivity, charge and spin density waves (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01838v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01838v1-abstract-full" style="display: none;"> The kagome lattice has garnered significant attention due to its ability to host quantum spin Fermi liquid states. Recently, the combination of unique lattice geometry, electron-electron correlations, and adjustable magnetism in solid kagome materials has led to the discovery of numerous fascinating quantum properties. These include unconventional superconductivity, charge and spin density waves (CDW/SDW), pair density waves (PDW), and Chern insulator phases. These emergent states are closely associated with the distinctive characteristics of the kagome lattice&#39;s electronic structure, such as van Hove singularities, Dirac fermions, and flat bands, which can exhibit exotic quasi-particle excitations under different symmetries and magnetic conditions. Recently, various quantum kagome materials have been developed, typically consisting of kagome layers stacked along the $z$-axis with atoms either filling the geometric centers of the kagome lattice or embedded between the layers. In this topical review, we begin by introducing the fundamental properties of several kagome materials. To gain an in-depth understanding of the relationship between topology and correlation, we then discuss the complex phenomena observed in these systems. These include the simplest kagome metal $T_3X$, kagome intercalation metal $TX$, and the ternary compounds $AT_6X_6$ and $RT_3X_5$ ($A$ = Li, Mg, Ca, or rare earth; $T$ = V, Cr, Mn, Fe, Co, Ni; $X$ = Sn, Ge; $R$ = K, Rb, Cs). Finally, we provide a perspective on future experimental work in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01838v1-abstract-full').style.display = 'none'; document.getElementById('2501.01838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 34, 017101 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01666">arXiv:2501.01666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01666">pdf</a>, <a href="https://arxiv.org/format/2501.01666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Anderson insulators by latent symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jing-Run Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+Z">Zheng-Wei Zuo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01666v1-abstract-short" style="display: inline;"> Topological Anderson insulators represent a class of disorder-induced, nontrivial topological states. In this study, we propose a feasible strategy to unveil and design the latent-symmetry protected topological Anderson insulators. By employing the isospectral reduction approach from graph theory, we reduce a family of the disordered multi-atomic chains to the disordered dimerized chain characteri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01666v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01666v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01666v1-abstract-full" style="display: none;"> Topological Anderson insulators represent a class of disorder-induced, nontrivial topological states. In this study, we propose a feasible strategy to unveil and design the latent-symmetry protected topological Anderson insulators. By employing the isospectral reduction approach from graph theory, we reduce a family of the disordered multi-atomic chains to the disordered dimerized chain characterized by energy-dependent potentials and hoppings, which exhibits the chiral symmetry or inversion symmetry. According to the topological invariants, bulk polarization, and the divergence of localization length of the topological bound edge states in the reduced disordered system, the gapped and ungapped topological Anderson states with latent symmetry could be identified in the original disordered multi-atomic systems. The concept of topological Anderson insulating phases protected by the geometric symmetries and tenfold-way classification is thus extended to the various types of latent symmetry cases. This work paves the way for exploiting topological Anderson insulators in terms of latent symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01666v1-abstract-full').style.display = 'none'; document.getElementById('2501.01666v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19376">arXiv:2412.19376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19376">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Guidelines for Correlative Imaging and Analysis of Reactive Lithium Metal Battery Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+S">Shuang Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+D">Diyi Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bingyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaluzec%2C+N+J">Nestor J. Zaluzec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raghavendran%2C+G">Ganesh Raghavendran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchese%2C+T+S">Thomas S. Marchese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Leer%2C+B">Brandon van Leer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Letian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stokes%2C+A">Adam Stokes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cline%2C+J+P">Joseph P. Cline</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osmundsen%2C+R">Rachel Osmundsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barends%2C+P">Paul Barends</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bright%2C+A">Alexander Bright</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Minghao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y+S">Ying Shirley Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19376v1-abstract-short" style="display: inline;"> To unlock the full potential of lithium metal batteries, a