CINXE.COM

Neural Network Research Papers - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Neural Network Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Hed7owf9sIKOMjcJSAydxZqJ5eHyyVAZvXxJ4tHzN1QC51FkdgxFe2+xAGTqDyIiK7M/lk7ECMeGQJbGqBeB9A==" /> <link href="/Documents/in/Neural_Network?after=50%2C44636226" rel="next" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="description" content="View Neural Network Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = 'd0d4cf753dac7d44fa55ec8140bebbf4477d3bc9'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15265,"monthly_visitors":"113 million","monthly_visitor_count":113657801,"monthly_visitor_count_in_millions":113,"user_count":277970835,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733261173000); window.Aedu.timeDifference = new Date().getTime() - 1733261173000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bad3fa1257b860f4633ff1db966aa3ae7dfe1980708675f3e2488742c1a0d941.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-34a3460a4873b743570e35df99c7839e3ddd9a3d06ef96c9fe38311a96a8a24e.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/Neural_Network" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">Neural Network</h1><div class="u-tcGrayDark">22,355&nbsp;Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in&nbsp;<b>Neural Network</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/Neural_Network">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Neural_Network/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Neural_Network/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Neural_Network/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/Neural_Network">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_26402331" data-work_id="26402331" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/26402331/Neural_network_design_and_evaluation_for_classifying_library_indicators_using_personal_opinion_of_expert">Neural network design and evaluation for classifying library indicators using personal opinion of expert</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/26402331" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7aef2e839d354c01d93b63b556a43e3e" rel="nofollow" data-download="{&quot;attachment_id&quot;:46702203,&quot;asset_id&quot;:26402331,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46702203/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="3146331" href="https://ionio.academia.edu/SozonPapavlasopoulos">Sozon Papavlasopoulos</a><script data-card-contents-for-user="3146331" type="text/json">{"id":3146331,"first_name":"Sozon","last_name":"Papavlasopoulos","domain_name":"ionio","page_name":"SozonPapavlasopoulos","display_name":"Sozon Papavlasopoulos","profile_url":"https://ionio.academia.edu/SozonPapavlasopoulos?f_ri=26066","photo":"https://0.academia-photos.com/3146331/3369982/3965341/s65_sozon.papavlasopoulos.jpg"}</script></span></span></li><li class="js-paper-rank-work_26402331 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="26402331"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 26402331, container: ".js-paper-rank-work_26402331", }); });</script></li><li class="js-percentile-work_26402331 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26402331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_26402331"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_26402331 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="26402331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26402331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26402331]").text(description); $(".js-view-count-work_26402331").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_26402331").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="26402331"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="4392" href="https://www.academia.edu/Documents/in/Monte_Carlo_Simulation">Monte Carlo Simulation</a>,&nbsp;<script data-card-contents-for-ri="4392" type="text/json">{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="59587" href="https://www.academia.edu/Documents/in/Library_and_Information_Studies">Library and Information Studies</a>,&nbsp;<script data-card-contents-for-ri="59587" type="text/json">{"id":59587,"name":"Library and Information Studies","url":"https://www.academia.edu/Documents/in/Library_and_Information_Studies?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="91417" href="https://www.academia.edu/Documents/in/Library_Management">Library Management</a><script data-card-contents-for-ri="91417" type="text/json">{"id":91417,"name":"Library Management","url":"https://www.academia.edu/Documents/in/Library_Management?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=26402331]'), work: {"id":26402331,"title":"Neural network design and evaluation for classifying library indicators using personal opinion of expert","created_at":"2016-06-22T03:34:38.949-07:00","url":"https://www.academia.edu/26402331/Neural_network_design_and_evaluation_for_classifying_library_indicators_using_personal_opinion_of_expert?f_ri=26066","dom_id":"work_26402331","summary":null,"downloadable_attachments":[{"id":46702203,"asset_id":26402331,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":3146331,"first_name":"Sozon","last_name":"Papavlasopoulos","domain_name":"ionio","page_name":"SozonPapavlasopoulos","display_name":"Sozon Papavlasopoulos","profile_url":"https://ionio.academia.edu/SozonPapavlasopoulos?f_ri=26066","photo":"https://0.academia-photos.com/3146331/3369982/3965341/s65_sozon.papavlasopoulos.jpg"}],"research_interests":[{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":59587,"name":"Library and Information Studies","url":"https://www.academia.edu/Documents/in/Library_and_Information_Studies?f_ri=26066","nofollow":false},{"id":91417,"name":"Library Management","url":"https://www.academia.edu/Documents/in/Library_Management?f_ri=26066","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_16028874 coauthored" data-work_id="16028874" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/16028874/Age_related_neural_activity_during_allocentric_spatial_memory">Age-related neural activity during allocentric spatial memory</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/16028874" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="35a40004feedfb290e68076cb32c6468" rel="nofollow" data-download="{&quot;attachment_id&quot;:42779626,&quot;asset_id&quot;:16028874,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/42779626/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="35169112" href="https://independent.academia.edu/AntonovaE">Elena Antonova</a><script data-card-contents-for-user="35169112" type="text/json">{"id":35169112,"first_name":"Elena","last_name":"Antonova","domain_name":"independent","page_name":"AntonovaE","display_name":"Elena Antonova","profile_url":"https://independent.academia.edu/AntonovaE?f_ri=26066","photo":"https://0.academia-photos.com/35169112/11366284/12679209/s65_elena.antonova.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-16028874">+1</span><div class="hidden js-additional-users-16028874"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/DParslow">D. Parslow</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-16028874'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-16028874').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_16028874 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="16028874"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 16028874, container: ".js-paper-rank-work_16028874", }); });</script></li><li class="js-percentile-work_16028874 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16028874; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_16028874"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_16028874 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="16028874"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16028874; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16028874]").text(description); $(".js-view-count-work_16028874").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_16028874").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="16028874"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">19</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="221" href="https://www.academia.edu/Documents/in/Psychology">Psychology</a>,&nbsp;<script data-card-contents-for-ri="221" type="text/json">{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4163" href="https://www.academia.edu/Documents/in/Spatial_Memory">Spatial Memory</a>,&nbsp;<script data-card-contents-for-ri="4163" type="text/json">{"id":4163,"name":"Spatial Memory","url":"https://www.academia.edu/Documents/in/Spatial_Memory?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="6200" href="https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging">Magnetic Resonance Imaging</a><script data-card-contents-for-ri="6200" type="text/json">{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=16028874]'), work: {"id":16028874,"title":"Age-related neural activity during allocentric spatial memory","created_at":"2015-09-22T07:44:10.829-07:00","url":"https://www.academia.edu/16028874/Age_related_neural_activity_during_allocentric_spatial_memory?f_ri=26066","dom_id":"work_16028874","summary":null,"downloadable_attachments":[{"id":42779626,"asset_id":16028874,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":35169112,"first_name":"Elena","last_name":"Antonova","domain_name":"independent","page_name":"AntonovaE","display_name":"Elena Antonova","profile_url":"https://independent.academia.edu/AntonovaE?f_ri=26066","photo":"https://0.academia-photos.com/35169112/11366284/12679209/s65_elena.antonova.jpg"},{"id":35238931,"first_name":"D.","last_name":"Parslow","domain_name":"independent","page_name":"DParslow","display_name":"D. Parslow","profile_url":"https://independent.academia.edu/DParslow?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=26066","nofollow":false},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false},{"id":4163,"name":"Spatial Memory","url":"https://www.academia.edu/Documents/in/Spatial_Memory?f_ri=26066","nofollow":false},{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging?f_ri=26066","nofollow":false},{"id":6791,"name":"Aging","url":"https://www.academia.edu/Documents/in/Aging?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex?f_ri=26066"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory?f_ri=26066"},{"id":50642,"name":"Virtual Reality","url":"https://www.academia.edu/Documents/in/Virtual_Reality?f_ri=26066"},{"id":52176,"name":"Brain Mapping","url":"https://www.academia.edu/Documents/in/Brain_Mapping?f_ri=26066"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus?f_ri=26066"},{"id":103265,"name":"Voxel Based Morphometry","url":"https://www.academia.edu/Documents/in/Voxel_Based_Morphometry?f_ri=26066"},{"id":133057,"name":"Young Adult","url":"https://www.academia.edu/Documents/in/Young_Adult?f_ri=26066"},{"id":289271,"name":"Aged","url":"https://www.academia.edu/Documents/in/Aged?f_ri=26066"},{"id":413194,"name":"Analysis of Variance","url":"https://www.academia.edu/Documents/in/Analysis_of_Variance?f_ri=26066"},{"id":806178,"name":"Older Adult","url":"https://www.academia.edu/Documents/in/Older_Adult?f_ri=26066"},{"id":974411,"name":"Memory Disorders","url":"https://www.academia.edu/Documents/in/Memory_Disorders?f_ri=26066"},{"id":1144102,"name":"Task Performance and Analysis","url":"https://www.academia.edu/Documents/in/Task_Performance_and_Analysis?f_ri=26066"},{"id":1959639,"name":"Morris water maze","url":"https://www.academia.edu/Documents/in/Morris_water_maze?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_7163225 coauthored" data-work_id="7163225" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/7163225/The_novelty_P3_an_event_related_brain_potential_ERP_sign_of_the_brains_evaluation_of_novelty">The novelty P3: an event-related brain potential (ERP) sign of the brain&#39;s evaluation of novelty</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/7163225" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="81853e51d1cb412a6d3b707c8e89b24c" rel="nofollow" data-download="{&quot;attachment_id&quot;:48575935,&quot;asset_id&quot;:7163225,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/48575935/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="12382600" href="https://columbia.academia.edu/DavidFriedman">David Friedman</a><script data-card-contents-for-user="12382600" type="text/json">{"id":12382600,"first_name":"David","last_name":"Friedman","domain_name":"columbia","page_name":"DavidFriedman","display_name":"David Friedman","profile_url":"https://columbia.academia.edu/DavidFriedman?f_ri=26066","photo":"https://0.academia-photos.com/12382600/109493365/98733354/s65_david.friedman.jpeg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-7163225">+1</span><div class="hidden js-additional-users-7163225"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/HelenGaeta">Helen Gaeta</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-7163225'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-7163225').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_7163225 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="7163225"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 7163225, container: ".js-paper-rank-work_7163225", }); });</script></li><li class="js-percentile-work_7163225 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7163225; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_7163225"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_7163225 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="7163225"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7163225; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7163225]").text(description); $(".js-view-count-work_7163225").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_7163225").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="7163225"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="6200" href="https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging">Magnetic Resonance Imaging</a>,&nbsp;<script data-card-contents-for-ri="6200" type="text/json">{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10904" href="https://www.academia.edu/Documents/in/Electroencephalography">Electroencephalography</a>,&nbsp;<script data-card-contents-for-ri="10904" type="text/json">{"id":10904,"name":"Electroencephalography","url":"https://www.academia.edu/Documents/in/Electroencephalography?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="61474" href="https://www.academia.edu/Documents/in/Brain">Brain</a><script data-card-contents-for-ri="61474" type="text/json">{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=7163225]'), work: {"id":7163225,"title":"The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty","created_at":"2014-05-26T07:50:12.218-07:00","url":"https://www.academia.edu/7163225/The_novelty_P3_an_event_related_brain_potential_ERP_sign_of_the_brains_evaluation_of_novelty?f_ri=26066","dom_id":"work_7163225","summary":null,"downloadable_attachments":[{"id":48575935,"asset_id":7163225,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":12382600,"first_name":"David","last_name":"Friedman","domain_name":"columbia","page_name":"DavidFriedman","display_name":"David Friedman","profile_url":"https://columbia.academia.edu/DavidFriedman?f_ri=26066","photo":"https://0.academia-photos.com/12382600/109493365/98733354/s65_david.friedman.jpeg"},{"id":38908460,"first_name":"Helen","last_name":"Gaeta","domain_name":"independent","page_name":"HelenGaeta","display_name":"Helen Gaeta","profile_url":"https://independent.academia.edu/HelenGaeta?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":6200,"name":"Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Imaging?f_ri=26066","nofollow":false},{"id":10904,"name":"Electroencephalography","url":"https://www.academia.edu/Documents/in/Electroencephalography?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":61474,"name":"Brain","url":"https://www.academia.edu/Documents/in/Brain?f_ri=26066","nofollow":false},{"id":61516,"name":"Evoked Potentials","url":"https://www.academia.edu/Documents/in/Evoked_Potentials?f_ri=26066"},{"id":253554,"name":"Mismatch Negativity","url":"https://www.academia.edu/Documents/in/Mismatch_Negativity?f_ri=26066"},{"id":1208706,"name":"Environment","url":"https://www.academia.edu/Documents/in/Environment?f_ri=26066"},{"id":2351341,"name":"Orienting Response","url":"https://www.academia.edu/Documents/in/Orienting_Response?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4658478" data-work_id="4658478" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4658478/Neural_networks_with_a_self_refreshing_memory_knowledge_transfer_in_sequential_learning_tasks_without_catastrophic_forgetting">Neural networks with a self-refreshing memory: knowledge transfer in sequential learning tasks without catastrophic forgetting</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4658478" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a8e9aba48ead098f18c95b7aa2566a42" rel="nofollow" data-download="{&quot;attachment_id&quot;:32002072,&quot;asset_id&quot;:4658478,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/32002072/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5904552" href="https://univ-grenoble-alpes.academia.edu/StephaneRousset">Stephane Rousset</a><script data-card-contents-for-user="5904552" type="text/json">{"id":5904552,"first_name":"Stephane","last_name":"Rousset","domain_name":"univ-grenoble-alpes","page_name":"StephaneRousset","display_name":"Stephane Rousset","profile_url":"https://univ-grenoble-alpes.academia.edu/StephaneRousset?f_ri=26066","photo":"https://0.academia-photos.com/5904552/2518643/25068489/s65_stephane.rousset.jpeg"}</script></span></span></li><li class="js-paper-rank-work_4658478 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4658478"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4658478, container: ".js-paper-rank-work_4658478", }); });</script></li><li class="js-percentile-work_4658478 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4658478; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4658478"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4658478 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4658478"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4658478; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4658478]").text(description); $(".js-view-count-work_4658478").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4658478").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4658478"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11295" href="https://www.academia.edu/Documents/in/Knowledge_Transfer">Knowledge Transfer</a>,&nbsp;<script data-card-contents-for-ri="11295" type="text/json">{"id":11295,"name":"Knowledge Transfer","url":"https://www.academia.edu/Documents/in/Knowledge_Transfer?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="287481" href="https://www.academia.edu/Documents/in/Network_Architecture">Network Architecture</a><script data-card-contents-for-ri="287481" type="text/json">{"id":287481,"name":"Network Architecture","url":"https://www.academia.edu/Documents/in/Network_Architecture?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4658478]'), work: {"id":4658478,"title":"Neural networks with a self-refreshing memory: knowledge transfer in sequential learning tasks without catastrophic forgetting","created_at":"2013-10-02T18:29:45.737-07:00","url":"https://www.academia.edu/4658478/Neural_networks_with_a_self_refreshing_memory_knowledge_transfer_in_sequential_learning_tasks_without_catastrophic_forgetting?f_ri=26066","dom_id":"work_4658478","summary":null,"downloadable_attachments":[{"id":32002072,"asset_id":4658478,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5904552,"first_name":"Stephane","last_name":"Rousset","domain_name":"univ-grenoble-alpes","page_name":"StephaneRousset","display_name":"Stephane Rousset","profile_url":"https://univ-grenoble-alpes.academia.edu/StephaneRousset?f_ri=26066","photo":"https://0.academia-photos.com/5904552/2518643/25068489/s65_stephane.rousset.jpeg"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false},{"id":11295,"name":"Knowledge Transfer","url":"https://www.academia.edu/Documents/in/Knowledge_Transfer?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":287481,"name":"Network Architecture","url":"https://www.academia.edu/Documents/in/Network_Architecture?f_ri=26066","nofollow":false},{"id":522465,"name":"Long Term Memory","url":"https://www.academia.edu/Documents/in/Long_Term_Memory?f_ri=26066"},{"id":535564,"name":"Brain Structure","url":"https://www.academia.edu/Documents/in/Brain_Structure?f_ri=26066"},{"id":1376804,"name":"Feed-Forward","url":"https://www.academia.edu/Documents/in/Feed-Forward?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_18380851" data-work_id="18380851" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/18380851/Probabilistic_Neural_Networks_in_Bankruptcy_Prediction">Probabilistic Neural Networks in Bankruptcy Prediction</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/18380851" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="061151e4fdb3be766adb46a472fba61a" rel="nofollow" data-download="{&quot;attachment_id&quot;:40024451,&quot;asset_id&quot;:18380851,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/40024451/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38379143" href="https://independent.academia.edu/HarlanPlatt">Harlan Platt</a><script data-card-contents-for-user="38379143" type="text/json">{"id":38379143,"first_name":"Harlan","last_name":"Platt","domain_name":"independent","page_name":"HarlanPlatt","display_name":"Harlan Platt","profile_url":"https://independent.academia.edu/HarlanPlatt?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_18380851 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="18380851"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 18380851, container: ".js-paper-rank-work_18380851", }); });</script></li><li class="js-percentile-work_18380851 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18380851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_18380851"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_18380851 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="18380851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18380851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18380851]").text(description); $(".js-view-count-work_18380851").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_18380851").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="18380851"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="26" href="https://www.academia.edu/Documents/in/Business">Business</a>,&nbsp;<script data-card-contents-for-ri="26" type="text/json">{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="17331" href="https://www.academia.edu/Documents/in/Oil_and_gas">Oil and gas</a>,&nbsp;<script data-card-contents-for-ri="17331" type="text/json">{"id":17331,"name":"Oil and gas","url":"https://www.academia.edu/Documents/in/Oil_and_gas?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="28235" href="https://www.academia.edu/Documents/in/Multidisciplinary">Multidisciplinary</a><script data-card-contents-for-ri="28235" type="text/json">{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=18380851]'), work: {"id":18380851,"title":"Probabilistic Neural Networks in Bankruptcy Prediction","created_at":"2015-11-15T08:28:43.245-08:00","url":"https://www.academia.edu/18380851/Probabilistic_Neural_Networks_in_Bankruptcy_Prediction?f_ri=26066","dom_id":"work_18380851","summary":null,"downloadable_attachments":[{"id":40024451,"asset_id":18380851,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38379143,"first_name":"Harlan","last_name":"Platt","domain_name":"independent","page_name":"HarlanPlatt","display_name":"Harlan Platt","profile_url":"https://independent.academia.edu/HarlanPlatt?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business?f_ri=26066","nofollow":false},{"id":17331,"name":"Oil and gas","url":"https://www.academia.edu/Documents/in/Oil_and_gas?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066","nofollow":false},{"id":63360,"name":"Discriminant Analysis","url":"https://www.academia.edu/Documents/in/Discriminant_Analysis?f_ri=26066"},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network?f_ri=26066"},{"id":457266,"name":"Back Propagation Neural Network","url":"https://www.academia.edu/Documents/in/Back_Propagation_Neural_Network?f_ri=26066"},{"id":971219,"name":"Bankruptcy Prediction","url":"https://www.academia.edu/Documents/in/Bankruptcy_Prediction?f_ri=26066"},{"id":1399036,"name":"Oil and Gas Industry","url":"https://www.academia.edu/Documents/in/Oil_and_Gas_Industry-1?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_30556933" data-work_id="30556933" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/30556933/Neural_network_based_detection_of_local_textile_defects">Neural network based detection of local textile defects</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/30556933" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1f483c538a831067323d6ec621447cfb" rel="nofollow" data-download="{&quot;attachment_id&quot;:50998949,&quot;asset_id&quot;:30556933,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/50998949/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="8738723" href="https://du-in.academia.edu/AJAY_KUMAR">AJAY KUMAR</a><script data-card-contents-for-user="8738723" type="text/json">{"id":8738723,"first_name":"AJAY","last_name":"KUMAR","domain_name":"du-in","page_name":"AJAY_KUMAR","display_name":"AJAY KUMAR","profile_url":"https://du-in.academia.edu/AJAY_KUMAR?f_ri=26066","photo":"https://0.academia-photos.com/8738723/2892703/3379166/s65_ajay.yadav.jpg"}</script></span></span></li><li class="js-paper-rank-work_30556933 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="30556933"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 30556933, container: ".js-paper-rank-work_30556933", }); });</script></li><li class="js-percentile-work_30556933 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30556933; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_30556933"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_30556933 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="30556933"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30556933; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30556933]").text(description); $(".js-view-count-work_30556933").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_30556933").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="30556933"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">10</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="5069" href="https://www.academia.edu/Documents/in/Principal_Component_Analysis">Principal Component Analysis</a>,&nbsp;<script data-card-contents-for-ri="5069" type="text/json">{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a>,&nbsp;<script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="14417" href="https://www.academia.edu/Documents/in/Machine_Vision">Machine Vision</a><script data-card-contents-for-ri="14417" type="text/json">{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=30556933]'), work: {"id":30556933,"title":"Neural network based detection of local textile defects","created_at":"2016-12-21T05:34:44.514-08:00","url":"https://www.academia.edu/30556933/Neural_network_based_detection_of_local_textile_defects?f_ri=26066","dom_id":"work_30556933","summary":null,"downloadable_attachments":[{"id":50998949,"asset_id":30556933,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":8738723,"first_name":"AJAY","last_name":"KUMAR","domain_name":"du-in","page_name":"AJAY_KUMAR","display_name":"AJAY KUMAR","profile_url":"https://du-in.academia.edu/AJAY_KUMAR?f_ri=26066","photo":"https://0.academia-photos.com/8738723/2892703/3379166/s65_ajay.yadav.jpg"}],"research_interests":[{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=26066","nofollow":false},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":59918,"name":"Quality Assurance","url":"https://www.academia.edu/Documents/in/Quality_Assurance?f_ri=26066"},{"id":85880,"name":"Singular value decomposition","url":"https://www.academia.edu/Documents/in/Singular_value_decomposition?f_ri=26066"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=26066"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network?f_ri=26066"},{"id":2364406,"name":"Visual Inspection","url":"https://www.academia.edu/Documents/in/Visual_Inspection?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14109364" data-work_id="14109364" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14109364/Prediction_of_Aqueous_Solubility_of_Organic_Compounds_Based_on_a_3D_Structure_Representation">Prediction of Aqueous Solubility of Organic Compounds Based on a 3D Structure Representation</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14109364" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="941fe93e85f4fb5495000a335cd81207" rel="nofollow" data-download="{&quot;attachment_id&quot;:44595407,&quot;asset_id&quot;:14109364,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44595407/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33111982" href="https://independent.academia.edu/JohannGasteiger">Johann Gasteiger</a><script data-card-contents-for-user="33111982" type="text/json">{"id":33111982,"first_name":"Johann","last_name":"Gasteiger","domain_name":"independent","page_name":"JohannGasteiger","display_name":"Johann Gasteiger","profile_url":"https://independent.academia.edu/JohannGasteiger?f_ri=26066","photo":"https://0.academia-photos.com/33111982/169216432/159187596/s65_johann.gasteiger.png"}</script></span></span></li><li class="js-paper-rank-work_14109364 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14109364"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14109364, container: ".js-paper-rank-work_14109364", }); });</script></li><li class="js-percentile-work_14109364 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14109364; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14109364"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14109364 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14109364"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14109364; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14109364]").text(description); $(".js-view-count-work_14109364").