CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,018 results for author: <span class="mathjax">Chen, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Chen%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09619">arXiv:2501.09619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09619">pdf</a>, <a href="https://arxiv.org/format/2501.09619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Berezinskii-Kosterlitz-Thouless region and magnetization plateaus in easy-axis triangular weak-dimer antiferromaget K$_2$Co$_2$(SeO$_3$)$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Ying Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+H">Han Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jie Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Y">Yi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junfeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+Z">Zhe Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Miao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+L">Langsheng Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+B">Bin Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+J">Jia-Wei Mei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09619v1-abstract-short" style="display: inline;"> We investigate the magnetic phase diagram of the bilayer triangular antiferromagnet K$_2$Co$_2$(SeO$_3$)$_3$, unveiling a rich interplay between geometric frustration, bilayer coupling, and symmetry-driven phenomena. High-field magnetization measurements reveal fractional magnetization plateaus at 1/3, 1/2, 2/3, and 5/6 of the saturation magnetization. To elucidate the experimental magnetic phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09619v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09619v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09619v1-abstract-full" style="display: none;"> We investigate the magnetic phase diagram of the bilayer triangular antiferromagnet K$_2$Co$_2$(SeO$_3$)$_3$, unveiling a rich interplay between geometric frustration, bilayer coupling, and symmetry-driven phenomena. High-field magnetization measurements reveal fractional magnetization plateaus at 1/3, 1/2, 2/3, and 5/6 of the saturation magnetization. To elucidate the experimental magnetic phase diagram at low fields, we propose that K$_2$Co$_2$(SeO$_3$)$_3$ can be described as an easy-axis triangular weak-dimer antiferromagnet. We emphasize the critical role of the emergent $U(1) \otimes S_3$ symmetry, where $S_3 = \mathbb{Z}_3 \otimes \mathbb{Z}_2^d$, in determining the magnetic phases at low fields. The remarkable agreement between the experimental and theoretical phase diagrams suggests that the phase transitions are governed by this symmetry. Notably, our combined experimental and theoretical results identify a Berezinskii-Kosterlitz-Thouless (BKT) phase region at finite fields. These findings provide new insights into the phase structure of frustrated magnets and establish K$_2$Co$_2$(SeO$_3$)$_3$ as a compelling platform for exploring unconventional quantum phenomena in $U(1) \otimes S_3$ systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09619v1-abstract-full').style.display = 'none'; document.getElementById('2501.09619v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09549">arXiv:2501.09549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09549">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abm5134">10.1126/science.abm5134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity in layered bismuth oxide down to 1 nanometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qianqian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jingcong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yue-Wen Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yueyang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+S">Shiqing Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yue Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dieguez%2C+O">Oswaldo Dieguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+L">Longlong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+D">Dongxing Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xixiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Yongqi Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Z">Zhenlin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huanhua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+M">Manling Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+X">Xianran Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+J">Jianjun Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Linxing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09549v1-abstract-short" style="display: inline;"> Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09549v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09549v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09549v1-abstract-full" style="display: none;"> Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09549v1-abstract-full').style.display = 'none'; document.getElementById('2501.09549v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">preprint, 27 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 379(6638): 1218-1224 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06852">arXiv:2501.06852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06852">pdf</a>, <a href="https://arxiv.org/ps/2501.06852">ps</a>, <a href="https://arxiv.org/format/2501.06852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Flat Band and Many-body Gap in Chirally Twisted Triple Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+S">Shimin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jinhua Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiaobo Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06852v1-abstract-short" style="display: inline;"> We experimentally investigate the band structures of chirally twisted triple bilayer graphene. The new kind of moir茅 structure, formed by three pieces of helically stacked Bernal bilayer graphene, has flat bands at charge neutral point based on the continuum approximation. We experimentally confirm the existence of flat bands and directly acquire the gap in-between flat bands as well as between th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06852v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06852v1-abstract-full" style="display: none;"> We experimentally investigate the band structures of chirally twisted triple bilayer graphene. The new kind of moir茅 structure, formed by three pieces of helically stacked Bernal bilayer graphene, has flat bands at charge neutral point based on the continuum approximation. We experimentally confirm the existence of flat bands and directly acquire the gap in-between flat bands as well as between the flat bands and dispersive bands from the capacitance measurements. We discover a finite gap even at zero perpendicular electric field, possibly induced by the Coulomb interaction and ferromagnetism. Our quantitative study not only provides solid evidence for the flat-band and interesting physics, but also introduces a quantitative approach to explore phenomena of similar moir茅 systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06852v1-abstract-full').style.display = 'none'; document.getElementById('2501.06852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06061">arXiv:2501.06061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06061">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Overcoming the surface paradox: Buried perovskite quantum dots in wide-bandgap perovskite thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pasha%2C+A">Altaf Pasha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metcalf%2C+I">Isaac Metcalf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianlin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staunstrup%2C+M">Mathias Staunstrup</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yunxuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+S">Shusen Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ssennyimba%2C+K">Ken Ssennyimba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jia-Shiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+S+P">Surya Prakash Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Th%C3%A9baud%2C+S">Simon Th茅baud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jin Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shuai%2C+X">Xinting Shuai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandani%2C+F">Faiz Mandani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sidhik%2C+S">Siraj Sidhik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+M+R">Matthew R. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xuedan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishna%2C+R+G">R Geetha Balakrishna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Susarla%2C+S">Sandhya Susarla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ginger%2C+D+S">David S. Ginger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katan%2C+C">Claudine Katan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bawendi%2C+M+G">Moungi G. Bawendi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Natelson%2C+D">Douglas Natelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamarat%2C+P">Philippe Tamarat</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06061v1-abstract-short" style="display: inline;"> Colloidal perovskite quantum dots (PQDs) are an exciting platform for on-demand quantum, and classical optoelectronic and photonic devices. However, their potential success is limited by the extreme sensitivity and low stability arising from their weak intrinsic lattice bond energy and complex surface chemistry. Here we report a novel platform of buried perovskite quantum dots (b-PQDs) in a three-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06061v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06061v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06061v1-abstract-full" style="display: none;"> Colloidal perovskite quantum dots (PQDs) are an exciting platform for on-demand quantum, and classical optoelectronic and photonic devices. However, their potential success is limited by the extreme sensitivity and low stability arising from their weak intrinsic lattice bond energy and complex surface chemistry. Here we report a novel platform of buried perovskite quantum dots (b-PQDs) in a three-dimensional perovskite thin-film, fabricated using one-step, flash annealing, which overcomes surface related instabilities in colloidal perovskite dots. The b-PQDs demonstrate ultrabright and stable single-dot emission, with resolution-limited linewidths below 130 渭eV, photon-antibunching (g^2(0)=0.1), no blinking, suppressed spectral diffusion, and high photon count rates of 10^4/s, consistent with unity quantum yield. The ultrasharp linewidth resolves exciton fine-structures (dark and triplet excitons) and their dynamics under a magnetic field. Additionally, b-PQDs can be electrically driven to emit single photons with 1 meV linewidth and photon-antibunching (g^2(0)=0.4). These results pave the way for on-chip, low-cost single-photon sources for next generation quantum optical communication and sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06061v1-abstract-full').style.display = 'none'; document.getElementById('2501.06061v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Si Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free &#34;cluster&#34; Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04679">arXiv:2501.04679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04679">pdf</a>, <a href="https://arxiv.org/format/2501.04679">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exploring nontrivial topology at quantum criticality in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yujie Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanzhe Wang</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04679v1-abstract-short" style="display: inline;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04679v1-abstract-full" style="display: none;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimental challenge in statistical and condensed matter physics. Programmable quantum processors can directly prepare and manipulate exotic quantum many-body states, offering a powerful path for exploring the physics behind these states. Here, we present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits. We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study. Furthermore, by adapting the entanglement Hamiltonian tomography technique, we recognize two-fold topological degeneracy in the entanglement spectrum under periodic boundary condition, experimentally verifying the universal bulk-boundary correspondence in topological critical systems. Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'none'; document.getElementById('2501.04679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03712">arXiv:2501.03712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03712">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Field-free perpendicular magnetization switching of low critical current density at room temperature in TaIrTe4/ferromagnet heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+L">Lujun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+J">Jincheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanghui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lina Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Ping Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+W">Wei Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+F">Fei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiaju Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shuang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiarui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weihao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pu%2C+Y">Yong Pu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03712v1-abstract-short" style="display: inline;"> Spin-orbit torque-induced perpendicular magnetization switching has attracted much attention due to the advantages of nonvolatility, high density, infinite read/write counts, and low power consumption in spintronic applications. To achieve field-free deterministic switching of perpendicular magnetization, additional magnetic field, magnetic layer assistance, or artificially designed structural sym&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03712v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03712v1-abstract-full" style="display: none;"> Spin-orbit torque-induced perpendicular magnetization switching has attracted much attention due to the advantages of nonvolatility, high density, infinite read/write counts, and low power consumption in spintronic applications. To achieve field-free deterministic switching of perpendicular magnetization, additional magnetic field, magnetic layer assistance, or artificially designed structural symmetry breaking are usually required, which are not conducive to the high-density integration and application of low-power devices. However, 2D Weyl semimetals with low-symmetry structures have recently been found to generate z-spin-polarized currents, which may induce out-of-plane damping-like torques to their neighboring ferromagnetic layers, and realize deterministic perpendicular magnetization switching at zero magnetic field. In this Letter, we report that current-induced field-free magnetization switching at room temperature can be achieved in a perpendicularly magnetized TaIrTe4/Pt/Co/Pt device, and the critical switching current density can be lowered to be about 2.64*105 Acm-2. This study suggests that TaIrTe4 has great potential for the design of room-temperature efficient spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03712v1-abstract-full').style.display = 'none'; document.getElementById('2501.03712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01270">arXiv:2501.01270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01270">pdf</a>, <a href="https://arxiv.org/format/2501.01270">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c05865">10.1021/acs.nanolett.4c05865 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competing Hexagonal and Square Lattices on a Spherical Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+H">Han Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhenyue Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J+Z+Y">Jeff Z. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01270v1-abstract-short" style="display: inline;"> The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state- and soft-matter physics. Confined on spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01270v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01270v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01270v1-abstract-full" style="display: none;"> The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state- and soft-matter physics. Confined on spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report here the emergence of new types of disclination patterns: domain and counter-domain defects, when hexagonal and square patterns coexist. A new angle is presented to understand the incompatibility between tiling lattice shapes and the available spherical areal shapes, which is common in nature -- from molecular systems in biology to backbone construction in architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01270v1-abstract-full').style.display = 'none'; document.getElementById('2501.01270v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Authors&#39; version of the article submitted to Nano Letters and accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18796">arXiv:2412.18796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18796">pdf</a>, <a href="https://arxiv.org/format/2412.18796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> A Discrete Formulation of Second Stiefel-Whitney Class for Band Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shiozaki%2C+K">Ken Shiozaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18796v1-abstract-short" style="display: inline;"> Topological invariants in band theory are often formulated assuming that Bloch wave functions are smoothly defined over the Brillouin zone (BZ). However, first-principles band calculations typically provide Bloch states only at discrete points in the BZ, rendering standard continuum-based approaches inapplicable. In this work, we focus on the second Stiefel-Whitney class $w_2$, a key&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18796v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18796v1-abstract-full" style="display: none;"> Topological invariants in band theory are often formulated assuming that Bloch wave functions are smoothly defined over the Brillouin zone (BZ). However, first-principles band calculations typically provide Bloch states only at discrete points in the BZ, rendering standard continuum-based approaches inapplicable. In this work, we focus on the second Stiefel-Whitney class $w_2$, a key $\mathbb{Z}_2$ topological invariant under PT symmetry that characterizes various higher-order topological insulators and nodal-line semimetals. We develop a fully discrete, gauge-fixing-free formula for $w_2$ which depends solely on the Bloch states sampled at discrete BZ points. Furthermore, we clarify how our discrete construction connects to lattice field theory, providing a unifying perspective that benefits both high-energy and condensed matter approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18796v1-abstract-full').style.display = 'none'; document.getElementById('2412.18796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18553">arXiv:2412.18553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18553">pdf</a>, <a href="https://arxiv.org/format/2412.18553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Advancing Surface Chemistry with Large-Scale Ab-Initio Quantum Many-Body Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zigeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhen Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Changsu Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pham%2C+H+Q">Hung Q. Pham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+X">Xuelan Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Booth%2C+G+H">George H. Booth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+D">Dingshun Lv</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18553v2-abstract-short" style="display: inline;"> Predictive simulation of surface chemistry is of paramount importance for progress in fields from catalysis to electrochemistry and clean energy generation. Ab-initio quantum many-body methods should be offering deep insights into these systems at the electronic level, but are limited in their efficacy by their steep computational cost. In this work, we build upon state-of-the-art correlated wavef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18553v2-abstract-full').style.display = 'inline'; document.getElementById('2412.18553v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18553v2-abstract-full" style="display: none;"> Predictive simulation of surface chemistry is of paramount importance for progress in fields from catalysis to electrochemistry and clean energy generation. Ab-initio quantum many-body methods should be offering deep insights into these systems at the electronic level, but are limited in their efficacy by their steep computational cost. In this work, we build upon state-of-the-art correlated wavefunctions to reliably converge to the `gold standard&#39; accuracy in quantum chemistry for application to extended surface chemistry. Efficiently harnessing graphics processing unit acceleration along with systematically improvable multiscale resolution techniques, we achieve linear computational scaling up to 392 atoms in size. These large-scale simulations demonstrate the importance of converging to these extended system sizes, achieving a validating handshake between simulations with different boundary conditions for the interaction of water on a graphene surface. We provide a new benchmark for this water-graphene interaction that clarifies the preference for water orientations at the graphene interface. This is extended to the adsorption of carbonaceous molecules on chemically complex surfaces, including metal oxides and metal-organic frameworks, where we consistently achieve chemical accuracy compared to experimental references, and well inside the scatter of traditional density functional material modeling approaches. This pushes the state of the art for simulation of molecular adsorption on surfaces, and marks progress into a post-density functional era for more reliable and improvable approaches to first-principles modeling of surface problems at an unprecedented scale and accuracy using ab-initio quantum many-body methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18553v2-abstract-full').style.display = 'none'; document.getElementById('2412.18553v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15591">arXiv:2412.15591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15591">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01897-y">10.1038/s42005-024-01897-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature nonlinear transport and microwave rectification in antiferromagnetic MnBi$_2$Te$_4$ films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shanshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burgos%2C+R">Rhonald Burgos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enze Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiang%2C+X">Xiao-Bin Qiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chuanzhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qihan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z+Z">Z. Z. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+R">Rui Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qing-Hua Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leng%2C+K">Kai Leng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weibo Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+F">Faxian Xiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Culcer%2C+D">Dimitrie Culcer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loh%2C+K+P">Kian Ping Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15591v1-abstract-short" style="display: inline;"> The discovery of the nonlinear Hall effect provides an avenue for studying the interplay among symmetry, topology, and phase transitions, with potential applications in signal doubling and high-frequency rectification. However, practical applications require devices fabricated on large area thin film as well as room-temperature operation. Here, we demonstrate robust room-temperature nonlinear tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15591v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15591v1-abstract-full" style="display: none;"> The discovery of the nonlinear Hall effect provides an avenue for studying the interplay among symmetry, topology, and phase transitions, with potential applications in signal doubling and high-frequency rectification. However, practical applications require devices fabricated on large area thin film as well as room-temperature operation. Here, we demonstrate robust room-temperature nonlinear transverse response and microwave rectification in MnBi$_2$Te$_4$ films grown by molecular beam epitaxy. We observe multiple sign-reversals in the nonlinear response by tuning the chemical potential. Through theoretical analysis, we identify skew scattering and side jump, arising from extrinsic spin-orbit scattering, as the main mechanisms underlying the observed nonlinear signals. Furthermore, we demonstrate radio frequency (RF) rectification in the range of 1-8 gigahertz at 300 K. These findings not only enhance our understanding of the relationship between nonlinear response and magnetism, but also expand the potential applications as energy harvesters and detectors in high-frequency scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15591v1-abstract-full').style.display = 'none'; document.getElementById('2412.15591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 7, 413 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14795">arXiv:2412.14795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14795">pdf</a>, <a href="https://arxiv.org/ps/2412.14795">ps</a>, <a href="https://arxiv.org/format/2412.14795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Taming Landau level mixing in fractional quantum Hall states with deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+Y">Yubing Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">Tongzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianxiao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14795v1-abstract-short" style="display: inline;"> Strong correlation brings a rich array of emergent phenomena, as well as a daunting challenge to theoretical physics study. In condensed matter physics, the fractional quantum Hall effect is a prominent example of strong correlation, with Landau level mixing being one of the most challenging aspects to address using traditional computational methods. Deep learning real-space neural network wavefun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14795v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14795v1-abstract-full" style="display: none;"> Strong correlation brings a rich array of emergent phenomena, as well as a daunting challenge to theoretical physics study. In condensed matter physics, the fractional quantum Hall effect is a prominent example of strong correlation, with Landau level mixing being one of the most challenging aspects to address using traditional computational methods. Deep learning real-space neural network wavefunction methods have emerged as promising architectures to describe electron correlations in molecules and materials, but their power has not been fully tested for exotic quantum states. In this work, we employ real-space neural network wavefunction techniques to investigate fractional quantum Hall systems. On both $1/3$ and $2/5$ filling systems, we achieve energies consistently lower than exact diagonalization results which only consider the lowest Landau level. We also demonstrate that the real-space neural network wavefunction can naturally capture the extent of Landau level mixing up to a very high level, overcoming the limitations of traditional methods. Our work underscores the potential of neural networks for future studies of strongly correlated systems and opens new avenues for exploring the rich physics of the fractional quantum Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14795v1-abstract-full').style.display = 'none'; document.getElementById('2412.14795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12662">arXiv:2412.12662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12662">pdf</a>, <a href="https://arxiv.org/ps/2412.12662">ps</a>, <a href="https://arxiv.org/format/2412.12662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Light-induced thermal noise \textit{anomaly} governed by quantum metric </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Longjun Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+F">Fuming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yadong Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12662v1-abstract-short" style="display: inline;"> Traditionally, thermal noise in electric currents, arising from thermal agitation, is expected to increase with temperature $T$ and disappear as $T$ approaches zero. Contrary to this expectation, we discover that the resonant DC thermal noise (DTN) in photocurrents not only persists at $T=0$ but also exhibits a divergence proportional to $1/T$. This thermal noise \textit{anomaly} arises from the u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12662v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12662v1-abstract-full" style="display: none;"> Traditionally, thermal noise in electric currents, arising from thermal agitation, is expected to increase with temperature $T$ and disappear as $T$ approaches zero. Contrary to this expectation, we discover that the resonant DC thermal noise (DTN) in photocurrents not only persists at $T=0$ but also exhibits a divergence proportional to $1/T$. This thermal noise \textit{anomaly} arises