deep understanding of lithium metal reactivity and its solid electrolyte interphase is essential. Correlative imaging, combining focused ion beam and electron microscopy offers a powerful approach for multi-scale characterization. However, the extreme reactivity of lithium metal and its SEI presents challenges in investigating deposition a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19376v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19376v1-abstract-full" style="display: none;"> To unlock the full potential of lithium metal batteries, a deep understanding of lithium metal reactivity and its solid electrolyte interphase is essential. Correlative imaging, combining focused ion beam and electron microscopy offers a powerful approach for multi-scale characterization. However, the extreme reactivity of lithium metal and its SEI presents challenges in investigating deposition and stripping mechanisms. In this work, we systematically evaluated the storage stability of lithium metal in glovebox before and after electrochemical deposition. We then assessed different FIB ion sources for their impact on lithium metal lamella preparation for transmission electron microscopy. Furthermore, we examined cryogenic-TEM transfer methods, optimizing for minimal contamination during sample handling. Contrary to prior assumptions, we demonstrate that high resolution imaging of pure lithium metal at room temperature is achievable using inert gas transfer with an electron dose rate exceeding 1000 e/A2/s, without significant detectable damage. In contrast, SEI components, such as Li2CO3 and LiF display much greater sensitivity to electron beams, requiring cryogenic conditions and precise dose control for nano/atomic scale imaging. We quantified electron dose limits for these SEI components to track their structural evolution under irradiation. Based on these findings, we propose a robust protocol for lithium metal sample handling - from storage to atomic-level characterization - minimizing damage and contamination. This work paves the way for more accurate and reproducible studies, accelerating the development of next-generation lithium metal batteries by ensuing the preservation of native material properties during analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19376v1-abstract-full').style.display = 'none'; document.getElementById('2412.19376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18446">arXiv:2412.18446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18446">pdf</a>, <a href="https://arxiv.org/format/2412.18446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ultralow-temperature heat transport evidence for residual density of states in the superconducting state of CsV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C+C">C. C. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L+S">L. S. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">W. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Q+W">Q. W. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H+B">H. B. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G+W">G. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+J">J. J. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+J+M">J. M. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y+Y">Y. Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C+P">C. P. Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Z+C">Z. C. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Z+J">Z. J. Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+C+S">C. S. Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+W">Z. W. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H+C">H. C. Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+F">Y. F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+F">X. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J+X">J. X. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+Y">S. Y. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18446v1-abstract-short" style="display: inline;"> The V-based kagome superconductors $A$V$_3$Sb$_5$ ($A$ = K, Rb, and Cs) host charge density wave (CDW) and a topological nontrivial band structure, thereby provide a great platform to study the interplay of superconductivity (SC), CDW, frustration, and topology. Here, we report ultralow-temperature thermal conductivity measurements on CsV$_3$Sb$_5$ and Ta-doped Cs(V$_{0.86}$Ta$_{0.14}$)$_3$Sb$_5$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18446v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18446v1-abstract-full" style="display: none;"> The V-based kagome superconductors $A$V$_3$Sb$_5$ ($A$ = K, Rb, and Cs) host charge density wave (CDW) and a topological nontrivial band structure, thereby provide a great platform to study the interplay of superconductivity (SC), CDW, frustration, and topology. Here, we report ultralow-temperature thermal conductivity measurements on CsV$_3$Sb$_5$ and Ta-doped Cs(V$_{0.86}$Ta$_{0.14}$)$_3$Sb$_5$ and scanning tunneling microscopy (STM) measurements on CsV$_3$Sb$_5$. The finite residual linear term of thermal conductivity at zero magnetic field suggests the existence of a residual density of states (DOS) in the superconducting state of CsV$_3$Sb$_5$. This is supported by the observation of non-zero conductance at zero bias in STM spectrum at an electronic temperature of 90 mK. However, in Cs(V$_{0.86}$Ta$_{0.14}$)$_3$Sb$_5$, which does not have CDW order, there is no evidence for residual DOS. These results show the importance of CDW order for the residual DOS, and a nodal $s$-wave gap or residual Fermi arc may be the origin of the residual DOS in such an unusual multiband kagome superconductor, CsV$_3$Sb$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18446v1-abstract-full').style.display = 'none'; document.getElementById('2412.18446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A