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14109364").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14109364"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="428" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a>,&nbsp;<script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="532" href="https://www.academia.edu/Documents/in/Physical_Chemistry">Physical Chemistry</a>,&nbsp;<script data-card-contents-for-ri="532" type="text/json">{"id":532,"name":"Physical Chemistry","url":"https://www.academia.edu/Documents/in/Physical_Chemistry?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2215" href="https://www.academia.edu/Documents/in/Water">Water</a><script data-card-contents-for-ri="2215" type="text/json">{"id":2215,"name":"Water","url":"https://www.academia.edu/Documents/in/Water?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14109364]'), work: {"id":14109364,"title":"Prediction of Aqueous Solubility of Organic Compounds Based on a 3D Structure Representation","created_at":"2015-07-16T04:19:03.480-07:00","url":"https://www.academia.edu/14109364/Prediction_of_Aqueous_Solubility_of_Organic_Compounds_Based_on_a_3D_Structure_Representation?f_ri=26066","dom_id":"work_14109364","summary":null,"downloadable_attachments":[{"id":44595407,"asset_id":14109364,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33111982,"first_name":"Johann","last_name":"Gasteiger","domain_name":"independent","page_name":"JohannGasteiger","display_name":"Johann Gasteiger","profile_url":"https://independent.academia.edu/JohannGasteiger?f_ri=26066","photo":"https://0.academia-photos.com/33111982/169216432/159187596/s65_johann.gasteiger.png"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=26066","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false},{"id":532,"name":"Physical Chemistry","url":"https://www.academia.edu/Documents/in/Physical_Chemistry?f_ri=26066","nofollow":false},{"id":2215,"name":"Water","url":"https://www.academia.edu/Documents/in/Water?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":89956,"name":"Pharmaceutical Sciences","url":"https://www.academia.edu/Documents/in/Pharmaceutical_Sciences?f_ri=26066"},{"id":95655,"name":"Pharmaceutical","url":"https://www.academia.edu/Documents/in/Pharmaceutical?f_ri=26066"},{"id":144436,"name":"Chemical Information","url":"https://www.academia.edu/Documents/in/Chemical_Information?f_ri=26066"},{"id":157521,"name":"Quantitative Structure Activity Relationship","url":"https://www.academia.edu/Documents/in/Quantitative_Structure_Activity_Relationship?f_ri=26066"},{"id":205584,"name":"Solubility","url":"https://www.academia.edu/Documents/in/Solubility?f_ri=26066"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results?f_ri=26066"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY?f_ri=26066"},{"id":983681,"name":"Knn","url":"https://www.academia.edu/Documents/in/Knn?f_ri=26066"},{"id":1010882,"name":"D structure","url":"https://www.academia.edu/Documents/in/D_structure?f_ri=26066"},{"id":1256744,"name":"Organic Compound","url":"https://www.academia.edu/Documents/in/Organic_Compound?f_ri=26066"},{"id":1297608,"name":"Organic Chemicals","url":"https://www.academia.edu/Documents/in/Organic_Chemicals?f_ri=26066"},{"id":1318932,"name":"Predictive value of tests","url":"https://www.academia.edu/Documents/in/Predictive_value_of_tests?f_ri=26066"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology?f_ri=26066"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure?f_ri=26066"},{"id":1745595,"name":"Solvents","url":"https://www.academia.edu/Documents/in/Solvents?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_17131273 coauthored" data-work_id="17131273" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/17131273/An_automatic_optical_inspection_system_for_the_diagnosis_of_printed_circuits_based_on_neural_networks">An automatic optical inspection system for the diagnosis of printed circuits based on neural networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/17131273" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d04337163258466058ee4cc960642c12" rel="nofollow" data-download="{&quot;attachment_id&quot;:42312765,&quot;asset_id&quot;:17131273,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/42312765/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="36596870" href="https://independent.academia.edu/MLera">M. Lera</a><script data-card-contents-for-user="36596870" type="text/json">{"id":36596870,"first_name":"M.","last_name":"Lera","domain_name":"independent","page_name":"MLera","display_name":"M. Lera","profile_url":"https://independent.academia.edu/MLera?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-17131273">+1</span><div class="hidden js-additional-users-17131273"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/AMontisci">A. Montisci</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-17131273'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-17131273').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_17131273 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="17131273"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 17131273, container: ".js-paper-rank-work_17131273", }); });</script></li><li class="js-percentile-work_17131273 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17131273; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_17131273"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_17131273 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="17131273"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17131273; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17131273]").text(description); $(".js-view-count-work_17131273").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_17131273").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="17131273"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3274" href="https://www.academia.edu/Documents/in/Gastroenterology">Gastroenterology</a>,&nbsp;<script data-card-contents-for-ri="3274" type="text/json">{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="89056" href="https://www.academia.edu/Documents/in/Printed_Circuit_Board">Printed Circuit Board</a>,&nbsp;<script data-card-contents-for-ri="89056" type="text/json">{"id":89056,"name":"Printed Circuit Board","url":"https://www.academia.edu/Documents/in/Printed_Circuit_Board?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="91262" href="https://www.academia.edu/Documents/in/Wavelet_Transform">Wavelet Transform</a><script data-card-contents-for-ri="91262" type="text/json">{"id":91262,"name":"Wavelet Transform","url":"https://www.academia.edu/Documents/in/Wavelet_Transform?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=17131273]'), work: {"id":17131273,"title":"An automatic optical inspection system for the diagnosis of printed circuits based on neural networks","created_at":"2015-10-21T16:12:10.358-07:00","url":"https://www.academia.edu/17131273/An_automatic_optical_inspection_system_for_the_diagnosis_of_printed_circuits_based_on_neural_networks?f_ri=26066","dom_id":"work_17131273","summary":null,"downloadable_attachments":[{"id":42312765,"asset_id":17131273,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":36596870,"first_name":"M.","last_name":"Lera","domain_name":"independent","page_name":"MLera","display_name":"M. Lera","profile_url":"https://independent.academia.edu/MLera?f_ri=26066","photo":"/images/s65_no_pic.png"},{"id":36282876,"first_name":"A.","last_name":"Montisci","domain_name":"independent","page_name":"AMontisci","display_name":"A. Montisci","profile_url":"https://independent.academia.edu/AMontisci?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":89056,"name":"Printed Circuit Board","url":"https://www.academia.edu/Documents/in/Printed_Circuit_Board?f_ri=26066","nofollow":false},{"id":91262,"name":"Wavelet Transform","url":"https://www.academia.edu/Documents/in/Wavelet_Transform?f_ri=26066","nofollow":false},{"id":91365,"name":"Wavelet Transforms","url":"https://www.academia.edu/Documents/in/Wavelet_Transforms?f_ri=26066"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=26066"},{"id":167397,"name":"Image recognition","url":"https://www.academia.edu/Documents/in/Image_recognition?f_ri=26066"},{"id":2085770,"name":"Image Acquisition","url":"https://www.academia.edu/Documents/in/Image_Acquisition?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14611521" data-work_id="14611521" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14611521/A_Simple_Feedforward_Neural_Network_for_the_PM10_Forecasting_Comparison_with_a_Radial_Basis_Function_Network_and_a_Multivariate_Linear_Regression_Model">A Simple Feedforward Neural Network for the PM10 Forecasting: Comparison with a Radial Basis Function Network and a Multivariate Linear Regression Model</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14611521" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3d90f28467b7808249eb0cee1f3d4d89" rel="nofollow" data-download="{&quot;attachment_id&quot;:44036513,&quot;asset_id&quot;:14611521,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44036513/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33562204" href="https://cnr-it.academia.edu/PierinaIelpo">Pierina Ielpo</a><script data-card-contents-for-user="33562204" type="text/json">{"id":33562204,"first_name":"Pierina","last_name":"Ielpo","domain_name":"cnr-it","page_name":"PierinaIelpo","display_name":"Pierina Ielpo","profile_url":"https://cnr-it.academia.edu/PierinaIelpo?f_ri=26066","photo":"https://0.academia-photos.com/33562204/15476951/16090269/s65_pierina.ielpo.jpg"}</script></span></span></li><li class="js-paper-rank-work_14611521 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14611521"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14611521, container: ".js-paper-rank-work_14611521", }); });</script></li><li class="js-percentile-work_14611521 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14611521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14611521"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14611521 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14611521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14611521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14611521]").text(description); $(".js-view-count-work_14611521").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14611521").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14611521"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="896" href="https://www.academia.edu/Documents/in/Air_Quality">Air Quality</a>,&nbsp;<script data-card-contents-for-ri="896" type="text/json">{"id":896,"name":"Air Quality","url":"https://www.academia.edu/Documents/in/Air_Quality?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="8141" href="https://www.academia.edu/Documents/in/IT_Management">IT Management</a>,&nbsp;<script data-card-contents-for-ri="8141" type="text/json">{"id":8141,"name":"IT Management","url":"https://www.academia.edu/Documents/in/IT_Management?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11976" href="https://www.academia.edu/Documents/in/Air_pollution">Air pollution</a>,&nbsp;<script data-card-contents-for-ri="11976" type="text/json">{"id":11976,"name":"Air pollution","url":"https://www.academia.edu/Documents/in/Air_pollution?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14611521]'), work: {"id":14611521,"title":"A Simple Feedforward Neural Network for the PM10 Forecasting: Comparison with a Radial Basis Function Network and a Multivariate Linear Regression Model","created_at":"2015-08-03T04:51:36.568-07:00","url":"https://www.academia.edu/14611521/A_Simple_Feedforward_Neural_Network_for_the_PM10_Forecasting_Comparison_with_a_Radial_Basis_Function_Network_and_a_Multivariate_Linear_Regression_Model?f_ri=26066","dom_id":"work_14611521","summary":null,"downloadable_attachments":[{"id":44036513,"asset_id":14611521,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33562204,"first_name":"Pierina","last_name":"Ielpo","domain_name":"cnr-it","page_name":"PierinaIelpo","display_name":"Pierina Ielpo","profile_url":"https://cnr-it.academia.edu/PierinaIelpo?f_ri=26066","photo":"https://0.academia-photos.com/33562204/15476951/16090269/s65_pierina.ielpo.jpg"}],"research_interests":[{"id":896,"name":"Air Quality","url":"https://www.academia.edu/Documents/in/Air_Quality?f_ri=26066","nofollow":false},{"id":8141,"name":"IT Management","url":"https://www.academia.edu/Documents/in/IT_Management?f_ri=26066","nofollow":false},{"id":11976,"name":"Air pollution","url":"https://www.academia.edu/Documents/in/Air_pollution?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066"},{"id":181597,"name":"Root-Mean Square Error","url":"https://www.academia.edu/Documents/in/Root-Mean_Square_Error?f_ri=26066"},{"id":200998,"name":"Feedforward Neural Network","url":"https://www.academia.edu/Documents/in/Feedforward_Neural_Network?f_ri=26066"},{"id":216113,"name":"Atmospheric pollution","url":"https://www.academia.edu/Documents/in/Atmospheric_pollution?f_ri=26066"},{"id":406051,"name":"Regression Model","url":"https://www.academia.edu/Documents/in/Regression_Model?f_ri=26066"},{"id":457266,"name":"Back Propagation Neural Network","url":"https://www.academia.edu/Documents/in/Back_Propagation_Neural_Network?f_ri=26066"},{"id":525017,"name":"Multivariate Regression","url":"https://www.academia.edu/Documents/in/Multivariate_Regression?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_69403539" data-work_id="69403539" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/69403539/An_efficient_neuro_fuzzy_speed_controller_for_large_industrial_DC_motor_drives">An efficient neuro-fuzzy speed controller for large industrial DC motor drives</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/69403539" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ab7d51c31ec806c535a00caa897291c5" rel="nofollow" data-download="{&quot;attachment_id&quot;:79515778,&quot;asset_id&quot;:69403539,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/79515778/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="204745163" href="https://independent.academia.edu/AbdullaIsmail9">Abdulla Ismail</a><script data-card-contents-for-user="204745163" type="text/json">{"id":204745163,"first_name":"Abdulla","last_name":"Ismail","domain_name":"independent","page_name":"AbdullaIsmail9","display_name":"Abdulla Ismail","profile_url":"https://independent.academia.edu/AbdullaIsmail9?f_ri=26066","photo":"https://0.academia-photos.com/204745163/65455138/53791826/s65_abdulla.ismail.png"}</script></span></span></li><li class="js-paper-rank-work_69403539 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="69403539"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 69403539, container: ".js-paper-rank-work_69403539", }); });</script></li><li class="js-percentile-work_69403539 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69403539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_69403539"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_69403539 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="69403539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69403539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69403539]").text(description); $(".js-view-count-work_69403539").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_69403539").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="69403539"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="25122" href="https://www.academia.edu/Documents/in/Energy_efficiency">Energy efficiency</a>,&nbsp;<script data-card-contents-for-ri="25122" type="text/json">{"id":25122,"name":"Energy efficiency","url":"https://www.academia.edu/Documents/in/Energy_efficiency?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=69403539]'), work: {"id":69403539,"title":"An efficient neuro-fuzzy speed controller for large industrial DC motor drives","created_at":"2022-01-25T00:37:17.799-08:00","url":"https://www.academia.edu/69403539/An_efficient_neuro_fuzzy_speed_controller_for_large_industrial_DC_motor_drives?f_ri=26066","dom_id":"work_69403539","summary":null,"downloadable_attachments":[{"id":79515778,"asset_id":69403539,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":204745163,"first_name":"Abdulla","last_name":"Ismail","domain_name":"independent","page_name":"AbdullaIsmail9","display_name":"Abdulla Ismail","profile_url":"https://independent.academia.edu/AbdullaIsmail9?f_ri=26066","photo":"https://0.academia-photos.com/204745163/65455138/53791826/s65_abdulla.ismail.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":25122,"name":"Energy efficiency","url":"https://www.academia.edu/Documents/in/Energy_efficiency?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":31812,"name":"Fuzzy Control","url":"https://www.academia.edu/Documents/in/Fuzzy_Control?f_ri=26066"},{"id":72415,"name":"Power Generation","url":"https://www.academia.edu/Documents/in/Power_Generation?f_ri=26066"},{"id":90025,"name":"Tracking","url":"https://www.academia.edu/Documents/in/Tracking?f_ri=26066"},{"id":137699,"name":"Power Control","url":"https://www.academia.edu/Documents/in/Power_Control?f_ri=26066"},{"id":140251,"name":"Dc Motor","url":"https://www.academia.edu/Documents/in/Dc_Motor?f_ri=26066"},{"id":459384,"name":"Energy efficient","url":"https://www.academia.edu/Documents/in/Energy_efficient?f_ri=26066"},{"id":622093,"name":"Energy Efficiency","url":"https://www.academia.edu/Documents/in/Energy_Efficiency-1?f_ri=26066"},{"id":662255,"name":"Neuro Fuzzy","url":"https://www.academia.edu/Documents/in/Neuro_Fuzzy?f_ri=26066"},{"id":1249261,"name":"Speed Control","url":"https://www.academia.edu/Documents/in/Speed_Control?f_ri=26066"},{"id":3095556,"name":"permanent magnet","url":"https://www.academia.edu/Documents/in/permanent_magnet?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_65868556" data-work_id="65868556" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/65868556/Knowledge_recovery_for_continental_scale_mineral_exploration_by_neural_networks">Knowledge recovery for continental-scale mineral exploration by neural networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_65868556" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM&amp;#x27;s GIS ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/65868556" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="20ca5a4f213d1f06754b288581f82e06" rel="nofollow" data-download="{&quot;attachment_id&quot;:77279061,&quot;asset_id&quot;:65868556,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77279061/download_file?st=MTczMzI2MTE3Miw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="43588622" href="https://independent.academia.edu/DanielCassard">Daniel Cassard</a><script data-card-contents-for-user="43588622" type="text/json">{"id":43588622,"first_name":"Daniel","last_name":"Cassard","domain_name":"independent","page_name":"DanielCassard","display_name":"Daniel Cassard","profile_url":"https://independent.academia.edu/DanielCassard?f_ri=26066","photo":"https://0.academia-photos.com/43588622/168857927/158825575/s65_daniel.cassard.png"}</script></span></span></li><li class="js-paper-rank-work_65868556 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="65868556"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 65868556, container: ".js-paper-rank-work_65868556", }); });</script></li><li class="js-percentile-work_65868556 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65868556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_65868556"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_65868556 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="65868556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65868556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65868556]").text(description); $(".js-view-count-work_65868556").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_65868556").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="65868556"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="428" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a>,&nbsp;<script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2216" href="https://www.academia.edu/Documents/in/Natural_Resources">Natural Resources</a>,&nbsp;<script data-card-contents-for-ri="2216" type="text/json">{"id":2216,"name":"Natural Resources","url":"https://www.academia.edu/Documents/in/Natural_Resources?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=65868556]'), work: {"id":65868556,"title":"Knowledge recovery for continental-scale mineral exploration by neural networks","created_at":"2021-12-24T08:01:55.545-08:00","url":"https://www.academia.edu/65868556/Knowledge_recovery_for_continental_scale_mineral_exploration_by_neural_networks?f_ri=26066","dom_id":"work_65868556","summary":"This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM\u0026#x27;s GIS ...","downloadable_attachments":[{"id":77279061,"asset_id":65868556,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":43588622,"first_name":"Daniel","last_name":"Cassard","domain_name":"independent","page_name":"DanielCassard","display_name":"Daniel Cassard","profile_url":"https://independent.academia.edu/DanielCassard?f_ri=26066","photo":"https://0.academia-photos.com/43588622/168857927/158825575/s65_daniel.cassard.png"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=26066","nofollow":false},{"id":2216,"name":"Natural Resources","url":"https://www.academia.edu/Documents/in/Natural_Resources?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":70416,"name":"Mineral exploration","url":"https://www.academia.edu/Documents/in/Mineral_exploration?f_ri=26066"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification?f_ri=26066"},{"id":146671,"name":"Mineral Resources","url":"https://www.academia.edu/Documents/in/Mineral_Resources?f_ri=26066"},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge?f_ri=26066"},{"id":238159,"name":"Multilayer Perceptron","url":"https://www.academia.edu/Documents/in/Multilayer_Perceptron?f_ri=26066"},{"id":264064,"name":"Knowledge Extraction","url":"https://www.academia.edu/Documents/in/Knowledge_Extraction?f_ri=26066"},{"id":277231,"name":"Mineralization","url":"https://www.academia.edu/Documents/in/Mineralization?f_ri=26066"},{"id":358012,"name":"Metallogeny","url":"https://www.academia.edu/Documents/in/Metallogeny?f_ri=26066"},{"id":1175796,"name":"Base Metals","url":"https://www.academia.edu/Documents/in/Base_Metals?f_ri=26066"},{"id":1211138,"name":"Geographic Information System","url":"https://www.academia.edu/Documents/in/Geographic_Information_System?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":1213131,"name":"Geographic Information Systems","url":"https://www.academia.edu/Documents/in/Geographic_Information_Systems?f_ri=26066"},{"id":1863511,"name":"Optimal Brain Damage","url":"https://www.academia.edu/Documents/in/Optimal_Brain_Damage?f_ri=26066"},{"id":1957240,"name":"ENVIRONMENTAL SCIENCE AND MANAGEMENT","url":"https://www.academia.edu/Documents/in/ENVIRONMENTAL_SCIENCE_AND_MANAGEMENT?f_ri=26066"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System?f_ri=26066"},{"id":2715276,"name":"Nonrenewable Resources","url":"https://www.academia.edu/Documents/in/Nonrenewable_Resources?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_54229101" data-work_id="54229101" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/54229101/Modeling_individual_tree_mortality_for_Austrian_forest_species">Modeling individual tree mortality for Austrian forest species</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/54229101" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ce4b771d542fef593613cd60e02a084a" rel="nofollow" data-download="{&quot;attachment_id&quot;:70699829,&quot;asset_id&quot;:54229101,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/70699829/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="188067020" href="https://independent.academia.edu/HubertSterba">Hubert Sterba</a><script data-card-contents-for-user="188067020" type="text/json">{"id":188067020,"first_name":"Hubert","last_name":"Sterba","domain_name":"independent","page_name":"HubertSterba","display_name":"Hubert Sterba","profile_url":"https://independent.academia.edu/HubertSterba?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_54229101 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="54229101"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 54229101, container: ".js-paper-rank-work_54229101", }); });</script></li><li class="js-percentile-work_54229101 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 54229101; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_54229101"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_54229101 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="54229101"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 54229101; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=54229101]").text(description); $(".js-view-count-work_54229101").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_54229101").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="54229101"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2923" href="https://www.academia.edu/Documents/in/Methodology">Methodology</a>,&nbsp;<script data-card-contents-for-ri="2923" type="text/json">{"id":2923,"name":"Methodology","url":"https://www.academia.edu/Documents/in/Methodology?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="23890" href="https://www.academia.edu/Documents/in/Comparative_Study">Comparative Study</a>,&nbsp;<script data-card-contents-for-ri="23890" type="text/json">{"id":23890,"name":"Comparative Study","url":"https://www.academia.edu/Documents/in/Comparative_Study?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="39920" href="https://www.academia.edu/Documents/in/Parameter_estimation">Parameter estimation</a><script data-card-contents-for-ri="39920" type="text/json">{"id":39920,"name":"Parameter estimation","url":"https://www.academia.edu/Documents/in/Parameter_estimation?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=54229101]'), work: {"id":54229101,"title":"Modeling individual tree mortality for Austrian forest species","created_at":"2021-09-30T02:49:24.587-07:00","url":"https://www.academia.edu/54229101/Modeling_individual_tree_mortality_for_Austrian_forest_species?f_ri=26066","dom_id":"work_54229101","summary":null,"downloadable_attachments":[{"id":70699829,"asset_id":54229101,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":188067020,"first_name":"Hubert","last_name":"Sterba","domain_name":"independent","page_name":"HubertSterba","display_name":"Hubert Sterba","profile_url":"https://independent.academia.edu/HubertSterba?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2923,"name":"Methodology","url":"https://www.academia.edu/Documents/in/Methodology?f_ri=26066","nofollow":false},{"id":23890,"name":"Comparative Study","url":"https://www.academia.edu/Documents/in/Comparative_Study?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":39920,"name":"Parameter estimation","url":"https://www.academia.edu/Documents/in/Parameter_estimation?f_ri=26066","nofollow":false},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences?f_ri=26066"},{"id":54961,"name":"Growth","url":"https://www.academia.edu/Documents/in/Growth?f_ri=26066"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences?f_ri=26066"},{"id":87364,"name":"Maximum Likelihood","url":"https://www.academia.edu/Documents/in/Maximum_Likelihood?f_ri=26066"},{"id":218692,"name":"Oak","url":"https://www.academia.edu/Documents/in/Oak?f_ri=26066"},{"id":479067,"name":"Pinus sylvestris","url":"https://www.academia.edu/Documents/in/Pinus_sylvestris?f_ri=26066"},{"id":576520,"name":"Picea abies","url":"https://www.academia.edu/Documents/in/Picea_abies?f_ri=26066"},{"id":661097,"name":"Scots Pine","url":"https://www.academia.edu/Documents/in/Scots_Pine?f_ri=26066"},{"id":700960,"name":"Norway Spruce","url":"https://www.academia.edu/Documents/in/Norway_Spruce?f_ri=26066"},{"id":1120447,"name":"Growth Model","url":"https://www.academia.edu/Documents/in/Growth_Model?f_ri=26066"},{"id":1448196,"name":"National forest inventory","url":"https://www.academia.edu/Documents/in/National_forest_inventory?f_ri=26066"},{"id":1680434,"name":"Mortality rate","url":"https://www.academia.edu/Documents/in/Mortality_rate?f_ri=26066"},{"id":2102157,"name":"Maximum Likelihood Method","url":"https://www.academia.edu/Documents/in/Maximum_Likelihood_Method?f_ri=26066"},{"id":2277560,"name":"Basal Area","url":"https://www.academia.edu/Documents/in/Basal_Area?f_ri=26066"},{"id":3130520,"name":"European beech","url":"https://www.academia.edu/Documents/in/European_beech?f_ri=26066"},{"id":3466936,"name":"Logistic Equation","url":"https://www.academia.edu/Documents/in/Logistic_Equation?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_23984056" data-work_id="23984056" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/23984056/Knowledge_recovery_for_continental_scale_mineral_exploration_by_neural_networks">Knowledge recovery for continental-scale mineral exploration by neural networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_23984056" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM&amp;#x27;s GIS ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/23984056" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d603c8af1c78fe319ae1f40e09590171" rel="nofollow" data-download="{&quot;attachment_id&quot;:44375158,&quot;asset_id&quot;:23984056,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44375158/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="46337580" href="https://uu.academia.edu/AndorLips">Andor Lips</a><script data-card-contents-for-user="46337580" type="text/json">{"id":46337580,"first_name":"Andor","last_name":"Lips","domain_name":"uu","page_name":"AndorLips","display_name":"Andor Lips","profile_url":"https://uu.academia.edu/AndorLips?