from the unique electron-photon interactions near the Fermi surface, manifesting as the interplay between the inherent Fermi-surface property and the resonant optical selection rules of DTN, and thereby represents an unexplored noise regime. Notably, we reveal that this \textit{anomalous} DTN, especially in time-reversal-invariant systems, is intrinsically linked to the quantum metric. We illustrate this \textit{anomalous} DTN in massless Dirac materials, including two-dimensional graphene, the surfaces of three-dimensional topological insulators, and three-dimensional Weyl semimetals, where the quantum metric plays a pivotal role. Finally, we find that the total noise spectrum at low temperatures, which includes both the DC shot noise and the \textit{anomalous} DTN, will universally peak at $蠅_p=2|渭|$ with $蠅_p$ the frequency of light and $渭$ the chemical potential of the bulk crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12662v1-abstract-full').style.display = 'none'; document.getElementById('2412.12662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11233">arXiv:2412.11233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11233">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic properties of CoTeMoO$_6$ revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coles%2C+J">Jared Coles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xin Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">Hyowon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xinglong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jing-han Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stadler%2C+S">Shane Stadler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chmaissem%2C+O">Omar Chmaissem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+D+P">David P. Young</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenkranz%2C+S">Stephan Rosenkranz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiTusa%2C+J+F">John F. DiTusa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11233v1-abstract-short" style="display: inline;"> We have conducted a comprehensive investigation into the magnetic properties of the chiral multiferroic material CoTeMoO$_6$. In contrast with the previous claim of canted antiferromagnetic order with ferromagnetic components, our investigation reveals an antiferromagnetic ground state with compensated moments, providing an interesting platform for exploring exotic material properties. Through car&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11233v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11233v1-abstract-full" style="display: none;"> We have conducted a comprehensive investigation into the magnetic properties of the chiral multiferroic material CoTeMoO$_6$. In contrast with the previous claim of canted antiferromagnetic order with ferromagnetic components, our investigation reveals an antiferromagnetic ground state with compensated moments, providing an interesting platform for exploring exotic material properties. Through careful measurements of magnetization under a series of applied field, we demonstrate that there exist two sequential field-induced magnetic transitions in CoTeMoO$_6$, with one occurring at $H_{c1}$=460 Oe along the a-axis, and the other at $H_{c2}$=1.16 T with the field along the b-axis. The values of $H_{c1}$ and $H_{c2}$ exhibit strong angular dependence and diverge with different rates as the applied field is rotated 90 degrees within the ab plane. This reflects the distinct nature of these transitions, which is further supported by the different critical behavior of $H_{c1}$ and $H_{c2}$, characterized by the values of $纬$,in the function of $H_c=H_0\times(1-\frac{T}{T_c})^n$. Furthermore, we have demonstrated that there exist structural and magnetic twin domains in CoTeMoO$_6$ that strongly affect the experimental measurement of their macroscopic properties. Intriguingly, these twin domains can be related to the orthorhombicity/chirality of the crystal structure with the space group $P2_1 2_1 2$. We further explored the magnetic and structural domains with uniaxial pressure and polarized light microscopy. Our results suggest that CoTeMoO$_6$ could be used as a unique platform for investigating the intriguing physics involving intertwined degrees of freedom. The tunability of the underlying domain distribution and its strong anisotropy could also be useful for developing functional devices and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11233v1-abstract-full').style.display = 'none'; document.getElementById('2412.11233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 figures 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09657">arXiv:2412.09657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09657">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> A new succinct proof on the equivalence of the Nernst equation and the vanishing heat capacity at absolute zero temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S">Shanhe Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jincan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09657v1-abstract-short" style="display: inline;"> By starting from the Euler chain rule of three thermodynamic quantities, it is proved that both the Nernst equation and the vanishing heat capacity at absolute zero temperature are mutually deducible and equivalent. Simultaneously, it is pointed out that the conclusions of the relevant literature are worthy of discussion. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09657v1-abstract-full" style="display: none;"> By starting from the Euler chain rule of three thermodynamic quantities, it is proved that both the Nernst equation and the vanishing heat capacity at absolute zero temperature are mutually deducible and equivalent. Simultaneously, it is pointed out that the conclusions of the relevant literature are worthy of discussion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09657v1-abstract-full').style.display = 'none'; document.getElementById('2412.09657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06459">arXiv:2412.06459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06459">pdf</a>, <a href="https://arxiv.org/format/2412.06459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Commensurate to Incommensurate Transition of Three Dimensional Charge Density Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Q">Qiang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06459v1-abstract-short" style="display: inline;"> Charge density wave (CDW) is a widely concerned emergent phenomenon in condensed matter physics. To establish a systematic understanding of CDW, we develop a diagrammatic self-consistent-field approach for cubic Holstein model employing fluctuation exchange approximation, and explore the emergence and transition of three-dimensional CDWs. Commensurate CDW (c-CDW) locked at $(蟺,蟺,蟺)$ is favored nea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06459v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06459v1-abstract-full" style="display: none;"> Charge density wave (CDW) is a widely concerned emergent phenomenon in condensed matter physics. To establish a systematic understanding of CDW, we develop a diagrammatic self-consistent-field approach for cubic Holstein model employing fluctuation exchange approximation, and explore the emergence and transition of three-dimensional CDWs. Commensurate CDW (c-CDW) locked at $(蟺,蟺,蟺)$ is favored near half-filling, and the transition temperature is predicted around half of the nearest-neighbor hopping. Large hole doping leads to a suppression of CDW transition temperature and the emergence of incommensurate CDW (i-CDW), which is evidenced by a drifting of the ordering vector away from $(蟺,蟺,蟺)$ towards $(蟺,蟺,0)$. Phonon frequency significantly impacts the transition temperature and the phase boundary between c-CDW and i-CDW, and the optimal frequency for enlarging the CDW regime is also predicted near half of the nearest-neighbor hopping. These new theoretical results provide a systematic understanding of CDW and a fresh perspective on emergent phenomena dominated by electron-phonon interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06459v1-abstract-full').style.display = 'none'; document.getElementById('2412.06459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05944">arXiv:2412.05944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05944">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> ASb3Mn9O19 (A = K or Rb): New Mn-Based Two-Dimensional Magnetoplumbites with Geometric and Magnetic Frustration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calder%2C+S">Stuart Calder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Angelo%2C+G">Gina Angelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klivansky%2C+L">Liana Klivansky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xin Gui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05944v1-abstract-short" style="display: inline;"> Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration was rarely observed in magnetoplumbites. Herein, we report the discovery, synthesis and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05944v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05944v1-abstract-full" style="display: none;"> Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration was rarely observed in magnetoplumbites. Herein, we report the discovery, synthesis and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASb3Mn9O19 (A = K or Rb). The Mn3+ (S = 2) cations, further confirmed by DC magnetic susceptibility and X-ray photoelectron spectroscopy, construct three geometrically frustrated sublattices, including Kagome, triangular and puckered honeycomb lattices. Magnetic properties measurements revealed strong antiferromagnetic spin-spin coupling as well as multiple low-temperature magnetic features. Heat capacity data did not show any prominent lambda-anomaly, suggesting minimal associated magnetic entropy. Moreover, neutron powder diffraction implied the absence of long-range magnetic ordering in KSb3Mn9O19 down to 3 K. However, several magnetic peaks were observed in RbSb3Mn9O19 at 3 K, corresponding to an incommensurate magnetic structure. Interestingly, strong diffuse scattering was seen in the neutron powder diffraction patterns of both compounds at low angles, and was analyzed by reverse Monte Carlo refinements, indicating short-range spin ordering related to frustrated magnetism as well as two-dimensional magnetic correlations in ASb3Mn9O19 (A = K or Rb). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05944v1-abstract-full').style.display = 'none'; document.getElementById('2412.05944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 14 figures, 8 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04872">arXiv:2412.04872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04872">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching of room temperature two-dimensional van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Heshuang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+J">Jinyu Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+D">Dongdong Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gou%2C+J">Jinlong Gou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Junxin Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kun Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Z">Zhiyan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04872v1-abstract-short" style="display: inline;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switchi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04872v1-abstract-full" style="display: none;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switching of van der Waals ferromagnet Fe3GaTe2 through the orbital torque generated by the orbital Hall material, Titanium (Ti). The switching current density is estimated to be around 1.6 x 10^6 A/cm^2, comparable to that achieved in Fe3GaTe2 using spin-orbit torque from spin Hall materials. The efficient magnetization switching arises from the combined effects of the large orbital Hall conductivity of Ti and the strong spin-orbit correlation of the Fe3GaTe2, as confirmed through theoretical calculations. Our findings advance the understanding of orbital torque switching and pave the way for exploring material-based orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'none'; document.getElementById('2412.04872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages,4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03830">arXiv:2412.03830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03830">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Confined Magnetization at the Sublattice-Matched Ruthenium Oxide Heterointerface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yiyan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+T">Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">He Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+C">Chuanrui Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Q">Qiao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+T">Tielong Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Songhee Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+H">Haitao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+T">Ting Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qianying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+D">Dongke Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+T">Tao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+E">Er-Jia Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03830v1-abstract-short" style="display: inline;"> Creating a heterostructure by combining two magnetically and structurally distinct ruthenium oxides is a crucial approach for investigating their emergent magnetic states and interactions. Previously, research has predominantly concentrated on the intrinsic properties of the ferromagnet SrRuO3 and recently discovered altermagnet RuO2 solely. Here, we engineered an ultrasharp sublattice-matched het&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03830v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03830v1-abstract-full" style="display: none;"> Creating a heterostructure by combining two magnetically and structurally distinct ruthenium oxides is a crucial approach for investigating their emergent magnetic states and interactions. Previously, research has predominantly concentrated on the intrinsic properties of the ferromagnet SrRuO3 and recently discovered altermagnet RuO2 solely. Here, we engineered an ultrasharp sublattice-matched heterointerface using pseudo-cubic SrRuO3 and rutile RuO2, conducting an in-depth analysis of their spin interactions. Structurally, to accommodate the lattice symmetry mismatch, the inverted RuO2 layer undergoes an in-plane rotation of 18 degrees during epitaxial growth on SrRuO3 layer, resulting in an interesting and rotational interface with perfect crystallinity and negligible chemical intermixing. Performance-wise, the interfacial layer of 6 nm in RuO2 adjacent to SrRuO3 exhibits a nonzero magnetic moment, contributing to an enhanced anomalous Hall effect (AHE) at low