small part of the contents overlaps with arXiv:2102.08356</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 41, 127303 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18057">arXiv:2412.18057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18057">pdf</a>, <a href="https://arxiv.org/format/2412.18057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.014413">10.1103/PhysRevB.111.014413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of topological defects and spin liquid in a two-orbital spin-fermion model on the honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Kaidi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shan-Shan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18057v1-abstract-short" style="display: inline;"> Stabilizing exotic quantum phases of matter, e.g. spin liquid, is an attractive topic in condensed matter. Here, by a Monte Carlo study of a two-orbital spin-fermion model on a honeycomb lattice, we show the cooperative effects of the orbital degeneracy of itinerant electrons and the exchange interaction of localized spins can significantly suppress both ferromagnetic and antiferromagnetic orders&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18057v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18057v1-abstract-full" style="display: none;"> Stabilizing exotic quantum phases of matter, e.g. spin liquid, is an attractive topic in condensed matter. Here, by a Monte Carlo study of a two-orbital spin-fermion model on a honeycomb lattice, we show the cooperative effects of the orbital degeneracy of itinerant electrons and the exchange interaction of localized spins can significantly suppress both ferromagnetic and antiferromagnetic orders by generating topological defects and give rise to an intermediate spin liquid state via continuous phase transitions. This phase competition can also be achieved by tuning the electron filling. These results shed new light on realizing spin liquids on geometrically non-frustrated lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18057v1-abstract-full').style.display = 'none'; document.getElementById('2412.18057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 111, 014413 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17801">arXiv:2412.17801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17801">pdf</a>, <a href="https://arxiv.org/format/2412.17801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing the magnetic origin of the pseudogap using a Fermi-Hubbard quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chalopin%2C+T">Thomas Chalopin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bojovi%C4%87%2C+P">Petar Bojovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Si Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+T">Titus Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+A">Aritra Sinha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenjiu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourgund%2C+D">Dominik Bourgund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Obermeyer%2C+J">Johannes Obermeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grusdt%2C+F">Fabian Grusdt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohrdt%2C+A">Annabelle Bohrdt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollet%2C+L">Lode Pollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wietek%2C+A">Alexander Wietek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hilker%2C+T">Timon Hilker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17801v1-abstract-short" style="display: inline;"> In strongly correlated materials, interacting electrons are entangled and form collective quantum states, resulting in rich low-temperature phase diagrams. Notable examples include cuprate superconductors, in which superconductivity emerges at low doping out of an unusual ``pseudogap&#39;&#39; metallic state above the critical temperature. The Fermi-Hubbard model, describing a wide range of phenomena asso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17801v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17801v1-abstract-full" style="display: none;"> In strongly correlated materials, interacting electrons are entangled and form collective quantum states, resulting in rich low-temperature phase diagrams. Notable examples include cuprate superconductors, in which superconductivity emerges at low doping out of an unusual ``pseudogap&#39;&#39; metallic state above the critical temperature. The Fermi-Hubbard model, describing a wide range of phenomena associated with strong electron correlations, still offers major computational challenges despite its simple formulation. In this context, ultracold atoms quantum simulators have provided invaluable insights into the microscopic nature of correlated quantum states. Here, we use a quantum gas microscope Fermi-Hubbard simulator to explore a wide range of doping levels and temperatures in a regime where a pseudogap is known to develop. By measuring multi-point correlation functions up to fifth order, we uncover a novel universal behaviour in magnetic and higher-order spin-charge correlations. This behaviour is characterized by a doping-dependent energy scale that governs the exponential growth of the magnetic correlation length upon cooling. Accurate comparisons with determinant Quantum Monte Carlo and Minimally Entangled Typical Thermal States simulations confirm that this energy scale agrees well with the pseudogap temperature $T^{*}$. Our findings establish a qualitative and quantitative understanding of the magnetic origin and physical nature of the pseudogap and pave the way towards the exploration of pairing and collective phenomena among charge carriers expected to emerge at lower temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17801v1-abstract-full').style.display = 'none'; document.getElementById('2412.17801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16170">arXiv:2412.16170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16170">pdf</a>, <a href="https://arxiv.org/format/2412.16170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2023.101195">10.1016/j.mtphys.2023.101195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic pinning of FeSe$_1$$_-$$_x$S$_x$ single crystals probed by torque magnetometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+N">Nan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yue Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Q">Q. Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakakibara%2C+T">T. Sakakibara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+X+Z">X. Z. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C+Q">C. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+C+Y">C. Y. Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+S">Z. S. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y+F">Y. F. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Y+Q">Y. Q. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">B. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">X. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y+P">Y. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamegai%2C+T">T. Tamegai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Mingxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhixiang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16170v1-abstract-short" style="display: inline;"> Intrinsic pinning is caused by natural pinning centers that occur because of the modulation of the order parameter or weak superconducting layers. Early work has shown that intrinsic pinning generates a high pinning force and critical current density in some layered oxide superconductors. Studying the intrinsic pinning of superconductors is crucial for both fundamental studies and potential applic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16170v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16170v1-abstract-full" style="display: none;"> Intrinsic pinning is caused by natural pinning centers that occur because of the modulation of the order parameter or weak superconducting layers. Early work has shown that intrinsic pinning generates a high pinning force and critical current density in some layered oxide superconductors. Studying the intrinsic pinning of superconductors is crucial for both fundamental studies and potential applications. Herein, we use torque magnetometry to study angle-resolved in-plane and out-of-plane magnetic torque for a series of high-quality FeSe$_1$$_-$$_x$S$_x$ single crystals. A fourfold torque signal was observed when the magnetic field was within the \textit{ab} plane. We interpret that this fourfold in-plane irreversible torque is from the intrinsic pinning due to combined effects of gap nodes/minimum and twin domains. Additionally, we attributed the observed out-of-plane torque peaks to intrinsic pinning due to the layered structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16170v1-abstract-full').style.display = 'none'; document.getElementById('2412.16170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 37 (2023) 101195 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13513">arXiv:2412.13513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13513">pdf</a>, <a href="https://arxiv.org/format/2412.13513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Uncovering the Maximum Chirality in Dielectric Nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">WenKui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">ShengYi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuang%2C+H">HanZhuo Kuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hao Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+B">Bo-Wen Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13513v1-abstract-short" style="display: inline;"> Maximum structural chirality refers to the highest selectivity for circularly polarized light (CPL) in nanostructures, often manifested as maximum circular dichroism (CD), optical rotation (OR), and spin-orbit coupling (SOC). However, the underlying physical mechanisms that lead to maximum chirality remain unclear. In this work, we demonstrate that maximum chirality in dielectric nanostructures ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13513v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13513v1-abstract-full" style="display: none;"> Maximum structural chirality refers to the highest selectivity for circularly polarized light (CPL) in nanostructures, often manifested as maximum circular dichroism (CD), optical rotation (OR), and spin-orbit coupling (SOC). However, the underlying physical mechanisms that lead to maximum chirality remain unclear. In this work, we demonstrate that maximum chirality in dielectric nanostructures arises from the constructive and destructive interference of multipole moments with different CPL. By employing generalized multipole decomposition, we introduce a generalized chiral multipole mechanism that allows for direct numerical calculation of CD and establishes the conditions required to achieve maximum chirality. This approach provides a comprehensive framework for analyzing chirality and serves as a foundation for future investigations of chiral nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13513v1-abstract-full').style.display = 'none'; document.getElementById('2412.13513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12138">arXiv:2412.12138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Atomistic catalyst polarization stemming hydrogen generation from CH4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sanmei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ne%2C+C">Chunyang