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_23984056 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="23984056"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 23984056, container: ".js-paper-rank-work_23984056", }); });</script></li><li class="js-percentile-work_23984056 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23984056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_23984056"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_23984056 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="23984056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23984056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23984056]").text(description); $(".js-view-count-work_23984056").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_23984056").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="23984056"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2216" href="https://www.academia.edu/Documents/in/Natural_Resources">Natural Resources</a>,&nbsp;<script data-card-contents-for-ri="2216" type="text/json">{"id":2216,"name":"Natural Resources","url":"https://www.academia.edu/Documents/in/Natural_Resources?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="70416" href="https://www.academia.edu/Documents/in/Mineral_exploration">Mineral exploration</a>,&nbsp;<script data-card-contents-for-ri="70416" type="text/json">{"id":70416,"name":"Mineral exploration","url":"https://www.academia.edu/Documents/in/Mineral_exploration?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="85879" href="https://www.academia.edu/Documents/in/Variable_Selection">Variable Selection</a><script data-card-contents-for-ri="85879" type="text/json">{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=23984056]'), work: {"id":23984056,"title":"Knowledge recovery for continental-scale mineral exploration by neural networks","created_at":"2016-04-03T23:37:57.557-07:00","url":"https://www.academia.edu/23984056/Knowledge_recovery_for_continental_scale_mineral_exploration_by_neural_networks?f_ri=26066","dom_id":"work_23984056","summary":"This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM\u0026#x27;s GIS ...","downloadable_attachments":[{"id":44375158,"asset_id":23984056,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":46337580,"first_name":"Andor","last_name":"Lips","domain_name":"uu","page_name":"AndorLips","display_name":"Andor Lips","profile_url":"https://uu.academia.edu/AndorLips?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2216,"name":"Natural Resources","url":"https://www.academia.edu/Documents/in/Natural_Resources?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":70416,"name":"Mineral exploration","url":"https://www.academia.edu/Documents/in/Mineral_exploration?f_ri=26066","nofollow":false},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection?f_ri=26066","nofollow":false},{"id":197861,"name":"Domain Knowledge","url":"https://www.academia.edu/Documents/in/Domain_Knowledge?f_ri=26066"},{"id":238159,"name":"Multilayer Perceptron","url":"https://www.academia.edu/Documents/in/Multilayer_Perceptron?f_ri=26066"},{"id":264064,"name":"Knowledge Extraction","url":"https://www.academia.edu/Documents/in/Knowledge_Extraction?f_ri=26066"},{"id":1211138,"name":"Geographic Information System","url":"https://www.academia.edu/Documents/in/Geographic_Information_System?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":1863511,"name":"Optimal Brain Damage","url":"https://www.academia.edu/Documents/in/Optimal_Brain_Damage?f_ri=26066"},{"id":1957240,"name":"ENVIRONMENTAL SCIENCE AND MANAGEMENT","url":"https://www.academia.edu/Documents/in/ENVIRONMENTAL_SCIENCE_AND_MANAGEMENT?f_ri=26066"},{"id":2213585,"name":"Information System","url":"https://www.academia.edu/Documents/in/Information_System?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_10601601" data-work_id="10601601" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/10601601/A_comparison_of_SOM_neural_network_and_hierarchical_clustering_methods">A comparison of SOM neural network and hierarchical clustering methods</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/10601601" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d8967f8a42d3f0c3ff5b13a423d4733a" rel="nofollow" data-download="{&quot;attachment_id&quot;:47270100,&quot;asset_id&quot;:10601601,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47270100/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="25909107" href="https://independent.academia.edu/DavidWest14">David West</a><script data-card-contents-for-user="25909107" type="text/json">{"id":25909107,"first_name":"David","last_name":"West","domain_name":"independent","page_name":"DavidWest14","display_name":"David West","profile_url":"https://independent.academia.edu/DavidWest14?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_10601601 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="10601601"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 10601601, container: ".js-paper-rank-work_10601601", }); });</script></li><li class="js-percentile-work_10601601 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10601601; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_10601601"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_10601601 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="10601601"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10601601; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10601601]").text(description); $(".js-view-count-work_10601601").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_10601601").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="10601601"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="28235" href="https://www.academia.edu/Documents/in/Multidisciplinary">Multidisciplinary</a>,&nbsp;<script data-card-contents-for-ri="28235" type="text/json">{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="119456" href="https://www.academia.edu/Documents/in/Unsupervised_Learning">Unsupervised Learning</a>,&nbsp;<script data-card-contents-for-ri="119456" type="text/json">{"id":119456,"name":"Unsupervised Learning","url":"https://www.academia.edu/Documents/in/Unsupervised_Learning?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="131237" href="https://www.academia.edu/Documents/in/Cluster_Analysis">Cluster Analysis</a><script data-card-contents-for-ri="131237" type="text/json">{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=10601601]'), work: {"id":10601601,"title":"A comparison of SOM neural network and hierarchical clustering methods","created_at":"2015-02-07T08:31:23.531-08:00","url":"https://www.academia.edu/10601601/A_comparison_of_SOM_neural_network_and_hierarchical_clustering_methods?f_ri=26066","dom_id":"work_10601601","summary":null,"downloadable_attachments":[{"id":47270100,"asset_id":10601601,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":25909107,"first_name":"David","last_name":"West","domain_name":"independent","page_name":"DavidWest14","display_name":"David West","profile_url":"https://independent.academia.edu/DavidWest14?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066","nofollow":false},{"id":119456,"name":"Unsupervised Learning","url":"https://www.academia.edu/Documents/in/Unsupervised_Learning?f_ri=26066","nofollow":false},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis?f_ri=26066","nofollow":false},{"id":247780,"name":"Hierarchical Clustering","url":"https://www.academia.edu/Documents/in/Hierarchical_Clustering?f_ri=26066"},{"id":557803,"name":"Self Organized Map","url":"https://www.academia.edu/Documents/in/Self_Organized_Map?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_80095422" data-work_id="80095422" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/80095422/Making_decisions_on_brain_tumor_diagnosis_by_soft_computing_techniques">Making decisions on brain tumor diagnosis by soft computing techniques</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/80095422" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="dfdcd061b79bc6d55a61053dad1674d9" rel="nofollow" data-download="{&quot;attachment_id&quot;:86591416,&quot;asset_id&quot;:80095422,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86591416/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="39160449" href="https://independent.academia.edu/MARIAVICTORIALOPEZLOPEZ">MARIA VICTORIA LOPEZ LOPEZ</a><script data-card-contents-for-user="39160449" type="text/json">{"id":39160449,"first_name":"MARIA VICTORIA","last_name":"LOPEZ LOPEZ","domain_name":"independent","page_name":"MARIAVICTORIALOPEZLOPEZ","display_name":"MARIA VICTORIA LOPEZ LOPEZ","profile_url":"https://independent.academia.edu/MARIAVICTORIALOPEZLOPEZ?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_80095422 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="80095422"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 80095422, container: ".js-paper-rank-work_80095422", }); });</script></li><li class="js-percentile-work_80095422 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80095422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_80095422"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_80095422 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="80095422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80095422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80095422]").text(description); $(".js-view-count-work_80095422").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_80095422").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="80095422"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">10</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2141" href="https://www.academia.edu/Documents/in/Signal_Processing">Signal Processing</a><script data-card-contents-for-ri="2141" type="text/json">{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=80095422]'), work: {"id":80095422,"title":"Making decisions on brain tumor diagnosis by soft computing techniques","created_at":"2022-05-28T00:32:59.441-07:00","url":"https://www.academia.edu/80095422/Making_decisions_on_brain_tumor_diagnosis_by_soft_computing_techniques?f_ri=26066","dom_id":"work_80095422","summary":null,"downloadable_attachments":[{"id":86591416,"asset_id":80095422,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":39160449,"first_name":"MARIA VICTORIA","last_name":"LOPEZ LOPEZ","domain_name":"independent","page_name":"MARIAVICTORIALOPEZLOPEZ","display_name":"MARIA VICTORIA LOPEZ LOPEZ","profile_url":"https://independent.academia.edu/MARIAVICTORIALOPEZLOPEZ?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=26066","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing?f_ri=26066","nofollow":false},{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":51883,"name":"Brain Tumor","url":"https://www.academia.edu/Documents/in/Brain_Tumor?f_ri=26066"},{"id":91262,"name":"Wavelet Transform","url":"https://www.academia.edu/Documents/in/Wavelet_Transform?f_ri=26066"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine?f_ri=26066"},{"id":203010,"name":"Human Brain","url":"https://www.academia.edu/Documents/in/Human_Brain?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_78221416" data-work_id="78221416" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/78221416/A_precise_algorithm_for_non_integer_harmonics_analysis_based_on_FFT_and_neural_network">A precise algorithm for non-integer harmonics analysis based on FFT and neural network</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/78221416" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3a2bdbe49d5550e0b1b0a8b196deeadc" rel="nofollow" data-download="{&quot;attachment_id&quot;:85344172,&quot;asset_id&quot;:78221416,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85344172/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="40766396" href="https://bishops.academia.edu/LorettaCzernis">Loretta Czernis</a><script data-card-contents-for-user="40766396" type="text/json">{"id":40766396,"first_name":"Loretta","last_name":"Czernis","domain_name":"bishops","page_name":"LorettaCzernis","display_name":"Loretta Czernis","profile_url":"https://bishops.academia.edu/LorettaCzernis?f_ri=26066","photo":"https://0.academia-photos.com/40766396/110651425/99900288/s65_loretta.czernis.jpeg"}</script></span></span></li><li class="js-paper-rank-work_78221416 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="78221416"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 78221416, container: ".js-paper-rank-work_78221416", }); });</script></li><li class="js-percentile-work_78221416 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78221416; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_78221416"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_78221416 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="78221416"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78221416; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78221416]").text(description); $(".js-view-count-work_78221416").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_78221416").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="78221416"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="374" href="https://www.academia.edu/Documents/in/Harmonic_Analysis">Harmonic Analysis</a>,&nbsp;<script data-card-contents-for-ri="374" type="text/json">{"id":374,"name":"Harmonic Analysis","url":"https://www.academia.edu/Documents/in/Harmonic_Analysis?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26817" href="https://www.academia.edu/Documents/in/Algorithm">Algorithm</a><script data-card-contents-for-ri="26817" type="text/json">{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=78221416]'), work: {"id":78221416,"title":"A precise algorithm for non-integer harmonics analysis based on FFT and neural network","created_at":"2022-05-02T06:25:21.445-07:00","url":"https://www.academia.edu/78221416/A_precise_algorithm_for_non_integer_harmonics_analysis_based_on_FFT_and_neural_network?f_ri=26066","dom_id":"work_78221416","summary":null,"downloadable_attachments":[{"id":85344172,"asset_id":78221416,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":40766396,"first_name":"Loretta","last_name":"Czernis","domain_name":"bishops","page_name":"LorettaCzernis","display_name":"Loretta Czernis","profile_url":"https://bishops.academia.edu/LorettaCzernis?f_ri=26066","photo":"https://0.academia-photos.com/40766396/110651425/99900288/s65_loretta.czernis.jpeg"}],"research_interests":[{"id":374,"name":"Harmonic Analysis","url":"https://www.academia.edu/Documents/in/Harmonic_Analysis?f_ri=26066","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm?f_ri=26066","nofollow":false},{"id":166907,"name":"Convergence Rate","url":"https://www.academia.edu/Documents/in/Convergence_Rate?f_ri=26066"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time?f_ri=26066"},{"id":588226,"name":"Fast Fourier Transform","url":"https://www.academia.edu/Documents/in/Fast_Fourier_Transform?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_76485962" data-work_id="76485962" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/76485962/Identification_of_Liquid_Liquid_Flow_Pattern_in_a_Horizontal_Pipe_Using_Artificial_Neural_Networks">Identification of Liquid-Liquid Flow Pattern in a Horizontal Pipe Using Artificial Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Identification of flow pattern during the simultaneous flow of two immiscible liquids requires knowledge of the flow rate of each fluid as well as knowledge of other physical parameters like conduit inclination, pipe material, pipe... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_76485962" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Identification of flow pattern during the simultaneous flow of two immiscible liquids requires knowledge of the flow rate of each fluid as well as knowledge of other physical parameters like conduit inclination, pipe material, pipe diameter, viscosity of the oil, wetting characteristics of the pipe, design of the entry mixer, and fluid-fluid interfacial tension. This article presents an artificial neural</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/76485962" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="60934654" href="https://independent.academia.edu/GargiDas8">Gargi Das</a><script data-card-contents-for-user="60934654" type="text/json">{"id":60934654,"first_name":"Gargi","last_name":"Das","domain_name":"independent","page_name":"GargiDas8","display_name":"Gargi Das","profile_url":"https://independent.academia.edu/GargiDas8?f_ri=26066","photo":"https://0.academia-photos.com/60934654/16807274/17060111/s65_gargi.das.jpg"}</script></span></span></li><li class="js-paper-rank-work_76485962 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="76485962"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 76485962, container: ".js-paper-rank-work_76485962", }); });</script></li><li class="js-percentile-work_76485962 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76485962; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_76485962"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_76485962 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="76485962"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76485962; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76485962]").text(description); $(".js-view-count-work_76485962").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_76485962").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="76485962"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="72" href="https://www.academia.edu/Documents/in/Chemical_Engineering">Chemical Engineering</a>,&nbsp;<script data-card-contents-for-ri="72" type="text/json">{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5020" href="https://www.academia.edu/Documents/in/Liquid_Crystals">Liquid Crystals</a>,&nbsp;<script data-card-contents-for-ri="5020" type="text/json">{"id":5020,"name":"Liquid Crystals","url":"https://www.academia.edu/Documents/in/Liquid_Crystals?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a><script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=76485962]'), work: {"id":76485962,"title":"Identification of Liquid-Liquid Flow Pattern in a Horizontal Pipe Using Artificial Neural Networks","created_at":"2022-04-14T22:38:49.624-07:00","url":"https://www.academia.edu/76485962/Identification_of_Liquid_Liquid_Flow_Pattern_in_a_Horizontal_Pipe_Using_Artificial_Neural_Networks?f_ri=26066","dom_id":"work_76485962","summary":"Identification of flow pattern during the simultaneous flow of two immiscible liquids requires knowledge of the flow rate of each fluid as well as knowledge of other physical parameters like conduit inclination, pipe material, pipe diameter, viscosity of the oil, wetting characteristics of the pipe, design of the entry mixer, and fluid-fluid interfacial tension. This article presents an artificial neural","downloadable_attachments":[],"ordered_authors":[{"id":60934654,"first_name":"Gargi","last_name":"Das","domain_name":"independent","page_name":"GargiDas8","display_name":"Gargi Das","profile_url":"https://independent.academia.edu/GargiDas8?f_ri=26066","photo":"https://0.academia-photos.com/60934654/16807274/17060111/s65_gargi.das.jpg"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering?f_ri=26066","nofollow":false},{"id":5020,"name":"Liquid Crystals","url":"https://www.academia.edu/Documents/in/Liquid_Crystals?f_ri=26066","nofollow":false},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer?f_ri=26066"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":30561,"name":"Experimental Research","url":"https://www.academia.edu/Documents/in/Experimental_Research?f_ri=26066"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=26066"},{"id":63054,"name":"ANN","url":"https://www.academia.edu/Documents/in/ANN?f_ri=26066"},{"id":165199,"name":"Interfacial Tension","url":"https://www.academia.edu/Documents/in/Interfacial_Tension?f_ri=26066"},{"id":394912,"name":"Flow Regime","url":"https://www.academia.edu/Documents/in/Flow_Regime?f_ri=26066"},{"id":611713,"name":"Regime transition","url":"https://www.academia.edu/Documents/in/Regime_transition?f_ri=26066"},{"id":891612,"name":"Flow Pattern","url":"https://www.academia.edu/Documents/in/Flow_Pattern?f_ri=26066"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate?f_ri=26066"},{"id":1161306,"name":"Levenberg Marquardt","url":"https://www.academia.edu/Documents/in/Levenberg_Marquardt?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":1294768,"name":"Chemical Engineering Communications","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Communications?f_ri=26066"},{"id":2772951,"name":"Horizontal","url":"https://www.academia.edu/Documents/in/Horizontal?f_ri=26066"},{"id":2821309,"name":"learning algorithm","url":"https://www.academia.edu/Documents/in/learning_algorithm?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_76113544" data-work_id="76113544" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/76113544/Generating_dynamic_fuzzy_models_for_prediction_problems">Generating dynamic fuzzy models for prediction problems</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/76113544" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bb9ff4a26657daecfe7e52d179fe05fb" rel="nofollow" data-download="{&quot;attachment_id&quot;:83787205,&quot;asset_id&quot;:76113544,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/83787205/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="210555091" href="https://independent.academia.edu/JuanContreras507">Juan Contreras</a><script data-card-contents-for-user="210555091" type="text/json">{"id":210555091,"first_name":"Juan","last_name":"Contreras","domain_name":"independent","page_name":"JuanContreras507","display_name":"Juan Contreras","profile_url":"https://independent.academia.edu/JuanContreras507?f_ri=26066","photo":"https://0.academia-photos.com/210555091/70136313/58548127/s65_juan.contreras.jpeg"}</script></span></span></li><li class="js-paper-rank-work_76113544 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="76113544"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 76113544, container: ".js-paper-rank-work_76113544", }); });</script></li><li class="js-percentile-work_76113544 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76113544; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_76113544"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_76113544 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="76113544"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76113544; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76113544]").text(description); $(".js-view-count-work_76113544").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_76113544").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="76113544"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="4456" href="https://www.academia.edu/Documents/in/Time_Series">Time Series</a>,&nbsp;<script data-card-contents-for-ri="4456" type="text/json">{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5026" href="https://www.academia.edu/Documents/in/Genetic_Algorithms">Genetic Algorithms</a>,&nbsp;<script data-card-contents-for-ri="5026" type="text/json">{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5394" href="https://www.academia.edu/Documents/in/Fuzzy_set_theory">Fuzzy set theory</a>,&nbsp;<script data-card-contents-for-ri="5394" type="text/json">{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a><script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=76113544]'), work: {"id":76113544,"title":"Generating dynamic fuzzy models for prediction problems","created_at":"2022-04-11T05:57:16.969-07:00","url":"https://www.academia.edu/76113544/Generating_dynamic_fuzzy_models_for_prediction_problems?f_ri=26066","dom_id":"work_76113544","summary":null,"downloadable_attachments":[{"id":83787205,"asset_id":76113544,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":210555091,"first_name":"Juan","last_name":"Contreras","domain_name":"independent","page_name":"JuanContreras507","display_name":"Juan Contreras","profile_url":"https://independent.academia.edu/JuanContreras507?f_ri=26066","photo":"https://0.academia-photos.com/210555091/70136313/58548127/s65_juan.contreras.jpeg"}],"research_interests":[{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=26066","nofollow":false},{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms?f_ri=26066","nofollow":false},{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":16103,"name":"Fuzzy Systems","url":"https://www.academia.edu/Documents/in/Fuzzy_Systems?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm?f_ri=26066"},{"id":73017,"name":"Nonlinear Systems","url":"https://www.academia.edu/Documents/in/Nonlinear_Systems?f_ri=26066"},{"id":204472,"name":"Predictive models","url":"https://www.academia.edu/Documents/in/Predictive_models?f_ri=26066"},{"id":210005,"name":"Dynamic systems","url":"https://www.academia.edu/Documents/in/Dynamic_systems?f_ri=26066"},{"id":254570,"name":"Interpolation","url":"https://www.academia.edu/Documents/in/Interpolation?f_ri=26066"},{"id":314271,"name":"Fuzzy System","url":"https://www.academia.edu/Documents/in/Fuzzy_System?f_ri=26066"},{"id":366369,"name":"Time Series Forecasting","url":"https://www.academia.edu/Documents/in/Time_Series_Forecasting?f_ri=26066"},{"id":506858,"name":"Nonlinear system","url":"https://www.academia.edu/Documents/in/Nonlinear_system?f_ri=26066"},{"id":634757,"name":"Dynamic Systems","url":"https://www.academia.edu/Documents/in/Dynamic_Systems-1?f_ri=26066"},{"id":780669,"name":"Input Output","url":"https://www.academia.edu/Documents/in/Input_Output?f_ri=26066"},{"id":868912,"name":"Dynamic System","url":"https://www.academia.edu/Documents/in/Dynamic_System?f_ri=26066"},{"id":1327249,"name":"Least Square Method","url":"https://www.academia.edu/Documents/in/Least_Square_Method?f_ri=26066"},{"id":2004933,"name":"Hybrid System","url":"https://www.academia.edu/Documents/in/Hybrid_System?f_ri=26066"},{"id":2595821,"name":"Least squares method","url":"https://www.academia.edu/Documents/in/Least_squares_method?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_69633638" data-work_id="69633638" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/69633638/Offline_Cursive_Handwriting_Recognition_System_based_on_Hybrid_Markov_Model_and_Neural_Networks">Offline Cursive Handwriting Recognition System based on Hybrid Markov Model and Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">An offline cursive handwriting recognition system, based on hybrid of Neural Networks (NN) and Hidden Markov Models (HMM), is described in this paper. Applying SegRec principle, the recognizer does not make hard decision at the character... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_69633638" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">An offline cursive handwriting recognition system, based on hybrid of Neural Networks (NN) and Hidden Markov Models (HMM), is described in this paper. Applying SegRec principle, the recognizer does not make hard decision at the character segmentation process. Instead, it delays the character segmentation to the recognition stage by generating a segmentation graph that describes all possible ways to segment a word into letters. To recognize a word, the NN computes the observation probabilities for each segmentation candidates (SCs) in the segmentation graph. Then, using concatenated letter-HMMs, a likelihood is computed for each word in the lexicon by multiplying the probabilities over the best paths through the graph. We present in detail two approaches to train the word recognizer: 1). character-level training 2). word-level training. The recognition performances of the two systems are discussed. I.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/69633638" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="46ba9831584a88731497a41195340804" rel="nofollow" data-download="{&quot;attachment_id&quot;:79653507,&quot;asset_id&quot;:69633638,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/79653507/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32440316" href="https://univ-nantes.academia.edu/CViardgaudin">C. Viard-gaudin</a><script data-card-contents-for-user="32440316" type="text/json">{"id":32440316,"first_name":"C.","last_name":"Viard-gaudin","domain_name":"univ-nantes","page_name":"CViardgaudin","display_name":"C. Viard-gaudin","profile_url":"https://univ-nantes.academia.edu/CViardgaudin?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_69633638 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="69633638"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 69633638, container: ".js-paper-rank-work_69633638", }); });</script></li><li class="js-percentile-work_69633638 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69633638; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_69633638"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_69633638 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="69633638"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69633638; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69633638]").text(description); $(".js-view-count-work_69633638").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_69633638").