temperatures. Furthermore, our observations indicate that, in contrast to SrRuO3 single layers, the AHE of [(RuO2)15/(SrRuO3)n] heterostructures shows nonlinear behavior and reaches its maximum when the SrRuO3 thickness reaches tens of nm. These results suggest that the interfacial magnetic interaction surpasses that of all-perovskite oxides (~5-unit cells). This study underscores the significance and potential applications of magnetic interactions based on the crystallographic asymmetric interfaces in the design of spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03830v1-abstract-full').style.display = 'none'; document.getElementById('2412.03830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages/5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19938">arXiv:2411.19938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19938">pdf</a>, <a href="https://arxiv.org/format/2411.19938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing quantum critical phase from neural network wavefunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haoxiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Weiluo Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19938v1-abstract-short" style="display: inline;"> One-dimensional (1D) systems and models provide a versatile platform for emergent phenomena induced by strong electron correlation. In this work, we extend the newly developed real space neural network quantum Monte Carlo methods to study the quantum phase transition of electronic and magnetic properties. Hydrogen chains of different interatomic distances are explored systematically with both open&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19938v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19938v1-abstract-full" style="display: none;"> One-dimensional (1D) systems and models provide a versatile platform for emergent phenomena induced by strong electron correlation. In this work, we extend the newly developed real space neural network quantum Monte Carlo methods to study the quantum phase transition of electronic and magnetic properties. Hydrogen chains of different interatomic distances are explored systematically with both open and periodic boundary conditions, and fully correlated ground state many-body wavefunction is achieved via unsupervised training of neural networks. We demonstrate for the first time that neural networks are capable of capturing the quantum critical behavior of Tomonaga- Luttinger liquid (TLL), which is known to dominate 1D quantum systems. Moreover, we reveal the breakdown of TLL phase and the emergence of a Fermi liquid behavior, evidenced by abrupt changes in the spin structure and the momentum distribution. Such behavior is absent in commonly studied 1D lattice models and is likely due to the involvement of high-energy orbitals of hydrogen atoms. Our work highlights the powerfulness of neural networks for representing complex quantum phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19938v1-abstract-full').style.display = 'none'; document.getElementById('2411.19938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14746">arXiv:2411.14746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14746">pdf</a>, <a href="https://arxiv.org/format/2411.14746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the dynamic charge susceptibility near the charge density wave transition in ErTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chaudhuri%2C+D">Dipanjan Chaudhuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kengle%2C+C+S">Caitlin S. Kengle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoveyda-Marashi%2C+F">Farzaneh Hoveyda-Marashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernal-Choban%2C+C">Camille Bernal-Choban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Vries%2C+N">Niels de Vries</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T">Tai-Chang Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fradkin%2C+E">Eduardo Fradkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14746v2-abstract-short" style="display: inline;"> A charge density wave (CDW) is a phase of matter characterized by a periodic modulation of the valence electron density accompanied by a distortion of the lattice structure. The microscopic details of CDW formation are closely tied to the dynamic charge susceptibility, $蠂(q,蠅)$, which describes the behavior of electronic collective modes. Despite decades of extensive study, the behavior of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14746v2-abstract-full').style.display = 'inline'; document.getElementById('2411.14746v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14746v2-abstract-full" style="display: none;"> A charge density wave (CDW) is a phase of matter characterized by a periodic modulation of the valence electron density accompanied by a distortion of the lattice structure. The microscopic details of CDW formation are closely tied to the dynamic charge susceptibility, $蠂(q,蠅)$, which describes the behavior of electronic collective modes. Despite decades of extensive study, the behavior of $蠂(q,蠅)$ in the vicinity of a CDW transition has never been measured with high energy resolution ($\sim$meV). Here, we investigate the canonical CDW transition in ErTe$_3$ using momentum-resolved electron energy loss spectroscopy (M-EELS), a technique uniquely sensitive to valence band charge excitations. Unlike phonons in these materials, which undergo conventional softening due to the Kohn anomaly at the CDW wavevector, the electronic excitations display purely relaxational dynamics that are well described by a diffusive model. The diffusivity peaks around 250 K, just below the critical temperature. Additionally, we report, for the first time, a divergence in the real part of $蠂(q,蠅)$ in the static limit ($蠅\rightarrow 0$), a phenomenon predicted to characterize CDWs since the 1970s. These results highlight the importance of energy- and momentum-resolved measurements of electronic susceptibility and demonstrate the power of M-EELS as a versatile probe of charge dynamics in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14746v2-abstract-full').style.display = 'none'; document.getElementById('2411.14746v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14140">arXiv:2411.14140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14140">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Angular dependence of large negative magnetoresistance in a field-induced Weyl semimetal candidate HoAuSn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yue Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+F">Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+Y">Yong-Chang Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wisniewski%2C+P">Piotr Wisniewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaczorowski%2C+D">Dariusz Kaczorowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+X">Xue-Kui Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wen-Hong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14140v1-abstract-short" style="display: inline;"> The angular dependence of magnetoresistance (MR) in antiferromagnetic half-Heusler HoAuSn single crystals have been systematically studied. Negative MR, as large as 99%, is observed at 9 T, is not restricted to the specific configuration of applied magnetics fields and current, and can persist up to 20 K, much higher than the Neel temperature (TN 1.9 K). Experiments and first-principles calculatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14140v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14140v1-abstract-full" style="display: none;"> The angular dependence of magnetoresistance (MR) in antiferromagnetic half-Heusler HoAuSn single crystals have been systematically studied. Negative MR, as large as 99%, is observed at 9 T, is not restricted to the specific configuration of applied magnetics fields and current, and can persist up to 20 K, much higher than the Neel temperature (TN 1.9 K). Experiments and first-principles calculations suggest that the observed large negative MR is derived from a magnetic field that reconstructs the band structure and induces a Weyl point, which changes the carrier concentration. Taking into consideration that large negative MR has so far been rarely reported, especially in antiferromagnetic materials, it is anticipated that the present work not only offers a guideline for searching materials with large negative MR but also helps to further realize other exotic topological electronic states in a large class of antiferromagnetic half-Heusler compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14140v1-abstract-full').style.display = 'none'; document.getElementById('2411.14140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11164">arXiv:2411.11164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11164">pdf</a>, <a href="https://arxiv.org/format/2411.11164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Conformally invariant charge fluctuations in a strange metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoveyda-Marashi%2C+F">Farzaneh Hoveyda-Marashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bettler%2C+S+L">Simon L. Bettler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaudhuri%2C+D">Dipanjan Chaudhuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kengle%2C+C+S">Caitlin S. Kengle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J+A">John A. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruidan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T">Tai-Chang Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A+M">Alexei M. Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faulkner%2C+T">Thomas Faulkner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+P+W">Philip W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11164v1-abstract-short" style="display: inline;"> The strange metal is a peculiar phase of matter in which the electron scattering rate, $蟿^{-1} \sim k_B T/\hbar$, which determines the electrical resistance, is universal across a wide family of materials and determined only by fundamental constants. In 1989, theorists hypothesized that this universality would manifest as scale-invariant behavior in the dynamic charge susceptibility, $蠂&#39;&#39;(q,蠅)$. H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11164v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11164v1-abstract-full" style="display: none;"> The strange metal is a peculiar phase of matter in which the electron scattering rate, $蟿^{-1} \sim k_B T/\hbar$, which determines the electrical resistance, is universal across a wide family of materials and determined only by fundamental constants. In 1989, theorists hypothesized that this universality would manifest as scale-invariant behavior in the dynamic charge susceptibility, $蠂&#39;&#39;(q,蠅)$. Here, we present momentum-resolved inelastic electron scattering measurements of the strange metal Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ showing that the susceptibility has the scale-invariant form $蠂&#39;&#39;(q,蠅) = T^{-谓} f(蠅/T)$, with exponent $谓= 0.93$. We find the response is consistent with conformal invariance, meaning the dynamics may be thought of as occurring on a circle of radius $1/T$ in imaginary time, characterized by conformal dimension $螖= 0.05$. Our study indicates that the strange metal is a universal phenomenon whose properties are not determined by microscopic properties of a particular material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11164v1-abstract-full').style.display = 'none'; document.getElementById('2411.11164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures + supplementary data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08464">arXiv:2411.08464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08464">pdf</a>, <a href="https://arxiv.org/format/2411.08464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Crystal Structure Generation Based On Material Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">JiaHui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">HongRui Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">ChunYan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08464v1-abstract-short" style="display: inline;"> The discovery of new materials is very important to the field of materials science. When researchers explore new materials, they often have expected performance requirements for their crystal structure. In recent years, data-driven methods have made great progress in the direction plane of crystal structure generation, but there is still a lack of methods that can effectively map material properti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08464v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08464v1-abstract-full" style="display: none;"> The discovery of new materials is very important to the field of materials science. When researchers explore new materials, they often have expected performance requirements for their crystal structure. In recent years, data-driven methods have made great progress in the direction plane of crystal structure generation, but there is still a lack of methods that can effectively map material properties to crystal structure. In this paper, we propose a Crystal DiT model to generate the crystal structure from the expected material properties by embedding the material properties and combining the symmetry information predicted by the large language model. Experimental verification shows that our proposed method has good performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08464v1-abstract-full').style.display = 'none'; document.getElementById('2411.08464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07195">arXiv:2411.07195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07195">pdf</a>, <a href="https://arxiv.org/format/2411.07195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> An Explicit Categorical Construction of Instanton Density in Lattice Yang-Mills Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07195v1-abstract-short" style="display: inline;"> Since the inception of lattice QCD, a natural definition for the Yang-Mills instanton on lattice has been long sought for. In a recent work, one of authors showed the natural solution has to be organized in terms of bundle gerbes in higher homotopy theory / higher category theory, and introduced the principles for such a categorical construction. To pave the way towards actual numerical implementa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07195v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07195v1-abstract-full" style="display: none;"> Since the inception of lattice QCD, a natural definition for the Yang-Mills instanton on lattice has been long sought for. In a recent work, one of authors showed the natural solution has to be organized in terms of bundle gerbes in higher homotopy theory / higher category theory, and introduced the principles for such a categorical construction. To pave the way towards actual numerical implementation in the near future, nonetheless, an explicit construction is necessary. In this paper we provide such an explicit construction for $SU(2)$ gauge theory, with technical aspects