CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 96 results for author: <span class="mathjax">Tennant, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Tennant%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tennant, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tennant%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tennant, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tennant%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tennant%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tennant%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15249">arXiv:2409.15249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15249">pdf</a>, <a href="https://arxiv.org/format/2409.15249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Tutorial: Extracting entanglement signatures from neutron spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">Allen Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simeth%2C+W">Wolfgang Simeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">Elbio Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15249v1-abstract-short" style="display: inline;"> This tutorial is a pedagogical introduction to recent methods of computing quantum spin entanglement witnesses from spectroscopy, with a special focus on neutron scattering on quantum spin systems. We offer a brief introduction to the concepts and equations, define a data analysis protocol, and discuss the interpretation of three entanglement witnesses: one-tangle, two-tangle, and Quantum Fisher I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15249v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15249v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15249v1-abstract-full" style="display: none;"> This tutorial is a pedagogical introduction to recent methods of computing quantum spin entanglement witnesses from spectroscopy, with a special focus on neutron scattering on quantum spin systems. We offer a brief introduction to the concepts and equations, define a data analysis protocol, and discuss the interpretation of three entanglement witnesses: one-tangle, two-tangle, and Quantum Fisher Information. We also discuss practical experimental considerations, and give three examples of extracting entanglement witnesses from experimental data: Copper Nitrate, KCuF3, and NiPS3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15249v1-abstract-full').style.display = 'none'; document.getElementById('2409.15249v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20480">arXiv:2407.20480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20480">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c04824">10.1021/acsnano.4c04824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Observation and Analysis of Low-Energy Magnons with Raman Spectroscopy in Atomically Thin NiPS3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+W">Woongki Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+P">Pyeongjae Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+S">Siwon Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Junghyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">Allen Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+C">Hyun Cheol Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+H">Hyeonsik Cheong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20480v1-abstract-short" style="display: inline;"> Van der Waals (vdW) magnets have rapidly emerged as a fertile playground for novel fundamental physics and exciting applications. Despite the impressive developments over the past few years, technical limitations pose a severe challenge to many other potential breakthroughs. High on the list is the lack of suitable experimental tools for studying spin dynamics on atomically thin samples. Here, Ram&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20480v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20480v1-abstract-full" style="display: none;"> Van der Waals (vdW) magnets have rapidly emerged as a fertile playground for novel fundamental physics and exciting applications. Despite the impressive developments over the past few years, technical limitations pose a severe challenge to many other potential breakthroughs. High on the list is the lack of suitable experimental tools for studying spin dynamics on atomically thin samples. Here, Raman scattering techniques are employed to observe directly the low-lying magnon (~1 meV) even in bilayer NiPS3. The unique advantage is that it offers excellent energy resolutions far better on low-energy sides than most inelastic neutron spectrometers can offer. More importantly, with appropriate theoretical analysis, the polarization dependence of the Raman scattering by those low-lying magnons also provides otherwise hidden information on the dominant spin-exchange scattering paths for different magnons. By comparing with high-resolution inelastic neutron scattering data, these low-energy Raman modes are confirmed to be indeed of magnon origin. Because of the different scattering mechanisms involved in inelastic neutron and Raman scattering, this new information is fundamental in pinning down the final spin Hamiltonian. This work demonstrates the capability of Raman spectroscopy to probe the genuine two-dimensional spin dynamics in atomically-thin vdW magnets, which can provide novel insights that are obscured in bulk spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20480v1-abstract-full').style.display = 'none'; document.getElementById('2407.20480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 5 figures, supplementary information 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17773">arXiv:2406.17773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17773">pdf</a>, <a href="https://arxiv.org/format/2406.17773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spectrum and low-energy gap in triangular quantum spin liquid NaYbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kevin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">P. Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D">D. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ajeesh%2C+M+O">M. O. Ajeesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Ao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zapf%2C+V+S">Vivien S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heyl%2C+M">M. Heyl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">E. Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">J. E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17773v1-abstract-short" style="display: inline;"> We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measurements of triangular lattice NaYbSe$_2$. We observe a continuum of scattering, which is reproduced by matrix product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity simulations suggest the material is within the Heisenberg spin liquid phase. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17773v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17773v1-abstract-full" style="display: none;"> We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measurements of triangular lattice NaYbSe$_2$. We observe a continuum of scattering, which is reproduced by matrix product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity simulations suggest the material is within the Heisenberg spin liquid phase. AC Susceptibility shows a significant 23~mK downturn, indicating a gap in the magnetic spectrum. The combination of a gap with no detectable magnetic order, comparison to theoretical models, and comparison to other $A$YbSe$_2$ compounds all strongly indicate NaYbSe$_2$ is within the quantum spin liquid phase. The gap also allows us to rule out a gapless Dirac spin liquid, with a gapped $\mathbb{Z}_2$ liquid the most natural explanation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17773v1-abstract-full').style.display = 'none'; document.getElementById('2406.17773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; 7 pages and 13 figures supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10899">arXiv:2405.10899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10899">pdf</a>, <a href="https://arxiv.org/format/2405.10899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Witnessing Entanglement and Quantum Correlations in Condensed Matter: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">Allen Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">Elbio Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10899v1-abstract-short" style="display: inline;"> The detection and certification of entanglement and quantum correlations in materials is of fundamental and far-reaching importance, and has seen significant recent progress. It impacts both our understanding of the basic science of quantum many-body phenomena as well as the identification of systems suitable for novel technologies. Frameworks suitable to condensed matter that connect measurements&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10899v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10899v1-abstract-full" style="display: none;"> The detection and certification of entanglement and quantum correlations in materials is of fundamental and far-reaching importance, and has seen significant recent progress. It impacts both our understanding of the basic science of quantum many-body phenomena as well as the identification of systems suitable for novel technologies. Frameworks suitable to condensed matter that connect measurements to entanglement and coherence have been developed in the context of quantum information theory. These take the form of entanglement witnesses and quantum correlation measures. The underlying theory of these quantities, their relation to condensed matter experimental techniques, and their application to real materials are comprehensively reviewed. In addition, their usage in e.g. protocols, the relative advantages and disadvantages of witnesses and measures, and future prospects in, e.g., correlated electrons, entanglement dynamics, and entangled spectroscopic probes, are presented. Consideration is given to the interdisciplinary nature of this emerging research and substantial ongoing progress by providing an accessible and practical treatment from fundamentals to application. Particular emphasis is placed on quantities accessible to collective measurements, including by susceptibility and spectroscopic techniques. This includes the magnetic susceptibility witness, one-tangle, concurrence and two-tangle, two-site quantum discord, and quantum coherence measures such as the quantum Fisher information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10899v1-abstract-full').style.display = 'none'; document.getElementById('2405.10899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 13 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06788">arXiv:2402.06788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06788">pdf</a>, <a href="https://arxiv.org/format/2402.06788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic field-temperature phase diagram of spin-1/2 triangular lattice antiferromagnet KYbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+A+J">Andrew J. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+J">J. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sefat%2C+A+S">A. S. Sefat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">R. Movshovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06788v1-abstract-short" style="display: inline;"> A quantum spin liquid (QSL) is a state of matter characterized by fractionalized quasiparticle excitations, quantum entanglement, and a lack of long-range magnetic order. However, QSLs have evaded definitive experimental observation. Several Yb$^{3+}$-based triangular lattice antiferromagnets with effective $S$ = $\frac{1}{2}$ have been suggested to stabilize the QSL state as the ground state. Her&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06788v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06788v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06788v1-abstract-full" style="display: none;"> A quantum spin liquid (QSL) is a state of matter characterized by fractionalized quasiparticle excitations, quantum entanglement, and a lack of long-range magnetic order. However, QSLs have evaded definitive experimental observation. Several Yb$^{3+}$-based triangular lattice antiferromagnets with effective $S$ = $\frac{1}{2}$ have been suggested to stabilize the QSL state as the ground state. Here, we build a comprehensive magnetic temperature phase diagram of a high-quality single crystalline KYbSe$_2$ via heat capacity and magnetocaloric effect down to 30 mK with magnetic field applied along the $a$-axis. At zero magnetic field, we observe the magnetic long-range order at $T_N$ = 0.29 K entering 120 degrees ordered state in heat capacity, consistent with neutron scattering studies. Analysis of the low-temperature ($T$) specific heat ($C$) at zero magnetic field indicates linear $T$-dependence of $C/T$ and a broad hump of $C/T$ in the proximate QSL region above $T_N$. By applying magnetic field, we observe the up-up-down phase with 1/3 magnetization plateau and oblique phases, in addition to two new phases. These observations strongly indicate that while KYbSe$_2$ closely exhibits characteristics resembling an ideal triangular lattice, deviations may exist, such as the effect of the next-nearest-neighbor exchange interaction, calling for careful consideration for spin Hamiltonian modeling. Further investigations into tuning parameters, such as chemical pressure, could potentially induce an intriguing QSL phase in the material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06788v1-abstract-full').style.display = 'none'; document.getElementById('2402.06788v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00078">arXiv:2311.00078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00078">pdf</a>, <a href="https://arxiv.org/format/2311.00078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Experimental Evidence for Non-spherical Magnetic Form Factor in Ru$^{3+}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarkis%2C+C+L">Colin L. Sarkis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villanova%2C+J+W">John W. Villanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eichstaedt%2C+C">Casey Eichstaedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eguiluz%2C+A+G">Adolfo G. Eguiluz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez-Baca%2C+J+A">Jaime A. Fernandez-Baca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">Christian Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">Arnab Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berlijn%2C+T">Tom Berlijn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">Stephen E. Nagler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00078v1-abstract-short" style="display: inline;"> The Mott insulator $伪$-RuCl$_3$ has generated great interest in the community due to its possible field-induced Kitaev quantum spin liquid state. Despite enormous effort spent trying to obtain the form of the low energy Hamiltonian, there is currently no agreed upon set of parameters which is able to explain all of the data. A key piece of missing information lies in the determination of the magne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00078v1-abstract-full').style.display = 'inline'; document.getElementById('2311.00078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00078v1-abstract-full" style="display: none;"> The Mott insulator $伪$-RuCl$_3$ has generated great interest in the community due to its possible field-induced Kitaev quantum spin liquid state. Despite enormous effort spent trying to obtain the form of the low energy Hamiltonian, there is currently no agreed upon set of parameters which is able to explain all of the data. A key piece of missing information lies in the determination of the magnetic form factor of Ru$^{3+}$, particularly for a true quantitative treatment of inelastic neutron scattering data. Here we present the experimentally derived magnetic form factor of Ru$^{3+}$ in the low spin 4$d^5$ state using polarized neutron diffraction within the paramagnetic regime on high quality single crystals of $伪$-RuCl$_3$. We observe strong evidence of an anisotropic form factor, expected of the spin-orbit coupled $j_{\textrm{eff}} = \frac{1}{2}$ ground state. We model the static magnetization density in increasing complexity from simple isotropic cases, to a multipolar expansion, and finally \emph{ab initio} calculations of the generalized $j_{\textrm{eff}} = \frac{1}{2}$ ground state. Comparison of both single ion models and inclusion of Cl$^-$ anions support the presence of hybridization of Ru$^{3+}$ with the surrounding Cl$^{-}$ ligands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00078v1-abstract-full').style.display = 'none'; document.getElementById('2311.00078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.20617">arXiv:2310.20617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.20617">pdf</a>, <a href="https://arxiv.org/format/2310.20617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of nonequilibrium magnons in gapped Heisenberg antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+C">Chengyun Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindsay%2C+L">Lucas Lindsay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shinohara%2C+Y">Yuya Shinohara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.20617v1-abstract-short" style="display: inline;"> Nonequilibrium dynamics in spin systems is a topic currently under intense investigation as it provides fundamental insights into thermalization, universality, and exotic transport phenomena. While most of the studies have been focused on ideal closed quantum many-body systems such as ultracold atomic quantum gases and one-dimensional spin chains, driven-dissipative Bose gases in steady states awa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20617v1-abstract-full').style.display = 'inline'; document.getElementById('2310.20617v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.20617v1-abstract-full" style="display: none;"> Nonequilibrium dynamics in spin systems is a topic currently under intense investigation as it provides fundamental insights into thermalization, universality, and exotic transport phenomena. While most of the studies have been focused on ideal closed quantum many-body systems such as ultracold atomic quantum gases and one-dimensional spin chains, driven-dissipative Bose gases in steady states away from equilibrium in classical systems also lead to intriguing nonequilibrium physics. In this work, we theoretically investigate out-of-equilibrium dynamics of magnons in a gapped Heisenberg quantum antiferromagnet based on Boltzmann transport theory. We show that, by treating scattering terms beyond the relaxation time approximation in the Boltzmann transport equation, energy and particle number conservation mandate that nonequilibrium magnons cannot relax to equilibrium, but decay to other nonequilibrium stationary states, partially containing information about the initial states. The only decay channel for these stationary states back to equilibrium is through the non-conserving interactions such as boundary or magnon-phonon scattering. At low temperatures, these non-conserving interactions are much slower processes than intrinsic magnon-magnon interaction in a gapped spin system. Using magnon-phonon interaction as a quintessential type of non-conserving interaction, we then propose that nonequilibrium steady states of magnons can be maintained and tailored using periodic driving at frequencies faster than relaxation due to phonon interactions. These findings reveal a class of classical material systems that are suitable platforms