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="69633638"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=69633638]'), work: {"id":69633638,"title":"Offline Cursive Handwriting Recognition System based on Hybrid Markov Model and Neural Networks","created_at":"2022-01-27T06:06:38.280-08:00","url":"https://www.academia.edu/69633638/Offline_Cursive_Handwriting_Recognition_System_based_on_Hybrid_Markov_Model_and_Neural_Networks?f_ri=26066","dom_id":"work_69633638","summary":"An offline cursive handwriting recognition system, based on hybrid of Neural Networks (NN) and Hidden Markov Models (HMM), is described in this paper. Applying SegRec principle, the recognizer does not make hard decision at the character segmentation process. Instead, it delays the character segmentation to the recognition stage by generating a segmentation graph that describes all possible ways to segment a word into letters. To recognize a word, the NN computes the observation probabilities for each segmentation candidates (SCs) in the segmentation graph. Then, using concatenated letter-HMMs, a likelihood is computed for each word in the lexicon by multiplying the probabilities over the best paths through the graph. We present in detail two approaches to train the word recognizer: 1). character-level training 2). word-level training. The recognition performances of the two systems are discussed. I.","downloadable_attachments":[{"id":79653507,"asset_id":69633638,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32440316,"first_name":"C.","last_name":"Viard-gaudin","domain_name":"univ-nantes","page_name":"CViardgaudin","display_name":"C. Viard-gaudin","profile_url":"https://univ-nantes.academia.edu/CViardgaudin?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":26870,"name":"Image segmentation","url":"https://www.academia.edu/Documents/in/Image_segmentation?f_ri=26066"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=26066"},{"id":68937,"name":"Hidden Markov Models","url":"https://www.academia.edu/Documents/in/Hidden_Markov_Models?f_ri=26066"},{"id":108243,"name":"Character Segmentation","url":"https://www.academia.edu/Documents/in/Character_Segmentation?f_ri=26066"},{"id":143539,"name":"hidden Markov model","url":"https://www.academia.edu/Documents/in/hidden_Markov_model?f_ri=26066"},{"id":167397,"name":"Image recognition","url":"https://www.academia.edu/Documents/in/Image_recognition?f_ri=26066"},{"id":185625,"name":"Handwriting Recognition","url":"https://www.academia.edu/Documents/in/Handwriting_Recognition?f_ri=26066"},{"id":195152,"name":"Hmm","url":"https://www.academia.edu/Documents/in/Hmm?f_ri=26066"},{"id":2050770,"name":"Markov model","url":"https://www.academia.edu/Documents/in/Markov_model?f_ri=26066"},{"id":3142462,"name":"Neural nets","url":"https://www.academia.edu/Documents/in/Neural_nets?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_68660215" data-work_id="68660215" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/68660215/Monitoring_students_actions_and_using_teachers_expertise_in_implementing_and_evaluating_the_neural_network_based_fuzzy_diagnostic_model">Monitoring students&#39; actions and using teachers&#39; expertise in implementing and evaluating the neural network-based fuzzy diagnostic model</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this paper, the implementation of a neural network-based fuzzy modeling approach to assess aspects of students&amp;#x27; learning style in the discovery learning environment “Vectors in Physics and Mathematics” is presented. Fuzzy logic is... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_68660215" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this paper, the implementation of a neural network-based fuzzy modeling approach to assess aspects of students&amp;#x27; learning style in the discovery learning environment “Vectors in Physics and Mathematics” is presented. Fuzzy logic is used to provide a linguistic description of ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/68660215" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bc27b0e5518c2a337ac1d28a589ab45a" rel="nofollow" data-download="{&quot;attachment_id&quot;:79064889,&quot;asset_id&quot;:68660215,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/79064889/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="131536458" href="https://independent.academia.edu/%CE%9C%CE%B1%CF%81%CE%AF%CE%B1%CE%A3%CE%B1%CE%BC%CE%B1%CF%81%CE%AC%CE%BA%CE%BF%CF%85">Μαρία Σαμαράκου</a><script data-card-contents-for-user="131536458" type="text/json">{"id":131536458,"first_name":"Μαρία","last_name":"Σαμαράκου","domain_name":"independent","page_name":"ΜαρίαΣαμαράκου","display_name":"Μαρία Σαμαράκου","profile_url":"https://independent.academia.edu/%CE%9C%CE%B1%CF%81%CE%AF%CE%B1%CE%A3%CE%B1%CE%BC%CE%B1%CF%81%CE%AC%CE%BA%CE%BF%CF%85?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_68660215 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="68660215"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 68660215, container: ".js-paper-rank-work_68660215", }); });</script></li><li class="js-percentile-work_68660215 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 68660215; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_68660215"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_68660215 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="68660215"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 68660215; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=68660215]").text(description); $(".js-view-count-work_68660215").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_68660215").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="68660215"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4165" href="https://www.academia.edu/Documents/in/Fuzzy_Logic">Fuzzy Logic</a>,&nbsp;<script data-card-contents-for-ri="4165" type="text/json">{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=68660215]'), work: {"id":68660215,"title":"Monitoring students' actions and using teachers' expertise in implementing and evaluating the neural network-based fuzzy diagnostic model","created_at":"2022-01-19T00:41:06.080-08:00","url":"https://www.academia.edu/68660215/Monitoring_students_actions_and_using_teachers_expertise_in_implementing_and_evaluating_the_neural_network_based_fuzzy_diagnostic_model?f_ri=26066","dom_id":"work_68660215","summary":"In this paper, the implementation of a neural network-based fuzzy modeling approach to assess aspects of students\u0026#x27; learning style in the discovery learning environment “Vectors in Physics and Mathematics” is presented. Fuzzy logic is used to provide a linguistic description of ...","downloadable_attachments":[{"id":79064889,"asset_id":68660215,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":131536458,"first_name":"Μαρία","last_name":"Σαμαράκου","domain_name":"independent","page_name":"ΜαρίαΣαμαράκου","display_name":"Μαρία Σαμαράκου","profile_url":"https://independent.academia.edu/%CE%9C%CE%B1%CF%81%CE%AF%CE%B1%CE%A3%CE%B1%CE%BC%CE%B1%CF%81%CE%AC%CE%BA%CE%BF%CF%85?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":35075,"name":"Learning Style","url":"https://www.academia.edu/Documents/in/Learning_Style?f_ri=26066"},{"id":65647,"name":"Learning Environment","url":"https://www.academia.edu/Documents/in/Learning_Environment?f_ri=26066"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences?f_ri=26066"},{"id":131640,"name":"Student Learning","url":"https://www.academia.edu/Documents/in/Student_Learning?f_ri=26066"},{"id":214743,"name":"Intelligent Learning Environment","url":"https://www.academia.edu/Documents/in/Intelligent_Learning_Environment?f_ri=26066"},{"id":309141,"name":"Discovery Learning","url":"https://www.academia.edu/Documents/in/Discovery_Learning?f_ri=26066"},{"id":423532,"name":"Secondary School","url":"https://www.academia.edu/Documents/in/Secondary_School?f_ri=26066"},{"id":2968128,"name":"Fuzzy Model","url":"https://www.academia.edu/Documents/in/Fuzzy_Model?f_ri=26066"},{"id":4039832,"name":"Subjective Assessment","url":"https://www.academia.edu/Documents/in/Subjective_Assessment?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_68613499" data-work_id="68613499" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/68613499/Neural_network_based_light_attenuation_model_for_monitoring_seagrass_population_in_the_Indian_river_lagoon">Neural network-based light attenuation model for monitoring seagrass population in the Indian river lagoon</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/68613499" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4e78cba2ee2d3b917d208465ac6ef488" rel="nofollow" data-download="{&quot;attachment_id&quot;:79035253,&quot;asset_id&quot;:68613499,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/79035253/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="140645753" href="https://independent.academia.edu/LoriMorris7">Lori Morris</a><script data-card-contents-for-user="140645753" type="text/json">{"id":140645753,"first_name":"Lori","last_name":"Morris","domain_name":"independent","page_name":"LoriMorris7","display_name":"Lori Morris","profile_url":"https://independent.academia.edu/LoriMorris7?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_68613499 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="68613499"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 68613499, container: ".js-paper-rank-work_68613499", }); });</script></li><li class="js-percentile-work_68613499 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 68613499; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_68613499"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_68613499 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="68613499"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 68613499; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=68613499]").text(description); $(".js-view-count-work_68613499").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_68613499").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="68613499"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">16</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4523" href="https://www.academia.edu/Documents/in/Water_quality">Water quality</a>,&nbsp;<script data-card-contents-for-ri="4523" type="text/json">{"id":4523,"name":"Water quality","url":"https://www.academia.edu/Documents/in/Water_quality?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10408" href="https://www.academia.edu/Documents/in/Support_Vector_Machines">Support Vector Machines</a>,&nbsp;<script data-card-contents-for-ri="10408" type="text/json">{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=68613499]'), work: {"id":68613499,"title":"Neural network-based light attenuation model for monitoring seagrass population in the Indian river lagoon","created_at":"2022-01-18T07:37:55.775-08:00","url":"https://www.academia.edu/68613499/Neural_network_based_light_attenuation_model_for_monitoring_seagrass_population_in_the_Indian_river_lagoon?f_ri=26066","dom_id":"work_68613499","summary":null,"downloadable_attachments":[{"id":79035253,"asset_id":68613499,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":140645753,"first_name":"Lori","last_name":"Morris","domain_name":"independent","page_name":"LoriMorris7","display_name":"Lori Morris","profile_url":"https://independent.academia.edu/LoriMorris7?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":4523,"name":"Water quality","url":"https://www.academia.edu/Documents/in/Water_quality?f_ri=26066","nofollow":false},{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":110391,"name":"Support Vector Regression","url":"https://www.academia.edu/Documents/in/Support_Vector_Regression?f_ri=26066"},{"id":168668,"name":"Species Diversity","url":"https://www.academia.edu/Documents/in/Species_Diversity?f_ri=26066"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine?f_ri=26066"},{"id":622367,"name":"Water Quality","url":"https://www.academia.edu/Documents/in/Water_Quality-1?f_ri=26066"},{"id":631862,"name":"Intelligent Information Systems","url":"https://www.academia.edu/Documents/in/Intelligent_Information_Systems?f_ri=26066"},{"id":645412,"name":"Light Availability","url":"https://www.academia.edu/Documents/in/Light_Availability?f_ri=26066"},{"id":795003,"name":"Linear Regression","url":"https://www.academia.edu/Documents/in/Linear_Regression?f_ri=26066"},{"id":990608,"name":"Linear Regression Model","url":"https://www.academia.edu/Documents/in/Linear_Regression_Model?f_ri=26066"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model?f_ri=26066"},{"id":1914073,"name":"Light Attenuation","url":"https://www.academia.edu/Documents/in/Light_Attenuation?f_ri=26066"},{"id":2070034,"name":"Data Format","url":"https://www.academia.edu/Documents/in/Data_Format?f_ri=26066"},{"id":4009956,"name":"nutrient cycle","url":"https://www.academia.edu/Documents/in/nutrient_cycle?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_66463136" data-work_id="66463136" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/66463136/LR_KFNN_Logistic_Regression_Kernel_Function_Neural_Networks_and_the_GFR_NN_Model_for_Renal_Function_Evaluation">LR-KFNN: Logistic Regression-Kernel Function Neural Networks and the GFR-NN Model for Renal Function Evaluation</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper introduces a novel knowledge based neural network models that incorporate and adapt both existing logistic regression formulas and kernel functions in there structures to improve the learning and adaptation ability of a... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_66463136" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper introduces a novel knowledge based neural network models that incorporate and adapt both existing logistic regression formulas and kernel functions in there structures to improve the learning and adaptation ability of a connectionist model when there is an existing knowledge on the problem in the form of a logistic regression. Different from standard feed-forward neural networks, the proposed</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/66463136" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="179a83a61792abe9036bdfc96607070f" rel="nofollow" data-download="{&quot;attachment_id&quot;:77644134,&quot;asset_id&quot;:66463136,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77644134/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="158086" href="https://aut.academia.edu/NikolaKasabovProfessor">Nikola Kasabov, Professor</a><script data-card-contents-for-user="158086" type="text/json">{"id":158086,"first_name":"Nikola","last_name":"Kasabov, Professor","domain_name":"aut","page_name":"NikolaKasabovProfessor","display_name":"Nikola Kasabov, Professor","profile_url":"https://aut.academia.edu/NikolaKasabovProfessor?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_66463136 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="66463136"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 66463136, container: ".js-paper-rank-work_66463136", }); });</script></li><li class="js-percentile-work_66463136 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66463136; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_66463136"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_66463136 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="66463136"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66463136; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66463136]").text(description); $(".js-view-count-work_66463136").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_66463136").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="66463136"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="32433" href="https://www.academia.edu/Documents/in/Logistic_Regression">Logistic Regression</a>,&nbsp;<script data-card-contents-for-ri="32433" type="text/json">{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="39714" href="https://www.academia.edu/Documents/in/Incremental_learning">Incremental learning</a>,&nbsp;<script data-card-contents-for-ri="39714" type="text/json">{"id":39714,"name":"Incremental learning","url":"https://www.academia.edu/Documents/in/Incremental_learning?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="227354" href="https://www.academia.edu/Documents/in/Renal_Function">Renal Function</a><script data-card-contents-for-ri="227354" type="text/json">{"id":227354,"name":"Renal Function","url":"https://www.academia.edu/Documents/in/Renal_Function?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=66463136]'), work: {"id":66463136,"title":"LR-KFNN: Logistic Regression-Kernel Function Neural Networks and the GFR-NN Model for Renal Function Evaluation","created_at":"2021-12-29T17:55:28.933-08:00","url":"https://www.academia.edu/66463136/LR_KFNN_Logistic_Regression_Kernel_Function_Neural_Networks_and_the_GFR_NN_Model_for_Renal_Function_Evaluation?f_ri=26066","dom_id":"work_66463136","summary":"This paper introduces a novel knowledge based neural network models that incorporate and adapt both existing logistic regression formulas and kernel functions in there structures to improve the learning and adaptation ability of a connectionist model when there is an existing knowledge on the problem in the form of a logistic regression. Different from standard feed-forward neural networks, the proposed","downloadable_attachments":[{"id":77644134,"asset_id":66463136,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":158086,"first_name":"Nikola","last_name":"Kasabov, Professor","domain_name":"aut","page_name":"NikolaKasabovProfessor","display_name":"Nikola Kasabov, Professor","profile_url":"https://aut.academia.edu/NikolaKasabovProfessor?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression?f_ri=26066","nofollow":false},{"id":39714,"name":"Incremental learning","url":"https://www.academia.edu/Documents/in/Incremental_learning?f_ri=26066","nofollow":false},{"id":227354,"name":"Renal Function","url":"https://www.academia.edu/Documents/in/Renal_Function?f_ri=26066","nofollow":false},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base?f_ri=26066"},{"id":383422,"name":"Local Knowledge","url":"https://www.academia.edu/Documents/in/Local_Knowledge?f_ri=26066"},{"id":862300,"name":"Parameter Optimization","url":"https://www.academia.edu/Documents/in/Parameter_Optimization?f_ri=26066"},{"id":1368234,"name":"Gradient Descent Method","url":"https://www.academia.edu/Documents/in/Gradient_Descent_Method?f_ri=26066"},{"id":1729304,"name":"Kernel Function","url":"https://www.academia.edu/Documents/in/Kernel_Function?f_ri=26066"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model?f_ri=26066"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network?f_ri=26066"},{"id":2117111,"name":"Gaussian kernel","url":"https://www.academia.edu/Documents/in/Gaussian_kernel?f_ri=26066"},{"id":2366663,"name":"Glomerular Filtration Rate","url":"https://www.academia.edu/Documents/in/Glomerular_Filtration_Rate?f_ri=26066"},{"id":2968128,"name":"Fuzzy Model","url":"https://www.academia.edu/Documents/in/Fuzzy_Model?f_ri=26066"},{"id":3672744,"name":"connectionist models","url":"https://www.academia.edu/Documents/in/connectionist_models?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_65774246" data-work_id="65774246" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/65774246/Automated_Maintenance_Approach_for_Industrial_Machineries_by_Soft_Computing_Techniques_at_Offline_Monitoring_Process">Automated Maintenance Approach for Industrial Machineries by Soft Computing Techniques at Offline Monitoring Process</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Fault diagnosis of industrial machineries become very much important for improving the quality of the manufacturing as well as for reducing the cost for product testing. In modern manufacturing scenario, a fast and reliable diagnosis... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_65774246" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Fault diagnosis of industrial machineries become very much important for improving the quality of the manufacturing as well as for reducing the cost for product testing. In modern manufacturing scenario, a fast and reliable diagnosis system has turned into a challenging issue in the complex industrial environment. In this work, the diagnosis of gearbox is considered as a mean of health monitoring system by used lubricant. The proposed methodology has been performed on the basis of wear particle analysis in gearbox at offline stage. Possible wear characterization has been done by image vision system to interpret into soft computing techniques like fuzzy inference and neural network mechanisms. Basically, the maintenance policy has been taken with the help of fuzzy expert system, which has been described in the present work.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/65774246" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="82db173f5ec8f2aef3b21381a11321a0" rel="nofollow" data-download="{&quot;attachment_id&quot;:77225155,&quot;asset_id&quot;:65774246,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77225155/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="173580174" href="https://independent.academia.edu/SUROJITGHOSH24">SUROJIT GHOSH</a><script data-card-contents-for-user="173580174" type="text/json">{"id":173580174,"first_name":"SUROJIT","last_name":"GHOSH","domain_name":"independent","page_name":"SUROJITGHOSH24","display_name":"SUROJIT GHOSH","profile_url":"https://independent.academia.edu/SUROJITGHOSH24?f_ri=26066","photo":"https://0.academia-photos.com/173580174/49563149/37542527/s65_surojit.ghosh.png"}</script></span></span></li><li class="js-paper-rank-work_65774246 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="65774246"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 65774246, container: ".js-paper-rank-work_65774246", }); });</script></li><li class="js-percentile-work_65774246 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65774246; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_65774246"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_65774246 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="65774246"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65774246; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65774246]").text(description); $(".js-view-count-work_65774246").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_65774246").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="65774246"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="60" href="https://www.academia.edu/Documents/in/Mechanical_Engineering">Mechanical Engineering</a>,&nbsp;<script data-card-contents-for-ri="60" type="text/json">{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1185" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>,&nbsp;<script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="6132" href="https://www.academia.edu/Documents/in/Soft_Computing">Soft Computing</a><script data-card-contents-for-ri="6132" type="text/json">{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=65774246]'), work: {"id":65774246,"title":"Automated Maintenance Approach for Industrial Machineries by Soft Computing Techniques at Offline Monitoring Process","created_at":"2021-12-23T20:06:20.523-08:00","url":"https://www.academia.edu/65774246/Automated_Maintenance_Approach_for_Industrial_Machineries_by_Soft_Computing_Techniques_at_Offline_Monitoring_Process?f_ri=26066","dom_id":"work_65774246","summary":"Fault diagnosis of industrial machineries become very much important for improving the quality of the manufacturing as well as for reducing the cost for product testing. In modern manufacturing scenario, a fast and reliable diagnosis system has turned into a challenging issue in the complex industrial environment. In this work, the diagnosis of gearbox is considered as a mean of health monitoring system by used lubricant. The proposed methodology has been performed on the basis of wear particle analysis in gearbox at offline stage. Possible wear characterization has been done by image vision system to interpret into soft computing techniques like fuzzy inference and neural network mechanisms. Basically, the maintenance policy has been taken with the help of fuzzy expert system, which has been described in the present work.","downloadable_attachments":[{"id":77225155,"asset_id":65774246,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":173580174,"first_name":"SUROJIT","last_name":"GHOSH","domain_name":"independent","page_name":"SUROJITGHOSH24","display_name":"SUROJIT GHOSH","profile_url":"https://independent.academia.edu/SUROJITGHOSH24?f_ri=26066","photo":"https://0.academia-photos.com/173580174/49563149/37542527/s65_surojit.ghosh.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=26066","nofollow":false},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=26066","nofollow":false},{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=26066","nofollow":false},{"id":10685,"name":"Fuzzy Expert System","url":"https://www.academia.edu/Documents/in/Fuzzy_Expert_System?f_ri=26066"},{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering?f_ri=26066"},{"id":20307,"name":"PRODUCTION ENGINEERING","url":"https://www.academia.edu/Documents/in/PRODUCTION_ENGINEERING?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":27010,"name":"Fuzzy Inference","url":"https://www.academia.edu/Documents/in/Fuzzy_Inference?f_ri=26066"},{"id":117101,"name":"Fault diagnosis","url":"https://www.academia.edu/Documents/in/Fault_diagnosis?f_ri=26066"},{"id":213658,"name":"Health monitoring","url":"https://www.academia.edu/Documents/in/Health_monitoring?f_ri=26066"},{"id":314271,"name":"Fuzzy System","url":"https://www.academia.edu/Documents/in/Fuzzy_System?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":3480612,"name":"Vision system","url":"https://www.academia.edu/Documents/in/Vision_system?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_61755560" data-work_id="61755560" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/61755560/Simultaneous_kinetic_determination_of_thiocyanate_and_sulfide_using_eigenvalue_ranking_and_correlation_ranking_in_principal_component_wavelet_neural_network">Simultaneous kinetic determination of thiocyanate and sulfide using eigenvalue ranking and correlation ranking in principal component-wavelet neural network</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/61755560" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7aec78360499a98f257a2e4a0a91ad28" rel="nofollow" data-download="{&quot;attachment_id&quot;:74711465,&quot;asset_id&quot;:61755560,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/74711465/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="207598" href="https://iut.academia.edu/ensafi">Ali A. Ensafi</a><script data-card-contents-for-user="207598" type="text/json">{"id":207598,"first_name":"Ali A.","last_name":"Ensafi","domain_name":"iut","page_name":"ensafi","display_name":"Ali A. Ensafi","profile_url":"https://iut.academia.edu/ensafi?f_ri=26066","photo":"https://0.academia-photos.com/207598/48237/10859358/s65_ali_a..ensafi.jpg"}</script></span></span></li><li class="js-paper-rank-work_61755560 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="61755560"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 61755560, container: ".js-paper-rank-work_61755560", }); });</script></li><li class="js-percentile-work_61755560 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61755560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_61755560"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_61755560 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="61755560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61755560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61755560]").text(description); $(".js-view-count-work_61755560").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_61755560").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="61755560"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="524" href="https://www.academia.edu/Documents/in/Analytical_Chemistry">Analytical Chemistry</a>,&nbsp;<script data-card-contents-for-ri="524" type="text/json">{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4987" href="https://www.academia.edu/Documents/in/Kinetics">Kinetics</a>,&nbsp;<script data-card-contents-for-ri="4987" type="text/json">{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5069" href="https://www.academia.edu/Documents/in/Principal_Component_Analysis">Principal Component Analysis</a>,&nbsp;<script data-card-contents-for-ri="5069" type="text/json">{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=61755560]'), work: {"id":61755560,"title":"Simultaneous kinetic determination of thiocyanate and sulfide using eigenvalue ranking and correlation ranking in principal component-wavelet neural network","created_at":"2021-11-16T00:50:07.759-08:00","url":"https://www.academia.edu/61755560/Simultaneous_kinetic_determination_of_thiocyanate_and_sulfide_using_eigenvalue_ranking_and_correlation_ranking_in_principal_component_wavelet_neural_network?f_ri=26066","dom_id":"work_61755560","summary":null,"downloadable_attachments":[{"id":74711465,"asset_id":61755560,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":207598,"first_name":"Ali A.","last_name":"Ensafi","domain_name":"iut","page_name":"ensafi","display_name":"Ali A. Ensafi","profile_url":"https://iut.academia.edu/ensafi?f_ri=26066","photo":"https://0.academia-photos.com/207598/48237/10859358/s65_ali_a..ensafi.jpg"}],"research_interests":[{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry?f_ri=26066","nofollow":false},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics?f_ri=26066","nofollow":false},{"id":5069,"name":"Principal Component Analysis","url":"https://www.academia.edu/Documents/in/Principal_Component_Analysis?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":85993,"name":"River water","url":"https://www.academia.edu/Documents/in/River_water?f_ri=26066"},{"id":210014,"name":"Wavelet neural network","url":"https://www.academia.edu/Documents/in/Wavelet_neural_network?f_ri=26066"},{"id":224852,"name":"Eigenvalues","url":"https://www.academia.edu/Documents/in/Eigenvalues?f_ri=26066"},{"id":882604,"name":"Nonlinear Model","url":"https://www.academia.edu/Documents/in/Nonlinear_Model?f_ri=26066"},{"id":2525232,"name":"Multivariate Calibration","url":"https://www.academia.edu/Documents/in/Multivariate_Calibration?