inspired by L眉scher&#39;s 1982 geometrical construction. We will see how the latter is in a suitable sense a saddle point approximation to the full categorical construction. The generalization to $SU(N)$ will be discussed. The construction also allows for a natural definition of lattice Chern-Simons-Yang-Mills theory in three spacetime dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07195v1-abstract-full').style.display = 'none'; document.getElementById('2411.07195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03420">arXiv:2411.03420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03420">pdf</a>, <a href="https://arxiv.org/format/2411.03420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Boosting thermalization of classical and quantum many-body systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jin-Fu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rai%2C+K+S">Kshiti Sneh Rai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Emonts%2C+P">Patrick Emonts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farina%2C+D">Donato Farina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C5%82odzie%C5%84%2C+M">Marcin P艂odzie艅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grzybowski%2C+P">Przemyslaw Grzybowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tura%2C+J">Jordi Tura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03420v1-abstract-short" style="display: inline;"> Understanding and optimizing the relaxation dynamics of many-body systems is essential for both foundational studies in quantum thermodynamics, as well as for applications including quantum simulation and quantum computing. Efficient thermal state preparation of a given many-body Hamiltonian depends on the spectrum of Lindbladian defined via jump operators. In this work we provide a systematic fra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03420v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03420v1-abstract-full" style="display: none;"> Understanding and optimizing the relaxation dynamics of many-body systems is essential for both foundational studies in quantum thermodynamics, as well as for applications including quantum simulation and quantum computing. Efficient thermal state preparation of a given many-body Hamiltonian depends on the spectrum of Lindbladian defined via jump operators. In this work we provide a systematic framework allowing construction of an optimal Lindbladian resulting in fast thermal state preparation for a considered Hamiltonian. Importantly, the optimal Lindbladian respects the symmetries of the target equilibrium state. We demonstrate the potential of our framework and optimization with the kinetic Ising model and the Lipkin-Meshkov-Glick model, showcasing efficient thermal state preparation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03420v1-abstract-full').style.display = 'none'; document.getElementById('2411.03420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02389">arXiv:2411.02389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02389">pdf</a>, <a href="https://arxiv.org/format/2411.02389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Multidimensional coherent spectroscopy of correlated lattice systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+P">Philipp Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02389v1-abstract-short" style="display: inline;"> Multidimensional coherent spectroscopy (MDCS) has been established in quantum chemistry as a powerful tool for studying the nonlinear response and nonequilibrium dynamics of molecular systems. More recently, the technique has also been applied to correlated electron materials, where the interplay of localized and itinerant states makes the interpretation of the spectra more challenging. Here we us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02389v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02389v1-abstract-full" style="display: none;"> Multidimensional coherent spectroscopy (MDCS) has been established in quantum chemistry as a powerful tool for studying the nonlinear response and nonequilibrium dynamics of molecular systems. More recently, the technique has also been applied to correlated electron materials, where the interplay of localized and itinerant states makes the interpretation of the spectra more challenging. Here we use the Keldysh contour representation of effective models and nonequilibrium dynamical mean field theory to systematically study the MDCS signals of prototypical correlated lattice systems. By analyzing the current induced by sequences of ultrashort laser pulses we demonstrate the usefulness of MDCS as a diagnostic tool for excitation pathways and coherent processes in correlated solids. We also show that this technique allows to extract detailed information on the nature and evolution of photo-excited nonequilibrium states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02389v1-abstract-full').style.display = 'none'; document.getElementById('2411.02389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00434">arXiv:2411.00434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00434">pdf</a>, <a href="https://arxiv.org/format/2411.00434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum linear algebra for disordered electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jielun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+G+K">Garnet Kin-Lic Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00434v1-abstract-short" style="display: inline;"> We describe how to use quantum linear algebra to simulate a physically realistic model of disordered non-interacting electrons on exponentially many lattice sites. The physics of disordered electrons outside of one dimension challenges classical computation due to the critical nature of the Anderson localization transition or exponential localization lengths, while the atypical distribution of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00434v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00434v1-abstract-full" style="display: none;"> We describe how to use quantum linear algebra to simulate a physically realistic model of disordered non-interacting electrons on exponentially many lattice sites. The physics of disordered electrons outside of one dimension challenges classical computation due to the critical nature of the Anderson localization transition or exponential localization lengths, while the atypical distribution of the local density of states limits the power of disorder averaged approaches. We overcome this by simulating an exponentially large disorder instance using a block-encoded hopping matrix of physical form where disorder is introduced by pseudorandom functions. Key physical quantities, including the reduced density matrix, Green&#39;s function, and local density of states, as well as bulk-averaged observables such as the linear conductivity, can then be computed using quantum singular value transformation, quantum amplitude estimation, and trace estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00434v1-abstract-full').style.display = 'none'; document.getElementById('2411.00434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22156">arXiv:2410.22156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22156">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological surface state dominated nonlinear transverse response and microwave rectification at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+B">Bin Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+Y">Yaqi Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">Tieyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+X">Xianfa Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cong%2C+L">Longqing Cong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22156v1-abstract-short" style="display: inline;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22156v1-abstract-full" style="display: none;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk inversion symmetry, the coexistence of bulk and surface conducting channels often leads to a suppressed NLHE and complex thickness-dependent behavior. Here, we report the observation of room-temperature nonlinear transverse response in 3D topological insulator Bi2Te3 thin films, whose electrical transport properties are dominated by topological surface state (TSS). By varying the thickness of Bi2Te3 epitaxial films from 7 nm to 50 nm, we found that the nonlinear transverse response increases with thickness from 7 nm to 25 nm and remains almost constant above 25 nm. This is consistent with the thickness-dependent basic transport properties, including conductance, carrier density, and mobility, indicating a pure and robust TSS-dominated linear and nonlinear transport in thick (&gt;25 nm) Bi2Te3 films. The weaker nonlinear transverse response in Bi2Te3 below 25 nm was attributed to Te deficiency and poorer crystallinity. By utilizing the TSS-dominated electrical second harmonic generation, we successfully achieved the microwave rectification from 0.01 to 16.6 GHz in 30 nm and bulk Bi2Te3. Our work demonstrated the room temperature nonlinear transverse response in a paradigm topological insulator, addressing the tunability of the topological second harmonic response by thickness engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'none'; document.getElementById('2410.22156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22106">arXiv:2410.22106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22106">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low-Dimensional Solid-State Single-Photon Emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jinli Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+C">Chaohan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrie%2C+B">Ben Lawrie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Y">Yongzhou Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guha%2C+S">Saikat Guha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eichenfield%2C+M">Matt Eichenfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Huan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xiaodong Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22106v1-abstract-short" style="display: inline;"> Solid-state single-photon emitters (SPEs) are attracting significant attention as fundamental components in quantum computing, communication, and sensing. Low-dimensional materials-based SPEs (LD-SPEs) have drawn particular interest due to their high photon extraction efficiency, ease of integration with photonic circuits, and strong coupling with external fields. The accessible surfaces of LD mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22106v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22106v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22106v1-abstract-full" style="display: none;"> Solid-state single-photon emitters (SPEs) are attracting significant attention as fundamental components in quantum computing, communication, and sensing. Low-dimensional materials-based SPEs (LD-SPEs) have drawn particular interest due to their high photon extraction efficiency, ease of integration with photonic circuits, and strong coupling with external fields. The accessible surfaces of LD materials allow for deterministic control over quantum light emission, while enhanced quantum confinement and light-matter interactions improve photon emissive properties. This review examines recent progress in LDSPEs across four key materials: zero-dimensional (0D) semiconductor quantum dots, one-dimensional (1D) nanotubes, two-dimensional (2D) materials, including hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDCs). We explore their structural and photophysical properties, along with techniques such as spectral tuning and cavity coupling that enhance SPE performance. Finally, we address future challenges and suggest strategies for optimizing LD-SPEs for practical quantum applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22106v1-abstract-full').style.display = 'none'; document.getElementById('2410.22106v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17354">arXiv:2410.17354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17354">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Telecom-wavelength Single-photon Emitters in Multi-layer InSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Huan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hus%2C+S">Saban Hus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jinli Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xiaodong Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrie%2C+B">Ben Lawrie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesse%2C+S">Stephen Jesse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A">An-Ping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+L">Liangbo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Htoon%2C+H">Han Htoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17354v1-abstract-short" style="display: inline;"> The development of robust and efficient single photon emitters (SPEs) at telecom wavelengths is critical for advancements in quantum information science. Two-dimensional (2D) materials have recently emerged as promising sources for SPEs, owing to their high photon extraction efficiency, facile coupling to external fields, and seamless integration into photonic circuits. In this study, we demonstra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17354v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17354v1-abstract-full" style="display: none;"> The development of robust and efficient single photon emitters (SPEs) at telecom wavelengths is critical for advancements in quantum information science. Two-dimensional (2D) materials have recently emerged as promising sources for SPEs, owing to their high photon extraction efficiency, facile coupling to external fields, and seamless integration into photonic circuits. In this study, we demonstrate the creation of SPEs emitting in the 1000 to 1550 nm near-infrared range by coupling 2D indium selenide (InSe) with strain-inducing nanopillar arrays. The emission wavelength exhibits a strong dependence on the number of layers. Hanbury Brown and Twiss experiments conducted at 10 K reveal clear photon antibunching, confirming the single-photon nature of the emissions. Density-functional-theory calculations and scanning-tunneling-microscopy analyses provide insights into the electronic structures and defect states, elucidating the origins of the SPEs. Our findings highlight the potential of multilayer 2D metal monochalcogenides for creating SPEs across a broad spectral range, paving the way for their integration into quantum communication technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17354v1-abstract-full').style.display = 'none'; document.getElementById('2410.17354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11649">arXiv:2410.11649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11649">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unraveling structural, electronic, and magnetic ambiguities in Pb1-未CrO3 with an insulating charge-transfer band structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+G">Guozhu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+H">Han Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santos%2C+A+M+D">Antonio M. Dos Santos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yusheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanmin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11649v1-abstract-short" style="display: inline;"> As a recently-identified Mott system, PbCrO3 remains largely unexplored, especially for its band structure, leading to many contentious issues on its structural, electronic, and magnetic properties. Here we present a comprehensive study of two different Pb1-未CrO3 (未 = 0 and 0.15) samples with involving atomic deficiency prepared under pressure. By means of the state-of-the-art diffraction techniqu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11649v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11649v1-abstract-full" style="display: none;"> As a recently-identified Mott system, PbCrO3 remains largely unexplored, especially for its band structure, leading to many contentious issues on its structural, electronic, and magnetic properties. Here we present a comprehensive study of two different Pb1-未CrO3 (未 = 0 and 0.15) samples with involving atomic deficiency prepared under pressure. By means of the state-of-the-art diffraction techniques, crystal structure of PbCrO3 is definitively determined to adopt the pristine Pm-3m symmetry, rather than other previously misassigned structures of M2-Pm-3m and Pmnm. The two materials exhibit a similar charge-transfer-type insulating band structure, and the charge-transfer effect splits both Cr2p and Pb4f orbitals, rationalizing doublet splitting of the associated spectral lines. Nearly identical nominal cationic valence states of Cr4+ and Pb2+ are identified for this oxide system, hence calling into question the validity of recently-proposed charge disproportionation mechanisms. Besides, Pb0.85CrO3 exhibits an anomalously higher N茅el temperature of ~240 K than that of PbCrO3 (i.e., ~200 K), likely due to the deficiency-induced enhancements of Cr: 3d-O:2p orbital overlap and magnetic exchange. These findings provide many solid evidences to look into the fundamental properties of this important material system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11649v1-abstract-full').style.display = 'none'; document.getElementById('2410.11649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11034">arXiv:2410.11034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11034">pdf</a>, <a href="https://arxiv.org/format/2410.11034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice Chern-Simons-Maxwell Theory and its Chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Ze-An Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11034v1-abstract-short" style="display: inline;"> We define and solve the $\text{U(1)}$ Chern-Simons-Maxwell theory on spacetime lattice, with an emphasis on the chirality of the theory. Realizing Chern-Simons theory on lattice has been a problem of interest for decades, and over the years it has gradually become clear that there are two key points: 1) Some non-topological term, such as a Maxwell term, is necessary -- this is true even in the con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11034v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11034v1-abstract-full" style="display: none;"> We define and solve the $\text{U(1)}$ Chern-Simons-Maxwell theory on spacetime lattice, with an emphasis on the chirality of the theory. Realizing Chern-Simons theory on lattice has been a problem of interest for decades, and over the years it has gradually become clear that there are two key points: 1) Some non-topological term, such as a Maxwell term, is necessary -- this is true even in the continuum, but more manifestly on the lattice; 2) the $\text{U(1)}$ gauge field should be implemented in the Villainized form to retain its topological properties. Putting the two ideas together seriously, we show all interesting properties of a chiral Chern-Simons theory are reproduced in an explicitly regularized manner on the lattice. These include the bosonic and fermionic level quantization, the bulk and chiral edge spectrum, the Wilson loop flux attachment (with point-split framing or geometric framing depending on the Maxwell coupling), the Wilson loop spin, the ground state degeneracy, and, most non-trivially, the chiral gravitational anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11034v1-abstract-full').style.display = 'none'; document.getElementById('2410.11034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10910">arXiv:2410.10910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10910">pdf</a>, <a href="https://arxiv.org/format/2410.10910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> KPROJ: A Program for Unfolding Electronic and Phononic Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mingxing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10910v1-abstract-short" style="display: inline;"> We introduce a program named KPROJ that unfolds the electronic and phononic band structure of materials modeled by supercells. The program is based on the $\textit{k}$-projection method, which projects the wavefunction of the supercell onto the ${\textbf{k}}$-points in the Brillouin zone of the artificial primitive cell. It allows for obtaining an effective &#34;local&#34; band structure by performing par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10910v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10910v1-abstract-full" style="display: none;"> We introduce a program named KPROJ that unfolds the electronic and phononic band structure of materials modeled by supercells. The program is based on the $\textit{k}$-projection method, which projects the wavefunction of the supercell onto the ${\textbf{k}}$-points in the Brillouin zone of the artificial primitive cell. It allows for obtaining an effective &#34;local&#34; band structure by performing partial integration over the wavefunctions, e.g., the unfolded band structure with layer-projection for interfaces and the weighted band structure in the vacuum for slabs. The layer projection is accelerated by a scheme that combines the Fast Fourier Transform (FFT) and the inverse FFT algorithms. It is now interfaced with a few first-principles codes based on plane waves such as VASP, Quantum Espresso, and ABINIT. In addition, it also has interfaces with ABACUS, a first-principles simulation package based on numerical atomic basis sets, and PHONOPY, a program for phonon calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10910v1-abstract-full').style.display = 'none'; document.getElementById('2410.10910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7.5 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09793">arXiv:2410.09793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09793">pdf</a>, <a href="https://arxiv.org/format/2410.09793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Energy Bands of Incommensurate Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xin-Yu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jin-Rong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Ying-Hai Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jin-Hua Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09793v1-abstract-short" style="display: inline;"> Energy band theory is a fundamental cornerstone of condensed matter physics. According to conventional wisdom, discrete translational symmetry is mandatory for defining energy bands. Here, we illustrate that, in fact, the concept of energy band can be generalized to incommensurate systems lacking such symmetry, thus transcending the traditional paradigm of energy band. The validity of our theory i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09793v1-abstract-full" style="display: none;"> Energy band theory is a fundamental cornerstone of condensed matter physics. According to conventional wisdom, discrete translational symmetry is mandatory for defining energy bands. Here, we illustrate that, in fact, the concept of energy band can be generalized to incommensurate systems lacking such symmetry, thus transcending the traditional paradigm of energy band. The validity of our theory is verified by extensive numerical calculations in the celebrated Aubry-Andr茅-Harper model and a two-dimensional incommensurate model of graphene. Building upon the proposed concept of incommensurate energy bands, we further develop a theory of angle-resolved photoemission spectroscopy (ARPES) for incommensurate systems, providing a clear physical picture for the incommensurate ARPES spectra. Our work establishes a comprehensive energy band theory for incommensurate systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09793v1-abstract-full').style.display = 'none'; document.getElementById('2410.09793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07861">arXiv:2410.07861</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07861">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Signature of Superconductivity in Pressurized Trilayer-nickelate Pr$_4$Ni$_3$O$_{10-未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hengyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jingyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Junfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Z">Zhengyang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+P">Peiyue Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chaoxin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07861v1-abstract-short" style="display: inline;"> The discovery of high-temperature superconductivity in La$_3$Ni$_2$O$_7$ and La$_4$Ni$_3$O$_{10}$ under pressure has drawn extensive attention. Herein, we report systematic investigations on the evolutions of structure, magnetism, and electrical resistance of Pr$_4$Ni$_3$O$_{10-未}$ polycrystalline samples under various pressures. Pr$_4$Ni$_3$O$_{10-未}$ exhibits density wave transitions on Ni and P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07861v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07861v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07861v1-abstract-full" style="display: none;"> The discovery of high-temperature superconductivity in La$_3$Ni$_2$O$_7$ and La$_4$Ni$_3$O$_{10}$ under pressure has drawn extensive attention. Herein, we report systematic investigations on the evolutions of structure, magnetism, and electrical resistance of Pr$_4$Ni$_3$O$_{10-未}$ polycrystalline samples under various pressures. Pr$_4$Ni$_3$O$_{10-未}$ exhibits density wave transitions on Ni and Pr sublattices at about 158 K and 4.3 K, respectively, and the density wave can be progressively suppressed by pressure. A structural transformation from the monoclinic $P2_1/a$ space group to the tetragonal $I4/mmm$ occurs at around 20 GPa. An apparent drop in resistance with evident magnetic field dependence is observed as pressure above 20 GPa, indicating the emergence of superconductivity in Pr$_4$Ni$_3$O$_{10-未}$ polycrystalline samples. The discovery of the signature of superconductivity in Pr$_4$Ni$_3$O$_{10-未}$ broadens the family of nickelate superconductors and provides a new platform for investigating the mechanisms of superconductivity in the Ruddlesden-Popper phases of nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07861v1-abstract-full').style.display = 'none'; document.getElementById('2410.07861v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages with 3 figures in the main article and supplementary files</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07141">arXiv:2410.07141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07141">pdf</a>, <a href="https://arxiv.org/format/2410.07141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Large-scale self-assembled nanophotonic scintillators for X-ray imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Martin-Monier%2C+L">Louis Martin-Monier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajovic%2C+S">Simo Pajovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abebe%2C+M+G">Muluneh G. Abebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Joshua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaidya%2C+S">Sachin Vaidya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+S">Seokhwan Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Seou Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kooi%2C+S+E">Steven E. Kooi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maes%2C+B">Bjorn Maes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soljacic%2C+M">Marin Soljacic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roques-Carmes%2C+C">Charles Roques-Carmes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07141v1-abstract-short" style="display: inline;"> Scintillators are essential for converting X-ray energy into visible light in imaging technologies. Their widespread application in imaging technologies has been enabled by scalable, high-quality, and affordable manufacturing methods. Nanophotonic scintillators, which feature nanostructures at the scale of their emission wavelength, provide a promising approach to enhance emission properties like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07141v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07141v1-abstract-full" style="display: none;"> Scintillators are essential for converting X-ray energy into visible light in imaging technologies. Their widespread application in imaging technologies has been enabled by scalable, high-quality, and affordable manufacturing methods. Nanophotonic scintillators, which feature nanostructures at the scale of their emission wavelength, provide a promising approach to enhance emission properties like light yield, decay time, and directionality. However, scalable fabrication of such nanostructured scintillators has been a significant challenge, impeding their widespread adoption. Here, we present a scalable fabrication method for large-area nanophotonic scintillators based on the self-assembly of chalcogenide glass photonic crystals. This technique enables the production of nanophotonic scintillators over wafer-scale areas, achieving a six-fold enhancement in light yield compared to unpatterned scintillators. We demonstrate this approach using a conventional X-ray scintillator material, cerium-doped yttrium aluminum garnet (YAG:Ce). By analyzing the influence of surface nanofabrication disorder, we establish its effect on imaging performance and provide a route towards large-scale scintillation enhancements without decrease in spatial resolution. Finally, we demonstrate the practical applicability of our nanophotonic scintillators through X-ray imaging of biological and inorganic specimens. Our results indicate that this scalable fabrication technique could enable the industrial implementation of a new generation of nanophotonic-enhanced scintillators, with significant implications for advancements in medical imaging, security screening, and nondestructive testing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07141v1-abstract-full').style.display = 