to study nonequilibrium statistical physics and macroscopic phenomena such as classical Bose-Einstein condensation of quasiparticles and magnon supercurrents that are relevant for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20617v1-abstract-full').style.display = 'none'; document.getElementById('2310.20617v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10540">arXiv:2310.10540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10540">pdf</a>, <a href="https://arxiv.org/format/2310.10540">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Implementation of a laser-neutron pump-probe capability at HYSPEC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+C">Chengyun Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savici%2C+A">Andrei Savici</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedov%2C+V">Vladislav Sedov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">Gabriele Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winn%2C+B">Barry Winn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10540v1-abstract-short" style="display: inline;"> Exciting new fundamental scientific questions are currently being raised regarding nonequilibrium dynamics in spin systems, as this directly relates to low power and low loss energy transport for spintronics. Inelastic neutron scattering (INS) is an indispensable tool to study spin excitations in complex magnetic materials. However, conventional INS spectrometers currently only perform steady-stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10540v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10540v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10540v1-abstract-full" style="display: none;"> Exciting new fundamental scientific questions are currently being raised regarding nonequilibrium dynamics in spin systems, as this directly relates to low power and low loss energy transport for spintronics. Inelastic neutron scattering (INS) is an indispensable tool to study spin excitations in complex magnetic materials. However, conventional INS spectrometers currently only perform steady-state measurements and probe averaged properties over many collision events between spin excitations in thermodynamic equilibrium, while the exact picture of re-equilibration of these excitations remains unknown. In this work, we designed and implemented a time-resolved laser-neutron pump-probe capability at HYSPEC (Hybrid Spectrometer, beamline 14-B) at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. This capability allows us to excite out-of-equilibrium magnons with a nanosecond pulsed laser source and probe the resulting dynamics using INS. Here, we discussed technical aspects to implement such a capability in a neutron beamline, including choices of suitable neutron instrumentation and material systems, laser excitation scheme, experimental configurations, and relevant firmware and software development to allow for time-synchronized pump-probe measurements. We demonstrated that the laser-induced nonequilibrium structural factor is able to be resolved by INS in a quantum magnet. The method developed in this work will provide SNS with advanced capabilities for performing out-of-equilibrium measurements, opening up an entirely new research direction to study out-of-equilibrium phenomena using neutrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10540v1-abstract-full').style.display = 'none'; document.getElementById('2310.10540v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11723">arXiv:2306.11723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11723">pdf</a>, <a href="https://arxiv.org/format/2306.11723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033183">10.1103/PhysRevResearch.6.033183 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstructing the spatial structure of quantum correlations in materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">Allen Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">Elbio Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roscilde%2C+T">Tommaso Roscilde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11723v3-abstract-short" style="display: inline;"> Quantum correlations are a fundamental property of quantum many-body states. Yet they remain experimentally elusive, hindering certification of genuine quantum behavior, especially in quantum materials. Here we show that the momentum-dependent dynamical susceptibility measured via inelastic neutron scattering enables the systematic reconstruction of a general family of quantum correlation function&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11723v3-abstract-full').style.display = 'inline'; document.getElementById('2306.11723v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11723v3-abstract-full" style="display: none;"> Quantum correlations are a fundamental property of quantum many-body states. Yet they remain experimentally elusive, hindering certification of genuine quantum behavior, especially in quantum materials. Here we show that the momentum-dependent dynamical susceptibility measured via inelastic neutron scattering enables the systematic reconstruction of a general family of quantum correlation functions, which express the degree of quantum coherence in the fluctuations of two spins at arbitrary mutual distance. Using neutron scattering data on the compound KCuF$_3$ $\unicode{x2014}$ a system of weakly coupled $S=1/2$ Heisenberg chains $\unicode{x2014}$ and of numerically exact quantum Monte Carlo data, we show that quantum correlations possess a radically different spatial structure with respect to conventional correlations. Indeed, they exhibit a new emergent length scale $\unicode{x2014}$ the quantum coherence length $\unicode{x2014}$ which is finite at any finite temperature (including when long-range magnetic order develops). Moreover, we show theoretically that coupled Heisenberg spin chains exhibit a form of quantum monogamy, with a trade-off between quantum correlations along and transverse to the spin chains. These results highlight real-space quantum correlators as an informative, model-independent means of probing the underlying quantum state of real quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11723v3-abstract-full').style.display = 'none'; document.getElementById('2306.11723v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033183 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16384">arXiv:2303.16384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16384">pdf</a>, <a href="https://arxiv.org/format/2303.16384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Continuous spin excitations in the three-dimensional frustrated magnet K2Ni2(SO4)3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Weiliang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A">Andrey Podlesnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brassington%2C+A">Alexander Brassington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+C">Chengkun Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mudiyanselage%2C+R+S+D">Ranuri S. Dissanayaka Mudiyanselage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zapf%2C+V+S">Vivien S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xiaojian Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16384v1-abstract-short" style="display: inline;"> Continuous spin excitations are widely recognized as one of the hallmarks of novel spin states in quantum magnets, such as quantum spin liquids (QSLs). Here, we report the observation of such kind of excitations in K2Ni2(SO4)3, which consists of two sets of intersected spin-1 Ni2+ trillium lattices. Our inelastic neutron scattering measurement on single crystals clearly shows a dominant excitation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16384v1-abstract-full').style.display = 'inline'; document.getElementById('2303.16384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16384v1-abstract-full" style="display: none;"> Continuous spin excitations are widely recognized as one of the hallmarks of novel spin states in quantum magnets, such as quantum spin liquids (QSLs). Here, we report the observation of such kind of excitations in K2Ni2(SO4)3, which consists of two sets of intersected spin-1 Ni2+ trillium lattices. Our inelastic neutron scattering measurement on single crystals clearly shows a dominant excitation continuum, which exhibits a distinct temperature-dependent behavior from that of spin waves, and is rooted in strong quantum spin fluctuations. Further using the self-consistent-gaussian-approximation method, we determined the fourth- and fifth-nearest neighbor exchange interactions are dominant. These two bonds together form a unique three-dimensional network of corner-sharing tetrahedra, which we name as &#39;&#39;hyper-trillium&#39;&#39; lattice. Our results provide direct evidence for the existence of QSL features in K2Ni2(SO4)3 and highlight the potential for the hyper-trillium lattice to host frustrated quantum magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16384v1-abstract-full').style.display = 'none'; document.getElementById('2303.16384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 5 figures, plus several pages of supplemental material, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07242">arXiv:2302.07242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07242">pdf</a>, <a href="https://arxiv.org/format/2302.07242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.104402">10.1103/PhysRevB.108.104402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin wave Hamiltonian and anomalous scattering in NiPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">A. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+P">Pyeongjae Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villanova%2C+J+W">J. W. Villanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granroth%2C+G+E">G. E. Granroth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarkis%2C+C+L">C. L. Sarkis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">S. Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berlijn%2C+T">T. Berlijn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07242v2-abstract-short" style="display: inline;"> We report a comprehensive spin wave analysis of the semiconducting honeycomb van der Waal antiferromagnet NiPS$_3$. Using single crystal inelastic neutron scattering, we map out the full Brillouin zone and fit the observed modes to a spin wave model with rigorously defined uncertainty. We find that the third neighbor exchange $J_3$ dominates the Hamiltonian, a feature which we fully account for by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07242v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07242v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07242v2-abstract-full" style="display: none;"> We report a comprehensive spin wave analysis of the semiconducting honeycomb van der Waal antiferromagnet NiPS$_3$. Using single crystal inelastic neutron scattering, we map out the full Brillouin zone and fit the observed modes to a spin wave model with rigorously defined uncertainty. We find that the third neighbor exchange $J_3$ dominates the Hamiltonian, a feature which we fully account for by ab-initio density functional theory calculations. We also quantify the degree to which the three-fold rotation symmetry is broken and account for the $Q=0$ excitations observed in other measurements, yielding a spin exchange model which is consistent across multiple experimental probes. We also identify a strongly reduced static ordered moment and reduced low-energy intensity relative to the linear spin wave calculations, signaling unexplained features in the magnetism which requires going beyond the linear spin wave approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07242v2-abstract-full').style.display = 'none'; document.getElementById('2302.07242v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures; 8 pages and 10 additional figures of appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 104402 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05372">arXiv:2212.05372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.05372">pdf</a>, <a href="https://arxiv.org/format/2212.05372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.054422">10.1103/PhysRevB.107.054422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multipartite entanglement in the 1-D spin-$\frac{1}{2}$ Heisenberg Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Menon%2C+V">Varun Menon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sherman%2C+N+E">Nicholas E. Sherman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dupont%2C+M">Maxime Dupont</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">Allen O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">Joel E. Moore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05372v2-abstract-short" style="display: inline;"> Multipartite entanglement refers to the simultaneous entanglement between multiple subsystems of a many-body quantum system. While multipartite entanglement can be difficult to quantify analytically, it is known that it can be witnessed through the Quantum Fisher information (QFI), a quantity that can also be related to dynamical Kubo response functions. In this work, we first show that the finite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05372v2-abstract-full').style.display = 'inline'; document.getElementById('2212.05372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05372v2-abstract-full" style="display: none;"> Multipartite entanglement refers to the simultaneous entanglement between multiple subsystems of a many-body quantum system. While multipartite entanglement can be difficult to quantify analytically, it is known that it can be witnessed through the Quantum Fisher information (QFI), a quantity that can also be related to dynamical Kubo response functions. In this work, we first show that the finite temperature QFI can generally be expressed in terms of a static structure factor of the system, plus a correction that vanishes as $T\rightarrow 0$. We argue that this implies that the static structure factor witnesses multipartite entanglement near quantum critical points at temperatures below a characteristic energy scale that is determined by universal properties, up to a non-universal amplitude. Therefore, in systems with a known static structure factor, we can deduce finite temperature scaling of multipartite entanglement and low temperature entanglement depth without knowledge of the full dynamical response function of the system. This is particularly useful to study 1D quantum critical systems in which sub-power-law divergences can dominate entanglement growth, where the conventional scaling theory of the QFI breaks down. The 1D spin-$\frac{1}{2}$ antiferromagnetic Heisenberg model is an important example of such a system, and we show that multipartite entanglement in the Heisenberg chain diverges non-trivially as $\sim \log(1/T)^{3/2}$. We verify these predictions with calculations of the QFI using conformal field theory and matrix product state simulations. Finally we discuss the implications of our results for experiments to probe entanglement in quantum materials, comparing to neutron scattering data in KCuF$_3$, a material well-described by the Heisenberg chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05372v2-abstract-full').style.display = 'none'; document.getElementById('2212.05372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 3 figures; 1 page and 1 figure of the appendix; typos corrected; references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00051">arXiv:2211.00051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00051">pdf</a>, <a href="https://arxiv.org/format/2211.00051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.add1644">10.1126/science.add1644 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical fractal and anomalous noise in a clean magnetic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hall%C3%A9n%2C+J+N">Jonathan N. Hall茅n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigera%2C+S+A">Santiago A. Grigera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">Claudio Castelnovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moessner%2C+R">Roderich Moessner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00051v2-abstract-short" style="display: inline;"> Fractals -- objects with non-integer dimensions -- occur in manifold settings and length scales in nature, ranging from snowflakes and lightning strikes to natural coastlines. Much effort has been expended to generate fractals for use in many-body physics. Here, we identify an emergent dynamical fractal in a disorder-free, stoichiometric three-dimensional magnetic crystal in thermodynamic equilibr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00051v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00051v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00051v2-abstract-full" style="display: none;"> Fractals -- objects with non-integer dimensions -- occur in manifold settings and length scales in nature, ranging from snowflakes and lightning strikes to natural coastlines. Much effort has been expended to generate fractals for use in many-body physics. Here, we identify an emergent dynamical fractal in a disorder-free, stoichiometric three-dimensional magnetic crystal in thermodynamic equilibrium. The phenomenon is born from constraints on the dynamics of the magnetic monopole excitations in spin ice, which restrict them to move on the fractal. This observation explains the anomalous exponent found in magnetic noise experiments in the spin ice compound Dy$_2$Ti$_2$O$_7$, and it resolves a long standing puzzle about its rapidly diverging relaxation time. The capacity of spin ice to exhibit such striking phenomena holds promise of further surprising discoveries in the cooperative dynamics of even simple topological many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00051v2-abstract-full').style.display = 'none'; document.getElementById('2211.00051v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 378, 1218 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14785">arXiv:2207.14785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14785">pdf</a>, <a href="https://arxiv.org/format/2207.14785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Non-linear magnons and exchange Hamiltonians of delafossite proximate quantum spin liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamiya%2C+Y">Y. Kamiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+A+J">A. J. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Omanakuttan%2C+A+M">A. M. Omanakuttan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+M+G">M. G. Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernu%2C+B">B. Bernu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villanova%2C+J+W">J. W. Villanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+J">J. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D+M">D. M. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sefat%2C+A+S">A. S. Sefat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">S. Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berlijn%2C+T">T. Berlijn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Messio%2C+L">L. Messio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">R. Movshovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14785v3-abstract-short" style="display: inline;"> Quantum spin liquids (QSL) are theoretical states of matter with long-range entanglement and exotic quasiparticles. However, they generally elude quantitative theory, rendering their underlying phases mysterious and hampering efforts to identify experimental QSL states. Here we study triangular lattice resonating valence bond QSL candidate materials KYbSe$_2$ and NaYbSe$_2$. We measure the magnon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14785v3-abstract-full').style.display = 'inline'; document.getElementById('2207.14785v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14785v3-abstract-full" style="display: none;"> Quantum spin liquids (QSL) are theoretical states of matter with long-range entanglement and exotic quasiparticles. However, they generally elude quantitative theory, rendering their underlying phases mysterious and hampering efforts to identify experimental QSL states. Here we study triangular lattice resonating valence bond QSL candidate materials KYbSe$_2$ and NaYbSe$_2$. We measure the magnon modes in their 1/3 plateau phase, where quantitative theory is tractable, using inelastic neutron scattering and fit them using nonlinear spin wave theory. We also fit the KYbSe$_2$ heat capacity using high temperature series expansion. Both KYbSe$_2$ fits yield the same magnetic Hamiltonian to within uncertainty, confirming previous estimates and showing the Heisenberg $J_2/J_1$ to be an accurate model for these materials. Most importantly, comparing KYbSe$_2$ and NaYbSe$_2$ shows that smaller $A$-site Na$^+$ ion has a larger $J_2/J_1$ ratio. However, hydrostatic pressure applied to KYbSe$_2$ increases the ordering temperature (a result consistent with density functional theory calculations), indicating that pressure decreases $J_2/J_1$. These results show how periodic table and hydrostatic pressure can tune the $A$YbSe$_2$ materials in a controlled way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14785v3-abstract-full').style.display = 'none'; document.getElementById('2207.14785v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures; 4 pages and 7 additional figures of supplemental information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06332">arXiv:2203.06332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06332">pdf</a>, <a href="https://arxiv.org/format/2203.06332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.085110">10.1103/PhysRevB.106.085110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic excitations, non-classicality and quantum wake spin dynamics in the Hubbard chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">Allen Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alvarez%2C+G">Gonzalo Alvarez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">Elbio Dagotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06332v4-abstract-short" style="display: inline;"> Recent work has demonstrated that quantum Fisher information (QFI), a witness of multipartite entanglement, and magnetic Van Hove correlations $G(r,t)$, a probe of local real-space real-time spin dynamics, can be successfully extracted from inelastic neutron scattering on spin systems through accurate measurements of the dynamical spin structure factor $S(k,蠅)$. Here we apply theoretically these i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06332v4-abstract-full').style.display = 'inline'; document.getElementById('2203.06332v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06332v4-abstract-full" style="display: none;"> Recent work has demonstrated that quantum Fisher information (QFI), a witness of multipartite entanglement, and magnetic Van Hove correlations $G(r,t)$, a probe of local real-space real-time spin dynamics, can be successfully extracted from inelastic neutron scattering on spin systems through accurate measurements of the dynamical spin structure factor $S(k,蠅)$. Here we apply theoretically these ideas to the half-filled Hubbard chain with nearest-neighbor hopping, away from the strong-coupling limit. This model has nontrivial redistribution of spectral weight in $S(k,蠅)$ going from the non-interacting limit ($U=0$) to strong coupling ($U\rightarrow \infty$), where it reduces to the Heisenberg quantum spin chain. We use the density matrix renormalization group (DMRG) to find $S(k,蠅)$, from which QFI is then calculated. We find that QFI grows with $U$. With realistic energy resolution it becomes capable of witnessing bipartite entanglement above $U=2.5$ (in units of the hopping), where it also changes slope. This point is also proximate to slope changes of the bandwidth $W(U)$ and the half-chain von Neumann entanglement entropy. We compute $G(r,t)$ by Fourier-transforming $S(k,蠅)$. The results indicate a crossover in the short-time short-distance dynamics at low $U$ characterized by ferromagnetic lightcone wavefronts, to a Heisenberg-like behavior at large $U$ featuring antiferromagnetic lightcones and spatially period-doubled antiferromagnetism. We find this crossover has largely been completed by $U=3$. Our results thus provide evidence that, in several aspects, the strong-coupling limit of the Hubbard chain is reached qualitatively already at a relatively modest interaction strength. We discuss experimental candidates for observing the $G(r,t)$ dynamics found at low $U$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06332v4-abstract-full').style.display = 'none'; document.getElementById('2203.06332v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 085110 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10715">arXiv:2202.10715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.10715">pdf</a>, <a href="https://arxiv.org/format/2202.10715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.L022061">10.1103/PhysRevResearch.4.L022061 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraction of the interaction parameters for $伪-$RuCl$_3$ from neutron data using machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">Anjana M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">Christian Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">Arnab Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lampen-Kelley%2C+P">Paula Lampen-Kelley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">Stephen E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10715v2-abstract-short" style="display: inline;"> Single crystal inelastic neutron scattering data contain rich information about the structure and dynamics of a material. Yet the challenge of matching sophisticated theoretical models with large data volumes is compounded by computational complexity and the ill-posed nature of the inverse scattering problem. Here we utilize a novel machine-learning-assisted framework featuring multiple neural net&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10715v2-abstract-full').style.display = 'inline'; document.getElementById('2202.10715v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10715v2-abstract-full" style="display: none;"> Single crystal inelastic neutron scattering data contain rich information about the structure and dynamics of a material. Yet the challenge of matching sophisticated theoretical models with large data volumes is compounded by computational complexity and the ill-posed nature of the inverse scattering problem. Here we utilize a novel machine-learning-assisted framework featuring multiple neural network architectures to address this via high-dimensional modeling and numerical methods. A comprehensive data set of diffraction and inelastic neutron scattering measured on the Kitaev material $伪-$RuCl$_3$ is processed to extract its Hamiltonian. Semiclassical Landau-Lifshitz dynamics and Monte-Carlo simulations were employed to explore the parameter space of an extended Kitaev-Heisenberg Hamiltonian. A machine-learning-assisted iterative algorithm was developed to map the uncertainty manifold to match experimental data; a non-linear autoencoder used to undertake information compression; and Radial Basis networks utilized as fast surrogates for diffraction and dynamics simulations to predict potential spin Hamiltonians with uncertainty. Exact diagonalization calculations were employed to assess the impact of quantum fluctuations on the selected parameters around the best prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10715v2-abstract-full').style.display = 'none'; document.getElementById('2202.10715v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, L022061 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08428">arXiv:2202.08428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08428">pdf</a>, <a href="https://arxiv.org/format/2202.08428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.2c05665">10.1021/jacs.2c05665 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden local symmetry breaking in a kagome-lattice magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuanpeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garlea%2C+V+O">Vasile O Garlea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08428v4-abstract-short" style="display: inline;"> Exploring the relationship between intriguing physical properties and structural complexity is a central topic in studying modern functional materials. Co$_{3}$Sn$_{2}$S$_{2}$, a new discovered kagome-lattice magnetic Weyl semimetal, has triggered intense interest owing to the intimate coupling between topological semimetallic states and peculiar magnetic properties. However, the origins of the ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08428v4-abstract-full').style.display = 'inline'; document.getElementById('2202.08428v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08428v4-abstract-full" style="display: none;"> Exploring the relationship between intriguing physical properties and structural complexity is a central topic in studying modern functional materials. Co$_{3}$Sn$_{2}$S$_{2}$, a new discovered kagome-lattice magnetic Weyl semimetal, has triggered intense interest owing to the intimate coupling between topological semimetallic states and peculiar magnetic properties. However, the origins of the magnetic phase separation and spin glass state below $T_{C}$ in this ordered compound are two unresolved yet important puzzles