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_60543345" data-work_id="60543345" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/60543345/Time_series_prediction_by_feedforward_neural_networks_is_it_difficult">Time series prediction by feedforward neural networks is it difficult?</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/60543345" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4b63289a9cc7e49dec1944ac022c837c" rel="nofollow" data-download="{&quot;attachment_id&quot;:73941835,&quot;asset_id&quot;:60543345,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/73941835/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="178781407" href="https://independent.academia.edu/MichalRosenZvi">Michal Rosen-Zvi</a><script data-card-contents-for-user="178781407" type="text/json">{"id":178781407,"first_name":"Michal","last_name":"Rosen-Zvi","domain_name":"independent","page_name":"MichalRosenZvi","display_name":"Michal Rosen-Zvi","profile_url":"https://independent.academia.edu/MichalRosenZvi?f_ri=26066","photo":"https://0.academia-photos.com/178781407/67401667/55767862/s65_michal.rosen-zvi.png"}</script></span></span></li><li class="js-paper-rank-work_60543345 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="60543345"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 60543345, container: ".js-paper-rank-work_60543345", }); });</script></li><li class="js-percentile-work_60543345 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 60543345; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_60543345"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_60543345 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="60543345"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 60543345; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=60543345]").text(description); $(".js-view-count-work_60543345").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_60543345").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="60543345"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="4456" href="https://www.academia.edu/Documents/in/Time_Series">Time Series</a>,&nbsp;<script data-card-contents-for-ri="4456" type="text/json">{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="80414" href="https://www.academia.edu/Documents/in/Mathematical_Sciences">Mathematical Sciences</a>,&nbsp;<script data-card-contents-for-ri="80414" type="text/json">{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="118582" href="https://www.academia.edu/Documents/in/Physical_sciences">Physical sciences</a><script data-card-contents-for-ri="118582" type="text/json">{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=60543345]'), work: {"id":60543345,"title":"Time series prediction by feedforward neural networks is it difficult?","created_at":"2021-10-31T06:14:40.633-07:00","url":"https://www.academia.edu/60543345/Time_series_prediction_by_feedforward_neural_networks_is_it_difficult?f_ri=26066","dom_id":"work_60543345","summary":null,"downloadable_attachments":[{"id":73941835,"asset_id":60543345,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":178781407,"first_name":"Michal","last_name":"Rosen-Zvi","domain_name":"independent","page_name":"MichalRosenZvi","display_name":"Michal Rosen-Zvi","profile_url":"https://independent.academia.edu/MichalRosenZvi?f_ri=26066","photo":"https://0.academia-photos.com/178781407/67401667/55767862/s65_michal.rosen-zvi.png"}],"research_interests":[{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences?f_ri=26066","nofollow":false},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=26066","nofollow":false},{"id":124797,"name":"Time Series Prediction","url":"https://www.academia.edu/Documents/in/Time_Series_Prediction?f_ri=26066"},{"id":200998,"name":"Feedforward Neural Network","url":"https://www.academia.edu/Documents/in/Feedforward_Neural_Network?f_ri=26066"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum?f_ri=26066"},{"id":2892991,"name":"Generalization Error","url":"https://www.academia.edu/Documents/in/Generalization_Error?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_49124406" data-work_id="49124406" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/49124406/Neural_network_modeling_for_separation_of_bentonite_in_tubular_ceramic_membranes">Neural network modeling for separation of bentonite in tubular ceramic membranes</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/49124406" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="70b11e1b1b52916128bc35391489160c" rel="nofollow" data-download="{&quot;attachment_id&quot;:67515714,&quot;asset_id&quot;:49124406,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/67515714/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="42838123" href="https://independent.academia.edu/AlAbriMohammed">Mohammed Al-Abri</a><script data-card-contents-for-user="42838123" type="text/json">{"id":42838123,"first_name":"Mohammed","last_name":"Al-Abri","domain_name":"independent","page_name":"AlAbriMohammed","display_name":"Mohammed Al-Abri","profile_url":"https://independent.academia.edu/AlAbriMohammed?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_49124406 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="49124406"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 49124406, container: ".js-paper-rank-work_49124406", }); });</script></li><li class="js-percentile-work_49124406 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49124406; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_49124406"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_49124406 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="49124406"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49124406; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49124406]").text(description); $(".js-view-count-work_49124406").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_49124406").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="49124406"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5750" href="https://www.academia.edu/Documents/in/Back_Propagation">Back Propagation</a>,&nbsp;<script data-card-contents-for-ri="5750" type="text/json">{"id":5750,"name":"Back Propagation","url":"https://www.academia.edu/Documents/in/Back_Propagation?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="53158" href="https://www.academia.edu/Documents/in/Desalination">Desalination</a><script data-card-contents-for-ri="53158" type="text/json">{"id":53158,"name":"Desalination","url":"https://www.academia.edu/Documents/in/Desalination?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=49124406]'), work: {"id":49124406,"title":"Neural network modeling for separation of bentonite in tubular ceramic membranes","created_at":"2021-06-04T06:26:57.232-07:00","url":"https://www.academia.edu/49124406/Neural_network_modeling_for_separation_of_bentonite_in_tubular_ceramic_membranes?f_ri=26066","dom_id":"work_49124406","summary":null,"downloadable_attachments":[{"id":67515714,"asset_id":49124406,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":42838123,"first_name":"Mohammed","last_name":"Al-Abri","domain_name":"independent","page_name":"AlAbriMohammed","display_name":"Mohammed Al-Abri","profile_url":"https://independent.academia.edu/AlAbriMohammed?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false},{"id":5750,"name":"Back Propagation","url":"https://www.academia.edu/Documents/in/Back_Propagation?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":53158,"name":"Desalination","url":"https://www.academia.edu/Documents/in/Desalination?f_ri=26066","nofollow":false},{"id":153972,"name":"Microfiltration","url":"https://www.academia.edu/Documents/in/Microfiltration?f_ri=26066"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES?f_ri=26066"},{"id":413383,"name":"Ceramic Membrane","url":"https://www.academia.edu/Documents/in/Ceramic_Membrane?f_ri=26066"},{"id":477865,"name":"Operant Conditioning","url":"https://www.academia.edu/Documents/in/Operant_Conditioning?f_ri=26066"},{"id":958558,"name":"Membrane Filtration","url":"https://www.academia.edu/Documents/in/Membrane_Filtration?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":1318932,"name":"Predictive value of tests","url":"https://www.academia.edu/Documents/in/Predictive_value_of_tests?f_ri=26066"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model?f_ri=26066"},{"id":3590897,"name":"Back Propagation Network","url":"https://www.academia.edu/Documents/in/Back_Propagation_Network?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_48963745" data-work_id="48963745" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/48963745/Novel_Approach_to_Improve_the_Performance_of_Artificial_Neural_Networks">Novel Approach to Improve the Performance of Artificial Neural Networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/48963745" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6fe7e320f9b018b24c97df0afe700394" rel="nofollow" data-download="{&quot;attachment_id&quot;:67357308,&quot;asset_id&quot;:48963745,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/67357308/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="162397078" href="https://independent.academia.edu/AmitabhWahiGNU">Amitabh Wahi GNU</a><script data-card-contents-for-user="162397078" type="text/json">{"id":162397078,"first_name":"Amitabh Wahi","last_name":"GNU","domain_name":"independent","page_name":"AmitabhWahiGNU","display_name":"Amitabh Wahi GNU","profile_url":"https://independent.academia.edu/AmitabhWahiGNU?f_ri=26066","photo":"https://0.academia-photos.com/162397078/45575361/35495390/s65_amitabh_wahi.gnu.jpg"}</script></span></span></li><li class="js-paper-rank-work_48963745 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="48963745"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 48963745, container: ".js-paper-rank-work_48963745", }); });</script></li><li class="js-percentile-work_48963745 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48963745; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_48963745"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_48963745 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="48963745"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48963745; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48963745]").text(description); $(".js-view-count-work_48963745").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_48963745").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="48963745"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1131" href="https://www.academia.edu/Documents/in/Biomedical_Engineering">Biomedical Engineering</a>,&nbsp;<script data-card-contents-for-ri="1131" type="text/json">{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="24038" href="https://www.academia.edu/Documents/in/Networking">Networking</a>,&nbsp;<script data-card-contents-for-ri="24038" type="text/json">{"id":24038,"name":"Networking","url":"https://www.academia.edu/Documents/in/Networking?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="36837" href="https://www.academia.edu/Documents/in/Information_Processing">Information Processing</a><script data-card-contents-for-ri="36837" type="text/json">{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=48963745]'), work: {"id":48963745,"title":"Novel Approach to Improve the Performance of Artificial Neural Networks","created_at":"2021-05-18T00:13:10.381-07:00","url":"https://www.academia.edu/48963745/Novel_Approach_to_Improve_the_Performance_of_Artificial_Neural_Networks?f_ri=26066","dom_id":"work_48963745","summary":null,"downloadable_attachments":[{"id":67357308,"asset_id":48963745,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":162397078,"first_name":"Amitabh Wahi","last_name":"GNU","domain_name":"independent","page_name":"AmitabhWahiGNU","display_name":"Amitabh Wahi GNU","profile_url":"https://independent.academia.edu/AmitabhWahiGNU?f_ri=26066","photo":"https://0.academia-photos.com/162397078/45575361/35495390/s65_amitabh_wahi.gnu.jpg"}],"research_interests":[{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering?f_ri=26066","nofollow":false},{"id":24038,"name":"Networking","url":"https://www.academia.edu/Documents/in/Networking?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing?f_ri=26066","nofollow":false},{"id":155942,"name":"Object Classification","url":"https://www.academia.edu/Documents/in/Object_Classification?f_ri=26066"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=26066"},{"id":1274629,"name":"Area of Interest","url":"https://www.academia.edu/Documents/in/Area_of_Interest?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_47332580 coauthored" data-work_id="47332580" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/47332580/Preliminary_considerations_for_wearable_sensors_for_astronauts_in_exploration_scenarios">Preliminary considerations for wearable sensors for astronauts in exploration scenarios</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">... donning. This system is designed to be embedded in Bio-Suit, a revolutionary space suit concept developed for many years by Prof. Dava ... exploration. I.Bio-SUIT SYSTEM The Bio-Suit System is a project developed by Prof. Dava ...</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/47332580" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="216544301" href="https://independent.academia.edu/TrottiG">G. Trotti</a><script data-card-contents-for-user="216544301" type="text/json">{"id":216544301,"first_name":"G.","last_name":"Trotti","domain_name":"independent","page_name":"TrottiG","display_name":"G. Trotti","profile_url":"https://independent.academia.edu/TrottiG?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-47332580">+1</span><div class="hidden js-additional-users-47332580"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://polimi.academia.edu/MaritaCanina">Marita Canina</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-47332580'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-47332580').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_47332580 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="47332580"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 47332580, container: ".js-paper-rank-work_47332580", }); });</script></li><li class="js-percentile-work_47332580 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47332580; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_47332580"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_47332580 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="47332580"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47332580; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47332580]").text(description); $(".js-view-count-work_47332580").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_47332580").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="47332580"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="988" href="https://www.academia.edu/Documents/in/Design">Design</a>,&nbsp;<script data-card-contents-for-ri="988" type="text/json">{"id":988,"name":"Design","url":"https://www.academia.edu/Documents/in/Design?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2141" href="https://www.academia.edu/Documents/in/Signal_Processing">Signal Processing</a>,&nbsp;<script data-card-contents-for-ri="2141" type="text/json">{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4165" href="https://www.academia.edu/Documents/in/Fuzzy_Logic">Fuzzy Logic</a>,&nbsp;<script data-card-contents-for-ri="4165" type="text/json">{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=47332580]'), work: {"id":47332580,"title":"Preliminary considerations for wearable sensors for astronauts in exploration scenarios","created_at":"2021-04-21T13:28:32.470-07:00","url":"https://www.academia.edu/47332580/Preliminary_considerations_for_wearable_sensors_for_astronauts_in_exploration_scenarios?f_ri=26066","dom_id":"work_47332580","summary":"... donning. This system is designed to be embedded in Bio-Suit, a revolutionary space suit concept developed for many years by Prof. Dava ... exploration. I.Bio-SUIT SYSTEM The Bio-Suit System is a project developed by Prof. Dava ...","downloadable_attachments":[],"ordered_authors":[{"id":216544301,"first_name":"G.","last_name":"Trotti","domain_name":"independent","page_name":"TrottiG","display_name":"G. Trotti","profile_url":"https://independent.academia.edu/TrottiG?f_ri=26066","photo":"/images/s65_no_pic.png"},{"id":6395390,"first_name":"Marita","last_name":"Canina","domain_name":"polimi","page_name":"MaritaCanina","display_name":"Marita Canina","profile_url":"https://polimi.academia.edu/MaritaCanina?f_ri=26066","photo":"https://0.academia-photos.com/6395390/2595576/17899437/s65_marita.canina.jpg"}],"research_interests":[{"id":988,"name":"Design","url":"https://www.academia.edu/Documents/in/Design?f_ri=26066","nofollow":false},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing?f_ri=26066","nofollow":false},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":77351,"name":"Medical devices","url":"https://www.academia.edu/Documents/in/Medical_devices?f_ri=26066"},{"id":96945,"name":"Pulse Oximetry","url":"https://www.academia.edu/Documents/in/Pulse_Oximetry?f_ri=26066"},{"id":101870,"name":"Space Research","url":"https://www.academia.edu/Documents/in/Space_Research?f_ri=26066"},{"id":260003,"name":"ASTRONAUTS","url":"https://www.academia.edu/Documents/in/ASTRONAUTS?f_ri=26066"},{"id":435547,"name":"Wearables","url":"https://www.academia.edu/Documents/in/Wearables?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_47212112" data-work_id="47212112" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/47212112/Authentication_of_Individuals_using_Hand_Geometry_Biometrics_A_Neural_Network_Approach">Authentication of Individuals using Hand Geometry Biometrics: A Neural Network Approach</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/47212112" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3143d87c7712aed2eb249971b9a920a2" rel="nofollow" data-download="{&quot;attachment_id&quot;:66430295,&quot;asset_id&quot;:47212112,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66430295/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4967260" href="https://tecnocampus.academia.edu/MarcosFaundezZanuy">Marcos Faundez-Zanuy</a><script data-card-contents-for-user="4967260" type="text/json">{"id":4967260,"first_name":"Marcos","last_name":"Faundez-Zanuy","domain_name":"tecnocampus","page_name":"MarcosFaundezZanuy","display_name":"Marcos Faundez-Zanuy","profile_url":"https://tecnocampus.academia.edu/MarcosFaundezZanuy?f_ri=26066","photo":"https://0.academia-photos.com/4967260/2150095/2523253/s65_marcos.faundez-zanuy.jpg"}</script></span></span></li><li class="js-paper-rank-work_47212112 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="47212112"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 47212112, container: ".js-paper-rank-work_47212112", }); });</script></li><li class="js-percentile-work_47212112 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47212112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_47212112"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_47212112 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="47212112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47212112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47212112]").text(description); $(".js-view-count-work_47212112").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_47212112").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="47212112"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a>,&nbsp;<script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="6177" href="https://www.academia.edu/Documents/in/Modeling">Modeling</a>,&nbsp;<script data-card-contents-for-ri="6177" type="text/json">{"id":6177,"name":"Modeling","url":"https://www.academia.edu/Documents/in/Modeling?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9173" href="https://www.academia.edu/Documents/in/Biometrics">Biometrics</a><script data-card-contents-for-ri="9173" type="text/json">{"id":9173,"name":"Biometrics","url":"https://www.academia.edu/Documents/in/Biometrics?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=47212112]'), work: {"id":47212112,"title":"Authentication of Individuals using Hand Geometry Biometrics: A Neural Network Approach","created_at":"2021-04-21T06:33:20.781-07:00","url":"https://www.academia.edu/47212112/Authentication_of_Individuals_using_Hand_Geometry_Biometrics_A_Neural_Network_Approach?f_ri=26066","dom_id":"work_47212112","summary":null,"downloadable_attachments":[{"id":66430295,"asset_id":47212112,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4967260,"first_name":"Marcos","last_name":"Faundez-Zanuy","domain_name":"tecnocampus","page_name":"MarcosFaundezZanuy","display_name":"Marcos Faundez-Zanuy","profile_url":"https://tecnocampus.academia.edu/MarcosFaundezZanuy?f_ri=26066","photo":"https://0.academia-photos.com/4967260/2150095/2523253/s65_marcos.faundez-zanuy.jpg"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false},{"id":6177,"name":"Modeling","url":"https://www.academia.edu/Documents/in/Modeling?f_ri=26066","nofollow":false},{"id":9173,"name":"Biometrics","url":"https://www.academia.edu/Documents/in/Biometrics?f_ri=26066","nofollow":false},{"id":16457,"name":"Public sector","url":"https://www.academia.edu/Documents/in/Public_sector?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":148960,"name":"Fingerprint","url":"https://www.academia.edu/Documents/in/Fingerprint?f_ri=26066"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=26066"},{"id":167397,"name":"Image recognition","url":"https://www.academia.edu/Documents/in/Image_recognition?f_ri=26066"},{"id":328150,"name":"Associative Memory","url":"https://www.academia.edu/Documents/in/Associative_Memory?f_ri=26066"},{"id":684007,"name":"ORTHOGONALITY","url":"https://www.academia.edu/Documents/in/ORTHOGONALITY?f_ri=26066"},{"id":780669,"name":"Input Output","url":"https://www.academia.edu/Documents/in/Input_Output?f_ri=26066"},{"id":1274453,"name":"Right Handed","url":"https://www.academia.edu/Documents/in/Right_Handed?f_ri=26066"},{"id":1373317,"name":"Linear Independence","url":"https://www.academia.edu/Documents/in/Linear_Independence?f_ri=26066"},{"id":1633082,"name":"Hamming Distance","url":"https://www.academia.edu/Documents/in/Hamming_Distance?f_ri=26066"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model?f_ri=26066"},{"id":2003495,"name":"Error Correction Code Words","url":"https://www.academia.edu/Documents/in/Error_Correction_Code_Words?f_ri=26066"},{"id":2295409,"name":"Error Correction Code","url":"https://www.academia.edu/Documents/in/Error_Correction_Code?f_ri=26066"},{"id":2364727,"name":"Hand Geometry","url":"https://www.academia.edu/Documents/in/Hand_Geometry?f_ri=26066"},{"id":3356996,"name":"neural processing","url":"https://www.academia.edu/Documents/in/neural_processing?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45383041" data-work_id="45383041" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45383041/Dynamic_Entropies_Long_Range_Correlations_And_Fluctuations_In_Complex_Linear_Structures">Dynamic Entropies, Long-Range Correlations And Fluctuations In Complex Linear Structures</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We investigate symbolic sequences and in particular information carriers as e.g. books and DNA–strings. First the higher order Shannon entropies are calculated, a characteristic root law is detected. Then the algorithmic entropy is... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45383041" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We investigate symbolic sequences and in particular information carriers as e.g. books and DNA–strings. First the higher order Shannon entropies are calculated, a characteristic root law is detected. Then the algorithmic entropy is estimated by using Lempel–Ziv compression algorithms. In the third section the correlation function for distant letters, the low frequency Fourier spectrum and the characteristic scaling exponents are calculated. We show that all these measures are able to detect long–range correlations. However, as demonstrated by shuffling experiments, different measures operate on different length scales. The longest correlations found in our analysis comprise a few hundreds or thousands of letters and may be understood as long–wave fluctuations of the composition. 1</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45383041" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b0cc81c8262105e24a1990b49ef5f15e" rel="nofollow" data-download="{&quot;attachment_id&quot;:65908839,&quot;asset_id&quot;:45383041,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65908839/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="3155192" href="https://ohio.academia.edu/AlexanderNeiman">Alexander Neiman</a><script data-card-contents-for-user="3155192" type="text/json">{"id":3155192,"first_name":"Alexander","last_name":"Neiman","domain_name":"ohio","page_name":"AlexanderNeiman","display_name":"Alexander Neiman","profile_url":"https://ohio.academia.edu/AlexanderNeiman?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_45383041 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45383041"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45383041, container: ".js-paper-rank-work_45383041", }); });</script></li><li class="js-percentile-work_45383041 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45383041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45383041"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45383041 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45383041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45383041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45383041]").text(description); $(".js-view-count-work_45383041").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45383041").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45383041"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">11</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="520" href="https://www.academia.edu/Documents/in/Statistical_Mechanics">Statistical Mechanics</a>,&nbsp;<script data-card-contents-for-ri="520" type="text/json">{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="30372" href="https://www.academia.edu/Documents/in/Low_Frequency">Low Frequency</a>,&nbsp;<script data-card-contents-for-ri="30372" type="text/json">{"id":30372,"name":"Low Frequency","url":"https://www.academia.edu/Documents/in/Low_Frequency?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="321836" href="https://www.academia.edu/Documents/in/Spectrum">Spectrum</a><script data-card-contents-for-ri="321836" type="text/json">{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45383041]'), work: {"id":45383041,"title":"Dynamic Entropies, Long-Range Correlations And Fluctuations In Complex Linear Structures","created_at":"2021-03-05T15:27:16.466-08:00","url":"https://www.academia.edu/45383041/Dynamic_Entropies_Long_Range_Correlations_And_Fluctuations_In_Complex_Linear_Structures?f_ri=26066","dom_id":"work_45383041","summary":"We investigate symbolic sequences and in particular information carriers as e.g. books and DNA–strings. First the higher order Shannon entropies are calculated, a characteristic root law is detected. Then the algorithmic entropy is estimated by using Lempel–Ziv compression algorithms. In the third section the correlation function for distant letters, the low frequency Fourier spectrum and the characteristic scaling exponents are calculated. We show that all these measures are able to detect long–range correlations. However, as demonstrated by shuffling experiments, different measures operate on different length scales. The longest correlations found in our analysis comprise a few hundreds or thousands of letters and may be understood as long–wave fluctuations of the composition. 1","downloadable_attachments":[{"id":65908839,"asset_id":45383041,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":3155192,"first_name":"Alexander","last_name":"Neiman","domain_name":"ohio","page_name":"AlexanderNeiman","display_name":"Alexander Neiman","profile_url":"https://ohio.academia.edu/AlexanderNeiman?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":30372,"name":"Low Frequency","url":"https://www.academia.edu/Documents/in/Low_Frequency?f_ri=26066","nofollow":false},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum?f_ri=26066","nofollow":false},{"id":453823,"name":"Length scale","url":"https://www.academia.edu/Documents/in/Length_scale?f_ri=26066"},{"id":700548,"name":"Shannon entropy","url":"https://www.academia.edu/Documents/in/Shannon_entropy?f_ri=26066"},{"id":956995,"name":"Lempel Ziv","url":"https://www.academia.edu/Documents/in/Lempel_Ziv?f_ri=26066"},{"id":2295170,"name":"Scaling Exponent","url":"https://www.academia.edu/Documents/in/Scaling_Exponent?f_ri=26066"},{"id":2382100,"name":"Correlation function","url":"https://www.academia.edu/Documents/in/Correlation_function?f_ri=26066"},{"id":2948559,"name":"Higher order","url":"https://www.academia.edu/Documents/in/Higher_order?f_ri=26066"},{"id":3855890,"name":"Compression Algorithm","url":"https://www.academia.edu/Documents/in/Compression_Algorithm?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1815804" data-work_id="1815804" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1815804/Rainfall_forecasting_using_soft_computing_models_and_multivariate_adaptive_regression_splines">Rainfall forecasting using soft computing models and multivariate adaptive regression splines</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1815804" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f1b0691fd9c708bca04a9b3a068ec1ee" rel="nofollow" data-download="{&quot;attachment_id&quot;:25125143,&quot;asset_id&quot;:1815804,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/25125143/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2200877" href="https://independent.academia.edu/NinanSajeethPhilip">Ninan Sajeeth Philip</a><script data-card-contents-for-user="2200877" type="text/json">{"id":2200877,"first_name":"Ninan","last_name":"Sajeeth Philip","domain_name":"independent","page_name":"NinanSajeethPhilip","display_name":"Ninan Sajeeth Philip","profile_url":"https://independent.academia.edu/NinanSajeethPhilip?