'none'; document.getElementById('2410.07141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05765">arXiv:2410.05765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05765">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnon confinement in a nanomagnonic waveguide by a magnetic Moir茅 superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jilei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madami%2C+M">Marco Madami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gubbiotti%2C+G">Gianluca Gubbiotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Haiming Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05765v1-abstract-short" style="display: inline;"> The study of moir茅 superlattices has revealed intriguing phenomena in electronic systems, including unconventional superconductivity and ferromagnetism observed in magic-angle bilayer graphene. This approach has recently been adapted to the field of magnonics. In this Letter, we investigate the confinement of spin waves in a nanomagnonic waveguide integrated on top of a magnetic moir茅 superlattice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05765v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05765v1-abstract-full" style="display: none;"> The study of moir茅 superlattices has revealed intriguing phenomena in electronic systems, including unconventional superconductivity and ferromagnetism observed in magic-angle bilayer graphene. This approach has recently been adapted to the field of magnonics. In this Letter, we investigate the confinement of spin waves in a nanomagnonic waveguide integrated on top of a magnetic moir茅 superlattice. Our numerical analysis reveals a magnonic flat-band at the centre of the Brillouin zone, created by a 3.5 degrees twist in the moir茅 superlattice. The flat-band, characterized by a high magnon density of states and a zero group velocity, allows for the confinement of magnons within the AB stacking region. The flat-band results from the mode anticrossing of several different magnon bands, covering a wavevector range of nearly 40 rad/渭m and a 166 nm wide spatial distribution of the magnon trapping in the waveguide. Our results pave the way for nanomagnonic devices and circuits based on spin-wave trapping in magnon waveguides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05765v1-abstract-full').style.display = 'none'; document.getElementById('2410.05765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05485">arXiv:2410.05485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05485">pdf</a>, <a href="https://arxiv.org/format/2410.05485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Slow Equilibrium Relaxation in a Chiral Magnet Mediated by Topological Defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenhao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+H">Haonan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">Raymond Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steadman%2C+P">Paul Steadman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">Gerrit van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05485v2-abstract-short" style="display: inline;"> We performed a pump-probe experiment on the chiral magnet Cu$_2$OSeO$_3$ to study the relaxation dynamics of its non-collinear magnetic orders, employing a millisecond magnetic field pulse as the pump and resonant elastic x-ray scattering as the probe. Our findings reveal that the system requires $\sim$0.2 s to stabilize after the perturbation applied to both the conical and skyrmion lattice phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05485v2-abstract-full').style.display = 'inline'; document.getElementById('2410.05485v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05485v2-abstract-full" style="display: none;"> We performed a pump-probe experiment on the chiral magnet Cu$_2$OSeO$_3$ to study the relaxation dynamics of its non-collinear magnetic orders, employing a millisecond magnetic field pulse as the pump and resonant elastic x-ray scattering as the probe. Our findings reveal that the system requires $\sim$0.2 s to stabilize after the perturbation applied to both the conical and skyrmion lattice phase; significantly slower than the typical nanosecond timescale observed in micromagnetics. This prolonged relaxation is attributed to the formation and slow dissipation of local topological defects, such as emergent monopoles. By unveiling the experimental lifetime of these emergent singularities in a non-collinear magnetic system, our study highlights a universal relaxation mechanism in solitonic textures within the slow dynamics regime, offering new insights into topological physics and advanced information storage solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05485v2-abstract-full').style.display = 'none'; document.getElementById('2410.05485v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03220">arXiv:2410.03220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03220">pdf</a>, <a href="https://arxiv.org/format/2410.03220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134113">10.1103/PhysRevB.110.134113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noncollinear ferrielectricity and hydrogen-induced ferromagnetic polar half-metallicity in MnO$_3$Cl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xinyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shan-Shan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shuai Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03220v1-abstract-short" style="display: inline;"> Collinear dipole orders such as ferroelectricity and antiferroelectricity have developed rapidly in last decades. While, the noncollinear dipole orders are rarely touched in solids. Noncollinear dipole orders can provide a route to realize ferrielectricity. Based on first-principles calculations, an inorganic molecular crystal MnO$_3$Cl has been demonstrated to own intrinsic noncollinear ferrielec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03220v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03220v1-abstract-full" style="display: none;"> Collinear dipole orders such as ferroelectricity and antiferroelectricity have developed rapidly in last decades. While, the noncollinear dipole orders are rarely touched in solids. Noncollinear dipole orders can provide a route to realize ferrielectricity. Based on first-principles calculations, an inorganic molecular crystal MnO$_3$Cl has been demonstrated to own intrinsic noncollinear ferrielectricity, which originates from the stereo orientations of polar molecules. The large negative piezoelectricity effect ($d_{33}\sim-27$ pC/N) is also predicted. A strong light absorption and moderate optical anisotropy are found for this molecular crystal in the ultraviolet light window. Additionally, by electron doping via hydrogen intercalation, a ferromagnetic polar half-metals can be obtained. Our study here provide a material platform to explore the intriguing physics of noncollinear ferrielectricity and potential applications in devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03220v1-abstract-full').style.display = 'none'; document.getElementById('2410.03220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 134113 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03116">arXiv:2410.03116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03116">pdf</a>, <a href="https://arxiv.org/format/2410.03116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Predicting macroscopic properties of amorphous monolayer carbon via pair correlation function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M">Mouyang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chenyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+C">Chenxin Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuxiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03116v1-abstract-short" style="display: inline;"> Establishing the structure-property relationship in amorphous materials has been a long-term grand challenge due to the lack of a unified description of the degree of disorder. In this work, we develop SPRamNet, a neural network based machine-learning pipeline that effectively predicts structure-property relationship of amorphous material via global descriptors. Applying SPRamNet on the recently d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03116v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03116v1-abstract-full" style="display: none;"> Establishing the structure-property relationship in amorphous materials has been a long-term grand challenge due to the lack of a unified description of the degree of disorder. In this work, we develop SPRamNet, a neural network based machine-learning pipeline that effectively predicts structure-property relationship of amorphous material via global descriptors. Applying SPRamNet on the recently discovered amorphous monolayer carbon, we successfully predict the thermal and electronic properties. More importantly, we reveal that a short range of pair correlation function can readily encode sufficiently rich information of the structure of amorphous material. Utilizing powerful machine learning architectures, the encoded information can be decoded to reconstruct macroscopic properties involving many-body and long-range interactions. Establishing this hidden relationship offers a unified description of the degree of disorder and eliminates the heavy burden of measuring atomic structure, opening a new avenue in studying amorphous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03116v1-abstract-full').style.display = 'none'; document.getElementById('2410.03116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01561">arXiv:2410.01561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01561">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological one-way Weyl fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zitao Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yidong Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianfeng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhi-Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01561v1-abstract-short" style="display: inline;"> Topological photonics enables unprecedented photon manipulation by realizing various topological states, such as corner states, edge states, and surface states. However, achieving a topological fiber state has remained elusive. Here, we demonstrate a topological fiber state in a Weyl gyromagnetic photonic crystal fiber. By applying an in-plane magnetic bias to a gyromagnetic photonic crystal fiber&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01561v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01561v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01561v1-abstract-full" style="display: none;"> Topological photonics enables unprecedented photon manipulation by realizing various topological states, such as corner states, edge states, and surface states. However, achieving a topological fiber state has remained elusive. Here, we demonstrate a topological fiber state in a Weyl gyromagnetic photonic crystal fiber. By applying an in-plane magnetic bias to a gyromagnetic photonic crystal fiber with broken parity-inversion symmetry, we create an asymmetrical Weyl bandgap that supports one-way fiber states associated with type-II Weyl points. Dispersion and topological invariant calculations reveal the transition from Weyl surface states to one-way Weyl fiber states. Electromagnetic field simulations confirm the existence of one-way Weyl fiber states and their robust transport in the presence of metallic obstacle along the transport path. Our findings offer an intriguing pathway for exploring novel topological states and guiding the design of topological fibers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01561v1-abstract-full').style.display = 'none'; document.getElementById('2410.01561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19628">arXiv:2409.19628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19628">pdf</a>, <a href="https://arxiv.org/format/2409.19628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.094206">10.1103/PhysRevB.110.094206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band alignment effect in the topological photonic alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tiantao Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mudi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19628v1-abstract-short" style="display: inline;"> Recently, a photonic alloy with non-trivial topological properties has been proposed, based on the random mixing of Yttrium Iron Garnet (YIG) and magnetized YIG rods. When the doping concentration of magnetized YIG rods is less than one, a chiral edge state (CES) of the topological photonic alloy appears in the frequency range of the non-trivial topological gap of the magnetized YIG crystal. In th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19628v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19628v1-abstract-full" style="display: none;"> Recently, a photonic alloy with non-trivial topological properties has been proposed, based on the random mixing of Yttrium Iron Garnet (YIG) and magnetized YIG rods. When the doping concentration of magnetized YIG rods is less than one, a chiral edge state (CES) of the topological photonic alloy appears in the frequency range of the non-trivial topological gap of the magnetized YIG crystal. In this work, we surprisingly find that by randomly mixing the Perfect Electric Conductor (PEC) and magnetized YIG rods in a square lattice, the photonic alloy system with appropriate doping concentrations can present CES in special frequency intervals even when both components support the propagation of bulk states. Analyzing the band structure of two components, we noticed a shift between the first trivial bandgap for PEC and the first topological bandgap for magnetized YIG. When calculating the transmission spectrum of the photonic alloy, we discovered that the frequency range for the topological gap gradually opens from the lower limit frequency of the bandgap for PEC to the bandgap for the magnetized YIG rods. The topological gap opening occurs as the doping concentration of magnetized YIG rods increases, creating an effective band alignment effect. Moreover, the topological gap for the photonic alloy is confirmed by calculating the reflection phase winding with the scattering method. Lastly, the gradual appearance of the CES is identified by applying Fourier transformation to real-space electromagnetic fields. Our work broadens the possibilities for flexible topological gap engineering in the photonic alloy system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19628v1-abstract-full').style.display = 'none'; document.getElementById('2409.19628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 094206(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19265">arXiv:2409.19265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19265">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of ferroelectricity and superconductivity in a two-dimensional monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianyong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+W">Wen-Yi Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+P">Ping Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhenyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19265v1-abstract-short" style="display: inline;"> The coupling of ferroelectricity (FE) and superconductivity (SC) becomes the frontier of condensed matter research recently especially in the realm of two-dimensional (2D) materials. Identifying a general strategy to realize coexistence of FE and SC in a single material is extremely important for this active field, but quite challenging thus far. We show in this work that coexistence of robust FE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19265v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19265v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19265v1-abstract-full" style="display: none;"> The coupling of ferroelectricity (FE) and superconductivity (SC) becomes the frontier of condensed matter research recently especially in the realm of two-dimensional (2D) materials. Identifying a general strategy to realize coexistence of FE and SC in a single material is extremely important for this active field, but quite challenging thus far. We show in this work that coexistence of robust FE and metallicity/SC can be realized by hole-doping a ferroelectric insulator which hosts antibonding highest valence bands (HVB). Using typical 2D ferroelecrtic SnS monolayer as a concrete example, we demonstrate that 0.30 hole/cell doping leads to enhancement of total polarization mainly ascribed to the increasing of polar displacement and ionic polarization. In addition, due to the strong Fermi surface nesting and prominent softening of out-of-plane acoustic phonon upon hole-doping, SnS can be turned into a single gap superconductor with an unexpectedly high transition temperature (Tc) of ~7 K, whereas the polar phonon mode gives negligible contribution to electron-phonon couplings. Our work provides general principle and realistic material for realizing metallic FE and superconducting FE, which paves the way for reversible and nonvolatile superconducting devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19265v1-abstract-full').style.display = 'none'; document.getElementById('2409.19265v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18965">arXiv:2409.18965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18965">pdf</a>, <a href="https://arxiv.org/format/2409.18965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Multiscale Simulation and Machine Learning Facilitated Design of Two-Dimensional Nanomaterials-Based Tunnel Field-Effect Transistors: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tsang%2C+C+I">Chloe Isabella Tsang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pu%2C+H">Haihui Pu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Junhong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18965v1-abstract-short" style="display: inline;"> Traditional transistors based on complementary metal-oxide-semiconductor (CMOS) and metal-oxide-semiconductor field-effect transistors (MOSFETs) are facing significant limitations as device scaling reaches the limits of Moore&#39;s Law. These limitations include increased leakage currents, pronounced short-channel effects (SCEs), and quantum tunneling through the gate oxide, leading to higher power co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18965v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18965v1-abstract-full" style="display: none;"> Traditional transistors based on complementary metal-oxide-semiconductor (CMOS) and metal-oxide-semiconductor field-effect transistors (MOSFETs) are facing significant limitations as device scaling reaches the limits of Moore&#39;s Law. These limitations include increased leakage currents, pronounced short-channel effects (SCEs), and quantum tunneling through the gate oxide, leading to higher power consumption and deviations from ideal behavior. Tunnel Field-Effect Transistors (TFETs) can overcome these challenges by utilizing quantum tunneling of charge carriers to switch between on and off states and achieve a subthreshold swing (SS) below 60 mV/decade. This allows for lower power consumption, continued scaling, and improved performance in low-power applications. This review focuses on the design and operation of TFETs, emphasizing the optimization of device performance through material selection and advanced simulation techniques. The discussion will specifically address the use of two-dimensional (2D) materials in TFET design and explore simulation methods ranging from multi-scale (MS) approaches to machine learning (ML)-driven optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18965v1-abstract-full').style.display = 'none'; document.getElementById('2409.18965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17226">arXiv:2409.17226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17226">pdf</a>, <a href="https://arxiv.org/format/2409.17226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Free Independence and the Noncrossing Partition Lattice in Dual-Unitary Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H+J">Hyaline Junhe Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kudler-Flam%2C+J">Jonah Kudler-Flam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17226v1-abstract-short" style="display: inline;"> We investigate details of the chaotic dynamics of dual-unitary quantum circuits by evaluating all $2k$-point out-of-time-ordered correlators. For the generic class of circuits, by writing the correlators as contractions of a class of quantum channels, we prove their exponential decay. This implies that local operators separated in time approach free independence. Along the way, we develop a replic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17226v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17226v1-abstract-full" style="display: none;"> We investigate details of the chaotic dynamics of dual-unitary quantum circuits by evaluating all $2k$-point out-of-time-ordered correlators. For the generic class of circuits, by writing the correlators as contractions of a class of quantum channels, we prove their exponential decay. This implies that local operators separated in time approach free independence. Along the way, we develop a replica trick for dual-unitary circuits, which may be useful and of interest in its own right. We classify the relevant eigenstates of the replica transfer matrix by paths in the lattice of noncrossing partitions, combinatorial objects central to free probability theory. Interestingly, the noncrossing lattice emerges even for systems without randomness and with small onsite Hilbert space dimension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17226v1-abstract-full').style.display = 'none'; document.getElementById('2409.17226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09801">arXiv:2409.09801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09801">pdf</a>, <a href="https://arxiv.org/format/2409.09801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Resonant molecular transitions in second harmonic generation spectroscopy of Fe-octaethylporphyrin adsorbed on Cu(001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Eschenlohr%2C+A">A. Eschenlohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+R">R. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">J. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+P">P. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">U. Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%BCbner%2C+W">W. H眉bner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefkidis%2C+G">G. Lefkidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09801v1-abstract-short" style="display: inline;"> Metal-organic molecular adsorbates on metallic surfaces offer the potential to both generate materials for future (spin-)electronics applications as well as a better fundamental understanding of molecule-substrate interaction, provided that the electronic properties of such interfaces can be analyzed and/or manipulated in a targeted manner. To investigate electronic interactions at such interfaces&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09801v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09801v1-abstract-full" style="display: none;"> Metal-organic molecular adsorbates on metallic surfaces offer the potential to both generate materials for future (spin-)electronics applications as well as a better fundamental understanding of molecule-substrate interaction, provided that the electronic properties of such interfaces can be analyzed and/or manipulated in a targeted manner. To investigate electronic interactions at such interfaces, we measure optical second harmonic generation (SHG) from iron-octaethylporphyrin (FeOEP) adsorbed on Cu(001), and perform electronic structure calculations using coupled cluster methods including optical excitations. We find that the SHG response of FeOEP/Cu(001) is modified at 2.15-2.35 eV fundamental photon energy compared to the bare Cu(001) surface. Our polarization-dependent analysis shows that the $蠂_{zzz}^{(2)}$ non-linear susceptibility tensor element dominates this modification. The first-principles calculations confirm this effect and conclude a resonantly enhanced SHG by molecular transitions at $\hbar蠅\geq 2$ eV. We show that the enhancement of $蠂^{(2)}_{zzz}$ results from a strong charge-transfer character of the molecule-substrate interaction. Our findings demonstrate the suitability of surface SHG for the characterization of such interfaces and the potential to employ it for time-resolved SHG experiments on optically induced electronic dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09801v1-abstract-full').style.display = 'none'; document.getElementById('2409.09801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07987">arXiv:2409.07987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07987">pdf</a>, <a href="https://arxiv.org/format/2409.07987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.235410">10.1103/PhysRevB.110.235410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of flat bands in MoSe$_2$/WSe$_2$ moir茅 lattices: A study combining machine learning and band unfolding methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shengguo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mingxing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07987v2-abstract-short" style="display: inline;"> Moir茅 lattices have served as the ideal quantum simulation platform for exploring novel physics due to the flat electronic bands resulting from the long wavelength moir茅 potentials. However, the large sizes of this type of system challenge the first-principles methods for full calculations of their electronic structures, thus bringing difficulties in understanding the nature and evolution of the f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07987v2-abstract-full').style.display = 'inline'; document.getElementById('2409.07987v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07987v2-abstract-full" style="display: none;"> Moir茅 lattices have served as the ideal quantum simulation platform for exploring novel physics due to the flat electronic bands resulting from the long wavelength moir茅 potentials. However, the large sizes of this type of system challenge the first-principles methods for full calculations of their electronic structures, thus bringing difficulties in understanding the nature and evolution of the flat bands. In this study, we investigate the electronic structures of moir茅 patterns of MoSe$_2$/WSe$_2$ by combining ab initio and machine learning methods. We find that a flat band with a bandwidth of about 5 meV emerges below the valence band edge at the K point for the H-stacking at a twist angle of 3.89$^{\circ}$ without spin-orbit coupling effect. Then, it shifts dramatically as the twist angle decreases and becomes about 20 meV higher than the valence band maximum for the twist angle of 3.15$^{\circ}$. Multiple ultra-flat bands emerge as the twist angle is reduced to 1.7$^{\circ}$. The spin-orbit coupling leads to a giant spin splitting comparable to that observed in the untwisted system (about 0.45 eV) and is nearly independent of twisting and stacking. As a result, the K-valley flat band remains the valence band maximum with the inclusion of spin-orbit coupling. Band unfolding reveals that the ultra-flat bands formed by the $螕$ and K valleys show distinct behaviors. The $螕$-valley flat bands are sensitive to the interlayer coupling, thus experiencing dramatic changes as the twist angle decreases. In contrast, the K-valley flat band, which shows a weak dependence on the interlayer coupling, is mainly modulated by structural reconstruction. Therefore, a relatively small angle (2.13$^{\circ}$) is required to generate the K-valley flat band, which experiences a transition from the honeycomb to the triangular lattice as the twist angle decreases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07987v2-abstract-full').style.display = 'none'; document.getElementById('2409.07987v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 235410 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07740">arXiv:2409.07740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07740">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Engineering Quantum Anomalous Hall Effect in Monolayer Janus MnBi2SexTe4-x </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiale Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07740v1-abstract-short" style="display: inline;"> Exploring intrinsic magnetic topological insulators (TIs) for next-generation spintronic devices is still challenging in recent years. Here, we present a theoretical investigation on the electronic, magnetic and topological properties of monolayer (ML) Janus MnBi2TexSe4-x, derived from two trivial magnetic semiconductors ML MnBi2Se4 and MnBi2Te4. Our band structure analysis reveals that two out of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07740v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07740v1-abstract-full" style="display: none;"> Exploring intrinsic magnetic topological insulators (TIs) for next-generation spintronic devices is still challenging in recent years. Here, we present a theoretical investigation on the electronic, magnetic and topological properties of monolayer (ML) Janus MnBi2TexSe4-x, derived from two trivial magnetic semiconductors ML MnBi2Se4 and MnBi2Te4. Our band structure analysis reveals that two out of the eight Janus structures exhibit band inversion induced by spin-orbit coupling. These structures are confirmed to have nonzero integer Chern numbers, indicating their topological nature. Moreover, the topological state is robust under moderate biaxial strains. Interestingly, applying compressive strain results in a high Chern number of 2 and enhances their magnetic stability at elevated temperatures. Our findings offer an effective strategy to engineer magnetic TI states within the ML MnBi2Te4 family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07740v1-abstract-full').style.display = 'none'; document.getElementById('2409.07740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chen%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10