Ne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+H">Hengxin Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Biao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+C+Q">Chang Q Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12138v1-abstract-short" style="display: inline;"> As the extremely-sized nanocrystals and nanopores, an adatom M and atomic vacancy V exhibit extraordinary capability of catalysis with however little knowledge about the catalyst-reactant interfacial bonding dynamics. With the aid of DFT calculations, we examined the dehydrogenization of a single CH4 molecule catalyzed using the Rh(111,100), W(110), Ru(0001) surfaces, and monolayer graphene, with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12138v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12138v1-abstract-full" style="display: none;"> As the extremely-sized nanocrystals and nanopores, an adatom M and atomic vacancy V exhibit extraordinary capability of catalysis with however little knowledge about the catalyst-reactant interfacial bonding dynamics. With the aid of DFT calculations, we examined the dehydrogenization of a single CH4 molecule catalyzed using the Rh(111,100), W(110), Ru(0001) surfaces, and monolayer graphene, with and without M or V. It is uncovered in the following three components: (i) catalyst polarization due to atomic under- or hetero-coordination raises the valence band of the catalyst by bond contraction and atomistic dipolar MP and vacancy dipolar V formation; (ii) reactant bond elongation by the interplay of the MP-V = H attraction and MP-V = C repulsion with the = denoting the negative pole of the MP-V; and (iii) reactant conversion, i.e., the scale of H-C elongation, the catalyst valence-band shift, the adsorption energy, and the catalytic activity are proportional to the charge quantity of the MP-V whose local electric field matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12138v1-abstract-full').style.display = 'none'; document.getElementById('2412.12138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09375">arXiv:2412.09375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09375">pdf</a>, <a href="https://arxiv.org/ps/2412.09375">ps</a>, <a href="https://arxiv.org/format/2412.09375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the multiband metallic nature of the normal state in nickelate La3Ni2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bowen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hengyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jingyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Deyuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuyang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaosheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bing Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09375v1-abstract-short" style="display: inline;"> The discovery of unconventional superconductivity around 80 K in perovskite nickelates under high pressure has furnished a new platform to explore high-temperature unconventional superconductivity in addition to cuprates. Understanding the normal state of nickelate superconductors is crucial to uncovering the origin of this unconventional superconductivity and gaining further insight into its unde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09375v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09375v1-abstract-full" style="display: none;"> The discovery of unconventional superconductivity around 80 K in perovskite nickelates under high pressure has furnished a new platform to explore high-temperature unconventional superconductivity in addition to cuprates. Understanding the normal state of nickelate superconductors is crucial to uncovering the origin of this unconventional superconductivity and gaining further insight into its underlying mechanism. In this study, we systemically studied the transport properties of La3Ni2O7 by tuning the pressure under high magnetic fields. Magnetoresistance (MR) consistently exhibits a quasi-quadratic dependence on the magnetic field across all measured pressures and temperatures. Increased pressure enhances the metallicity of the system and leads to a monotonic increase in MR, which follows the extended Kohler&#39;s rule. These results suggest that the normal state of La3Ni2O7 to be a multiband metallic nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09375v1-abstract-full').style.display = 'none'; document.getElementById('2412.09375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09298">arXiv:2412.09298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09298">pdf</a>, <a href="https://arxiv.org/format/2412.09298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear Hall Effect in Two-dimensional Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+W">Wei Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yue-Wen Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09298v2-abstract-short" style="display: inline;"> Symmetry is a cornerstone of condensed matter physics, fundamentally shaping the behavior of electronic systems and inducing the emergence of novel phenomena. The Hall effect, a key concept in this field, demonstrates how symmetry breaking, particularly of time-reversal symmetry, influences electronic transport properties. Recently, the nonlinear Hall effect has extended this understanding by gene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09298v2-abstract-full').style.display = 'inline'; document.getElementById('2412.09298v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09298v2-abstract-full" style="display: none;"> Symmetry is a cornerstone of condensed matter physics, fundamentally shaping the behavior of electronic systems and inducing the emergence of novel phenomena. The