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_1815804 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1815804"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1815804, container: ".js-paper-rank-work_1815804", }); });</script></li><li class="js-percentile-work_1815804 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1815804; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1815804"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1815804 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1815804"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1815804; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1815804]").text(description); $(".js-view-count-work_1815804").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1815804").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1815804"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="6132" href="https://www.academia.edu/Documents/in/Soft_Computing">Soft Computing</a>,&nbsp;<script data-card-contents-for-ri="6132" type="text/json">{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="45405" href="https://www.academia.edu/Documents/in/Global_Warming">Global Warming</a>,&nbsp;<script data-card-contents-for-ri="45405" type="text/json">{"id":45405,"name":"Global Warming","url":"https://www.academia.edu/Documents/in/Global_Warming?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="51212" href="https://www.academia.edu/Documents/in/Performance_Analysis">Performance Analysis</a><script data-card-contents-for-ri="51212" type="text/json">{"id":51212,"name":"Performance Analysis","url":"https://www.academia.edu/Documents/in/Performance_Analysis?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1815804]'), work: {"id":1815804,"title":"Rainfall forecasting using soft computing models and multivariate adaptive regression splines","created_at":"2012-07-27T01:08:03.159-07:00","url":"https://www.academia.edu/1815804/Rainfall_forecasting_using_soft_computing_models_and_multivariate_adaptive_regression_splines?f_ri=26066","dom_id":"work_1815804","summary":null,"downloadable_attachments":[{"id":25125143,"asset_id":1815804,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2200877,"first_name":"Ninan","last_name":"Sajeeth Philip","domain_name":"independent","page_name":"NinanSajeethPhilip","display_name":"Ninan Sajeeth Philip","profile_url":"https://independent.academia.edu/NinanSajeethPhilip?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":45405,"name":"Global Warming","url":"https://www.academia.edu/Documents/in/Global_Warming?f_ri=26066","nofollow":false},{"id":51212,"name":"Performance Analysis","url":"https://www.academia.edu/Documents/in/Performance_Analysis?f_ri=26066","nofollow":false},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation?f_ri=26066"},{"id":103995,"name":"Intelligent System","url":"https://www.academia.edu/Documents/in/Intelligent_System?f_ri=26066"},{"id":564690,"name":"Concept Design","url":"https://www.academia.edu/Documents/in/Concept_Design?f_ri=26066"},{"id":654899,"name":"Computer Modelling","url":"https://www.academia.edu/Documents/in/Computer_Modelling?f_ri=26066"},{"id":662255,"name":"Neuro Fuzzy","url":"https://www.academia.edu/Documents/in/Neuro_Fuzzy?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":1281369,"name":"Scaled Conjugate Gradient","url":"https://www.academia.edu/Documents/in/Scaled_Conjugate_Gradient?f_ri=26066"},{"id":1489075,"name":"Multivariate adaptive regression splines","url":"https://www.academia.edu/Documents/in/Multivariate_adaptive_regression_splines?f_ri=26066"},{"id":1624386,"name":"General Regression Neural Network","url":"https://www.academia.edu/Documents/in/General_Regression_Neural_Network?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5490227" data-work_id="5490227" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5490227/Solving_systems_of_linear_equations_via_gradient_systems_with_discontinuous_righthand_sides_application_to_LS_SVM">Solving systems of linear equations via gradient systems with discontinuous righthand sides: application to LS-SVM</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5490227" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="cf9a38fd5d4fba66fc0eb8708f164bbe" rel="nofollow" data-download="{&quot;attachment_id&quot;:49273152,&quot;asset_id&quot;:5490227,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49273152/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="7727459" href="https://independent.academia.edu/LeonardoFerreira7">Leonardo Ferreira</a><script data-card-contents-for-user="7727459" type="text/json">{"id":7727459,"first_name":"Leonardo","last_name":"Ferreira","domain_name":"independent","page_name":"LeonardoFerreira7","display_name":"Leonardo Ferreira","profile_url":"https://independent.academia.edu/LeonardoFerreira7?f_ri=26066","photo":"https://0.academia-photos.com/7727459/2816439/3286543/s65_leonardo.ferreira.jpg"}</script></span></span></li><li class="js-paper-rank-work_5490227 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5490227"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5490227, container: ".js-paper-rank-work_5490227", }); });</script></li><li class="js-percentile-work_5490227 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5490227; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5490227"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5490227 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5490227"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5490227; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5490227]").text(description); $(".js-view-count-work_5490227").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5490227").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5490227"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="5447" href="https://www.academia.edu/Documents/in/Linear_Programming">Linear Programming</a>,&nbsp;<script data-card-contents-for-ri="5447" type="text/json">{"id":5447,"name":"Linear Programming","url":"https://www.academia.edu/Documents/in/Linear_Programming?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10408" href="https://www.academia.edu/Documents/in/Support_Vector_Machines">Support Vector Machines</a>,&nbsp;<script data-card-contents-for-ri="10408" type="text/json">{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="15124" href="https://www.academia.edu/Documents/in/Convergence">Convergence</a><script data-card-contents-for-ri="15124" type="text/json">{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5490227]'), work: {"id":5490227,"title":"Solving systems of linear equations via gradient systems with discontinuous righthand sides: application to LS-SVM","created_at":"2013-12-20T08:27:13.779-08:00","url":"https://www.academia.edu/5490227/Solving_systems_of_linear_equations_via_gradient_systems_with_discontinuous_righthand_sides_application_to_LS_SVM?f_ri=26066","dom_id":"work_5490227","summary":null,"downloadable_attachments":[{"id":49273152,"asset_id":5490227,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":7727459,"first_name":"Leonardo","last_name":"Ferreira","domain_name":"independent","page_name":"LeonardoFerreira7","display_name":"Leonardo Ferreira","profile_url":"https://independent.academia.edu/LeonardoFerreira7?f_ri=26066","photo":"https://0.academia-photos.com/7727459/2816439/3286543/s65_leonardo.ferreira.jpg"}],"research_interests":[{"id":5447,"name":"Linear Programming","url":"https://www.academia.edu/Documents/in/Linear_Programming?f_ri=26066","nofollow":false},{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066"},{"id":51073,"name":"Recurrent Neural Network","url":"https://www.academia.edu/Documents/in/Recurrent_Neural_Network?f_ri=26066"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine?f_ri=26066"},{"id":543171,"name":"Lyapunov function","url":"https://www.academia.edu/Documents/in/Lyapunov_function?f_ri=26066"},{"id":575846,"name":"Upper Bound","url":"https://www.academia.edu/Documents/in/Upper_Bound?f_ri=26066"},{"id":1121354,"name":"Linear Equations","url":"https://www.academia.edu/Documents/in/Linear_Equations?f_ri=26066"},{"id":2217833,"name":"Gradient methods","url":"https://www.academia.edu/Documents/in/Gradient_methods?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5706776" data-work_id="5706776" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5706776/Combining_Multi_scale_Character_Recognition_and_Linguistic_Knowledge_for_Natural_Scene_Text_OCR">Combining Multi-scale Character Recognition and Linguistic Knowledge for Natural Scene Text OCR</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Understanding text captured in real-world scenes is a challenging problem in the field of visual pattern recognition and continues to generate a significant interest in the OCR (Optical Character Recognition) community. This paper... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_5706776" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Understanding text captured in real-world scenes is a challenging problem in the field of visual pattern recognition and continues to generate a significant interest in the OCR (Optical Character Recognition) community. This paper proposes a novel method to recognize scene texts avoiding the conventional character segmentation step. The idea is to scan the text image with multi-scale windows and apply a robust recognition model, relying on a neural classification approach, to every window in order to recognize valid characters and identify non valid ones. Recognition results are represented as a graph model in order to determine the best sequence of characters. Some linguistic knowledge is also incorporated to remove errors due to recognition confusions. The designed method is evaluated on the ICDAR 2003 database of scene text images and outperforms state-of-the-art approaches.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5706776" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="acd2c39d5c6810be46657cbaaccd43e4" rel="nofollow" data-download="{&quot;attachment_id&quot;:49173317,&quot;asset_id&quot;:5706776,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49173317/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="8269647" href="https://irisa.academia.edu/PascaleSebillot">Pascale Sebillot</a><script data-card-contents-for-user="8269647" type="text/json">{"id":8269647,"first_name":"Pascale","last_name":"Sebillot","domain_name":"irisa","page_name":"PascaleSebillot","display_name":"Pascale Sebillot","profile_url":"https://irisa.academia.edu/PascaleSebillot?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_5706776 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5706776"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5706776, container: ".js-paper-rank-work_5706776", }); });</script></li><li class="js-percentile-work_5706776 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5706776; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5706776"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5706776 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5706776"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5706776; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5706776]").text(description); $(".js-view-count-work_5706776").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5706776").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5706776"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a>,&nbsp;<script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5111" href="https://www.academia.edu/Documents/in/Character_Recognition">Character Recognition</a>,&nbsp;<script data-card-contents-for-ri="5111" type="text/json">{"id":5111,"name":"Character Recognition","url":"https://www.academia.edu/Documents/in/Character_Recognition?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="80596" href="https://www.academia.edu/Documents/in/Design_method">Design method</a><script data-card-contents-for-ri="80596" type="text/json">{"id":80596,"name":"Design method","url":"https://www.academia.edu/Documents/in/Design_method?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5706776]'), work: {"id":5706776,"title":"Combining Multi-scale Character Recognition and Linguistic Knowledge for Natural Scene Text OCR","created_at":"2014-01-13T20:01:59.503-08:00","url":"https://www.academia.edu/5706776/Combining_Multi_scale_Character_Recognition_and_Linguistic_Knowledge_for_Natural_Scene_Text_OCR?f_ri=26066","dom_id":"work_5706776","summary":"Understanding text captured in real-world scenes is a challenging problem in the field of visual pattern recognition and continues to generate a significant interest in the OCR (Optical Character Recognition) community. This paper proposes a novel method to recognize scene texts avoiding the conventional character segmentation step. The idea is to scan the text image with multi-scale windows and apply a robust recognition model, relying on a neural classification approach, to every window in order to recognize valid characters and identify non valid ones. Recognition results are represented as a graph model in order to determine the best sequence of characters. Some linguistic knowledge is also incorporated to remove errors due to recognition confusions. The designed method is evaluated on the ICDAR 2003 database of scene text images and outperforms state-of-the-art approaches.","downloadable_attachments":[{"id":49173317,"asset_id":5706776,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":8269647,"first_name":"Pascale","last_name":"Sebillot","domain_name":"irisa","page_name":"PascaleSebillot","display_name":"Pascale Sebillot","profile_url":"https://irisa.academia.edu/PascaleSebillot?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false},{"id":5111,"name":"Character Recognition","url":"https://www.academia.edu/Documents/in/Character_Recognition?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":80596,"name":"Design method","url":"https://www.academia.edu/Documents/in/Design_method?f_ri=26066","nofollow":false},{"id":108243,"name":"Character Segmentation","url":"https://www.academia.edu/Documents/in/Character_Segmentation?f_ri=26066"},{"id":265584,"name":"Optical Character Recognition","url":"https://www.academia.edu/Documents/in/Optical_Character_Recognition?f_ri=26066"},{"id":520672,"name":"Language Model","url":"https://www.academia.edu/Documents/in/Language_Model?f_ri=26066"},{"id":1745900,"name":"Natural Scenes","url":"https://www.academia.edu/Documents/in/Natural_Scenes?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_27859562" data-work_id="27859562" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/27859562/Hybrid_neural_network_for_gas_analysis_measuring_system">Hybrid neural network for gas analysis measuring system</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/27859562" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4fed70a78f42e9d6e412e2cd83a77474" rel="nofollow" data-download="{&quot;attachment_id&quot;:48144275,&quot;asset_id&quot;:27859562,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/48144275/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="52118404" href="https://independent.academia.edu/Stanis%C5%82awOsowski">Stanisław Osowski</a><script data-card-contents-for-user="52118404" type="text/json">{"id":52118404,"first_name":"Stanisław","last_name":"Osowski","domain_name":"independent","page_name":"StanisławOsowski","display_name":"Stanisław Osowski","profile_url":"https://independent.academia.edu/Stanis%C5%82awOsowski?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_27859562 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="27859562"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 27859562, container: ".js-paper-rank-work_27859562", }); });</script></li><li class="js-percentile-work_27859562 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 27859562; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_27859562"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_27859562 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="27859562"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 27859562; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=27859562]").text(description); $(".js-view-count-work_27859562").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_27859562").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="27859562"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="33386" href="https://www.academia.edu/Documents/in/Sensor_Arrays">Sensor Arrays</a>,&nbsp;<script data-card-contents-for-ri="33386" type="text/json">{"id":33386,"name":"Sensor Arrays","url":"https://www.academia.edu/Documents/in/Sensor_Arrays?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="48127" href="https://www.academia.edu/Documents/in/Concentration">Concentration</a><script data-card-contents-for-ri="48127" type="text/json">{"id":48127,"name":"Concentration","url":"https://www.academia.edu/Documents/in/Concentration?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=27859562]'), work: {"id":27859562,"title":"Hybrid neural network for gas analysis measuring system","created_at":"2016-08-18T04:08:28.700-07:00","url":"https://www.academia.edu/27859562/Hybrid_neural_network_for_gas_analysis_measuring_system?f_ri=26066","dom_id":"work_27859562","summary":null,"downloadable_attachments":[{"id":48144275,"asset_id":27859562,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":52118404,"first_name":"Stanisław","last_name":"Osowski","domain_name":"independent","page_name":"StanisławOsowski","display_name":"Stanisław Osowski","profile_url":"https://independent.academia.edu/Stanis%C5%82awOsowski?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":33386,"name":"Sensor Arrays","url":"https://www.academia.edu/Documents/in/Sensor_Arrays?f_ri=26066","nofollow":false},{"id":48127,"name":"Concentration","url":"https://www.academia.edu/Documents/in/Concentration?f_ri=26066","nofollow":false},{"id":96893,"name":"Calibration","url":"https://www.academia.edu/Documents/in/Calibration?f_ri=26066"},{"id":142620,"name":"Training data","url":"https://www.academia.edu/Documents/in/Training_data?f_ri=26066"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=26066"},{"id":168891,"name":"Chemical Analysis","url":"https://www.academia.edu/Documents/in/Chemical_Analysis?f_ri=26066"},{"id":220049,"name":"Accuracy","url":"https://www.academia.edu/Documents/in/Accuracy?f_ri=26066"},{"id":238159,"name":"Multilayer Perceptron","url":"https://www.academia.edu/Documents/in/Multilayer_Perceptron?f_ri=26066"},{"id":595034,"name":"Sensor Array","url":"https://www.academia.edu/Documents/in/Sensor_Array?f_ri=26066"},{"id":2416066,"name":"Measurement System","url":"https://www.academia.edu/Documents/in/Measurement_System?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_9520979" data-work_id="9520979" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/9520979/Parametric_vs_neural_network_models_for_the_estimation_of_production_costs_A_case_study_in_the_automotive_industry">Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/9520979" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0c5b629637d8e59f7bfc0a5230ebd74a" rel="nofollow" data-download="{&quot;attachment_id&quot;:47745063,&quot;asset_id&quot;:9520979,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47745063/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="22349874" href="https://unibg.academia.edu/sergiocavalieri">sergio cavalieri</a><script data-card-contents-for-user="22349874" type="text/json">{"id":22349874,"first_name":"sergio","last_name":"cavalieri","domain_name":"unibg","page_name":"sergiocavalieri","display_name":"sergio cavalieri","profile_url":"https://unibg.academia.edu/sergiocavalieri?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_9520979 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="9520979"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 9520979, container: ".js-paper-rank-work_9520979", }); });</script></li><li class="js-percentile-work_9520979 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9520979; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_9520979"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_9520979 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="9520979"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9520979; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9520979]").text(description); $(".js-view-count-work_9520979").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_9520979").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="9520979"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="3442" href="https://www.academia.edu/Documents/in/Production">Production</a>,&nbsp;<script data-card-contents-for-ri="3442" type="text/json">{"id":3442,"name":"Production","url":"https://www.academia.edu/Documents/in/Production?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="13309" href="https://www.academia.edu/Documents/in/New_Product_Development">New Product Development</a>,&nbsp;<script data-card-contents-for-ri="13309" type="text/json">{"id":13309,"name":"New Product Development","url":"https://www.academia.edu/Documents/in/New_Product_Development?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="14305" href="https://www.academia.edu/Documents/in/Industrial_Engineering">Industrial Engineering</a>,&nbsp;<script data-card-contents-for-ri="14305" type="text/json">{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="18873" href="https://www.academia.edu/Documents/in/Automotive_Industry">Automotive Industry</a><script data-card-contents-for-ri="18873" type="text/json">{"id":18873,"name":"Automotive Industry","url":"https://www.academia.edu/Documents/in/Automotive_Industry?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=9520979]'), work: {"id":9520979,"title":"Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry","created_at":"2014-11-26T22:51:09.369-08:00","url":"https://www.academia.edu/9520979/Parametric_vs_neural_network_models_for_the_estimation_of_production_costs_A_case_study_in_the_automotive_industry?f_ri=26066","dom_id":"work_9520979","summary":null,"downloadable_attachments":[{"id":47745063,"asset_id":9520979,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":22349874,"first_name":"sergio","last_name":"cavalieri","domain_name":"unibg","page_name":"sergiocavalieri","display_name":"sergio cavalieri","profile_url":"https://unibg.academia.edu/sergiocavalieri?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":3442,"name":"Production","url":"https://www.academia.edu/Documents/in/Production?f_ri=26066","nofollow":false},{"id":13309,"name":"New Product Development","url":"https://www.academia.edu/Documents/in/New_Product_Development?f_ri=26066","nofollow":false},{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering?f_ri=26066","nofollow":false},{"id":18873,"name":"Automotive Industry","url":"https://www.academia.edu/Documents/in/Automotive_Industry?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066"},{"id":40815,"name":"Cost Estimation","url":"https://www.academia.edu/Documents/in/Cost_Estimation?f_ri=26066"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=26066"},{"id":61714,"name":"Production economics","url":"https://www.academia.edu/Documents/in/Production_economics?f_ri=26066"},{"id":96047,"name":"Case Study","url":"https://www.academia.edu/Documents/in/Case_Study?f_ri=26066"},{"id":96772,"name":"New Product Development Process Management","url":"https://www.academia.edu/Documents/in/New_Product_Development_Process_Management?f_ri=26066"},{"id":124459,"name":"Target costing","url":"https://www.academia.edu/Documents/in/Target_costing?f_ri=26066"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point?f_ri=26066"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=26066"},{"id":1358026,"name":"Production Cost","url":"https://www.academia.edu/Documents/in/Production_Cost?f_ri=26066"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model?f_ri=26066"},{"id":2491136,"name":"Parametric Model","url":"https://www.academia.edu/Documents/in/Parametric_Model?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14301027" data-work_id="14301027" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14301027/Network_structure_revealed_by_short_cycles">Network structure revealed by short cycles</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14301027" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="20c21a2f3c5af6ac3ca384965dce7afa" rel="nofollow" data-download="{&quot;attachment_id&quot;:44343024,&quot;asset_id&quot;:14301027,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44343024/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33259163" href="https://clarkson.academia.edu/ErikBollt">Erik Bollt</a><script data-card-contents-for-user="33259163" type="text/json">{"id":33259163,"first_name":"Erik","last_name":"Bollt","domain_name":"clarkson","page_name":"ErikBollt","display_name":"Erik Bollt","profile_url":"https://clarkson.academia.edu/ErikBollt?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_14301027 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14301027"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14301027, container: ".js-paper-rank-work_14301027", }); });</script></li><li class="js-percentile-work_14301027 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14301027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14301027"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14301027 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14301027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14301027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14301027]").text(description); $(".js-view-count-work_14301027").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14301027").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14301027"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="47347" href="https://www.academia.edu/Documents/in/Football">Football</a>,&nbsp;<script data-card-contents-for-ri="47347" type="text/json">{"id":47347,"name":"Football","url":"https://www.academia.edu/Documents/in/Football?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="99499" href="https://www.academia.edu/Documents/in/Complex_network">Complex network</a>,&nbsp;<script data-card-contents-for-ri="99499" type="text/json">{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="154235" href="https://www.academia.edu/Documents/in/Community_Structure">Community Structure</a><script data-card-contents-for-ri="154235" type="text/json">{"id":154235,"name":"Community Structure","url":"https://www.academia.edu/Documents/in/Community_Structure?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14301027]'), work: {"id":14301027,"title":"Network structure revealed by short cycles","created_at":"2015-07-22T10:24:06.850-07:00","url":"https://www.academia.edu/14301027/Network_structure_revealed_by_short_cycles?f_ri=26066","dom_id":"work_14301027","summary":null,"downloadable_attachments":[{"id":44343024,"asset_id":14301027,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33259163,"first_name":"Erik","last_name":"Bollt","domain_name":"clarkson","page_name":"ErikBollt","display_name":"Erik Bollt","profile_url":"https://clarkson.academia.edu/ErikBollt?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":47347,"name":"Football","url":"https://www.academia.edu/Documents/in/Football?f_ri=26066","nofollow":false},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network?f_ri=26066","nofollow":false},{"id":154235,"name":"Community Structure","url":"https://www.academia.edu/Documents/in/Community_Structure?f_ri=26066","nofollow":false},{"id":607461,"name":"Network structure","url":"https://www.academia.edu/Documents/in/Network_structure?f_ri=26066"},{"id":1154248,"name":"Theoretical Model","url":"https://www.academia.edu/Documents/in/Theoretical_Model?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_23863134 coauthored" data-work_id="23863134" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/23863134/Application_of_neural_networks_to_modelling_nonlinear_relationships_in_ecology">Application of neural networks to modelling nonlinear relationships in ecology</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/23863134" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fc2dbeef2a77ab9e755eb829cbf76d38" rel="nofollow" data-download="{&quot;attachment_id&quot;:44256681,&quot;asset_id&quot;:23863134,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44256681/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="46126598" href="https://independent.academia.edu/St%C3%A9phaneAulagnier">Stéphane Aulagnier</a><script data-card-contents-for-user="46126598" type="text/json">{"id":46126598,"first_name":"Stéphane","last_name":"Aulagnier","domain_name":"independent","page_name":"StéphaneAulagnier","display_name":"Stéphane Aulagnier","profile_url":"https://independent.academia.edu/St%C3%A9phaneAulagnier?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-23863134">+1</span><div class="hidden js-additional-users-23863134"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MarcDelacoste">Marc Delacoste</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-23863134'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-23863134').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_23863134 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="23863134"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 23863134, container: ".js-paper-rank-work_23863134", }); });</script></li><li class="js-percentile-work_23863134 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23863134; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_23863134"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_23863134 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="23863134"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23863134; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23863134]").text(description); $(".js-view-count-work_23863134").