CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 51 results for author: <span class="mathjax">Rienks, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Rienks%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Rienks, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Rienks%2C+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Rienks, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Rienks%2C+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Rienks%2C+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Rienks%2C+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02408">arXiv:2406.02408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02408">pdf</a>, <a href="https://arxiv.org/format/2406.02408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anomalous 4$f$ fine structure in TmSe$_{1-x}$Te$_x$ across the metal-insulator transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+C+-">C. -H. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+S">S. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+J">W. J. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudy%2C+L">L. Dudy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotny%2C+V">V. Zabolotny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heber%2C+M">M. Heber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">J. D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+C+-">C. -J. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kall%C3%A4ne%2C+M">M. Kall盲ne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wind%2C+N">N. Wind</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scholz%2C+M">M. Scholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+L">T. L. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+C">C. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gloskovskii%2C+A">A. Gloskovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+V">V. Hinkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bentmann%2C+H">H. Bentmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+Y+S">Y. S. Kwon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">F. Reinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossnagel%2C+K">K. Rossnagel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02408v1-abstract-short" style="display: inline;"> Hybridization between localized 4$f$ and itinerant 5$d$6$s$ states in heavy fermion compounds is a well-studied phenomenon and commonly captured by the paradigmatic Anderson model. However, the investigation of additional electronic interactions, beyond the standard Anderson model, has been limited, despite their predicted important role in the exotic quasiparticle formation in mixed-valence syste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02408v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02408v1-abstract-full" style="display: none;"> Hybridization between localized 4$f$ and itinerant 5$d$6$s$ states in heavy fermion compounds is a well-studied phenomenon and commonly captured by the paradigmatic Anderson model. However, the investigation of additional electronic interactions, beyond the standard Anderson model, has been limited, despite their predicted important role in the exotic quasiparticle formation in mixed-valence systems. We investigate the 4$f$ states in TmSe$_{1-x}$Te$_x$ throughout a semimetal-insulator phase transition, which drastically varies the interactions related to the 4$f$ states. Using synchrotron-based hard x-ray and extreme ultraviolet photoemission spectroscopy, we resolve subtle peak splitting in the 4$f$ peaks near the Fermi level in the mixed-valent semimetal phase. The separation is enhanced by several tens of meV by increasing the lattice parameter by a few percent. Our results elucidate the evolving nature of the 4$f$ state across the phase transition, and provide direct experimental evidence for electronic interactions beyond the standard Anderson model in mixed-valence systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02408v1-abstract-full').style.display = 'none'; document.getElementById('2406.02408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures for the main text, 6 pages and 5 figures for the supplementary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17302">arXiv:2303.17302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17302">pdf</a>, <a href="https://arxiv.org/format/2303.17302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42996-8">10.1038/s41467-023-42996-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferrimagnetic Regulation of Weyl Fermions in a Noncentrosymmetric Magnetic Weyl Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qinda Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">Emile Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wanyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francois%2C+B">Bertran Francois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huancheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phyuyal%2C+D">Dibya Phyuyal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedderwitz%2C+H">Hanna Fedderwitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">Balasubramanian Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dendzik%2C+M">Maciej Dendzik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berntsen%2C+M+H">Magnus H. Berntsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjernberg%2C+O">Oscar Tjernberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17302v1-abstract-short" style="display: inline;"> The study of interaction between electromagnetism and elementary particles is a long-standing topic in physics. Likewise, the connection between particle physics and emergent phenomena in condensed matter physics is a recurring theme and condensed matter physics has often provided a platform for investigating the interplay between particles and fields in cases that have not been observed in high-e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17302v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17302v1-abstract-full" style="display: none;"> The study of interaction between electromagnetism and elementary particles is a long-standing topic in physics. Likewise, the connection between particle physics and emergent phenomena in condensed matter physics is a recurring theme and condensed matter physics has often provided a platform for investigating the interplay between particles and fields in cases that have not been observed in high-energy physics, so far. Here, using angle-resolved photoemission spectroscopy, we provide a new example of this by visualizing the electronic structure of a noncentrosymmetric magnetic Weyl semimetal candidate NdAlSi in both the paramagnetic and ferrimagnetic states. We observe surface Fermi arcs and bulk Weyl fermion dispersion as well as the regulation of Weyl fermions by ferrimagnetism. Our results establish NdAlSi as a magnetic Weyl semimetal and provide the first experimental observation of ferrimagnetic regulation of Weyl fermions in condensed matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17302v1-abstract-full').style.display = 'none'; document.getElementById('2303.17302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 14, 7185 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05466">arXiv:2208.05466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05466">pdf</a>, <a href="https://arxiv.org/format/2208.05466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adh0145">10.1126/sciadv.adh0145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colossal negative magnetoresistance in the complex charge density wave regime of an antiferromagnetic Dirac semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dalgaard%2C+K+J">Kirstine J. Dalgaard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchenko%2C+D">Dmitry Marchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivenkov%2C+M">Maxim Krivenkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">Emile D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jovanovic%2C+M">Milena Jovanovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teicher%2C+S+M+L">Samuel M. L. Teicher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiayi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salters%2C+T+H">Tyger H. Salters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jingjing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">Andrei Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ong%2C+N+P">N. Phuan Ong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05466v1-abstract-short" style="display: inline;"> Colossal magnetoresistance (MR) is a well-known phenomenon, notably observed in hole-doped ferromagnetic manganites. It remains a major research topic due to its potential in technological applications. Though topological semimetals also show large MR, its origin and nature are completely different. Here, we show that in the highly electron doped region, the Dirac semimetal CeSbTe demonstrates sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05466v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05466v1-abstract-full" style="display: none;"> Colossal magnetoresistance (MR) is a well-known phenomenon, notably observed in hole-doped ferromagnetic manganites. It remains a major research topic due to its potential in technological applications. Though topological semimetals also show large MR, its origin and nature are completely different. Here, we show that in the highly electron doped region, the Dirac semimetal CeSbTe demonstrates similar properties as the manganites. CeSb$_{0.11}$Te$_{1.90}$ hosts multiple charge density wave (CDW) modulation-vectors and has a complex magnetic phase diagram. We confirm that this compound is an antiferromagnetic Dirac semimetal. Despite having a metallic Fermi surface, the electronic transport properties are semiconductor-like and deviate from known theoretical models. An external magnetic field induces a semiconductor-metal-like transition, which results in a colossal negative MR. Moreover, signatures of the coupling between the CDW and a spin modulation are observed in resistivity. This spin modulation also produces a giant anomalous Hall response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05466v1-abstract-full').style.display = 'none'; document.getElementById('2208.05466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 9, eadh0145 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14421">arXiv:2207.14421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14421">pdf</a>, <a href="https://arxiv.org/format/2207.14421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.L022019">10.1103/PhysRevResearch.5.L022019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional ferromagnetic extension of a topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kagerer%2C+P">P. Kagerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fornari%2C+C+I">C. I. Fornari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchberger%2C+S">S. Buchberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tschirner%2C+T">T. Tschirner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">L. Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamp%2C+M">M. Kamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tcakaev%2C+A+V">A. V. Tcakaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V">V. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morelh%C3%A3o%2C+S+L">S. L. Morelh茫o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geldiyev%2C+B">B. Geldiyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+S">S. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gargiani%2C+P">P. Gargiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valvidares%2C+M">M. Valvidares</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Folkers%2C+L+C">L. C. Folkers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">A. Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+V">V. Hinkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claessen%2C+R">R. Claessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bentmann%2C+H">H. Bentmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">F. Reinert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14421v1-abstract-short" style="display: inline;"> Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a 3D topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface and not in the bulk, e.g. through proximity of a ferromagnetic (FM) layer. However, such a proximity-induced Dirac mass gap has not been observed, likely due to insufficien&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14421v1-abstract-full').style.display = 'inline'; document.getElementById('2207.14421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14421v1-abstract-full" style="display: none;"> Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a 3D topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface and not in the bulk, e.g. through proximity of a ferromagnetic (FM) layer. However, such a proximity-induced Dirac mass gap has not been observed, likely due to insufficient overlap of TSS and the FM subsystem. Here, we take a different approach, namely FM extension, using a thin film of the 3D TI Bi$_2$Te$_3$, interfaced with a monolayer of the lattice-matched van der Waals ferromagnet MnBi$_2$Te$_4$. Robust 2D ferromagnetism with out-of-plane anisotropy and a critical temperature of $\text{T}_\text{c}\approx$~15 K is demonstrated by X-ray magnetic dichroism and electrical transport measurements. Using angle-resolved photoelectron spectroscopy, we observe the opening of a sizable magnetic gap in the 2D FM phase, while the surface remains gapless in the paramagnetic phase above T$_c$. This sizable gap indicates a relocation of the TSS to the FM ordered Mn moments near the surface, which leads to a large mutual overlap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14421v1-abstract-full').style.display = 'none'; document.getElementById('2207.14421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5 (2023), L022019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11560">arXiv:2207.11560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.11560">pdf</a>, <a href="https://arxiv.org/format/2207.11560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33468-6">10.1038/s41467-022-33468-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">K. Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hariki%2C+A">A. Hariki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+K+-">K. -H. Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunes%2C+J">J. Kunes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amorese%2C+A">A. Amorese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">J. D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+-">D. -H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valvidares%2C+M">M. Valvidares</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haslbeck%2C+F">F. Haslbeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Byler%2C+D+D">D. D. Byler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McClellan%2C+K+J">K. J. McClellan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J+-">J. -X. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Booth%2C+C+H">C. H. Booth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrence%2C+J+M">J. M. Lawrence</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janoschek%2C+M">M. Janoschek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11560v1-abstract-short" style="display: inline;"> Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11560v1-abstract-full').style.display = 'inline'; document.getElementById('2207.11560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11560v1-abstract-full" style="display: none;"> Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd$_3$ to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature - the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11560v1-abstract-full').style.display = 'none'; document.getElementById('2207.11560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 13, Article number: 6129 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15070">arXiv:2203.15070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15070">pdf</a>, <a href="https://arxiv.org/format/2203.15070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.176405">10.1103/PhysRevLett.128.176405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Is there a polaron signature in angle-resolved photoemission of CsPbBr3? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sajedi%2C+M">Maryam Sajedi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivenkov%2C+M">Maxim Krivenkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchenko%2C+D">Dmitry Marchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">Jaime S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandran%2C+A+K">Anoop K. Chandran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">Andrei Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">Emile D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aguilera%2C+I">Irene Aguilera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">Oliver Rader</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15070v2-abstract-short" style="display: inline;"> The formation of large polarons has been proposed as reason for the high defect tolerance, low mobility, low charge carrier trapping and low nonradiative recombination rates of lead halide perovskites. Recently, direct evidence for large-polaron formation has been reported from a 50% effective mass enhancement in angle-resolved photoemission of CsPbBr3 over theory for the orthorhombic structure. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15070v2-abstract-full').style.display = 'inline'; document.getElementById('2203.15070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15070v2-abstract-full" style="display: none;"> The formation of large polarons has been proposed as reason for the high defect tolerance, low mobility, low charge carrier trapping and low nonradiative recombination rates of lead halide perovskites. Recently, direct evidence for large-polaron formation has been reported from a 50% effective mass enhancement in angle-resolved photoemission of CsPbBr3 over theory for the orthorhombic structure. We present in-depth band dispersion measurements of CsPbBr3 and GW calculations which lead to almost identical effective masses at the valence band maximum of 0.203+/-0.016 m0 in experiment and 0.226 m0 in orthorhombic theory. We argue that the effective mass can be explained solely on the basis of electron-electron correlation and large-polaron formation cannot be concluded from photoemission data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15070v2-abstract-full').style.display = 'none'; document.getElementById('2203.15070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version 2 contains more precise theoretical values and supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00422">arXiv:2112.00422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00422">pdf</a>, <a href="https://arxiv.org/format/2112.00422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.125138">10.1103/PhysRevB.106.125138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lifetime of quasi-particles in the nearly-free electron metal Sodium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Potorochin%2C+D+V">D. V. Potorochin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurleto%2C+R">R. Kurleto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">O. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Barriga%2C+J">J. Sanchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+F">F. Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voroshnin%2C+V">V. Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eberhardt%2C+W">W. Eberhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buechner%2C+B">B. Buechner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00422v2-abstract-short" style="display: inline;"> We report a high-resolution angle-resolved photoemission (ARPES) study of the prototypical nearly-free-electron metal sodium. The observed mass enhancement is slightly smaller than that derived in previous studies. The new results on the lifetime broadening increase the demand for theories beyond the random phase approximation. Our results do not support the proposed strong enhancement of the scat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00422v2-abstract-full').style.display = 'inline'; document.getElementById('2112.00422v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00422v2-abstract-full" style="display: none;"> We report a high-resolution angle-resolved photoemission (ARPES) study of the prototypical nearly-free-electron metal sodium. The observed mass enhancement is slightly smaller than that derived in previous studies. The new results on the lifetime broadening increase the demand for theories beyond the random phase approximation. Our results do not support the proposed strong enhancement of the scattering rates of the charge carriers due to a coupling to spin fluctuations. Moreover, a comparison with earlier electron energy-loss data on sodium yields a strong reduction of the mass enhancement of dipolar electron-hole excitations compared to that of monopole hole excitations, measured by ARPES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00422v2-abstract-full').style.display = 'none'; document.getElementById('2112.00422v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03872">arXiv:2107.03872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03872">pdf</a>, <a href="https://arxiv.org/format/2107.03872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2020750118">10.1073/pnas.2020750118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From hidden-order to antiferromagnetism: electronic structure changes in Fe-doped URu$_{2}$Si$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Frantzeskakis%2C+E">Emmanouil Frantzeskakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Ji Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bareille%2C+C">C茅dric Bareille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B6del%2C+T+C">Tobias C. R枚del</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCttler%2C+M">Monika G眉ttler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+S">Sheng Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanchanavatee%2C+N">Noravee Kanchanavatee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kevin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pouse%2C+N">Naveen Pouse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolowiec%2C+C+T">Christian T. Wolowiec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">Emile D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lejay%2C+P">Pascal Lejay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fortuna%2C+F">Franck Fortuna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maple%2C+M+B">M. Brian Maple</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santander-Syro%2C+A+F">Andr茅s F. Santander-Syro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03872v1-abstract-short" style="display: inline;"> In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave-function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic, and still unsolved, example is the transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03872v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03872v1-abstract-full" style="display: none;"> In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave-function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic, and still unsolved, example is the transition of the heavy fermion compound URu$_2$Si$_2$ (URS) into the so-called hidden-order (HO) phase when the temperature drops below $T_0 = 17.5$K. Here we show that the interaction between the heavy fermion and the conduction band states near the Fermi level has a key role in the emergence of the HO phase. Using angle resolved photoemission spectroscopy, we find that while the Fermi surfaces of the HO and of a neighboring antiferromagnetic (AFM) phase of well-defined order parameter have the same topography, they differ in the size of some, but not all, of their electron pockets. Such a non-rigid change of the electronic structure indicates that a change in the interaction strength between states near the Fermi level is a crucial ingredient for the HO-to-AFM phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03872v1-abstract-full').style.display = 'none'; document.getElementById('2107.03872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 14 figures, 1 ancillary movie</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 118, e2020750118 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.07083">arXiv:2010.07083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.07083">pdf</a>, <a href="https://arxiv.org/format/2010.07083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0070557">10.1063/5.0070557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetization relaxation and search for the magnetic gap in bulk-insulating V-doped (Bi, Sb)$_2$Te$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Golias%2C+E">E. Golias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flanagan%2C+T">T. Flanagan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richardella%2C+A">A. Richardella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+P+S">P. S. Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">J. S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radu%2C+F">F. Radu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samarth%2C+N">N. Samarth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.07083v1-abstract-short" style="display: inline;"> V-doped (Bi,Sb)$_2$Te$_3$ has a ten times higher magnetic coercivity than its Cr-doped counterpart and therefore is believed to be a superior system for the quantum anomalous Hall effect (QAHE). The QAHE requires the opening of a magnetic band gap at the Dirac point. We do not find this gap by angle-resolved photoelectron spectroscopy down to 1 K. By x-ray magnetic circular dichroism (XMCD) we dir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.07083v1-abstract-full').style.display = 'inline'; document.getElementById('2010.07083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.07083v1-abstract-full" style="display: none;"> V-doped (Bi,Sb)$_2$Te$_3$ has a ten times higher magnetic coercivity than its Cr-doped counterpart and therefore is believed to be a superior system for the quantum anomalous Hall effect (QAHE). The QAHE requires the opening of a magnetic band gap at the Dirac point. We do not find this gap by angle-resolved photoelectron spectroscopy down to 1 K. By x-ray magnetic circular dichroism (XMCD) we directly probe the magnetism at the V site and in zerofield. Hysteresis curves of the XMCD signal show a strong dependence of the coercivity on the ramping velocity of the magnetic field. The XMCD signal decays on a time scale of minutes which we conclude contributes to the absence of a detectable magnetic gap at the Dirac point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.07083v1-abstract-full').style.display = 'none'; document.getElementById('2010.07083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02110">arXiv:2010.02110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02110">pdf</a>, <a href="https://arxiv.org/ps/2010.02110">ps</a>, <a href="https://arxiv.org/format/2010.02110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.195112">10.1103/PhysRevB.103.195112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological magnetic order and superconductivity in EuRbFe$_4$As$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hemmida%2C+M">M. Hemmida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winterhalter-Stocker%2C+N">N. Winterhalter-Stocker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+D">D. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Nidda%2C+H+-+K">H. -A. Krug von Nidda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">M. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bannies%2C+J">J. Bannies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurleto%2C+R">R. Kurleto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorol%2C+S">S. Gorol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rster%2C+T">T. F枚rster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arsenijevic%2C+S">S. Arsenijevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fritsch%2C+V">V. Fritsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02110v1-abstract-short" style="display: inline;"> We study single crystals of the magnetic superconductor EuRbFe$_4$As$_4$ by magnetization, electron spin resonance (ESR), angle-resolved photoemission spectroscopy (ARPES) and electrical resistance in pulsed magnetic fields up to 630 kOe. The superconducting state below 36.5 K is almost isotropic and only weakly affected by the development of Eu$^{2+}$ magnetic order at 15 K. On the other hand, fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02110v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02110v1-abstract-full" style="display: none;"> We study single crystals of the magnetic superconductor EuRbFe$_4$As$_4$ by magnetization, electron spin resonance (ESR), angle-resolved photoemission spectroscopy (ARPES) and electrical resistance in pulsed magnetic fields up to 630 kOe. The superconducting state below 36.5 K is almost isotropic and only weakly affected by the development of Eu$^{2+}$ magnetic order at 15 K. On the other hand, for the external magnetic field applied along the c-axis the temperature dependence of the ESR linewidth reveals a Berezinskii-Kosterlitz-Thouless topological transition below 15 K. This indicates that Eu$^{2+}$-planes are a good realization of a two-dimensional XY-magnet, which reflects the decoupling of the Eu$^{2+}$ magnetic moments from superconducting FeAs-layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02110v1-abstract-full').style.display = 'none'; document.getElementById('2010.02110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 195112 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13119">arXiv:2006.13119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.13119">pdf</a>, <a href="https://arxiv.org/format/2006.13119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.245153">10.1103/PhysRevB.102.245153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oxide Fermi liquid universality revealed by electron spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Horio%2C+M">M. Horio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+K+P">K. P. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaidan%2C+A">A. Zaidan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Arx%2C+K">K. von Arx</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutter%2C+D">D. Sutter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sassa%2C+Y">Y. Sassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hanff%2C+A">A. Hanff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahatha%2C+S+K">S. K. Mahatha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bentmann%2C+H">H. Bentmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">F. Reinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rohlf%2C+S">S. Rohlf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diekmann%2C+F+K">F. K. Diekmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buck%2C+J">J. Buck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kall%C3%A4ne%2C+M">M. Kall盲ne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossnagel%2C+K">K. Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">V. Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fittipaldi%2C+R">R. Fittipaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vecchione%2C+A">A. Vecchione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohgi%2C+T">T. Ohgi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawamata%2C+T">T. Kawamata</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13119v2-abstract-short" style="display: inline;"> We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_4$ (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13119v2-abstract-full').style.display = 'inline'; document.getElementById('2006.13119v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13119v2-abstract-full" style="display: none;"> We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_4$ (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy and the Fermi-liquid cut-off energy scale, we find -- in contrast to hole-doped cuprates -- a momentum isotropic and comparatively weak electron correlation in PLCCO. Yet, the self-energies extracted from multiple oxide systems combine to demonstrate a logarithmic divergent relation between the quasiparticle scattering rate and mass. This constitutes a spectroscopic version of the Kadowaki-Woods relation with an important merit -- the demonstration of Fermi liquid quasiparticle lifetime and mass being set by a single energy scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13119v2-abstract-full').style.display = 'none'; document.getElementById('2006.13119v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 245153 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08216">arXiv:2005.08216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.08216">pdf</a>, <a href="https://arxiv.org/format/2005.08216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.155119">10.1103/PhysRevB.103.155119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linkage between scattering rates and superconductivity in doped ferropnictides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">M. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurleto%2C+R">R. Kurleto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bannies%2C+J">J. Bannies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+I">I. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+F">F. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meingast%2C+C">C. Meingast</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeevan%2C+H+S">H. S. Jeevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maiwald%2C+J">J. Maiwald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buechner%2C+B">B. Buechner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08216v3-abstract-short" style="display: inline;"> We report an angle-resolved photoemission study of a series of hole and electron doped iron-based superconductors, their parent compound BaFe2As2, and their cousins BaCr2As2 and BaCo2As2. We focus on the energy (E) dependent scattering rate Gamma(E) as a function of the 3d count and on the renormalization function Z(E) of the inner hole pocket, which is the hot spot in these compounds. We obtain a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08216v3-abstract-full').style.display = 'inline'; document.getElementById('2005.08216v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08216v3-abstract-full" style="display: none;"> We report an angle-resolved photoemission study of a series of hole and electron doped iron-based superconductors, their parent compound BaFe2As2, and their cousins BaCr2As2 and BaCo2As2. We focus on the energy (E) dependent scattering rate Gamma(E) as a function of the 3d count and on the renormalization function Z(E) of the inner hole pocket, which is the hot spot in these compounds. We obtain a non-Fermi-liquid-like linear in energy scattering rate Gamma(E&gt;&gt; kBT), independent of the dopant concentration. The main result is that the slope beta=Gamma(E &gt;&gt; kBT)/E, reaches its maxima near optimal doping and scales with the superconducting transition temperature. This supports the spin fluctuation model for superconductivity for these materials. In the optimally hole-doped compound, the slope of the scattering rate of the inner hole pocket is about three times bigger than the Planckian limit Gamma(E)/E~1. This result together with the energy dependence of the renormalization function Z(E) signals very incoherent charge carriers in the normal state which transform at low temperatures to a coherent unconventional superconducting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08216v3-abstract-full').style.display = 'none'; document.getElementById('2005.08216v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 155119 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07625">arXiv:1904.07625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07625">pdf</a>, <a href="https://arxiv.org/format/1904.07625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.121115">10.1103/PhysRevB.99.121115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbitally selective breakdown of Fermi liquid quasiparticles in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sutter%2C+D">Denys Sutter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C">Christian Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horio%2C+M">Masafumi Horio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fittipaldi%2C+R">Rosalba Fittipaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vecchione%2C+A">Antonio Vecchione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">Veronica Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauser%2C+K">Kevin Hauser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sassa%2C+Y">Yasmine Sassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+G">Gianmarco Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grioni%2C+M">Marco Grioni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Timur Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">Emile Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N">Nicholas Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07625v1-abstract-short" style="display: inline;"> We present a comprehensive angle-resolved photoemission spectroscopy study of Ca$_{1.8}$Sr$_{0.2}$RuO$_4$. Four distinct bands are revealed and along the Ru-O bond direction their orbital characters are identified through a light polarization analysis and comparison to dynamical mean-field theory calculations. Bands assigned to $d_{xz}, d_{yz}$ orbitals display Fermi liquid behavior with fourfold&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07625v1-abstract-full').style.display = 'inline'; document.getElementById('1904.07625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07625v1-abstract-full" style="display: none;"> We present a comprehensive angle-resolved photoemission spectroscopy study of Ca$_{1.8}$Sr$_{0.2}$RuO$_4$. Four distinct bands are revealed and along the Ru-O bond direction their orbital characters are identified through a light polarization analysis and comparison to dynamical mean-field theory calculations. Bands assigned to $d_{xz}, d_{yz}$ orbitals display Fermi liquid behavior with fourfold quasiparticle mass renormalization. Extremely heavy fermions - associated with a predominantly $d_{xy}$ band character - are shown to display non-Fermi-liquid behavior. We thus demonstrate that Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ is a hybrid metal with an orbitally selective Fermi liquid quasiparticle breakdown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07625v1-abstract-full').style.display = 'none'; document.getElementById('1904.07625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 121115(R) (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.01668">arXiv:1812.01668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.01668">pdf</a>, <a href="https://arxiv.org/format/1812.01668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5124563">10.1063/1.5124563 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible Experimental Realization of a Basic Z2 Topological Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Haubold%2C+E">Erik Haubold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusinov%2C+I+P">Igor P. Rusinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menshchikova%2C+T+V">Tatiana V. Menshchikova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duppel%2C+V">Viola Duppel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Friedrich%2C+D">Daniel Friedrich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pielnhofer%2C+F">Florian Pielnhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weihrich%2C+R">Richard Weihrich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfitzner%2C+A">Arno Pfitzner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeugner%2C+A">Alexander Zeugner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">Anna Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">Setti Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Yevhen Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">Emile Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Timur Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chulkov%2C+E+V">Evgueni V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S+V">Sergey V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.01668v1-abstract-short" style="display: inline;"> We report experimental and theoretical evidence that GaGeTe is a basic $Z_2$ topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the primer 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-reso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01668v1-abstract-full').style.display = 'inline'; document.getElementById('1812.01668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.01668v1-abstract-full" style="display: none;"> We report experimental and theoretical evidence that GaGeTe is a basic $Z_2$ topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the primer 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion in the \textit{T}-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron- and hole-like carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material&#39;s application potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.01668v1-abstract-full').style.display = 'none'; document.getElementById('1812.01668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 7, 121106 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.13380">arXiv:1810.13380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.13380">pdf</a>, <a href="https://arxiv.org/format/1810.13380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A consistent view of the samarium hexaboride terminations to resolve the nature of its surface states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Herrmann%2C+H">H. Herrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hlawenka%2C+P">P. Hlawenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemensmeyer%2C+K">K. Siemensmeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">J. S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shitsevalova%2C+N+Y">N. Y. Shitsevalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dukhnenko%2C+A+V">A. V. Dukhnenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filipov%2C+V+B">V. B. Filipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gab%C3%A1ni%2C+S">S. Gab谩ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flachbart%2C+K">K. Flachbart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sterrer%2C+M">M. Sterrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.13380v1-abstract-short" style="display: inline;"> The research effort prompted by the prediction that SmB$_6$ could be the first topological Kondo insulator has produced a wealth of new results, though not all of these seem compatible. A major discrepancy exists between scanning tunneling microscopy / spectroscopy (STM/S) and angle-resolved photoemission spectroscopy (ARPES), because the two experimental methods suggest a very different number of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13380v1-abstract-full').style.display = 'inline'; document.getElementById('1810.13380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.13380v1-abstract-full" style="display: none;"> The research effort prompted by the prediction that SmB$_6$ could be the first topological Kondo insulator has produced a wealth of new results, though not all of these seem compatible. A major discrepancy exists between scanning tunneling microscopy / spectroscopy (STM/S) and angle-resolved photoemission spectroscopy (ARPES), because the two experimental methods suggest a very different number of terminations of the (100) surface with different properties. Here we tackle this issue in a combined STM/S and ARPES study. We find that two of the well-ordered topographies reported in earlier STM studies can be associated with the crystal terminations identified using photoemission. We further observe a reversal of the STM contrast with bias voltage for one of the topographies. We ascribe this result to a different energy dependence of Sm and B-derived states, and show that it can be used to obtain element specific images of SmB$_6$ and identify which topography belongs to which termination. We finally find STS results to support a modification of the low-energy electronic structure at the surface that has been proposed as the trivial origin of surface metallicity in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13380v1-abstract-full').style.display = 'none'; document.getElementById('1810.13380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.06238">arXiv:1810.06238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.06238">pdf</a>, <a href="https://arxiv.org/format/1810.06238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1826-7">10.1038/s41586-019-1826-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large magnetic gap at the Dirac point in a Mn-induced Bi$_2$Te$_3$ heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wimmer%2C+S">S. Wimmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+P+S">P. S. Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caha%2C+O">O. Caha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C5%AF%C5%BEi%C4%8Dka%2C+J">J. R暖啪i膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ney%2C+A">A. Ney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steiner%2C+H">H. Steiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volobuev%2C+V+V">V. V. Volobuev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Groiss%2C+H">H. Groiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albu%2C+M">M. Albu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+S+A">S. A. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ebert%2C+H">H. Ebert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+G">G. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">J. S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springholz%2C+G">G. Springholz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.06238v1-abstract-short" style="display: inline;"> Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE) which provides quantized edge states for lossless charge transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point but all attempts to observe it directly have been unsuccessful. The gap size is considered crucial to overcoming the present limitations of the QAHE, which so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06238v1-abstract-full').style.display = 'inline'; document.getElementById('1810.06238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.06238v1-abstract-full" style="display: none;"> Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE) which provides quantized edge states for lossless charge transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point but all attempts to observe it directly have been unsuccessful. The gap size is considered crucial to overcoming the present limitations of the QAHE, which so far occurs only at temperatures one to two orders of magnitude below its principle limit set by the ferromagnetic Curie temperature $T_C$. Here, we use low temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi$_2$Te$_3$ films, which is present only below $T_C$. Surprisingly, the gap turns out to be $\sim$90 meV wide, which not only exceeds $k_BT$ at room temperature but is also 5 times larger than predicted by density functional theory. By an exhaustive multiscale structure characterization we show that this enhancement is due to a remarkable structure modification induced by Mn doping. Instead of a disordered impurity system, it forms an alternating sequence of septuple and quintuple layer blocks, where Mn is predominantly incorporated in the septuple layers. This self-organized heterostructure substantially enhances the wave-function overlap and the size of the magnetic gap at the Dirac point, as recently predicted. Mn-doped Bi$_2$Se$_3$ forms a similar heterostructure, however, only a large, nonmagnetic gap is formed. We explain both differences based on the higher spin-orbit interaction in Bi$_2$Te$_3$ with the most important consequence of a magnetic anisotropy perpendicular to the films, whereas for Bi$_2$Se$_3$ the spin-orbit interaction it is too weak to overcome the dipole-dipole interaction. Our findings provide crucial insights for pushing the lossless transport properties of topological insulators towards room-temperature applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06238v1-abstract-full').style.display = 'none'; document.getElementById('1810.06238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.04913">arXiv:1810.04913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.04913">pdf</a>, <a href="https://arxiv.org/ps/1810.04913">ps</a>, <a href="https://arxiv.org/format/1810.04913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.140502">10.1103/PhysRevB.98.140502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Dirac-like energy band and unusual spectral line shape in quasi-one-dimensional superconductor Tl2Mo6Se6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nakayama%2C+K">Kosuke Nakayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trang%2C+C+X">Chi Xuan Trang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Souma%2C+S">Seigo Souma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">Emile D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+T">Takashi Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ando%2C+Y">Yoichi Ando</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">Takafumi Sato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.04913v1-abstract-short" style="display: inline;"> We have performed high-resolution angle-resolved photoemission spectroscopy of the quasi-one-dimensional (1D) topological superconductor candidate Tl2Mo6Se6 consisting of weakly-coupled Mo3Se3 chains. We found a quasi-1D Fermi surface arising from a Dirac-like energy band, which is associated with the nonsymmorphic screw symmetry of the chains and predicted to trigger topological superconductivity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04913v1-abstract-full').style.display = 'inline'; document.getElementById('1810.04913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.04913v1-abstract-full" style="display: none;"> We have performed high-resolution angle-resolved photoemission spectroscopy of the quasi-one-dimensional (1D) topological superconductor candidate Tl2Mo6Se6 consisting of weakly-coupled Mo3Se3 chains. We found a quasi-1D Fermi surface arising from a Dirac-like energy band, which is associated with the nonsymmorphic screw symmetry of the chains and predicted to trigger topological superconductivity. We observed a significant spectral-weight reduction over a wide energy range, together with a tiny Fermi-edge structure which exhibits a signature of a superconducting-gap opening below the superconducting-transition temperature. The observed quasi-1D Dirac-like band and its very small density of states point to an unconventional nature of superconductivity in Tl2Mo6Se6. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04913v1-abstract-full').style.display = 'none'; document.getElementById('1810.04913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 140502(R) (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.11220">arXiv:1807.11220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.11220">pdf</a>, <a href="https://arxiv.org/format/1807.11220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.245156">10.1103/PhysRevB.99.245156 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of hot and cold spots on the Fermi surface of LiFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nayak%2C+J">J. Nayak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bannies%2C+J">J. Bannies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+I">I. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kappenberger%2C+R">R. Kappenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=ElGhazali%2C+M+A">M. A. ElGhazali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Craco%2C+L">L. Craco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosner%2C+H">H. Rosner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buechner%2C+B">B. Buechner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.11220v2-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is used to study the energy and momentum dependence of the inelastic scattering rates and the mass renormalization of charge carriers in LiFeAs at several high symmetry points in the Brillouin zone. A strong and linear-in-energy scattering rate is observed for sections of the Fermi surface having predominantly Fe $3d_{xy/yz}$ orbital character on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11220v2-abstract-full').style.display = 'inline'; document.getElementById('1807.11220v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.11220v2-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is used to study the energy and momentum dependence of the inelastic scattering rates and the mass renormalization of charge carriers in LiFeAs at several high symmetry points in the Brillouin zone. A strong and linear-in-energy scattering rate is observed for sections of the Fermi surface having predominantly Fe $3d_{xy/yz}$ orbital character on the inner hole and on electron pockets. We assign them to hot spots with marginal Fermi liquid character inducing high antiferromagnetic and pairing susceptibilities. The outer hole pocket, with Fe $3d_{xy}$ orbital character, has a reduced but still linear in energy scattering rate. Finally, we assign sections on the middle hole pockets with Fe $3d_{xz,yz}$ orbital character and on the electron pockets with Fe $3d_{xy}$ orbital character to cold spots because there we observe a quadratic-in-energy scattering rate with Fermi-liquid behavior. These cold spots prevail the transport properties. Our results indicate a strong $\it{momentum}$ dependence of the scattering rates. We also have indications that the scattering rates in correlated systems are fundamentally different from those in non-correlated materials because in the former the Pauli principle is not operative. We compare our results for the scattering rates with combined density functional plus dynamical mean-field theory calculations. The work provides a generic microscopic understanding of macroscopic properties of multiorbital unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11220v2-abstract-full').style.display = 'none'; document.getElementById('1807.11220v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 245156 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.01301">arXiv:1807.01301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.01301">pdf</a>, <a href="https://arxiv.org/format/1807.01301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.235110">10.1103/PhysRevB.98.235110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous behavior of the electronic structure of (Bi$_{1-x}$In$_x$)$_2$Se$_3$ across the quantum-phase transition from topological to trivial insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">J. S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aguilera%2C+I">I. Aguilera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yashina%2C+L+V">L. V. Yashina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukanova%2C+D+Y">D. Y. Tsukanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freyse%2C+F">F. Freyse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaika%2C+A+N">A. N. Chaika</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abakumov%2C+A+M">A. M. Abakumov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bihlmayer%2C+G">G. Bihlmayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">S. Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.01301v1-abstract-short" style="display: inline;"> Using spin- and angle-resolved spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi$_{1-x}$In$_x$)$_2$Se$_3$ bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing $x$, we observe how a surface gap opens at the Dirac point of the initially gapless topological sur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01301v1-abstract-full').style.display = 'inline'; document.getElementById('1807.01301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.01301v1-abstract-full" style="display: none;"> Using spin- and angle-resolved spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi$_{1-x}$In$_x$)$_2$Se$_3$ bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing $x$, we observe how a surface gap opens at the Dirac point of the initially gapless topological surface state of Bi$_2$Se$_3$, leading to the existence of massive fermions. The surface gap monotonically increases for a wide range of $x$ values across the topological and trivial sides of the quantum-phase transition. By means of photon-energy dependent measurements, we demonstrate that the gapped surface state survives the inversion of the bulk bands which occurs at a critical point near $x=0.055$. The surface state exhibits a non-zero in-plane spin polarization which decays exponentially with increasing $x$, and that persists on both the topological and trivial insulator phases. Its out-of-plane spin polarization remains zero demonstrating the absence of a hedgehog spin texture expected from broken time-reversal symmetry. Our calculations reveal qualitative agreement with the experimental results all across the quantum-phase transition upon the systematic variation of the spin-orbit coupling strength. A non-time reversal symmetry breaking mechanism of bulk-mediated scattering processes that increase with decreasing spin-orbit coupling strength is proposed as explanation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01301v1-abstract-full').style.display = 'none'; document.getElementById('1807.01301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 235110 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07814">arXiv:1708.07814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.07814">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aaa1cd">10.1088/1361-648X/aaa1cd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic properties of topological insulator candidate CaAgAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nayak%2C+J">Jayita Nayak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shu-Chun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">Joerg Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+E+D">Emile E. D. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fecher%2C+G+H">Gerhard H. Fecher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07814v3-abstract-short" style="display: inline;"> The topological phases of matter provide the opportunity to observe many exotic properties, like the existence of two dimensional topological surface states in the form of Dirac cone in topological insulators, chiral transport through open Fermi arc in Weyl semimetals etc. However, these properties can only affect the transport characteristics and therefore can be useful for applications only if t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07814v3-abstract-full').style.display = 'inline'; document.getElementById('1708.07814v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07814v3-abstract-full" style="display: none;"> The topological phases of matter provide the opportunity to observe many exotic properties, like the existence of two dimensional topological surface states in the form of Dirac cone in topological insulators, chiral transport through open Fermi arc in Weyl semimetals etc. However, these properties can only affect the transport characteristics and therefore can be useful for applications only if the topological phenomena occur near the Fermi level. CaAgAs is a promising candidate, wherein the ab-initio calculations predict line-node at the Fermi level which on including spin-orbit coupling transforms into a topological insulator. In this report, we study the electronic structure of CaAgAs with angle resolved photoemission spectroscopy (ARPES), ab-initio calculations and transport measurements. The ARPES results show that the bulk valence band crosses the Fermi energy at gamma-point and the band dispersion matches the ab-initio calculations closely on shifting the Fermi energy by -0.5 eV. ARPES results are in good agreement with our transport measurements which show abundant p-type carriers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07814v3-abstract-full').style.display = 'none'; document.getElementById('1708.07814v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03233">arXiv:1708.03233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03233">pdf</a>, <a href="https://arxiv.org/format/1708.03233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.035133">10.1103/PhysRevB.97.035133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Dirac surface states in the hexagonal PtBi2, a possible origin of the linear magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushnirenko%2C+Y">Y. Kushnirenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haubold%2C+E">E. Haubold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A+N">A. N. Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blum%2C+C+G+F">C. G. F. Blum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03233v1-abstract-short" style="display: inline;"> The nonmagnetic compounds showing extremely large magnetoresistance are attracting a great deal of research interests due to their potential applications in the field of spintronics. PtBi$_2$ is one of such interesting compounds showing large linear magnetoresistance (MR) in its both the hexagonal and pyrite crystal structure. We use angle-resolved photoelectron spectroscopy (ARPES) and density fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03233v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03233v1-abstract-full" style="display: none;"> The nonmagnetic compounds showing extremely large magnetoresistance are attracting a great deal of research interests due to their potential applications in the field of spintronics. PtBi$_2$ is one of such interesting compounds showing large linear magnetoresistance (MR) in its both the hexagonal and pyrite crystal structure. We use angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT) calculations to understand the mechanism of liner MR observed in the hexagonal PtBi$_2$. Our results uncover for the first time linear dispersive surface Dirac states at the $\bar螕$-point, crossing Fermi level with node at a binding energy of $\approx$ 900 meV, in addition to the previously reported Dirac states at the $\bar{M}$-point in the same compound. We further notice from our dichroic measurements that these surface states show an asymmetric spectral intensity when measured with left and right circularly polarized light, hinting at a substantial spin polarization of the bands. Following these observations, we suggest that the linear dispersive Dirac states at the $\bar螕$ and $\bar{M}$-points are likely to play a crucial role for the linear field dependent magnetoresistance recorded in this compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03233v1-abstract-full').style.display = 'none'; document.getElementById('1708.03233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 035133 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.03328">arXiv:1707.03328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.03328">pdf</a>, <a href="https://arxiv.org/format/1707.03328">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.035438">10.1103/PhysRevB.99.035438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong-coupling charge density wave in a one-dimensional topological metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Philip Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M">Miguel Ugeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mart%C3%ADnez-Galera%2C+A+J">Antonio J. Mart铆nez-Galera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Str%C3%B3%C5%BCecka%2C+A">Anna Str贸偶ecka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B3mez-Rodr%C3%ADguez%2C+J+M">Jose M. G贸mez-Rodr铆guez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">Emile Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jensen%2C+M+F">Maria Fuglsang Jensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pascual%2C+J+I">J. I. Pascual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wells%2C+J+W">Justin W. Wells</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.03328v1-abstract-short" style="display: inline;"> Scanning tunnelling microscopy and low energy electron diffraction show a dimerization-like reconstruction in the one-dimensional atomic chains on Bi(114) at low temperatures. While one-dimensional systems are generally unstable against such a distortion, its observation is not expected for this particular surface, since there are several factors that should prevent it: One is the particular spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03328v1-abstract-full').style.display = 'inline'; document.getElementById('1707.03328v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.03328v1-abstract-full" style="display: none;"> Scanning tunnelling microscopy and low energy electron diffraction show a dimerization-like reconstruction in the one-dimensional atomic chains on Bi(114) at low temperatures. While one-dimensional systems are generally unstable against such a distortion, its observation is not expected for this particular surface, since there are several factors that should prevent it: One is the particular spin texture of the Fermi surface, which resembles a one-dimensional topological state, and spin protection should hence prevent the formation of the reconstruction. The second is the very short nesting vector $2 k_F$, which is inconsistent with the observed lattice distortion. A nesting-driven mechanism of the reconstruction is indeed excluded by the absence of any changes in the electronic structure near the Fermi surface, as observed by angle-resolved photoemission spectroscopy. However, distinct changes in the electronic structure at higher binding energies are found to accompany the structural phase transition. This, as well as the observed short correlation length of the pairing distortion, suggest that the transition is of the strong coupling type and driven by phonon entropy rather than electronic entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03328v1-abstract-full').style.display = 'none'; document.getElementById('1707.03328v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 035438 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.06108">arXiv:1701.06108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.06108">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1702234114">10.1073/pnas.1702234114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a remarkable reduction of correlation effects in BaCr2As2 by ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nayak%2C+J">Jayita Nayak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filsinger%2C+K">Kai Filsinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fecher%2C+G+H">Gerhard H. Fecher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chadov%2C+S">Stanislav Chadov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minar%2C+J">Jan Minar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+E+D">Emile E. D. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchner%2C+B">Bernd Buchner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">Jorg Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.06108v2-abstract-short" style="display: inline;"> The superconducting phase in iron based high Tc superconductors (FeSC) as in other unconventional superconductors such as the cuprates neighbours a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06108v2-abstract-full').style.display = 'inline'; document.getElementById('1701.06108v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.06108v2-abstract-full" style="display: none;"> The superconducting phase in iron based high Tc superconductors (FeSC) as in other unconventional superconductors such as the cuprates neighbours a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half filled 3d shell (Mn compounds, hole doped FeSCs) and decrease for systems with both higher (electron doped FeSCs) and lower (Cr pnictides) 3d counts. Here we address the strength of correlation effects in BaCr2As2 by means of angle resolved photoelectron spectroscopy (ARPES) and first principles calculations. This combination provides us with two handles on the strength of correlation, First, a comparison of the experimental and calculated effective masses yields the correlation induced mass renormalisation. In addition, the lifetime broadening of the experimentally observed dispersions provides another measure of the correlation strength. Both approaches reveal a reduction of electron correlation in BaCr2As2 with respect to systems with a 3d count closer to five. Our results thereby support the theoretical predictions that Hund&#39;s exchange interaction is important in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06108v2-abstract-full').style.display = 'none'; document.getElementById('1701.06108v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the National Academy of Sciences, 114, 12425 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00239">arXiv:1611.00239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00239">pdf</a>, <a href="https://arxiv.org/format/1611.00239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.144513">10.1103/PhysRevB.95.144513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental evidence for the importance of Hund&#39;s exchange interaction for the incoherence of the charge carriers in iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nayak%2C+J">J. Nayak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Roekeghem%2C+A">A. van Roekeghem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biermann%2C+S">S. Biermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adelmann%2C+P">P. Adelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeevan%2C+H+S">H. S. Jeevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buechner%2C+B">B. Buechner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00239v1-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is