in understanding its magnetism. Here, we report the discovery of local symmetry breaking surprisingly co-emerges with the onset of ferromagnetic order in Co$_{3}$Sn$_{2}$S$_{2}$, by a combined use of neutron total scattering and half polarized neutron diffraction. The mismatch of local and average symmetries occurs below $T_{C}$, indicating that Co$_{3}$Sn$_{2}$S$_{2}$ evolves to an intrinsically lattice disordered system when the ferromagnetic order is established. The local symmetry breaking with intrinsic lattice disorder provides new understandings to the puzzling magnetic properties. Our density function theory calculation indicates that the local symmetry breaking is expected to reorient local ferromagnetic moments, unveiling the existence of the ferromagnetic instability associated with the lattice instability. Furthermore, DFT calculation unveils that the local symmetry breaking could affect the Weyl property by breaking mirror plane. Our findings highlight the fundamentally important role that the local symmetry breaking plays in advancing our understanding on the magnetic and topological properties in Co$_{3}$Sn$_{2}$S$_{2}$, which may draw the attention to explore the overlooked local symmetry breaking in Co$_{3}$Sn$_{2}$S$_{2}$, its derivatives, and more broadly in other topological Dirac/Weyl semimetals and kagome-lattice magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08428v4-abstract-full').style.display = 'none'; document.getElementById('2202.08428v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 6 figures, 1 table, 1 Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Am. Chem. Soc. Published, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03536">arXiv:2201.03536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03536">pdf</a>, <a href="https://arxiv.org/format/2201.03536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33571-8">10.1038/s41467-022-33571-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum wake dynamics in Heisenberg antiferromagnetic chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">Allen Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+B">Bella Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">Stephen E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caux%2C+J">Jean-Sebastian Caux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03536v2-abstract-short" style="display: inline;"> Traditional spectroscopy, by its very nature, characterizes properties of physical systems in the momentum and frequency domains. The most interesting and potentially practically useful quantum many-body effects however emerge from the deep composition of local, short-time correlations. Here, using inelastic neutron scattering and methods of integrability, we experimentally observe and theoretical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03536v2-abstract-full').style.display = 'inline'; document.getElementById('2201.03536v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03536v2-abstract-full" style="display: none;"> Traditional spectroscopy, by its very nature, characterizes properties of physical systems in the momentum and frequency domains. The most interesting and potentially practically useful quantum many-body effects however emerge from the deep composition of local, short-time correlations. Here, using inelastic neutron scattering and methods of integrability, we experimentally observe and theoretically describe a local, coherent, long-lived, quasiperiodically oscillating magnetic state emerging out of the distillation of propagating excitations following a local quantum quench in a Heisenberg antiferromagnetic chain. This &#34;quantum wake&#34; displays similarities to Floquet states, discrete time crystals and nonlinear Luttinger liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03536v2-abstract-full').style.display = 'none'; document.getElementById('2201.03536v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 4 figures, with 4 pages supplemental information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 5796 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15817">arXiv:2110.15817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15817">pdf</a>, <a href="https://arxiv.org/format/2110.15817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Integration of Machine Learning with Neutron Scattering: Hamiltonian Tuning in Spin Ice with Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">A. M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigera%2C+S+A">S. A. Grigera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15817v1-abstract-short" style="display: inline;"> Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here we propose a scheme that integrates machine learning with high-performance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15817v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15817v1-abstract-full" style="display: none;"> Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy$_2$Ti$_2$O$_7$, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15817v1-abstract-full').style.display = 'none'; document.getElementById('2110.15817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text (12 pages, 6 figures) + Sup. Info. (4 pages 5 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11527">arXiv:2109.11527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11527">pdf</a>, <a href="https://arxiv.org/format/2109.11527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02259-1">10.1038/s41567-023-02259-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Witnessing quantum criticality and entanglement in the triangular antiferromagnet KYbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghioldi%2C+E+A">E. A. Ghioldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+J">J. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">J. A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sherman%2C+N+E">N. E. Sherman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dupont%2C+M">M. Dupont</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanjeewa%2C+L+D">L. D. Sanjeewa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+A+J">A. J. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D">D. Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D+M">D. M. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+T+J">T. J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shang-Shun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+L+O">L. O. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trumper%2C+A+E">A. E. Trumper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pemmaraju%2C+C+D">C. D. Pemmaraju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sefat%2C+A+S">A. S. Sefat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D+S">D. S. Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">R. Movshovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">J. E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11527v4-abstract-short" style="display: inline;"> The Heisenberg triangular lattice quantum spin liquid and the phase transitions to nearby magnetic orders have received much theoretical attention, but clear experimental manifestations of these states are rare. This work investigates a new spin-half Yb$^{3+}$ delafossite material, KYbSe$_2$, whose inelastic neutron scattering spectra reveal a diffuse continuum with a sharp lower bound. Applying e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11527v4-abstract-full').style.display = 'inline'; document.getElementById('2109.11527v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11527v4-abstract-full" style="display: none;"> The Heisenberg triangular lattice quantum spin liquid and the phase transitions to nearby magnetic orders have received much theoretical attention, but clear experimental manifestations of these states are rare. This work investigates a new spin-half Yb$^{3+}$ delafossite material, KYbSe$_2$, whose inelastic neutron scattering spectra reveal a diffuse continuum with a sharp lower bound. Applying entanglement witnesses to the data reveals significant multipartite entanglement spread between its neighbors, and analysis of its magnetic exchange couplings shows close proximity to the triangular lattice Heisenberg quantum spin liquid. Key features of the data are reproduced by Schwinger-boson theory and tensor network calculations with a significant second-neighbor coupling $J_2$. The strength of the dynamical structure factor at the $K$ point shows a scaling collapse in $\hbar蠅/k_\mathrm{B}T$ down to 0.3 K, indicating a second-order quantum phase transition. Comparing this to previous theoretical work suggests that the proximate phase at larger $J_2$ is a gapped $\mathbb{Z}_2$ spin liquid, resolving a long-debated issue. We thus show that KYbSe$_2$ is close to a spin liquid phase, which in turn sheds light on the theoretical phase diagram itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11527v4-abstract-full').style.display = 'none'; document.getElementById('2109.11527v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages main text, 6 pages methods, 7 pages supplemental information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12305">arXiv:2107.12305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12305">pdf</a>, <a href="https://arxiv.org/format/2107.12305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.033159">10.1103/PhysRevResearch.4.033159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural magnetic glassiness in spin ice Dy$_2$Ti$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">Anjana M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolowski%2C+A">Andre Sokolowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemke%2C+B">Bastian Klemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feyerherm%2C+R">Ralf Feyerherm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meissner%2C+M">Michael