Hall effect, a key concept in this field, demonstrates how symmetry breaking, particularly of time-reversal symmetry, influences electronic transport properties. Recently, the nonlinear Hall effect has extended this understanding by generating a transverse voltage that modulates at twice the frequency of the driving alternating current without breaking time-reversal symmetry. This effect is closely tied to the symmetry and quantum geometric properties of materials, offering a new approach to probing the Berry curvature and quantum metric. Here, we provide a review of the theoretical insights and experimental advancements in the nonlinear Hall effect, particularly focusing on its realization in two-dimensional materials. We discuss the challenges still ahead, look at potential applications for devices, and explore how these ideas might apply to other nonlinear transport phenomena. By elucidating these aspects, this review aims to advance the understanding of nonlinear transport effects and their broader implications for future technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09298v2-abstract-full').style.display = 'none'; document.getElementById('2412.09298v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06476">arXiv:2412.06476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06476">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-space study of zero-field correlation in tetralayer rhombohedral graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Shudan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guorui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Can Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06476v1-abstract-short" style="display: inline;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06476v1-abstract-full" style="display: none;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ scanning probe microscopy and spectroscopy to probe the intrinsic electronic states in trilayer and tetralayer RG. We identify a correlated insulating state with a 17 meV gap at the charge neutrality point in tetralayer RG, which is absent in the trilayer configuration. This gap is suppressed by applying a perpendicular magnetic field or doping the charge carrier density and does not exhibit inter-valley coherence patterns. We attribute this phenomenon to a symmetry-broken layer antiferromagnetic state, characterized by ferrimagnetic ordering in the outermost layers and antiferromagnetic coupling between them. To further investigate this magnetic correlated state, we conduct local scattering experiments. Within the correlated regime, a bound state emerges around a non-magnetic impurity but is absent near magnetic impurities, suggesting that non-magnetic doping induces a spin texture in the ferrimagnetic surface layers. Outside the correlated regime, Friedel oscillations are observed, allowing precise determination of the band dispersion in tetralayer RG. These findings provide atomic-scale evidences of zero-field correlations in RG and may be extended to study other exotic phases in RG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'none'; document.getElementById('2412.06476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04810">arXiv:2412.04810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04810">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Origin of Increased Curie Temperature in Lithium-Substituted Ferroelectric Niobate Perovskite: Enhancement of the Soft Polar Mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thong%2C+H">Hao-Cheng Thong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+F">Fang-Zhou Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xian-Xian Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Ze Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mao-Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huazhang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Ben Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shi-Dong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04810v1-abstract-short" style="display: inline;"> The functionality of ferroelectrics is often constrained by their Curie temperature, above which depolarization occurs. Lithium (Li) is the only experimentally known substitute that can increase the Curie temperature in ferroelectric niobate-based perovskites, yet the mechanism remains unresolved. Here, the unique phenomenon in Li-substituted KNbO3 is investigated using first-principles density fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04810v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04810v1-abstract-full" style="display: none;"> The functionality of ferroelectrics is often constrained by their Curie temperature, above which depolarization occurs. Lithium (Li) is the only experimentally known substitute that can increase the Curie temperature in ferroelectric niobate-based perovskites, yet the mechanism remains unresolved. Here, the unique phenomenon in Li-substituted KNbO3 is investigated using first-principles density functional theory. Theoretical calculations show that Li substitution at the A-site of perovskite introduces compressive chemical pressure, reducing Nb-O hybridization and associated ferroelectric instability. However, the large off-center displacement of the Li cation compensates for this reduction and further enhances the soft polar mode, thereby raising the Curie temperature. In addition, the stability of the tetragonal phase over the orthorhombic phase is predicted upon Li substitution, which reasonably explains the experimental observation of a decreased orthorhombic-to-tetragonal phase transition temperature. Finally, a metastable anti-phase polar state in which the Li cation displaces oppositely to the Nb cation is revealed, which could also contribute to the variation of phase transition temperatures. These findings provide critical insights into the atomic-scale mechanisms governing Curie temperature enhancement in ferroelectrics and pave the way for designing advanced ferroelectric materials with improved thermal stability and functional performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04810v1-abstract-full').style.display = 'none'; document.getElementById('2412.04810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04633">arXiv:2412.04633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mengchen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J+J">Jessica J. Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebti%2C+E">Elias Sebti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shijie Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pennebaker%2C+T">Tyler Pennebaker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hui%2C+Z">Zeyu Hui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+Q">Qiushi Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+E">Ershuang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harpak%2C+N">Nimrod Harpak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Sicen Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianbin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+W">Jeong Woo Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M">Min-Sang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cl%C3%A9ment%2C+R+J">Rapha毛le J. Cl茅ment</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Ping Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04633v1-abstract-short" style="display: inline;"> Sulfide solid state electrolytes are promising candidates to realize all solid state batteries due to their superior ionic conductivity and excellent ductility. However, their hypersensitivity to moisture requires processing environments that are not compatible with todays lithium ion battery manufacturing infrastructure. Herein, we present a reversible surface modification strategy that enables t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04633v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04633v1-abstract-full" style="display: none;"> Sulfide solid state electrolytes are promising candidates to realize all solid state batteries due to their superior ionic conductivity and excellent ductility. However, their hypersensitivity to moisture requires processing environments that are not compatible with todays lithium ion battery manufacturing infrastructure. Herein, we present a reversible surface modification strategy that enables the processability of sulfide SSEs under humid ambient air. We demonstrate that a long chain alkyl thiol, undecanethiol, is chemically compatible with the electrolyte with negligible impact on its ion conductivity. Importantly, the thiol modification extends the amount of time that the sulfide SSE can be exposed to air with 33 percent relative humidity with limited degradation of its structure while retaining a conductivity of above 1 mS per cm for up to 2 days, a more than 100 fold improvement in protection time over competing approaches. Experimental and computational results reveal that the thiol group anchors to the SSE surface, while the hydrophobic hydrocarbon tail provides protection by repelling water. The modified Li6PS5Cl SSE maintains its function after exposure to ambient humidity when implemented in a Li0.5In LiNi0.8Co0.1Mn0.1O2 ASSB. The proposed protection strategy based on surface molecular interactions represents a major step forward towards cost competitive and energy efficient sulfide SSE manufacturing for ASSB applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04633v1-abstract-full').style.display = 'none'; document.getElementById('2412.04633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13182">arXiv:2411.13182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13182">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.224418">10.1103/PhysRevB.110.224418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stacking-dependent ferroicity of reversed bilayer: altermagnetism or ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">Wencong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+H">Haoshen Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+L">Li Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+N">Ning Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shan-shan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13182v1-abstract-short" style="display: inline;"> Altermagnetism, as a new branch of magnetism independent of traditional ferromagnetism and antiferromagnetism, has attracted extensive attention recently. At present, researchers have proved several kinds of three-dimensional altermagnets, but research on two-dimensional (2D) altermagnets remains elusive. Here, we propose a method for designing altermagnetism in 2D lattices: bilayer reversed stack&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13182v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13182v1-abstract-full" style="display: none;"> Altermagnetism, as a new branch of magnetism independent of traditional ferromagnetism and antiferromagnetism, has attracted extensive attention recently. At present, researchers have proved several kinds of three-dimensional altermagnets, but research on two-dimensional (2D) altermagnets remains elusive. Here, we propose a method for designing altermagnetism in 2D lattices: bilayer reversed stacking. This method could enable altermagnetism-type spin splitting to occur intrinsically and the spin-splitting can be controlled by crystal chirality. We also demonstrate it through a real material of bilayer PtBr$_3$ with AB&#39; stacking order. Additionally, the combination of stacking order and slidetronics offers new opportunities for electrical writing and magnetic reading of electronic