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_23863134").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="23863134"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="28235" href="https://www.academia.edu/Documents/in/Multidisciplinary">Multidisciplinary</a>,&nbsp;<script data-card-contents-for-ri="28235" type="text/json">{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="28697" href="https://www.academia.edu/Documents/in/Ecological_Modelling">Ecological Modelling</a>,&nbsp;<script data-card-contents-for-ri="28697" type="text/json">{"id":28697,"name":"Ecological Modelling","url":"https://www.academia.edu/Documents/in/Ecological_Modelling?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="64073" href="https://www.academia.edu/Documents/in/Brown_trout">Brown trout</a><script data-card-contents-for-ri="64073" type="text/json">{"id":64073,"name":"Brown trout","url":"https://www.academia.edu/Documents/in/Brown_trout?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=23863134]'), work: {"id":23863134,"title":"Application of neural networks to modelling nonlinear relationships in ecology","created_at":"2016-03-31T05:28:59.174-07:00","url":"https://www.academia.edu/23863134/Application_of_neural_networks_to_modelling_nonlinear_relationships_in_ecology?f_ri=26066","dom_id":"work_23863134","summary":null,"downloadable_attachments":[{"id":44256681,"asset_id":23863134,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":46126598,"first_name":"Stéphane","last_name":"Aulagnier","domain_name":"independent","page_name":"StéphaneAulagnier","display_name":"Stéphane Aulagnier","profile_url":"https://independent.academia.edu/St%C3%A9phaneAulagnier?f_ri=26066","photo":"/images/s65_no_pic.png"},{"id":51721237,"first_name":"Marc","last_name":"Delacoste","domain_name":"independent","page_name":"MarcDelacoste","display_name":"Marc Delacoste","profile_url":"https://independent.academia.edu/MarcDelacoste?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary?f_ri=26066","nofollow":false},{"id":28697,"name":"Ecological Modelling","url":"https://www.academia.edu/Documents/in/Ecological_Modelling?f_ri=26066","nofollow":false},{"id":64073,"name":"Brown trout","url":"https://www.academia.edu/Documents/in/Brown_trout?f_ri=26066","nofollow":false},{"id":81034,"name":"Predictive Modelling","url":"https://www.academia.edu/Documents/in/Predictive_Modelling?f_ri=26066"},{"id":162620,"name":"Ecological","url":"https://www.academia.edu/Documents/in/Ecological?f_ri=26066"},{"id":224578,"name":"Multiple Regression","url":"https://www.academia.edu/Documents/in/Multiple_Regression?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_20866227" data-work_id="20866227" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/20866227/Neural_network_based_system_identification_of_a_PMSM_under_load_fluctuation">Neural network based system identification of a PMSM under load fluctuation</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/20866227" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="10c0d92e2396d4826f982b434e730d11" rel="nofollow" data-download="{&quot;attachment_id&quot;:41604968,&quot;asset_id&quot;:20866227,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41604968/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="35929246" href="https://uis.academia.edu/JabidQuiroga">Jabid Quiroga</a><script data-card-contents-for-user="35929246" type="text/json">{"id":35929246,"first_name":"Jabid","last_name":"Quiroga","domain_name":"uis","page_name":"JabidQuiroga","display_name":"Jabid Quiroga","profile_url":"https://uis.academia.edu/JabidQuiroga?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_20866227 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="20866227"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 20866227, container: ".js-paper-rank-work_20866227", }); });</script></li><li class="js-percentile-work_20866227 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20866227; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_20866227"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_20866227 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="20866227"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20866227; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20866227]").text(description); $(".js-view-count-work_20866227").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_20866227").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="20866227"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="63353" href="https://www.academia.edu/Documents/in/Identification">Identification</a>,&nbsp;<script data-card-contents-for-ri="63353" type="text/json">{"id":63353,"name":"Identification","url":"https://www.academia.edu/Documents/in/Identification?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="74975" href="https://www.academia.edu/Documents/in/Ls-Dyna">Ls-Dyna</a>,&nbsp;<script data-card-contents-for-ri="74975" type="text/json">{"id":74975,"name":"Ls-Dyna","url":"https://www.academia.edu/Documents/in/Ls-Dyna?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="107320" href="https://www.academia.edu/Documents/in/System">System</a><script data-card-contents-for-ri="107320" type="text/json">{"id":107320,"name":"System","url":"https://www.academia.edu/Documents/in/System?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=20866227]'), work: {"id":20866227,"title":"Neural network based system identification of a PMSM under load fluctuation","created_at":"2016-01-26T21:17:41.390-08:00","url":"https://www.academia.edu/20866227/Neural_network_based_system_identification_of_a_PMSM_under_load_fluctuation?f_ri=26066","dom_id":"work_20866227","summary":null,"downloadable_attachments":[{"id":41604968,"asset_id":20866227,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":35929246,"first_name":"Jabid","last_name":"Quiroga","domain_name":"uis","page_name":"JabidQuiroga","display_name":"Jabid Quiroga","profile_url":"https://uis.academia.edu/JabidQuiroga?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":63353,"name":"Identification","url":"https://www.academia.edu/Documents/in/Identification?f_ri=26066","nofollow":false},{"id":74975,"name":"Ls-Dyna","url":"https://www.academia.edu/Documents/in/Ls-Dyna?f_ri=26066","nofollow":false},{"id":107320,"name":"System","url":"https://www.academia.edu/Documents/in/System?f_ri=26066","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_17347776" data-work_id="17347776" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/17347776/Binary_encoded_2nd_differential_spectrometry_using_UV_Vis_spectral_data_and_neural_networks_in_the_estimation_of_species_type_and_concentration">Binary encoded 2nd-differential spectrometry using UV-Vis spectral data and neural networks in the estimation of species type and concentration</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/17347776" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0f8849289c3a9a9251025369edac8717" rel="nofollow" data-download="{&quot;attachment_id&quot;:42266608,&quot;asset_id&quot;:17347776,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/42266608/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="37052553" href="https://independent.academia.edu/KennethGrattan">Kenneth Grattan</a><script data-card-contents-for-user="37052553" type="text/json">{"id":37052553,"first_name":"Kenneth","last_name":"Grattan","domain_name":"independent","page_name":"KennethGrattan","display_name":"Kenneth Grattan","profile_url":"https://independent.academia.edu/KennethGrattan?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_17347776 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="17347776"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 17347776, container: ".js-paper-rank-work_17347776", }); });</script></li><li class="js-percentile-work_17347776 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17347776; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_17347776"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_17347776 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="17347776"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17347776; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17347776]").text(description); $(".js-view-count-work_17347776").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_17347776").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="17347776"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1237788" href="https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering">Electrical And Electronic Engineering</a><script data-card-contents-for-ri="1237788" type="text/json">{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=17347776]'), work: {"id":17347776,"title":"Binary encoded 2nd-differential spectrometry using UV-Vis spectral data and neural networks in the estimation of species type and concentration","created_at":"2015-10-27T07:28:24.314-07:00","url":"https://www.academia.edu/17347776/Binary_encoded_2nd_differential_spectrometry_using_UV_Vis_spectral_data_and_neural_networks_in_the_estimation_of_species_type_and_concentration?f_ri=26066","dom_id":"work_17347776","summary":null,"downloadable_attachments":[{"id":42266608,"asset_id":17347776,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":37052553,"first_name":"Kenneth","last_name":"Grattan","domain_name":"independent","page_name":"KennethGrattan","display_name":"Kenneth Grattan","profile_url":"https://independent.academia.edu/KennethGrattan?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=26066","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_295579" data-work_id="295579" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/295579/PaDDMAS_Parallel_and_Distributed_Data_Mining_Application_Suite">PaDDMAS: Parallel and Distributed Data Mining Application Suite</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/295579" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="20edb6f45e12e2271e6bcd03e07fe61a" rel="nofollow" data-download="{&quot;attachment_id&quot;:1395587,&quot;asset_id&quot;:295579,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/1395587/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="201686" href="https://cardiff.academia.edu/OmerRana">Omer Rana</a><script data-card-contents-for-user="201686" type="text/json">{"id":201686,"first_name":"Omer","last_name":"Rana","domain_name":"cardiff","page_name":"OmerRana","display_name":"Omer Rana","profile_url":"https://cardiff.academia.edu/OmerRana?f_ri=26066","photo":"https://0.academia-photos.com/201686/47454/43685/s65_omer.rana.jpg"}</script></span></span></li><li class="js-paper-rank-work_295579 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="295579"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 295579, container: ".js-paper-rank-work_295579", }); });</script></li><li class="js-percentile-work_295579 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 295579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_295579"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_295579 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="295579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 295579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=295579]").text(description); $(".js-view-count-work_295579").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_295579").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="295579"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">21</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="464" href="https://www.academia.edu/Documents/in/Information_Retrieval">Information Retrieval</a>,&nbsp;<script data-card-contents-for-ri="464" type="text/json">{"id":464,"name":"Information Retrieval","url":"https://www.academia.edu/Documents/in/Information_Retrieval?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1440" href="https://www.academia.edu/Documents/in/Visualization">Visualization</a>,&nbsp;<script data-card-contents-for-ri="1440" type="text/json">{"id":1440,"name":"Visualization","url":"https://www.academia.edu/Documents/in/Visualization?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1681" href="https://www.academia.edu/Documents/in/Decision_Making">Decision Making</a><script data-card-contents-for-ri="1681" type="text/json">{"id":1681,"name":"Decision Making","url":"https://www.academia.edu/Documents/in/Decision_Making?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=295579]'), work: {"id":295579,"title":"PaDDMAS: Parallel and Distributed Data Mining Application Suite","created_at":"2010-08-12T22:42:33.657-07:00","url":"https://www.academia.edu/295579/PaDDMAS_Parallel_and_Distributed_Data_Mining_Application_Suite?f_ri=26066","dom_id":"work_295579","summary":null,"downloadable_attachments":[{"id":1395587,"asset_id":295579,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":201686,"first_name":"Omer","last_name":"Rana","domain_name":"cardiff","page_name":"OmerRana","display_name":"Omer Rana","profile_url":"https://cardiff.academia.edu/OmerRana?f_ri=26066","photo":"https://0.academia-photos.com/201686/47454/43685/s65_omer.rana.jpg"}],"research_interests":[{"id":464,"name":"Information Retrieval","url":"https://www.academia.edu/Documents/in/Information_Retrieval?f_ri=26066","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false},{"id":1440,"name":"Visualization","url":"https://www.academia.edu/Documents/in/Visualization?f_ri=26066","nofollow":false},{"id":1681,"name":"Decision Making","url":"https://www.academia.edu/Documents/in/Decision_Making?f_ri=26066","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=26066"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=26066"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=26066"},{"id":5279,"name":"XML","url":"https://www.academia.edu/Documents/in/XML?f_ri=26066"},{"id":8131,"name":"Data Management","url":"https://www.academia.edu/Documents/in/Data_Management?f_ri=26066"},{"id":17167,"name":"Parallel Processing","url":"https://www.academia.edu/Documents/in/Parallel_Processing?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":39693,"name":"Distributed Data Mining","url":"https://www.academia.edu/Documents/in/Distributed_Data_Mining?f_ri=26066"},{"id":48591,"name":"Data Visualisation","url":"https://www.academia.edu/Documents/in/Data_Visualisation?f_ri=26066"},{"id":80870,"name":"Parallel \u0026 Distributed Computing","url":"https://www.academia.edu/Documents/in/Parallel_and_Distributed_Computing?f_ri=26066"},{"id":180347,"name":"Visualisation","url":"https://www.academia.edu/Documents/in/Visualisation?f_ri=26066"},{"id":327017,"name":"Credit Cards","url":"https://www.academia.edu/Documents/in/Credit_Cards?f_ri=26066"},{"id":394067,"name":"Data Distribution","url":"https://www.academia.edu/Documents/in/Data_Distribution?f_ri=26066"},{"id":521483,"name":"Large Data Sets","url":"https://www.academia.edu/Documents/in/Large_Data_Sets?f_ri=26066"},{"id":557801,"name":"High Dimensionality","url":"https://www.academia.edu/Documents/in/High_Dimensionality?f_ri=26066"},{"id":581652,"name":"Data Processing","url":"https://www.academia.edu/Documents/in/Data_Processing?f_ri=26066"},{"id":1307607,"name":"Database System","url":"https://www.academia.edu/Documents/in/Database_System?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_75504315" data-work_id="75504315" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/75504315/The_supervised_network_self_organizing_map_for_classification_of_large_data_sets">The supervised network self-organizing map for classification of large data sets</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/75504315" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4c118040e7a557d47726f9660922c0ed" rel="nofollow" data-download="{&quot;attachment_id&quot;:83246744,&quot;asset_id&quot;:75504315,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/83246744/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2936897" href="https://pub.academia.edu/LiviuVladutu">Liviu Vladutu</a><script data-card-contents-for-user="2936897" type="text/json">{"id":2936897,"first_name":"Liviu","last_name":"Vladutu","domain_name":"pub","page_name":"LiviuVladutu","display_name":"Liviu Vladutu","profile_url":"https://pub.academia.edu/LiviuVladutu?f_ri=26066","photo":"https://0.academia-photos.com/2936897/970401/1214763/s65_liviu.vladutu.jpg"}</script></span></span></li><li class="js-paper-rank-work_75504315 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="75504315"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 75504315, container: ".js-paper-rank-work_75504315", }); });</script></li><li class="js-percentile-work_75504315 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75504315; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_75504315"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_75504315 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="75504315"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75504315; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75504315]").text(description); $(".js-view-count-work_75504315").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_75504315").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="75504315"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="146" href="https://www.academia.edu/Documents/in/Bioinformatics">Bioinformatics</a>,&nbsp;<script data-card-contents-for-ri="146" type="text/json">{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1233" href="https://www.academia.edu/Documents/in/Social_Networks">Social Networks</a>,&nbsp;<script data-card-contents-for-ri="1233" type="text/json">{"id":1233,"name":"Social Networks","url":"https://www.academia.edu/Documents/in/Social_Networks?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=75504315]'), work: {"id":75504315,"title":"The supervised network self-organizing map for classification of large data sets","created_at":"2022-04-05T01:48:37.368-07:00","url":"https://www.academia.edu/75504315/The_supervised_network_self_organizing_map_for_classification_of_large_data_sets?f_ri=26066","dom_id":"work_75504315","summary":null,"downloadable_attachments":[{"id":83246744,"asset_id":75504315,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2936897,"first_name":"Liviu","last_name":"Vladutu","domain_name":"pub","page_name":"LiviuVladutu","display_name":"Liviu Vladutu","profile_url":"https://pub.academia.edu/LiviuVladutu?f_ri=26066","photo":"https://0.academia-photos.com/2936897/970401/1214763/s65_liviu.vladutu.jpg"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=26066","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=26066","nofollow":false},{"id":1233,"name":"Social Networks","url":"https://www.academia.edu/Documents/in/Social_Networks?f_ri=26066","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=26066","nofollow":false},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=26066"},{"id":2189,"name":"Computational Complexity","url":"https://www.academia.edu/Documents/in/Computational_Complexity?f_ri=26066"},{"id":5751,"name":"Radial Basis Function","url":"https://www.academia.edu/Documents/in/Radial_Basis_Function?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":27360,"name":"Databases","url":"https://www.academia.edu/Documents/in/Databases?f_ri=26066"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=26066"},{"id":96502,"name":"Applied","url":"https://www.academia.edu/Documents/in/Applied?f_ri=26066"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space?f_ri=26066"},{"id":221389,"name":"Pattern Classification","url":"https://www.academia.edu/Documents/in/Pattern_Classification?f_ri=26066"},{"id":393460,"name":"Applied artificial intelligence","url":"https://www.academia.edu/Documents/in/Applied_artificial_intelligence?f_ri=26066"},{"id":393524,"name":"Learning Process","url":"https://www.academia.edu/Documents/in/Learning_Process?f_ri=26066"},{"id":521483,"name":"Large Data Sets","url":"https://www.academia.edu/Documents/in/Large_Data_Sets?f_ri=26066"},{"id":557803,"name":"Self Organized Map","url":"https://www.academia.edu/Documents/in/Self_Organized_Map?f_ri=26066"},{"id":1203325,"name":"Data Extraction","url":"https://www.academia.edu/Documents/in/Data_Extraction?f_ri=26066"},{"id":1597104,"name":"Learning Vector Quantization","url":"https://www.academia.edu/Documents/in/Learning_Vector_Quantization?f_ri=26066"},{"id":2003775,"name":"Divide and Conquer","url":"https://www.academia.edu/Documents/in/Divide_and_Conquer?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_73685403" data-work_id="73685403" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/73685403/Statistical_methods_for_modelling_neural_networks">Statistical methods for modelling neural networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/73685403" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="cf5490ccf2368370f9db200406c23156" rel="nofollow" data-download="{&quot;attachment_id&quot;:82110041,&quot;asset_id&quot;:73685403,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82110041/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2319290" href="https://puc-rio.academia.edu/MarceloMedeiros">Marcelo Medeiros</a><script data-card-contents-for-user="2319290" type="text/json">{"id":2319290,"first_name":"Marcelo","last_name":"Medeiros","domain_name":"puc-rio","page_name":"MarceloMedeiros","display_name":"Marcelo Medeiros","profile_url":"https://puc-rio.academia.edu/MarceloMedeiros?f_ri=26066","photo":"https://0.academia-photos.com/2319290/733802/911019/s65_marcelo.medeiros.jpg"}</script></span></span></li><li class="js-paper-rank-work_73685403 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="73685403"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 73685403, container: ".js-paper-rank-work_73685403", }); });</script></li><li class="js-percentile-work_73685403 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73685403; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_73685403"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_73685403 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="73685403"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73685403; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73685403]").text(description); $(".js-view-count-work_73685403").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_73685403").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="73685403"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="747" href="https://www.academia.edu/Documents/in/Econometrics">Econometrics</a>,&nbsp;<script data-card-contents-for-ri="747" type="text/json">{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4456" href="https://www.academia.edu/Documents/in/Time_Series">Time Series</a>,&nbsp;<script data-card-contents-for-ri="4456" type="text/json">{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9961" href="https://www.academia.edu/Documents/in/Time_series_Econometrics">Time series Econometrics</a><script data-card-contents-for-ri="9961" type="text/json">{"id":9961,"name":"Time series Econometrics","url":"https://www.academia.edu/Documents/in/Time_series_Econometrics?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=73685403]'), work: {"id":73685403,"title":"Statistical methods for modelling neural networks","created_at":"2022-03-13T13:47:51.459-07:00","url":"https://www.academia.edu/73685403/Statistical_methods_for_modelling_neural_networks?f_ri=26066","dom_id":"work_73685403","summary":null,"downloadable_attachments":[{"id":82110041,"asset_id":73685403,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2319290,"first_name":"Marcelo","last_name":"Medeiros","domain_name":"puc-rio","page_name":"MarceloMedeiros","display_name":"Marcelo Medeiros","profile_url":"https://puc-rio.academia.edu/MarceloMedeiros?f_ri=26066","photo":"https://0.academia-photos.com/2319290/733802/911019/s65_marcelo.medeiros.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics?f_ri=26066","nofollow":false},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=26066","nofollow":false},{"id":9961,"name":"Time series Econometrics","url":"https://www.academia.edu/Documents/in/Time_series_Econometrics?f_ri=26066","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=26066"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference?f_ri=26066"},{"id":200998,"name":"Feedforward Neural Network","url":"https://www.academia.edu/Documents/in/Feedforward_Neural_Network?f_ri=26066"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time?f_ri=26066"},{"id":664700,"name":"Statistical Model","url":"https://www.academia.edu/Documents/in/Statistical_Model?f_ri=26066"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_70779232" data-work_id="70779232" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/70779232/Pattern_Recognition_Using_Neural_Networks">Pattern Recognition Using Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Face Recognition has been identified as one of the attracting research areas and it has drawn the attention of many researchers due to its varying applications such as security systems, medical systems, entertainment, etc. Face... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_70779232" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Face Recognition has been identified as one of the attracting research areas and it has drawn the attention of many researchers due to its varying applications such as security systems, medical systems, entertainment, etc. Face recognition is the preferred mode of identification by humans: it is natural, robust and non-intrusive. A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else. Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor. In this paper we have developed and illustrated a recognition system for human faces using a novel Kohonen self-organizing map (SOM) or Self-Organi...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/70779232" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5717f7c9b7e8e1fe6d1e6730966eda93" rel="nofollow" data-download="{&quot;attachment_id&quot;:80385182,&quot;asset_id&quot;:70779232,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/80385182/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="128935072" href="https://mitpune.academia.edu/DrShamlaMantri">Dr. Shamla Mantri</a><script data-card-contents-for-user="128935072" type="text/json">{"id":128935072,"first_name":"Dr. Shamla","last_name":"Mantri","domain_name":"mitpune","page_name":"DrShamlaMantri","display_name":"Dr. Shamla Mantri","profile_url":"https://mitpune.academia.edu/DrShamlaMantri?f_ri=26066","photo":"https://0.academia-photos.com/128935072/46085496/143497789/s65_dr._shamla.mantri.jpg"}</script></span></span></li><li class="js-paper-rank-work_70779232 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="70779232"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 70779232, container: ".js-paper-rank-work_70779232", }); });</script></li><li class="js-percentile-work_70779232 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70779232; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_70779232"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_70779232 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="70779232"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70779232; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70779232]").text(description); $(".js-view-count-work_70779232").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_70779232").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="70779232"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a>,&nbsp;<script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="503369" href="https://www.academia.edu/Documents/in/Principal_component_analysis_PCA_">Principal component analysis (PCA)</a><script data-card-contents-for-ri="503369" type="text/json">{"id":503369,"name":"Principal component analysis (PCA)","url":"https://www.academia.edu/Documents/in/Principal_component_analysis_PCA_?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=70779232]'), work: {"id":70779232,"title":"Pattern Recognition Using Neural Networks","created_at":"2022-02-06T19:57:23.787-08:00","url":"https://www.academia.edu/70779232/Pattern_Recognition_Using_Neural_Networks?f_ri=26066","dom_id":"work_70779232","summary":"Face Recognition has been identified as one of the attracting research areas and it has drawn the attention of many researchers due to its varying applications such as security systems, medical systems, entertainment, etc. Face recognition is the preferred mode of identification by humans: it is natural, robust and non-intrusive. A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else. Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor. In this paper we have developed and illustrated a recognition system for human faces using a novel Kohonen self-organizing map (SOM) or Self-Organi...","downloadable_attachments":[{"id":80385182,"asset_id":70779232,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":128935072,"first_name":"Dr. Shamla","last_name":"Mantri","domain_name":"mitpune","page_name":"DrShamlaMantri","display_name":"Dr. Shamla Mantri","profile_url":"https://mitpune.academia.edu/DrShamlaMantri?f_ri=26066","photo":"https://0.academia-photos.com/128935072/46085496/143497789/s65_dr._shamla.mantri.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":503369,"name":"Principal component analysis (PCA)","url":"https://www.academia.edu/Documents/in/Principal_component_analysis_PCA_?f_ri=26066","nofollow":false},{"id":1311460,"name":"Computer Science Information Technology","url":"https://www.academia.edu/Documents/in/Computer_Science_Information_Technology?