used to study the scattering rates of charge carriers from the hole pockets near Gamma in the iron-based high-Tc hole doped superconductors KxBa1-xFe2As2 x=0.4 and KxEu1-xFe2As2 x=0.55$ and the electron doped compound Ba(Fe1-xCox)2As2 x=0.075. The scattering rate for any given band is found to depend linearly on energy, indicating a non-Fermi li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00239v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00239v1-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is used to study the scattering rates of charge carriers from the hole pockets near Gamma in the iron-based high-Tc hole doped superconductors KxBa1-xFe2As2 x=0.4 and KxEu1-xFe2As2 x=0.55$ and the electron doped compound Ba(Fe1-xCox)2As2 x=0.075. The scattering rate for any given band is found to depend linearly on energy, indicating a non-Fermi liquid regime. The scattering rates in the hole-doped compound are considerably larger than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times bigger than the binding energy indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron and hole doped compounds signals the importance of Hund&#39;s exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00239v1-abstract-full').style.display = 'none'; document.getElementById('1611.00239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages; 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 144513 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.08947">arXiv:1609.08947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.08947">pdf</a>, <a href="https://arxiv.org/format/1609.08947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.177001">10.1103/PhysRevLett.117.177001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual Dirac fermions on the surface of noncentrosymmetric $伪$ - BiPd superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+S">Soumi Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jha%2C+R">Rajveer Jha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dolui%2C+K">Kapildeb Dolui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kishore%2C+V+V+R">V. V. Ravi Kishore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awana%2C+V+P+S">V. P. S. Awana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+D+D">D. D. Sarma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.08947v2-abstract-short" style="display: inline;"> Combining multiple emergent correlated properties such as superconductivity and magnetism within the topological matrix can have exceptional consequences in garnering new and exotic physics. Here, we study the topological surface states from a noncentrosymmetric $伪$-BiPd superconductor by employing angle-resolved photoemission spectroscopy (ARPES) and first principle calculations. We observe that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08947v2-abstract-full').style.display = 'inline'; document.getElementById('1609.08947v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.08947v2-abstract-full" style="display: none;"> Combining multiple emergent correlated properties such as superconductivity and magnetism within the topological matrix can have exceptional consequences in garnering new and exotic physics. Here, we study the topological surface states from a noncentrosymmetric $伪$-BiPd superconductor by employing angle-resolved photoemission spectroscopy (ARPES) and first principle calculations. We observe that the Dirac surface states of this system have several interesting and unusual properties, compared to other topological surface states. The surface state is strongly anisotropic and the in-plane Fermi velocity varies rigorously on rotating the crystal about the $y$-axis. Moreover, it acquires an unusual band gap as a function of $k_y$, possibly due to hybridization with bulk bands, detected upon varying the excitation energy. Coexistence of all the functional properties, in addition to the unusual surface state characteristics make this an interesting material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08947v2-abstract-full').style.display = 'none'; document.getElementById('1609.08947v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted on 26th April, 2016; to appear in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 177001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07633">arXiv:1606.07633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.07633">pdf</a>, <a href="https://arxiv.org/format/1606.07633">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssb.201600382">10.1002/pssb.201600382 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure and ultrafast dynamics of FeAs-based superconductors by angle- and time-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Avigo%2C+I">I. Avigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rettig%2C+L">L. Rettig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Charnukha%2C+A">A. Charnukha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligges%2C+M">M. Ligges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cortes%2C+R">R. Cortes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nayak%2C+J">J. Nayak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeevan%2C+H+S">H. S. Jeevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golden%2C+M+S">M. S. Golden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vojta%2C+M">M. Vojta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+M">M. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">U. Bovensiepen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07633v1-abstract-short" style="display: inline;"> In this article we review our angle- and time-resolved photoemission studies (ARPES and trARPES) on various ferropnictides. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07633v1-abstract-full" style="display: none;"> In this article we review our angle- and time-resolved photoemission studies (ARPES and trARPES) on various ferropnictides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07633v1-abstract-full').style.display = 'none'; document.getElementById('1606.07633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Status Solidi B, 1-15 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.07537">arXiv:1605.07537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.07537">pdf</a>, <a href="https://arxiv.org/format/1605.07537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.205143">10.1103/PhysRevB.93.205143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of impurity substitution on band structure and mass renormalization of the correlated FeTe$_{0.5}$Se$_{0.5}$ superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maheshwari%2C+P+K">P. K. Maheshwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kishore%2C+V+V+R">V. V. Ravi Kishore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+-">Z. -H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awana%2C+V+P+S">V. P. S. Awana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+D+D">D. D. Sarma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.07537v1-abstract-short" style="display: inline;"> Using angle-resolved photoemission spectroscopy (ARPES), we studied the effect of the impurity potential on the electronic structure of FeTe$_{0.5}$Se$_{0.5}$ superconductor by substituting 10\% of Ni for Fe which leads to an electron doping of the system. We could resolve three hole pockets near the zone center and an electron pocket near the zone corner in the case of FeTe$_{0.5}$Se$_{0.5}$, whe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07537v1-abstract-full').style.display = 'inline'; document.getElementById('1605.07537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.07537v1-abstract-full" style="display: none;"> Using angle-resolved photoemission spectroscopy (ARPES), we studied the effect of the impurity potential on the electronic structure of FeTe$_{0.5}$Se$_{0.5}$ superconductor by substituting 10\% of Ni for Fe which leads to an electron doping of the system. We could resolve three hole pockets near the zone center and an electron pocket near the zone corner in the case of FeTe$_{0.5}$Se$_{0.5}$, whereas only two hole pockets near the zone center and an electron pocket near the zone corner are resolved in the case of Fe$_{0.9}$Ni$_{0.1}$Te$_{0.5}$Se$_{0.5}$, suggesting that the hole pocket having predominantly the $xy$ orbital character is very sensitive to the impurity scattering. Upon electron doping, the size of the hole pockets decrease and the size of the electron pockets increase as compared to the host compound. However, the observed changes in the size of the electron and hole pockets are not consistent with the rigid-band model. Moreover, the effective mass of the hole pockets is reduced near the zone center and of the electron pockets is increased near the zone corner in the doped Fe$_{0.9}$Ni$_{0.1}$Te$_{0.5}$Se$_{0.5}$ as compared to FeTe$_{0.5}$Se$_{0.5}$. We refer these observations to the changes of the spectral function due to the effect of the impurity potential of the dopants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07537v1-abstract-full').style.display = 'none'; document.getElementById('1605.07537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 205143 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06997">arXiv:1605.06997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06997">pdf</a>, <a href="https://arxiv.org/format/1605.06997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13942">10.1038/ncomms13942 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple Dirac cones at the surface of the topological metal LaBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nayak%2C+J">Jayita Nayak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shu-Chun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Sanjay Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J枚rg Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+E+D">Emile E. D. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fecher%2C+G+H">Gerhard H. Fecher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06997v2-abstract-short" style="display: inline;"> The rare-earth monopnictide LaBi exhibits exotic magneto-transport properties including an extremely large and anisotropic magnetoresistance. Experimental evidence for topological surface states is still missing although band inversions have been postulated to induce a topological phase in LaBi. By employing angle-resolved photoemission spectroscopy (ARPES) in conjunction with $ab~initio$ calculat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06997v2-abstract-full').style.display = 'inline'; document.getElementById('1605.06997v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06997v2-abstract-full" style="display: none;"> The rare-earth monopnictide LaBi exhibits exotic magneto-transport properties including an extremely large and anisotropic magnetoresistance. Experimental evidence for topological surface states is still missing although band inversions have been postulated to induce a topological phase in LaBi. By employing angle-resolved photoemission spectroscopy (ARPES) in conjunction with $ab~initio$ calculations, we have revealed the existence of surface states of LaBi through the observation of three Dirac cones: two coexist at the corners and one appears at the center of the Brillouin zone. The odd number of surface Dirac cones is a direct consequence of the odd number of band inversions in the bulk band structure, thereby proving that LaBi is a topological, compensated semi-metal, which is equivalent to a time-reversal invariant topological insulator. Our findings provide insight into the topological surface states of LaBi&#39;s semi-metallicity and related magneto-transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06997v2-abstract-full').style.display = 'none'; document.getElementById('1605.06997v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages including the supplementary information, 4+4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.06954">arXiv:1601.06954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.06954">pdf</a>, <a href="https://arxiv.org/format/1601.06954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.064505">10.1103/PhysRevB.93.064505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Internal pressure in superconducting Cu intercalated Bi$_2$Se$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ribak%2C+A">Amit Ribak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chashka%2C+K+B">Khanan B. Chashka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lahoud%2C+E">Elias Lahoud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naamneh%2C+M">Muntaser Naamneh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rinott%2C+S">Shahar Rinott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ein-Eli%2C+Y">Yair Ein-Eli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicholas C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">Emile Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanigel%2C+A">Amit Kanigel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.06954v1-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy is used to study the band-structure of superconducting electrochemically intercalated Cu$_x$Bi$_2$Se$_3$. We find that in these samples the band-gap at the $螕$ point is much larger than in pristine Bi$_2$Se$_3$. Comparison to the results of band-structure calculations indicates that the origin of this large gap is internal stress caused by disorder created&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06954v1-abstract-full').style.display = 'inline'; document.getElementById('1601.06954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.06954v1-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy is used to study the band-structure of superconducting electrochemically intercalated Cu$_x$Bi$_2$Se$_3$. We find that in these samples the band-gap at the $螕$ point is much larger than in pristine Bi$_2$Se$_3$. Comparison to the results of band-structure calculations indicates that the origin of this large gap is internal stress caused by disorder created by the Cu intercalation. We suggest that the internal pressure may be necessary for superconductivity in Cu$_x$Bi$_2$Se$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06954v1-abstract-full').style.display = 'none'; document.getElementById('1601.06954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B. 93, 064505 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.08017">arXiv:1506.08017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.08017">pdf</a>, <a href="https://arxiv.org/format/1506.08017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.165307">10.1103/PhysRevB.91.165307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-dimensional spin texture of Bi(441); Quantum Spin Hall properties without a topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bianchi%2C+M">M. Bianchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+F">F. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooil%2C+S">S. Cooil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monsen%2C+A+F">A. F. Monsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahlstrom%2C+E">E. Wahlstrom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miwa%2C+J+A">J. A. Miwa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evans%2C+D+A">D. A. Evans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strozecka%2C+A">A. Strozecka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pascual%2C+J+I">J. I. Pascual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leandersson%2C+M">M. Leandersson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+T">T. Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Ph. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wells%2C+J+W">J. W. Wells</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.08017v1-abstract-short" style="display: inline;"> The high index (441) surface of bismuth has been studied using Scanning Tunnelling Microscopy (STM), Angle Resolved Photoemission Spectroscopy (APRES) and spin-resolved ARPES. The surface is strongly corrugated, exposing a regular array of (110)-like terraces. Two surface localised states are observed, both of which are linearly dispersing in one in-plane direction ($k_x$), and dispersionless in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08017v1-abstract-full').style.display = 'inline'; document.getElementById('1506.08017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.08017v1-abstract-full" style="display: none;"> The high index (441) surface of bismuth has been studied using Scanning Tunnelling Microscopy (STM), Angle Resolved Photoemission Spectroscopy (APRES) and spin-resolved ARPES. The surface is strongly corrugated, exposing a regular array of (110)-like terraces. Two surface localised states are observed, both of which are linearly dispersing in one in-plane direction ($k_x$), and dispersionless in the orthogonal in-plane direction ($k_y$), and both of which have a Dirac-like crossing at $k_x$=0. Spin ARPES reveals a strong in-plane polarisation, consistent with Rashba-like spin-orbit coupling. One state has a strong out-of-plane spin component, which matches with the miscut angle, suggesting its {possible} origin as an edge-state. The electronic structure of Bi(441) has significant similarities with topological insulator surface states and is expected to support one dimensional Quantum Spin Hall-like coupled spin-charge transport properties with inhibited backscattering, without requiring a topological insulator bulk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08017v1-abstract-full').style.display = 'none'; document.getElementById('1506.08017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 91 (16), 165307, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01691">arXiv:1504.01691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.01691">pdf</a>, <a href="https://arxiv.org/format/1504.01691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.195413">10.1103/PhysRevB.90.195413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic effect of warping on the lifetime broadening of topological surface states in angle-resolved photoemission from Bi$_2$Te$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">J. S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scholz%2C+M+R">M. R. Scholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golias%2C+E">E. Golias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchenko%2C+D">D. Marchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yashina%2C+L+V">L. V. Yashina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01691v1-abstract-short" style="display: inline;"> We analyze the strong hexagonal warping of the Dirac cone of Bi$_2$Te$_3$ by angle-resolved photoemission. Along $\overline螕$$\overline{\rm M}$, the dispersion deviates from a linear behavior meaning that the Dirac cone is warped outwards and not inwards. We show that this introduces an anisotropy in the lifetime broadening of the topological surface state which is larger along $\overline螕$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01691v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01691v1-abstract-full" style="display: none;"> We analyze the strong hexagonal warping of the Dirac cone of Bi$_2$Te$_3$ by angle-resolved photoemission. Along $\overline螕$$\overline{\rm M}$, the dispersion deviates from a linear behavior meaning that the Dirac cone is warped outwards and not inwards. We show that this introduces an anisotropy in the lifetime broadening of the topological surface state which is larger along $\overline螕$$\overline{\rm K}$. The result is not consistent with nesting. Based on the theoretically predicted behavior of the ground-state spin texture of a strongly warped Dirac cone, we propose spin-dependent scattering processes as explanation for the anisotropic scattering rates. These results could help paving the way for optimizing future spintronic devices using topological insulators and controlling surface-scattering processes via external gate voltages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01691v1-abstract-full').style.display = 'none'; document.getElementById('1504.01691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 195413 (2014), Editor&#39;s Suggestion </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.01542">arXiv:1502.01542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.01542">pdf</a>, <a href="https://arxiv.org/ps/1502.01542">ps</a>, <a href="https://arxiv.org/format/1502.01542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-02908-7">10.1038/s41467-018-02908-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Samarium hexaboride: A trivial surface conductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hlawenka%2C+P">P. Hlawenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemensmeyer%2C+K">K. Siemensmeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">J. S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shitsevalova%2C+N+Y">N. Y. Shitsevalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dukhnenko%2C+A+V">A. V. Dukhnenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filipov%2C+V+B">V. B. Filipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gab%C3%A1ni%2C+S">S. Gab谩ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flachbart%2C+K">K. Flachbart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.01542v1-abstract-short" style="display: inline;"> Recent theoretical and experimental studies suggest that SmB$_6$ is the first topological Kondo insulator: A material in which the interaction between localized and itinerant electrons renders the bulk insulating at low temperature, while topological surface states leave the surface metallic. While this would elegantly explain the material&#39;s puzzling conductivity, we find the experimentally observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.01542v1-abstract-full').style.display = 'inline'; document.getElementById('1502.01542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.01542v1-abstract-full" style="display: none;"> Recent theoretical and experimental studies suggest that SmB$_6$ is the first topological Kondo insulator: A material in which the interaction between localized and itinerant electrons renders the bulk insulating at low temperature, while topological surface states leave the surface metallic. While this would elegantly explain the material&#39;s puzzling conductivity, we find the experimentally observed candidates for both predicted topological surface states to be of trivial character instead: The surface state at $\bar螕$ is very heavy and shallow with a mere $\sim 2$ meV binding energy. It exhibits large Rashba splitting which excludes a topological nature. We further demonstrate that the other metallic surface state, located at $\bar{X}$, is not an independent in-gap state as supposed previously, but part of a massive band with much higher binding energy (1.7 eV). We show that it remains metallic down to 1 K due to reduced hybridization with the energy-shifted surface 4$f$ level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.01542v1-abstract-full').style.display = 'none'; document.getElementById('1502.01542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 9 (2018) 517 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02135">arXiv:1501.02135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.02135">pdf</a>, <a href="https://arxiv.org/format/1501.02135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.201106">10.1103/PhysRevB.92.201106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Fermi-liquid scattering rates and anomalous band dispersion in ferropnictides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Charnukha%2C+A">A. Charnukha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+H">Z. H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avigo%2C+I">I. Avigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+F">F. Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeevan%2C+H+S">H. S. Jeevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roslova%2C+M">M. Roslova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+I">I. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">U. Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">S. Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vojta%2C+M">M. Vojta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buechner%2C+B">B. Buechner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02135v2-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is used to study the band dispersion and the quasiparticle scattering rates in two ferropnictides systems. Our ARPES results show linear-in-energy dependent scattering rates which are constant in a wide range of control parameter and which depend on the orbital character of the bands. We demonstrate that the linear energy dependence gives rise to w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02135v2-abstract-full').style.display = 'inline'; document.getElementById('1501.02135v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02135v2-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is used to study the band dispersion and the quasiparticle scattering rates in two ferropnictides systems. Our ARPES results show linear-in-energy dependent scattering rates which are constant in a wide range of control parameter and which depend on the orbital character of the bands. We demonstrate that the linear energy dependence gives rise to weakly dispersing band with a strong mass enhancement when the band maximum crosses the chemical potential. In the superconducting phase the related small effective Fermi energy favors a Bardeen-Cooper-Schrieffer (BCS)\,\cite{Bardeen1957}-Bose-Einstein (BE)\,\cite{Bose1924} crossover state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02135v2-abstract-full').style.display = 'none'; document.getElementById('1501.02135v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures Supplement 4 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92. 201106 (R) (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.5875">arXiv:1402.5875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.5875">pdf</a>, <a href="https://arxiv.org/format/1402.5875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/31/6/067403">10.1088/0256-307X/31/6/067403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of strong-coupling pairing with weakened Fermi-surface nesting at optimal hole doping in Ca$_{0.33}$Na$_{0.67}$Fe$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+-">Y. -B. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y+-">Y. -B. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+-">X. -P. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Roekeghem%2C+A">A. van Roekeghem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W+-">W. -L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richard%2C+P">P. Richard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+K">K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+-">C. -Q. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.5875v1-abstract-short" style="display: inline;"> We report an angle-resolved photoemission investigation of optimally-doped Ca$_{0.33}$Na$_{0.67}$Fe$_2$As$_2$. The Fermi surface topology of this compound is similar to that of the well-studied Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ material, except for larger hole pockets resulting from a higher hole concentration per Fe atoms. We find that the quasi-nesting conditions are weakened in this compound as c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.5875v1-abstract-full').style.display = 'inline'; document.getElementById('1402.5875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.5875v1-abstract-full" style="display: none;"> We report an angle-resolved photoemission investigation of optimally-doped Ca$_{0.33}$Na$_{0.67}$Fe$_2$As$_2$. The Fermi surface topology of this compound is similar to that of the well-studied Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ material, except for larger hole pockets resulting from a higher hole concentration per Fe atoms. We find that the quasi-nesting conditions are weakened in this compound as compared to Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. As with Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ though, we observe nearly isotropic superconducting gaps with Fermi surface-dependent magnitudes. A small variation in the gap size along the momentum direction perpendicular to the surface is found for one of the Fermi surfaces. Our superconducting gap results on all Fermi surface sheets fit simultaneously very well to a global gap function derived from a strong coupling approach, which contains only 2 global parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.5875v1-abstract-full').style.display = 'none'; document.getElementById('1402.5875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 31, 067403 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.7064">arXiv:1312.7064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.7064">pdf</a>, <a href="https://arxiv.org/format/1312.7064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.4.031001">10.1103/PhysRevX.4.031001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of momentum-confined in-gap impurity state in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$: evidence for anti-phase $s_{\pm}$ pairing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richard%2C+P">P. Richard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L+-">L. -K. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+-">X. -P. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+-">C. -L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y+-">Y. -Z. You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+Z+-">Z. -Y. Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X+-">X. -X. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J+P">J. P. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.7064v3-abstract-short" style="display: inline;"> We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave vector positions. We demonstrate, supported by theoretical simulations, that this in-gap sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7064v3-abstract-full').style.display = 'inline'; document.getElementById('1312.7064v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.7064v3-abstract-full" style="display: none;"> We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave vector positions. We demonstrate, supported by theoretical simulations, that this in-gap state originates from weak non-magnetic scattering between bands with opposite sign of the superconducting gap phase. This weak scattering, likely due to off-plane Ba/K disorders, occurs mostly among neighboring Fermi surfaces, suggesting that the superconducting gap phase changes sign within holelike (and electronlike) bands. Our results impose severe restrictions on the models promoted to explain high-temperature superconductivity in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7064v3-abstract-full').style.display = 'none'; document.getElementById('1312.7064v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. Accepted for publication in Physical Review X</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 4, 031001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.5143">arXiv:1312.5143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.5143">pdf</a>, <a href="https://arxiv.org/ps/1312.5143">ps</a>, <a href="https://arxiv.org/format/1312.5143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.137001">10.1103/PhysRevLett.113.137001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The high-energy anomaly in ARPES spectra of the cuprates-many body or matrix element effect? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%84rr%C3%A4l%C3%A4%2C+M">M. 脛rr盲l盲</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindroos%2C+M">M. Lindroos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+F">F. Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">G. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">M. Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.5143v2-abstract-short" style="display: inline;"> We used polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, (x=0.123). We have found that at particular photon energies the anomalous, waterfalllike dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.5143v2-abstract-full').style.display = 'inline'; document.getElementById('1312.5143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.5143v2-abstract-full" style="display: none;"> We used polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, (x=0.123). We have found that at particular photon energies the anomalous, waterfalllike dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasi-particle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further proof for this scenario. The possibility to detect the full quasi-particle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.5143v2-abstract-full').style.display = 'none'; document.getElementById('1312.5143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages 2 figures, corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 137001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.5859">arXiv:1308.5859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.5859">pdf</a>, <a href="https://arxiv.org/ps/1308.5859">ps</a>, <a href="https://arxiv.org/format/1308.5859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4847715">10.1063/1.4847715 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for topological band inversion of the phase change material Ge2Sb2Te5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pauly%2C+C">Christian Pauly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liebmann%2C+M">Marcus Liebmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giussani%2C+A">Alessandro Giussani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kellner%2C+J">Jens Kellner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Just%2C+S">Sven Just</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Barriga%2C+J">Jaime S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">Emile Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">Oliver Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calarco%2C+R">Raffaella Calarco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bihlmayer%2C+G">Gustav Bihlmayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgenstern%2C+M">Markus Morgenstern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.5859v2-abstract-short" style="display: inline;"> We present an angle-resolved photoemission study of a ternary phase change material, namely Ge2Sb2Te5, epitaxially grown on Si(111) in the metastable cubic phase. The observed upper bulk valence band shows a minimum at Gamma-bar being 0.3 eV below the Fermi level E_F and a circular Fermi contour around Gamma-bar with a dispersing diameter of 0.27-0.36 Anstroms^-1. This is in agreement with density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5859v2-abstract-full').style.display = 'inline'; document.getElementById('1308.5859v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.5859v2-abstract-full" style="display: none;"> We present an angle-resolved photoemission study of a ternary phase change material, namely Ge2Sb2Te5, epitaxially grown on Si(111) in the metastable cubic phase. The observed upper bulk valence band shows a minimum at Gamma-bar being 0.3 eV below the Fermi level E_F and a circular Fermi contour around Gamma-bar with a dispersing diameter of 0.27-0.36 Anstroms^-1. This is in agreement with density functional theory calculations of the Petrov stacking sequence in the cubic phase which exhibits a topological surface state. The topologically trivial cubic KH stacking shows a valence band maximum at Gamma in line with all previous calculations of the hexagonal stable phase exhibiting the valence band maximum at Gamma for a trivial Z_2 topological invariant nu_0 and away from Gamma for non-trivial nu_0. Scanning tunneling spectroscopy exhibits a band gap of 0.4 eV around E_F. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5859v2-abstract-full').style.display = 'none'; document.getElementById('1308.5859v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 103, 243109 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.3888">arXiv:1308.3888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.3888">pdf</a>, <a href="https://arxiv.org/format/1308.3888">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.220508">10.1103/PhysRevB.88.220508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible nodal superconducting gap emerging at the Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richard%2C+P">P. Richard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Roekeghem%2C+A">A. van Roekeghem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G+-">G. -F. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ieki%2C+E">E. Ieki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakayama%2C+K">K. Nakayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">T. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+T">T. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.3888v1-abstract-short" style="display: inline;"> We performed a high energy resolution ARPES investigation of over-doped Ba0.1K0.9Fe2As2 with T_c= 9 K. The Fermi surface topology of this material is similar to that of KFe2As2 and differs from that of slightly less doped Ba0.3K0.7Fe2As2, implying that a Lifshitz transition occurred between x=0.7 and x=0.9. Albeit for a vertical node found at the tip of the emerging off-M-centered Fermi surface po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3888v1-abstract-full').style.display = 'inline'; document.getElementById('1308.3888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.3888v1-abstract-full" style="display: none;"> We performed a high energy resolution ARPES investigation of over-doped Ba0.1K0.9Fe2As2 with T_c= 9 K. The Fermi surface topology of this material is similar to that of KFe2As2 and differs from that of slightly less doped Ba0.3K0.7Fe2As2, implying that a Lifshitz transition occurred between x=0.7 and x=0.9. Albeit for a vertical node found at the tip of the emerging off-M-centered Fermi surface pocket lobes, the superconducting gap structure is similar to that of Ba0.3K0.7Fe2As2, suggesting that the paring interaction is not driven by the Fermi surface topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3888v1-abstract-full').style.display = 'none'; document.getElementById('1308.3888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 88, 220508(R) (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.1280">arXiv:1307.1280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.1280">pdf</a>, <a href="https://arxiv.org/format/1307.1280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.220506">10.1103/PhysRevB.89.220506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual band renormalization in the simplest iron based superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maletz%2C+J">J. Maletz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V+B">V. B. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">D. V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">A. U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harnagea%2C+L">L. Harnagea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A+N">A. N. Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vasiliev%2C+A+N">A. N. Vasiliev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chareev%2C+D+A">D. A. Chareev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.1280v1-abstract-short" style="display: inline;"> The electronic structure of the iron chalcogenide superconductor FeSe_{1-x} was investigated by high- resolution angle-resolved photoemission spectroscopy (ARPES). The results were compared to DFT calculations showing some significant differences between the experimental electronic structure of FeSe_{1-x}, DFT calculations and existing data on FeSe_{x}Te_{1-x}. The bands undergo a pronounced orbit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.1280v1-abstract-full').style.display = 'inline'; document.getElementById('1307.1280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.1280v1-abstract-full" style="display: none;"> The electronic structure of the iron chalcogenide superconductor FeSe_{1-x} was investigated by high- resolution angle-resolved photoemission spectroscopy (ARPES). The results were compared to DFT calculations showing some significant differences between the experimental electronic structure of FeSe_{1-x}, DFT calculations and existing data on FeSe_{x}Te_{1-x}. The bands undergo a pronounced orbital dependent renormalization, different from what was observed for FeSe_{x}Te_{1-x} and any other pnictides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.1280v1-abstract-full').style.display = 'none'; document.getElementById('1307.1280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 220506(R) (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.4365">arXiv:1301.4365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.4365">pdf</a>, <a href="https://arxiv.org/ps/1301.4365">ps</a>, <a href="https://arxiv.org/format/1301.4365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/103/47004">10.1209/0295-5075/103/47004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure and quantum criticality in Ba(Fe$_{1-x-y}$Co$_{x}$Mn$_{y}$)$_{2}$As$_{2}$, an ARPES study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koepernik%2C+K">K. Koepernik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avigo%2C+I">I. Avigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hlawenka%2C+P">P. Hlawenka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupulescu%2C+C">C. Lupulescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arion%2C+T">T. Arion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+F">F. Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eberhardt%2C+W">W. Eberhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">U. Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.4365v2-abstract-short" style="display: inline;"> We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0&lt;=y &lt;=0.07. From ARPES we derive that the substitution of Fe by Mn does not lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4365v2-abstract-full').style.display = 'inline'; document.getElementById('1301.4365v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.4365v2-abstract-full" style="display: none;"> We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0&lt;=y &lt;=0.07. From ARPES we derive that the substitution of Fe by Mn does not lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging effective mass or scattering rate near optimal doping. Thus the present ARPES results indicate a continuous evolution of the quasiparticle interaction and therefore question previous quantum critical scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4365v2-abstract-full').style.display = 'none'; document.getElementById('1301.4365v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version 5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL 103, 47004 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.4593">arXiv:1211.4593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.4593">pdf</a>, <a href="https://arxiv.org/format/1211.4593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.094501">10.1103/PhysRevB.87.094501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic band structure and momentum dependence of the superconducting gap in (Ca, Na)Fe2As2 from angle-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">D. V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V+B">V. B. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harnagea%2C+L">L. Harnagea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A+N">A. N. Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kordyuk%2C+A+A">A. A. Kordyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maletz%2C+J">J. Maletz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Follath%2C+R">R. Follath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S+V">S. V. Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.4593v1-abstract-short" style="display: inline;"> Electronic structure of newly synthesized single crystals of calcium iron arsenide doped with sodium with Tc ranging from 33 to 14 K has been determined by angle-resolved photoemission spectroscopy (ARPES). The measured band dispersion is in general agreement with theoretical calculations, nonetheless implies absence of Fermi surface nesting at antiferromagnetic vector. A clearly developing below&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.4593v1-abstract-full').style.display = 'inline'; document.getElementById('1211.4593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.4593v1-abstract-full" style="display: none;"> Electronic structure of newly synthesized single crystals of calcium iron arsenide doped with sodium with Tc ranging from 33 to 14 K has been determined by angle-resolved photoemission spectroscopy (ARPES). The measured band dispersion is in general agreement with theoretical calculations, nonetheless implies absence of Fermi surface nesting at antiferromagnetic vector. A clearly developing below Tc strongly band-dependant superconducting gap has been revealed for samples with various doping levels. BCS ratio for optimal doping, $2螖/k_{\rm B}T_{\rm c}=5.5$, is substantially smaller than the numbers reported for related compounds, implying a non-trivial relation between electronic dispersion and superconducting gap in iron arsenides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.4593v1-abstract-full').style.display = 'none'; document.getElementById('1211.4593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">first ARPES on CNFA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 87, 094501 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.2080">arXiv:1211.2080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.2080">pdf</a>, <a href="https://arxiv.org/format/1211.2080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.094513">10.1103/PhysRevB.87.094513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ARPES observation of isotropic superconducting gaps in isovalent Ru-substituted Ba(Fe$_{0.75}$Ru$_{0.25}$)$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richard%2C+P">P. Richard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+-">X. -P. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Roekeghem%2C+A">A. van Roekeghem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ieki%2C+E">E. Ieki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakayama%2C+K">K. Nakayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">T. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+J">J. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H+-">H. -H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+T">T. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.2080v1-abstract-short" style="display: inline;"> We used high-energy resolution angle-resolved photoemission spectroscopy to extract the momentum dependence of the superconducting gap of Ru-substituted Ba(Fe$_{0.75}$Ru$_{0.25}$)$_2$As$_2$ ($T_c = 15$ K). Despite a strong out-of-plane warping of the Fermi surface, the magnitude of the superconducting gap observed experimentally is nearly isotropic and independent of the out-of-plane momentum. Mor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2080v1-abstract-full').style.display = 'inline'; document.getElementById('1211.2080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.2080v1-abstract-full" style="display: none;"> We used high-energy resolution angle-resolved photoemission spectroscopy to extract the momentum dependence of the superconducting gap of Ru-substituted Ba(Fe$_{0.75}$Ru$_{0.25}$)$_2$As$_2$ ($T_c = 15$ K). Despite a strong out-of-plane warping of the Fermi surface, the magnitude of the superconducting gap observed experimentally is nearly isotropic and independent of the out-of-plane momentum. More precisely, we respectively observed 5.7 meV and 4.5 meV superconducting gaps on the inner and outer $螕$-centered hole Fermi surface pockets, whereas a 4.8 meV gap is recorded on the M-centered electron Fermi surface pockets. Our results are consistent with the $J_1-J_2$ model with a dominant antiferromagnetic exchange interaction between the next-nearest Fe neighbors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2080v1-abstract-full').style.display = 'none'; document.getElementById('1211.2080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 87, 094513 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.8382">arXiv:1210.8382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.8382">pdf</a>, <a href="https://arxiv.org/format/1210.8382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/15/6/063029">10.1088/1367-2630/15/6/063029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation and consequences of heavy d-electron quasiparticles in Sr3Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">M. P. Allan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamai%2C+A">A. Tamai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rozbicki%2C+E">E. Rozbicki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">M. H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voss%2C+J">J. Voss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meevasana%2C+W">W. Meevasana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+A">A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercure%2C+J+F">J. F. Mercure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M+A">M. A. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennie%2C+C+J">C. J. Fennie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+E+-">E. -A. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawler%2C+M+J">M. J. Lawler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">A. P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.8382v1-abstract-short" style="display: inline;"> We report angle-resolved photoelectron spectroscopy measurements of the quantum critical metal Sr3Ru2O7 revealing itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of &lt; 6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8382v1-abstract-full').style.display = 'inline'; document.getElementById('1210.8382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.8382v1-abstract-full" style="display: none;"> We report angle-resolved photoelectron spectroscopy measurements of the quantum critical metal Sr3Ru2O7 revealing itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of &lt; 6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from the hybridization of light and strongly renormalized, heavy quasiparticle bands. For the largest Fermi surface sheet we find a marked k-dependence of the renormalization and show that it correlates with the Ru 4d - O 2p hybridization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8382v1-abstract-full').style.display = 'none'; document.getElementById('1210.8382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 15 (2013) 063029 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.6340">arXiv:1207.6340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.6340">pdf</a>, <a href="https://arxiv.org/ps/1207.6340">ps</a>, <a href="https://arxiv.org/format/1207.6340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.020506">10.1103/PhysRevB.86.020506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How chemical pressure affects the fundamental properties of rare-earth pnictides: an ARPES view </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holder%2C+M+G">M. G. Holder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesche%2C+A">A. Jesche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lombardo%2C+P">P. Lombardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayn%2C+R">R. Hayn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vyalikh%2C+D+V">D. V. Vyalikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">K. Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Danzenb%C3%A4cher%2C+S">S. Danzenb盲cher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krellner%2C+C">C. Krellner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geibel%2C+C">C. Geibel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molodtsov%2C+S+L">S. L. Molodtsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laubschat%2C+C">C. Laubschat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.6340v1-abstract-short" style="display: inline;"> Angle-resolved photoelectron spectroscopy, supplemented by theoretical calculations has been applied to study the electronic structure of heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature superconductors, and CeFeAs_0.7P_0.3O, where the applied chemical pressure results in a ferromagnetic order of the 4f moments. A comparative analysis reveals characteristic differences i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6340v1-abstract-full').style.display = 'inline'; document.getElementById('1207.6340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.6340v1-abstract-full" style="display: none;"> Angle-resolved photoelectron spectroscopy, supplemented by theoretical calculations has been applied to study the electronic structure of heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature superconductors, and CeFeAs_0.7P_0.3O, where the applied chemical pressure results in a ferromagnetic order of the 4f moments. A comparative analysis reveals characteristic differences in the Fe-derived band structure for these materials, implying a rather different hybridization of valence electrons to the localized 4f orbitals. In particular, our results suggest that the ferromagnetism of Ce moments in CeFeAs_0.7P_0.3O is mediated mainly by Fe 3d_xz/yz orbitals, while the Kondo screening in CeFePO is instead due to a strong interaction of Fe 3d_3z^2-r^2 orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6340v1-abstract-full').style.display = 'none'; document.getElementById('1207.6340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, accepted for publication in Phys. Rev. B (Rapid)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 020506(R) (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.0996">arXiv:1205.0996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.0996">pdf</a>, <a href="https://arxiv.org/format/1205.0996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/99/67001">10.1209/0295-5075/99/67001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of an isotropic superconducting gap at the Brillouin zone center of Tl$_{0.63}$K$_{0.37}$Fe$_{1.78}$Se$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+-">X. -P. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richard%2C+P">P. Richard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Roekeghem%2C+A">A. van Roekeghem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y+-">Y. -B. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H+-">H. -D. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C+-">C. -H. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+M+-">M. -H. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.0996v3-abstract-short" style="display: inline;"> We performed a high-resolution angle-resolved photoemission spectroscopy study on superconducting (SC) Tl$_{0.63}$K$_{0.37}$Fe$_{1.78}$Se$_2$ ($T_c=29$ K) in the whole Brillouin zone (BZ). In addition to a nearly isotropic $\sim$ 8.2 meV 2-dimensional (2D) SC gap ($2螖/k_BT_c\sim7$) on quasi-2D electron Fermi surfaces (FSs) located around M$(蟺,0,0)$-A$(蟺,0,蟺)$, we observe a $\sim 6.2$ meV isotropic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.0996v3-abstract-full').style.display = 'inline'; document.getElementById('1205.0996v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.0996v3-abstract-full" style="display: none;"> We performed a high-resolution angle-resolved photoemission spectroscopy study on superconducting (SC) Tl$_{0.63}$K$_{0.37}$Fe$_{1.78}$Se$_2$ ($T_c=29$ K) in the whole Brillouin zone (BZ). In addition to a nearly isotropic $\sim$ 8.2 meV 2-dimensional (2D) SC gap ($2螖/k_BT_c\sim7$) on quasi-2D electron Fermi surfaces (FSs) located around M$(蟺,0,0)$-A$(蟺,0,蟺)$, we observe a $\sim 6.2$ meV isotropic SC gap ($2螖/k_BT_c\sim5$) on the Z-centered electron FS that rules out any d-wave pairing symmetry and rather favors an s-wave symmetry. All isotropic SC gap amplitudes can be fit by a single gap function derived from a local strong coupling approach suggesting an enhancement of the next-next neighbor exchange interaction in the ferrochalcogenide superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.0996v3-abstract-full').style.display = 'none'; document.getElementById('1205.0996v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhysics Letters 99, 67001 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.1316">arXiv:1204.1316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.1316">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.134501">10.1103/PhysRevB.88.134501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> &#34;Cigar&#34; Fermi surface as a possible requisite for superconductivity in iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S+V">S. V. Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A+N">A. N. Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">D. V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V+B">V. B. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kordyuk%2C+A+A">A. A. Kordyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maletz%2C+J">J. Maletz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shermadini%2C+Z">Z. Shermadini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedlak%2C+K">K. Sedlak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klauss%2C+H">H-H. Klauss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.1316v1-abstract-short" style="display: inline;"> Recently discovered A-Fe-Se (A - alkali metal) materials have questioned the most popular theories of iron-based superconductors because of their unusual electronic structure [1]. Controversial photoemission data taken in the superconducting state [2-7] are in conflict with highly magnetic state seen by neutron-, muSR-spectroscopies and transport/thermodynamic probes [8-10]. These results lead to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.1316v1-abstract-full').style.display = 'inline'; document.getElementById('1204.1316v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.1316v1-abstract-full" style="display: none;"> Recently discovered A-Fe-Se (A - alkali metal) materials have questioned the most popular theories of iron-based superconductors because of their unusual electronic structure [1]. Controversial photoemission data taken in the superconducting state [2-7] are in conflict with highly magnetic state seen by neutron-, muSR-spectroscopies and transport/thermodynamic probes [8-10]. These results lead to suggestions to consider all iron-based materials as originating from Mott-insulators or semiconductors, thus once again raising the question of close relation between the cuprates and Fe-based superconductors [e.g. 2]. Here we study electronic and magnetic properties of Rb0.77Fe1.61Se2 (Tc = 32.6 K) in normal and superconducting states by means of photoemission and muSR spectroscopies as well as band structure calculations. We demonstrate that the puzzling behavior of these novel materials is the result of separation into metallic (~12%) and insulating (~ 88%) phases. Only the former becomes superconducting and has a usual electronic structure of electron-doped FeSe-slabs. Our results thus imply that the antiferromagnetic insulating phase is just a byproduct of Rb-intercalation and its magnetic properties have hardly any relation to the superconductivity. Instead, we find that also in this, already third class of iron-based compounds, the key ingredient for superconductivity is a certain proximity of a van Hove singularity to the Fermi level. These findings set the direction for effective search of new superconducting materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.1316v1-abstract-full').style.display = 'none'; document.getElementById('1204.1316v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, PDF format, Related work: http://www.ifw-dresden.de/institutes/iff/research/SC/arpes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 134501 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.3308">arXiv:1104.3308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.3308">pdf</a>, <a href="https://arxiv.org/ps/1104.3308">ps</a>, <a href="https://arxiv.org/format/1104.3308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.066804">10.1103/PhysRevLett.108.066804 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological surface state under graphene for two-dimensional spintronics in air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchenko%2C+D">D. Marchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scholz%2C+M+R">M. R. Scholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">O. Rader</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.3308v1-abstract-short" style="display: inline;"> Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surface states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect (伪_R ~ 1.5E-10 eVm) on a surfa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3308v1-abstract-full').style.display = 'inline'; document.getElementById('1104.3308v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.3308v1-abstract-full" style="display: none;"> Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surface states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect (伪_R ~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin splitting and spin polarization remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with evidences for a topological protection of the surface state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3308v1-abstract-full').style.display = 'none'; document.getElementById('1104.3308v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">includes supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 108, 066804 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.3220">arXiv:1103.3220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.3220">pdf</a>, <a href="https://arxiv.org/format/1103.3220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.096802">10.1103/PhysRevLett.107.096802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large tuneable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatch%2C+R+C">R. C. Hatch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bianchi%2C+M">M. Bianchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovsyannikov%2C+R">R. Ovsyannikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupulescu%2C+C">C. Lupulescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landolt%2C+G">G. Landolt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slomski%2C+B">B. Slomski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">D. Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+J+L">J. L. Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindblad%2C+A">A. Lindblad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svensson%2C+S">S. Svensson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+S">S. Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iversen%2C+B+B">B. B. Iversen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osterwalder%2C+J">J. Osterwalder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eberhardt%2C+W">W. Eberhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Ph. Hofmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.3220v2-abstract-short" style="display: inline;"> We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi$_2$Se$_3$ from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spint&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.3220v2-abstract-full').style.display = 'inline'; document.getElementById('1103.3220v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.3220v2-abstract-full" style="display: none;"> We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi$_2$Se$_3$ from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.3220v2-abstract-full').style.display = 'none'; document.getElementById('1103.3220v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Substantially revised</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 107 (2011) 096802 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.5205">arXiv:1007.5205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1007.5205">pdf</a>, <a href="https://arxiv.org/ps/1007.5205">ps</a>, <a href="https://arxiv.org/format/1007.5205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.014531">10.1103/PhysRevB.84.014531 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissimilarities between the electronic structure of chemically doped and chemically pressurized iron pnictides from an angle-resolved photoemission spectroscopy study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thirupathaiah%2C+S">S. Thirupathaiah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeevan%2C+H+S">H. S. Jeevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovsyannikov%2C+R">R. Ovsyannikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slooten%2C+E">E. Slooten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaas%2C+J">J. Kaas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Heumen%2C+E">E. van Heumen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Jong%2C+S">S. de Jong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duerr%2C+H+A">H. A. Duerr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemensmeyer%2C+K">K. Siemensmeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Follath%2C+R">R. Follath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golden%2C+M+S">M. S. Golden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.5205v1-abstract-short" style="display: inline;"> We have studied the electronic structure of EuFe2As2-xPx using high resolution angle-resolved photoemission spectroscopy. Upon substituting As with the isovalent P, which leads to a chemical pressure and to superconductivity, we observe a non-rigid-band like change of the electronic structure along the center of the Brillouin zone (BZ): an orbital and kz dependent increase or decrease in the size&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.5205v1-abstract-full').style.display = 'inline'; document.getElementById('1007.5205v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.5205v1-abstract-full" style="display: none;"> We have studied the electronic structure of EuFe2As2-xPx using high resolution angle-resolved photoemission spectroscopy. Upon substituting As with the isovalent P, which leads to a chemical pressure and to superconductivity, we observe a non-rigid-band like change of the electronic structure along the center of the Brillouin zone (BZ): an orbital and kz dependent increase or decrease in the size of the hole pockets near the Gamma - Z line. On the other hand, the diameter of the Fermi surface cylinders at the BZ corner forming electron pockets, hardly changes. This is in stark contrast to p and n-type doped iron pnictides where, on the basis of ARPES experiments, a more rigid-band like behavior has been proposed. These findings indicate that there are different ways in which the nesting conditions can be reduced causing the destabilization of the antiferromagnetic order and the appearance of the superconducting dome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.5205v1-abstract-full').style.display = 'none'; document.getElementById('1007.5205v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 014531 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.4761">arXiv:1001.4761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1001.4761">pdf</a>, <a href="https://arxiv.org/ps/1001.4761">ps</a>, <a href="https://arxiv.org/format/1001.4761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/NPHYS1615">10.1038/NPHYS1615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band dispersion in the deep 1s core level of graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lizzit%2C+S">S. Lizzit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zampieri%2C+G">G. Zampieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petaccia%2C+L">L. Petaccia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larciprete%2C+R">R. Larciprete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacovig%2C+P">P. Lacovig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E+D+L">E. D. L. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baraldi%2C+A">A. Baraldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Ph. Hofmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.4761v2-abstract-short" style="display: inline;"> Chemical bonding in molecules and solids arises from the overlap of valence electron wave functions, forming extended molecular orbitals and dispersing Bloch states, respectively. Core electrons with high binding energies, on the other hand, are localized to their respective atoms and their wave functions do not overlap significantly. Here we report the observation of band formation and consider&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.4761v2-abstract-full').style.display = 'inline'; document.getElementById('1001.4761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.4761v2-abstract-full" style="display: none;"> Chemical bonding in molecules and solids arises from the overlap of valence electron wave functions, forming extended molecular orbitals and dispersing Bloch states, respectively. Core electrons with high binding energies, on the other hand, are localized to their respective atoms and their wave functions do not overlap significantly. Here we report the observation of band formation and considerable dispersion (up to 60 meV) in the $1s$ core level of the carbon atoms forming graphene, despite the high C $1s$ binding energy of $\approx$ 284 eV. Due to a Young&#39;s double slit-like interference effect, a situation arises in which only the bonding or only the anti-bonding states is observed for a given photoemission geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.4761v2-abstract-full').style.display = 'none'; document.getElementById('1001.4761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, including supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 6, 345 (2010) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Rienks%2C+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Rienks%2C+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Rienks%2C+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10