devices. In the case of AC&#39; stacking, interlayer sliding results in reversible spontaneous polarization. This unique combination of antiferromagnetism and sliding ferroelectricity leads to polarization-controlled spin-splitting, thus enabling magnetoelectric coupling, which can be detected by magneto-optical Kerr effect even without net magnetization. Our research highlights that reversed stacking provides a platform to explore rich physical properties of magnetism, ferroelectricity, and spin-splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13182v1-abstract-full').style.display = 'none'; document.getElementById('2411.13182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 224418 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08980">arXiv:2411.08980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08980">pdf</a>, <a href="https://arxiv.org/format/2411.08980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital Fulde-Ferrell-Larkin-Ovchinnikov state in 2H-NbS2 flakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xinming Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guoliang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+C">Chengyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+N+F+Q">Noah F. Q. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chuanwen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+H">Huai Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+C">Changshuai Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yihang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08980v1-abstract-short" style="display: inline;"> Symmetry breaking in a layered superconductor with Ising spin-orbit coupling has offered an opportunity to realize unconventional superconductivity. To be more specific, orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, exhibiting layer-dependent finite-momentum pairing, may emerge in transition metal dichalcogenides materials (TMDC) in the presence of an in-plane magnetic field. Orbital FFLO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08980v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08980v1-abstract-full" style="display: none;"> Symmetry breaking in a layered superconductor with Ising spin-orbit coupling has offered an opportunity to realize unconventional superconductivity. To be more specific, orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, exhibiting layer-dependent finite-momentum pairing, may emerge in transition metal dichalcogenides materials (TMDC) in the presence of an in-plane magnetic field. Orbital FFLO state can be more robust against the magnetic field than the conventional superconducting state with zero-momentum pairing. This feature renders its potential in field resilient superconducting functionality. Although, orbital FFLO state has been reported in NbSe2 and MoS2, it is not yet clear if orbital FFLO state can be a general feature of TMDC superconductor. Here, we report the observation of orbital FFLO state in 2H-NbS2 flakes and its dependence on the thickness of flake. We conclude that the relatively weak interlayer coupling is instrumental in stabilizing orbital FFLO state at higher temperature with respect to the critical temperature and lower magnetic field with respect to paramagnetic limit in NbS2 in comparison to its NbSe2 counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08980v1-abstract-full').style.display = 'none'; document.getElementById('2411.08980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08969">arXiv:2411.08969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08969">pdf</a>, <a href="https://arxiv.org/format/2411.08969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Theory of anomalous Hall effect from screened vortex charge in a phase disordered superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sau%2C+J+D">Jay D. Sau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuyang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08969v1-abstract-short" style="display: inline;"> Motivated by recent experiments showing evidence for chiral superconductivity in an anomalous Hall phase of tetralayer graphene, we study the relation between the normal state anomalous Hall conductivity and that in the phase disordered state above the critical temperature of the superconductor. By a numerical calculation of superconductivity in an anomalous Hall metal, we find that a difference i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08969v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08969v1-abstract-full" style="display: none;"> Motivated by recent experiments showing evidence for chiral superconductivity in an anomalous Hall phase of tetralayer graphene, we study the relation between the normal state anomalous Hall conductivity and that in the phase disordered state above the critical temperature of the superconductor. By a numerical calculation of superconductivity in an anomalous Hall metal, we find that a difference in vortex and antivortex charge is determined by the Fermi surface Berry phase. Combining this with the vortex dynamics in a back-ground supercurrent leads to a Hall response in the phase disordered state of the superconductor that is close to the normal state anomalous Hall response. However, using a gauge-invariant superconducting response framework, we find that while vortex charge is screened by interactions, the screening charge, after a time-delay, reappears in the longitudinal current. Thus, the dc Hall conductivity in this phase, instead of matching the screened vortex charge, matches the ac Hall conductance in the superconducting and normal phase, which are similar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08969v1-abstract-full').style.display = 'none'; document.getElementById('2411.08969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10