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_68186656" data-work_id="68186656" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/68186656/Nonlinear_system_identification_of_a_twin_rotor_MIMO_system">Nonlinear system identification of a twin rotor MIMO system</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/68186656" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="68da3987344a6dc3a3a643932e2f6f97" rel="nofollow" data-download="{&quot;attachment_id&quot;:78752965,&quot;asset_id&quot;:68186656,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/78752965/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="110134069" href="https://independent.academia.edu/JenaDebashisha">Debashisha Jena</a><script data-card-contents-for-user="110134069" type="text/json">{"id":110134069,"first_name":"Debashisha","last_name":"Jena","domain_name":"independent","page_name":"JenaDebashisha","display_name":"Debashisha Jena","profile_url":"https://independent.academia.edu/JenaDebashisha?f_ri=26066","photo":"https://0.academia-photos.com/110134069/26283872/24873653/s65_debashisha.jena.jpg"}</script></span></span></li><li class="js-paper-rank-work_68186656 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="68186656"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 68186656, container: ".js-paper-rank-work_68186656", }); });</script></li><li class="js-percentile-work_68186656 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 68186656; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_68186656"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_68186656 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="68186656"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 68186656; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=68186656]").text(description); $(".js-view-count-work_68186656").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_68186656").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="68186656"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1564" href="https://www.academia.edu/Documents/in/System_Identification">System Identification</a>,&nbsp;<script data-card-contents-for-ri="1564" type="text/json">{"id":1564,"name":"System Identification","url":"https://www.academia.edu/Documents/in/System_Identification?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5026" href="https://www.academia.edu/Documents/in/Genetic_Algorithms">Genetic Algorithms</a>,&nbsp;<script data-card-contents-for-ri="5026" type="text/json">{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5750" href="https://www.academia.edu/Documents/in/Back_Propagation">Back Propagation</a><script data-card-contents-for-ri="5750" type="text/json">{"id":5750,"name":"Back Propagation","url":"https://www.academia.edu/Documents/in/Back_Propagation?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=68186656]'), work: {"id":68186656,"title":"Nonlinear system identification of a twin rotor MIMO system","created_at":"2022-01-14T17:41:58.632-08:00","url":"https://www.academia.edu/68186656/Nonlinear_system_identification_of_a_twin_rotor_MIMO_system?f_ri=26066","dom_id":"work_68186656","summary":null,"downloadable_attachments":[{"id":78752965,"asset_id":68186656,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":110134069,"first_name":"Debashisha","last_name":"Jena","domain_name":"independent","page_name":"JenaDebashisha","display_name":"Debashisha Jena","profile_url":"https://independent.academia.edu/JenaDebashisha?f_ri=26066","photo":"https://0.academia-photos.com/110134069/26283872/24873653/s65_debashisha.jena.jpg"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=26066","nofollow":false},{"id":1564,"name":"System Identification","url":"https://www.academia.edu/Documents/in/System_Identification?f_ri=26066","nofollow":false},{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms?f_ri=26066","nofollow":false},{"id":5750,"name":"Back Propagation","url":"https://www.academia.edu/Documents/in/Back_Propagation?f_ri=26066","nofollow":false},{"id":12346,"name":"Differential Evolution","url":"https://www.academia.edu/Documents/in/Differential_Evolution?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm?f_ri=26066"},{"id":63353,"name":"Identification","url":"https://www.academia.edu/Documents/in/Identification?f_ri=26066"},{"id":73017,"name":"Nonlinear Systems","url":"https://www.academia.edu/Documents/in/Nonlinear_Systems?f_ri=26066"},{"id":107381,"name":"Local Search","url":"https://www.academia.edu/Documents/in/Local_Search?f_ri=26066"},{"id":238159,"name":"Multilayer Perceptron","url":"https://www.academia.edu/Documents/in/Multilayer_Perceptron?f_ri=26066"},{"id":252813,"name":"Evolutionary Computing","url":"https://www.academia.edu/Documents/in/Evolutionary_Computing?f_ri=26066"},{"id":461708,"name":"Backpropagation","url":"https://www.academia.edu/Documents/in/Backpropagation?f_ri=26066"},{"id":482058,"name":"Memetic Algorithm","url":"https://www.academia.edu/Documents/in/Memetic_Algorithm?f_ri=26066"},{"id":506858,"name":"Nonlinear system","url":"https://www.academia.edu/Documents/in/Nonlinear_system?f_ri=26066"},{"id":596994,"name":"Nonlinear system identification","url":"https://www.academia.edu/Documents/in/Nonlinear_system_identification?f_ri=26066"},{"id":1368234,"name":"Gradient Descent Method","url":"https://www.academia.edu/Documents/in/Gradient_Descent_Method?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_67221242" data-work_id="67221242" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/67221242/VLSI_implementation_of_a_fully_parallel_stochastic_neural_network">VLSI implementation of a fully parallel stochastic neural network</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/67221242" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="caa1ba90aa1534c8f8030d14bc631a54" rel="nofollow" data-download="{&quot;attachment_id&quot;:78119632,&quot;asset_id&quot;:67221242,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/78119632/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="20044819" href="https://us.academia.edu/JoseManuelQuero">Jose Manuel Quero</a><script data-card-contents-for-user="20044819" type="text/json">{"id":20044819,"first_name":"Jose Manuel","last_name":"Quero","domain_name":"us","page_name":"JoseManuelQuero","display_name":"Jose Manuel Quero","profile_url":"https://us.academia.edu/JoseManuelQuero?f_ri=26066","photo":"https://0.academia-photos.com/20044819/10864528/12125024/s65_jose_manuel.quero.jpg"}</script></span></span></li><li class="js-paper-rank-work_67221242 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="67221242"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 67221242, container: ".js-paper-rank-work_67221242", }); });</script></li><li class="js-percentile-work_67221242 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67221242; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_67221242"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_67221242 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="67221242"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67221242; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67221242]").text(description); $(".js-view-count-work_67221242").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_67221242").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="67221242"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="244976" href="https://www.academia.edu/Documents/in/Transfer_Function">Transfer Function</a><script data-card-contents-for-ri="244976" type="text/json">{"id":244976,"name":"Transfer Function","url":"https://www.academia.edu/Documents/in/Transfer_Function?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=67221242]'), work: {"id":67221242,"title":"VLSI implementation of a fully parallel stochastic neural network","created_at":"2022-01-05T05:32:56.486-08:00","url":"https://www.academia.edu/67221242/VLSI_implementation_of_a_fully_parallel_stochastic_neural_network?f_ri=26066","dom_id":"work_67221242","summary":null,"downloadable_attachments":[{"id":78119632,"asset_id":67221242,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":20044819,"first_name":"Jose Manuel","last_name":"Quero","domain_name":"us","page_name":"JoseManuelQuero","display_name":"Jose Manuel Quero","profile_url":"https://us.academia.edu/JoseManuelQuero?f_ri=26066","photo":"https://0.academia-photos.com/20044819/10864528/12125024/s65_jose_manuel.quero.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":244976,"name":"Transfer Function","url":"https://www.academia.edu/Documents/in/Transfer_Function?f_ri=26066","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_58945575" data-work_id="58945575" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/58945575/High_speed_neural_control_for_robot_navigation">High speed neural control for robot navigation</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/58945575" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0db3448640c18ed150f04387ff9cdad4" rel="nofollow" data-download="{&quot;attachment_id&quot;:73110313,&quot;asset_id&quot;:58945575,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/73110313/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="309923" href="https://independent.academia.edu/LuisUebel">Luis Uebel</a><script data-card-contents-for-user="309923" type="text/json">{"id":309923,"first_name":"Luis","last_name":"Uebel","domain_name":"independent","page_name":"LuisUebel","display_name":"Luis Uebel","profile_url":"https://independent.academia.edu/LuisUebel?f_ri=26066","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_58945575 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="58945575"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 58945575, container: ".js-paper-rank-work_58945575", }); });</script></li><li class="js-percentile-work_58945575 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58945575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_58945575"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_58945575 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="58945575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58945575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58945575]").text(description); $(".js-view-count-work_58945575").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_58945575").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="58945575"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="4165" href="https://www.academia.edu/Documents/in/Fuzzy_Logic">Fuzzy Logic</a>,&nbsp;<script data-card-contents-for-ri="4165" type="text/json">{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="129253" href="https://www.academia.edu/Documents/in/Real_Time_Control">Real Time Control</a>,&nbsp;<script data-card-contents-for-ri="129253" type="text/json">{"id":129253,"name":"Real Time Control","url":"https://www.academia.edu/Documents/in/Real_Time_Control?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="236258" href="https://www.academia.edu/Documents/in/Mobile_Robot_Navigation">Mobile Robot Navigation</a><script data-card-contents-for-ri="236258" type="text/json">{"id":236258,"name":"Mobile Robot Navigation","url":"https://www.academia.edu/Documents/in/Mobile_Robot_Navigation?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=58945575]'), work: {"id":58945575,"title":"High speed neural control for robot navigation","created_at":"2021-10-18T21:12:29.833-07:00","url":"https://www.academia.edu/58945575/High_speed_neural_control_for_robot_navigation?f_ri=26066","dom_id":"work_58945575","summary":null,"downloadable_attachments":[{"id":73110313,"asset_id":58945575,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":309923,"first_name":"Luis","last_name":"Uebel","domain_name":"independent","page_name":"LuisUebel","display_name":"Luis Uebel","profile_url":"https://independent.academia.edu/LuisUebel?f_ri=26066","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":129253,"name":"Real Time Control","url":"https://www.academia.edu/Documents/in/Real_Time_Control?f_ri=26066","nofollow":false},{"id":236258,"name":"Mobile Robot Navigation","url":"https://www.academia.edu/Documents/in/Mobile_Robot_Navigation?f_ri=26066","nofollow":false},{"id":238159,"name":"Multilayer Perceptron","url":"https://www.academia.edu/Documents/in/Multilayer_Perceptron?f_ri=26066"},{"id":317745,"name":"High Speed","url":"https://www.academia.edu/Documents/in/High_Speed?f_ri=26066"},{"id":428925,"name":"Control Strategy","url":"https://www.academia.edu/Documents/in/Control_Strategy?f_ri=26066"},{"id":1128575,"name":"Neural Control","url":"https://www.academia.edu/Documents/in/Neural_Control?f_ri=26066"},{"id":1772724,"name":"Robot Navigation","url":"https://www.academia.edu/Documents/in/Robot_Navigation?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_48168499" data-work_id="48168499" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/48168499/Neural_Foundations_for_Understanding_Social_and_Mechanical_Concepts">Neural Foundations for Understanding Social and Mechanical Concepts</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/48168499" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2a024a3f08fedda30ad279299fa310e3" rel="nofollow" data-download="{&quot;attachment_id&quot;:66920815,&quot;asset_id&quot;:48168499,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66920815/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="28601658" href="https://independent.academia.edu/alexmartin39">alex martin</a><script data-card-contents-for-user="28601658" type="text/json">{"id":28601658,"first_name":"alex","last_name":"martin","domain_name":"independent","page_name":"alexmartin39","display_name":"alex martin","profile_url":"https://independent.academia.edu/alexmartin39?f_ri=26066","photo":"https://0.academia-photos.com/28601658/130084751/119490633/s65_alex.martin.png"}</script></span></span></li><li class="js-paper-rank-work_48168499 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="48168499"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 48168499, container: ".js-paper-rank-work_48168499", }); });</script></li><li class="js-percentile-work_48168499 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48168499; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_48168499"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_48168499 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="48168499"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48168499; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48168499]").text(description); $(".js-view-count-work_48168499").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_48168499").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="48168499"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="146" href="https://www.academia.edu/Documents/in/Bioinformatics">Bioinformatics</a>,&nbsp;<script data-card-contents-for-ri="146" type="text/json">{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="221" href="https://www.academia.edu/Documents/in/Psychology">Psychology</a>,&nbsp;<script data-card-contents-for-ri="221" type="text/json">{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4212" href="https://www.academia.edu/Documents/in/Cognition">Cognition</a><script data-card-contents-for-ri="4212" type="text/json">{"id":4212,"name":"Cognition","url":"https://www.academia.edu/Documents/in/Cognition?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=48168499]'), work: {"id":48168499,"title":"Neural Foundations for Understanding Social and Mechanical Concepts","created_at":"2021-05-04T03:15:39.917-07:00","url":"https://www.academia.edu/48168499/Neural_Foundations_for_Understanding_Social_and_Mechanical_Concepts?f_ri=26066","dom_id":"work_48168499","summary":null,"downloadable_attachments":[{"id":66920815,"asset_id":48168499,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":28601658,"first_name":"alex","last_name":"martin","domain_name":"independent","page_name":"alexmartin39","display_name":"alex martin","profile_url":"https://independent.academia.edu/alexmartin39?f_ri=26066","photo":"https://0.academia-photos.com/28601658/130084751/119490633/s65_alex.martin.png"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=26066","nofollow":false},{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=26066","nofollow":false},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=26066","nofollow":false},{"id":4212,"name":"Cognition","url":"https://www.academia.edu/Documents/in/Cognition?f_ri=26066","nofollow":false},{"id":4715,"name":"Social Interaction","url":"https://www.academia.edu/Documents/in/Social_Interaction?f_ri=26066"},{"id":8014,"name":"Life Sciences","url":"https://www.academia.edu/Documents/in/Life_Sciences?f_ri=26066"},{"id":8780,"name":"Cognitive Neuropsychology","url":"https://www.academia.edu/Documents/in/Cognitive_Neuropsychology?f_ri=26066"},{"id":9189,"name":"Semantic Memory","url":"https://www.academia.edu/Documents/in/Semantic_Memory?f_ri=26066"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe?f_ri=26066"},{"id":66744,"name":"Biomedical Research","url":"https://www.academia.edu/Documents/in/Biomedical_Research?f_ri=26066"},{"id":90016,"name":"Topography","url":"https://www.academia.edu/Documents/in/Topography?f_ri=26066"},{"id":100946,"name":"Functional Imaging","url":"https://www.academia.edu/Documents/in/Functional_Imaging?f_ri=26066"},{"id":207162,"name":"Temporal Cortex","url":"https://www.academia.edu/Documents/in/Temporal_Cortex?f_ri=26066"},{"id":244565,"name":"Concept","url":"https://www.academia.edu/Documents/in/Concept?f_ri=26066"},{"id":1024379,"name":"Nuclear Magnetic Resonance Imaging","url":"https://www.academia.edu/Documents/in/Nuclear_Magnetic_Resonance_Imaging?f_ri=26066"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences?f_ri=26066"},{"id":1565778,"name":"Ventromedial Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Ventromedial_Prefrontal_Cortex?f_ri=26066"},{"id":2580439,"name":"Functional brain imaging","url":"https://www.academia.edu/Documents/in/Functional_brain_imaging?f_ri=26066"},{"id":3922190,"name":"Activity pattern","url":"https://www.academia.edu/Documents/in/Activity_pattern?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45642439" data-work_id="45642439" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45642439/DEVELOPMENT_OF_CRIME_AND_FRAUD_PREDICTION_USING_DATA_MINING_APPROACHES">DEVELOPMENT OF CRIME AND FRAUD PREDICTION USING DATA MINING APPROACHES</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Crime remains to continue to be a serious threat to all groups and peoples throughout the world together with the complexity in technology and procedures that are being manipulated to allow extremely complex criminal acts. Data mining is... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45642439" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Crime remains to continue to be a serious threat to all groups and peoples throughout the world together with the complexity in technology and procedures that are being manipulated to allow extremely complex criminal acts. Data mining is now an essential tool for examining, reducing, and avoiding crime and is manipulated by both government and private institutions across the globe which is the method of revealing hidden information from Big Data. The data mining methods themselves are temporarily presented to the reader and this information includes the social network analysis, neural networks, naive Bayes rule, support vector machines, decision trees, association rule mining, clustering, entity extraction, and amongst others. The main objective of this article is to offer a concise analysis of the data mining applications in crime. Finally, the article evaluates applications of data mining in crime, including a considerable quantity of the study to date, displayed in chronological order with a summary table of numerous crucial information mining applications in the crime area as a directory of reference.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45642439" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5295111c9b9ea9318e9771a93f7ece92" rel="nofollow" data-download="{&quot;attachment_id&quot;:66138166,&quot;asset_id&quot;:45642439,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66138166/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="39122404" href="https://iaeme.academia.edu/publication">IAEME Publication</a><script data-card-contents-for-user="39122404" type="text/json">{"id":39122404,"first_name":"IAEME","last_name":"Publication","domain_name":"iaeme","page_name":"publication","display_name":"IAEME Publication","profile_url":"https://iaeme.academia.edu/publication?f_ri=26066","photo":"https://0.academia-photos.com/39122404/12178523/13563629/s65_iaeme.publication.jpg"}</script></span></span></li><li class="js-paper-rank-work_45642439 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45642439"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45642439, container: ".js-paper-rank-work_45642439", }); });</script></li><li class="js-percentile-work_45642439 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45642439; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45642439"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45642439 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45642439"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45642439; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45642439]").text(description); $(".js-view-count-work_45642439").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45642439").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45642439"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2009" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a>,&nbsp;<script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a>,&nbsp;<script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="107672" href="https://www.academia.edu/Documents/in/Regression">Regression</a>,&nbsp;<script data-card-contents-for-ri="107672" type="text/json">{"id":107672,"name":"Regression","url":"https://www.academia.edu/Documents/in/Regression?f_ri=26066","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="126300" href="https://www.academia.edu/Documents/in/Big_Data">Big Data</a><script data-card-contents-for-ri="126300" type="text/json">{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45642439]'), work: {"id":45642439,"title":"DEVELOPMENT OF CRIME AND FRAUD PREDICTION USING DATA MINING APPROACHES","created_at":"2021-03-30T05:26:28.402-07:00","url":"https://www.academia.edu/45642439/DEVELOPMENT_OF_CRIME_AND_FRAUD_PREDICTION_USING_DATA_MINING_APPROACHES?f_ri=26066","dom_id":"work_45642439","summary":"Crime remains to continue to be a serious threat to all groups and peoples throughout the world together with the complexity in technology and procedures that are being manipulated to allow extremely complex criminal acts. Data mining is now an essential tool for examining, reducing, and avoiding crime and is manipulated by both government and private institutions across the globe which is the method of revealing hidden information from Big Data. The data mining methods themselves are temporarily presented to the reader and this information includes the social network analysis, neural networks, naive Bayes rule, support vector machines, decision trees, association rule mining, clustering, entity extraction, and amongst others. The main objective of this article is to offer a concise analysis of the data mining applications in crime. Finally, the article evaluates applications of data mining in crime, including a considerable quantity of the study to date, displayed in chronological order with a summary table of numerous crucial information mining applications in the crime area as a directory of reference.","downloadable_attachments":[{"id":66138166,"asset_id":45642439,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":39122404,"first_name":"IAEME","last_name":"Publication","domain_name":"iaeme","page_name":"publication","display_name":"IAEME Publication","profile_url":"https://iaeme.academia.edu/publication?f_ri=26066","photo":"https://0.academia-photos.com/39122404/12178523/13563629/s65_iaeme.publication.jpg"}],"research_interests":[{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=26066","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false},{"id":107672,"name":"Regression","url":"https://www.academia.edu/Documents/in/Regression?f_ri=26066","nofollow":false},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=26066","nofollow":false},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine?f_ri=26066"},{"id":3935265,"name":"Naive Bayes rule","url":"https://www.academia.edu/Documents/in/Naive_Bayes_rule?f_ri=26066"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44636226" data-work_id="44636226" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44636226/Review_on_Applications_of_Neural_Network_in_Coastal_Engineering">Review on Applications of Neural Network in Coastal Engineering</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44636226" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="40178e18dc755e87a5008fddaf161979" rel="nofollow" data-download="{&quot;attachment_id&quot;:65106767,&quot;asset_id&quot;:44636226,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65106767/download_file?st=MTczMzI2MTE3Myw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="179778686" href="https://annauniversity.academia.edu/USHANATESAN">USHA NATESAN</a><script data-card-contents-for-user="179778686" type="text/json">{"id":179778686,"first_name":"USHA","last_name":"NATESAN","domain_name":"annauniversity","page_name":"USHANATESAN","display_name":"USHA NATESAN","profile_url":"https://annauniversity.academia.edu/USHANATESAN?f_ri=26066","photo":"https://0.academia-photos.com/179778686/49934542/38040871/s65_usha.natesan.jpg"}</script></span></span></li><li class="js-paper-rank-work_44636226 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44636226"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44636226, container: ".js-paper-rank-work_44636226", }); });</script></li><li class="js-percentile-work_44636226 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44636226; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44636226"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44636226 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44636226"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44636226; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44636226]").text(description); $(".js-view-count-work_44636226").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44636226").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44636226"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="26066" href="https://www.academia.edu/Documents/in/Neural_Network">Neural Network</a><script data-card-contents-for-ri="26066" type="text/json">{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44636226]'), work: {"id":44636226,"title":"Review on Applications of Neural Network in Coastal Engineering","created_at":"2020-12-04T09:18:00.586-08:00","url":"https://www.academia.edu/44636226/Review_on_Applications_of_Neural_Network_in_Coastal_Engineering?f_ri=26066","dom_id":"work_44636226","summary":null,"downloadable_attachments":[{"id":65106767,"asset_id":44636226,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":179778686,"first_name":"USHA","last_name":"NATESAN","domain_name":"annauniversity","page_name":"USHANATESAN","display_name":"USHA NATESAN","profile_url":"https://annauniversity.academia.edu/USHANATESAN?f_ri=26066","photo":"https://0.academia-photos.com/179778686/49934542/38040871/s65_usha.natesan.jpg"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=26066","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"><li class="next_page"><a href="/Documents/in/Neural_Network?after=50%2C44636226" rel="next">Next</a></li><li class="last next"><a href="/Documents/in/Neural_Network?page=last">Last &raquo;</a></li></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks">Artificial Neural Networks</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="54123">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="54123">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="11598">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="11598">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="465">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="465">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Logistic">Logistic</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="292646">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="292646">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Quick">Quick</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="304264">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="304264">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Dynamic">Dynamic</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="66394">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="66394">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2008">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2008">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Artificial_Neural_Network">Artificial Neural Network</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1211304">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1211304">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Computational_Intelligence">Computational Intelligence</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="3521">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="3521">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1185">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1185">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/Neural_Network" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "afc8624768ff16e9b71f22b1e230e2ebd307ebe5c38345d5d560b00c8c233348", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="L6iNs9jTV5aX3VuV1WyQp4NIr+8IdTg9TzM7OXkZDZQwqKd0qSKib3ZebPh3by9AMnJ1mLR4YON0D+QdAP27NA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/Neural_Network" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="VC+tIKPrbMIjIRha1rcCi4JmbhoZf4jvs62SdnkD7hNLL4fn0hqZO8KiLzd0tL1sM1y0baVy0DGIkU1SAOdYsw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10