Meissner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borzi%2C+R+A">R. A. Borzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+Z">Zhiling Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Egami%2C+T">T. Egami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallen%2C+J+N">Jonathan N. Hallen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaubert%2C+L">Ludovic Jaubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">Claudio Castelnovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moessner%2C+R">Roderich Moessner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigera%2C+S+A">S. A. Grigera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12305v2-abstract-short" style="display: inline;"> The spin ice compound Dy$_2$Ti$_2$O$_7$ is well-known to realise a three-dimensional Coulomb spin liquid with magnetically charged monopole excitations. Its fate at low temperatures, however, remains an intriguing open question. Based on a low-temperature analysis of the magnetic noise and diffuse neutron scattering under different cooling protocols, combined with extensive numerical modelling, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12305v2-abstract-full').style.display = 'inline'; document.getElementById('2107.12305v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12305v2-abstract-full" style="display: none;"> The spin ice compound Dy$_2$Ti$_2$O$_7$ is well-known to realise a three-dimensional Coulomb spin liquid with magnetically charged monopole excitations. Its fate at low temperatures, however, remains an intriguing open question. Based on a low-temperature analysis of the magnetic noise and diffuse neutron scattering under different cooling protocols, combined with extensive numerical modelling, we argue that upon cooling, the spins freeze into what may be termed a `structural magnetic glass&#39;, without an a priori need for chemical or structural disorder. Specifically, our model indicates the presence of frustration on two levels, first producing a near-degenerate constrained manifold inside which phase ordering kinetics is in turn frustrated. Our results suggest that spin ice Dy$_2$Ti$_2$O$_7$ provides one prototype of magnetic glass formation specifically, and a setting for the study of kinetically constrained systems more generally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12305v2-abstract-full').style.display = 'none'; document.getElementById('2107.12305v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper+Sup. Info</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 033159 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11379">arXiv:2107.11379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.11379">pdf</a>, <a href="https://arxiv.org/format/2107.11379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2117453119">10.1073/pnas.2117453119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous magnetic noise in imperfect flat bands in the topological magnet Dy2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">Anjana M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigera%2C+S+A">S. A. Grigera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirste%2C+A">Alexander Kirste</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemke%2C+B">Bastian Klemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strehlow%2C+P">Peter Strehlow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meissner%2C+M">Michael Meissner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallen%2C+J+N">Jonathan N. Hallen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaubert%2C+L">Ludovic Jaubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castelnovo%2C+C">Claudio Castelnovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moessner%2C+R">Roderich Moessner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11379v1-abstract-short" style="display: inline;"> The spin ice compound Dy_2Ti_2O_7 stands out as the first topological magnet in three dimensions, with its tell-tale emergent fractionalized magnetic monopole excitations. Its real-time dynamical properties have been an enigma from the very beginning. Using ultrasensitive, non-invasive SQUID measurements, we show that Dy_2Ti_2O_7 exhibits a highly anomalous noise spectrum, in three qualitatively d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11379v1-abstract-full').style.display = 'inline'; document.getElementById('2107.11379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11379v1-abstract-full" style="display: none;"> The spin ice compound Dy_2Ti_2O_7 stands out as the first topological magnet in three dimensions, with its tell-tale emergent fractionalized magnetic monopole excitations. Its real-time dynamical properties have been an enigma from the very beginning. Using ultrasensitive, non-invasive SQUID measurements, we show that Dy_2Ti_2O_7 exhibits a highly anomalous noise spectrum, in three qualitatively different regimes: equilibrium spin ice, a `frozen&#39; regime extending to ultra-low temperatures, as well as a high-temperature `anomalous&#39; paramagnet. We show that in the simplest model of spin ice, the dynamics is not anomalous, and we present several distinct mechanisms which give rise to a coloured noise spectrum. In addition, we identify the structure of the single-ion dynamics as a crucial ingredient for any modelling. Thus, the dynamics of spin ice Dy_2Ti_2O_7 reflects the interplay of local dynamics with emergent topological degrees of freedom and a frustration-generated imperfectly flat energy landscape, and as such should be relevant for a broad class of magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11379v1-abstract-full').style.display = 'none'; document.getElementById('2107.11379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Article+Sup. Info</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the National Academy of Sciences, Volume 119, Issue 5, article id.e2117453119 (2022)) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.08376">arXiv:2102.08376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.08376">pdf</a>, <a href="https://arxiv.org/format/2102.08376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.224434">10.1103/PhysRevB.103.224434 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Witnessing entanglement in quantum magnets using neutron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">A. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">A. M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+B">B. Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granroth%2C+G+E">G. E. Granroth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">S. Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alvarez%2C+G">G. Alvarez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.08376v1-abstract-short" style="display: inline;"> We demonstrate how quantum entanglement can be directly witnessed in the quasi-1D Heisenberg antiferromagnet KCuF$_3$. We apply three entanglement witnesses --- one-tangle, two-tangle, and quantum Fisher information --- to its inelastic neutron spectrum, and compare with spectra simulated by finite-temperature density matrix renormalization group (DMRG) and classical Monte Carlo methods. We find t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08376v1-abstract-full').style.display = 'inline'; document.getElementById('2102.08376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.08376v1-abstract-full" style="display: none;"> We demonstrate how quantum entanglement can be directly witnessed in the quasi-1D Heisenberg antiferromagnet KCuF$_3$. We apply three entanglement witnesses --- one-tangle, two-tangle, and quantum Fisher information --- to its inelastic neutron spectrum, and compare with spectra simulated by finite-temperature density matrix renormalization group (DMRG) and classical Monte Carlo methods. We find that each witness provides direct access to entanglement. Of these, quantum Fisher information is the most robust experimentally, and indicates the presence of at least bipartite entanglement up to at least 50 K, corresponding to around 10% of the spinon zone-boundary energy. We apply quantum Fisher information to higher spin-S Heisenberg chains, and show theoretically that the witnessable entanglement gets suppressed to lower temperatures as the quantum number increases. Finally, we outline how these results can be applied to higher dimensional quantum materials to witness and quantify entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08376v1-abstract-full').style.display = 'none'; document.getElementById('2102.08376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages and 5 figures, four pages and six figures of appendices, and five pages supplemental information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 224434 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07050">arXiv:2102.07050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.07050">pdf</a>, <a href="https://arxiv.org/format/2102.07050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.117201">10.1103/PhysRevLett.127.117201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual exchange couplings and intermediate temperature Weyl state in Co3Sn2S2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samolyuk%2C+G+D">German D. Samolyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+R">Rui Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07050v2-abstract-short" style="display: inline;"> Understanding the magnetism and its possible correlations to the topological properties has emerged as a forefront and difficult topic in studying magnetic Weyl semimetals. Co$_{3}$Sn$_{2}$S$_{2}$ is a newly discovered magnetic Weyl semimetal with a kagome lattice of cobalt ions and has triggered intense interest for rich fantastic phenomena. Here, we report the magnetic exchange couplings of Co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07050v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07050v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07050v2-abstract-full" style="display: none;"> Understanding the magnetism and its possible correlations to the topological properties has emerged as a forefront and difficult topic in studying magnetic Weyl semimetals. Co$_{3}$Sn$_{2}$S$_{2}$ is a newly discovered magnetic Weyl semimetal with a kagome lattice of cobalt ions and has triggered intense interest for rich fantastic phenomena. Here, we report the magnetic exchange couplings of Co$_{3}$Sn$_{2}$S$_{2}$ using inelastic neutron scattering and two density functional theory (DFT) based methods: constrained magnetism and multiple-scattering Green&#39;s function methods. Co$_{3}$Sn$_{2}$S$_{2}$ exhibits highly anisotropic magnon dispersions and linewidths below $T_{C}$, and paramagnetic excitations above $T_{C}$. The spin-wave spectra in the ferromagnetic ground state is well described by the dominant third-neighbor &#34;across-hexagon&#34; $J_{d}$ model. Our density functional theory calculations reveal that both the symmetry-allowed 120$^\circ$ antiferromagnetic orders support Weyl points in the intermediate temperature region, with distinct numbers and the locations of Weyl points. Our study highlights the important role Co$_{3}$Sn$_{2}$S$_{2}$ can play in advancing our understanding of kagome physics and exploring the interplay between magnetism and band topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07050v2-abstract-full').style.display = 'none'; document.getElementById('2102.07050v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, plus one supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 117201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03024">arXiv:2102.03024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0049111">10.1063/5.0049111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine Learning on Neutron and X-Ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhantao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrejevic%2C+N">Nina Andrejevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drucker%2C+N">Nathan Drucker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+T">Thanh Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xian%2C+R+P">R Patrick Xian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smidt%2C+T">Tess Smidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ernstorfer%2C+R">Ralph Ernstorfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+A">Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M">Maria Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingda Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03024v1-abstract-short" style="display: inline;"> Neutron and X-ray scattering represent two state-of-the-art materials characterization techniques that measure materials&#39; structural and dynamical properties with high precision. These techniques play critical roles in understanding a wide variety of materials systems, from catalysis to polymers, nanomaterials to macromolecules, and energy materials to quantum materials. In recent years, neutron a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03024v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03024v1-abstract-full" style="display: none;"> Neutron and X-ray scattering represent two state-of-the-art materials characterization techniques that measure materials&#39; structural and dynamical properties with high precision. These techniques play critical roles in understanding a wide variety of materials systems, from catalysis to polymers, nanomaterials to macromolecules, and energy materials to quantum materials. In recent years, neutron and X-ray scattering have received a significant boost due to the development and increased application of machine learning to materials problems. This article reviews the recent progress in applying machine learning techniques to augment various neutron and X-ray scattering techniques. We highlight the integration of machine learning methods into the typical workflow of scattering experiments. We focus on scattering problems that faced challenge with traditional methods but addressable using machine learning, such as leveraging the knowledge of simple materials to model more complicated systems, learning with limited data or incomplete labels, identifying meaningful spectra and materials&#39; representations for learning tasks, mitigating spectral noise, and many others. We present an outlook on a few emerging roles machine learning may play in broad types of scattering and spectroscopic problems in the foreseeable future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03024v1-abstract-full').style.display = 'none'; document.getElementById('2102.03024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">56 pages, 12 figures. Feedback most welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chem. Phys. Rev. 2, 031301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05685">arXiv:2011.05685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05685">pdf</a>, <a href="https://arxiv.org/format/2011.05685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning for Magnetic Phase Diagrams and Inverse Scattering Problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">Anjana M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05685v1-abstract-short" style="display: inline;"> Machine learning promises to deliver powerful new approaches to neutron scattering from magnetic materials. Large scale simulations provide the means to realise this with approaches including spin-wave, Landau Lifshitz, and Monte Carlo methods. These approaches are shown to be effective at simulating magnetic structures and dynamics in a wide range of materials. Using large numbers of simulations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05685v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05685v1-abstract-full" style="display: none;"> Machine learning promises to deliver powerful new approaches to neutron scattering from magnetic materials. Large scale simulations provide the means to realise this with approaches including spin-wave, Landau Lifshitz, and Monte Carlo methods. These approaches are shown to be effective at simulating magnetic structures and dynamics in a wide range of materials. Using large numbers of simulations the effectiveness of machine learning approaches are assessed. Principal component analysis and nonlinear autoencoders are considered with the latter found to provide a high degree of compression and to be highly suited to neutron scattering problems. Agglomerative heirarchical clustering in the latent space is shown to be effective at extracting phase diagrams of behavior and features in an automated way that aid understanding and interpretation. The autoencoders are also well suited to optimizing model parameters and were found to be highly advantageous over conventional fitting approaches including being tolerant of artifacts in untreated data. The potential of machine learning to automate complex data analysis tasks including the inversion of neutron scattering data into models and the processing of large volumes of multidimensional data is assessed. Directions for future developments are considered and machine learning argued to have high potential for impact on neutron science generally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05685v1-abstract-full').style.display = 'none'; document.getElementById('2011.05685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04477">arXiv:2011.04477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04477">pdf</a>, <a href="https://arxiv.org/ps/2011.04477">ps</a>, <a href="https://arxiv.org/format/2011.04477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30769-8">10.1038/s41467-022-30769-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C$_9$H$_{18}$N$_2$CuBr$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T">Tao Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dissanayake%2C+S+E">Sachith E. Dissanayake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Yiming Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turnbull%2C+M+M">Mark M. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A+A">Andrey A. Podlesnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yaohua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Umehara%2C+I">Izuru Umehara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gouchi%2C+J">Jun Gouchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uwatoko%2C+Y">Yoshiya Uwatoko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chern%2C+G">Gia-Wei Chern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+K+P">Kai P. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wessel%2C+S">Stefan Wessel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04477v3-abstract-short" style="display: inline;"> Quantum phase transitions in quantum matter occur at zero temperature between distinct ground states by tuning a nonthermal control parameter. Often, they can be accurately described within the Landau theory of phase transitions, similarly to conventional thermal phase transitions. However, this picture can break down under certain circumstances. Here, we present a comprehensive study of the effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04477v3-abstract-full').style.display = 'inline'; document.getElementById('2011.04477v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04477v3-abstract-full" style="display: none;"> Quantum phase transitions in quantum matter occur at zero temperature between distinct ground states by tuning a nonthermal control parameter. Often, they can be accurately described within the Landau theory of phase transitions, similarly to conventional thermal phase transitions. However, this picture can break down under certain circumstances. Here, we present a comprehensive study of the effect of hydrostatic pressure on the magnetic structure and spin dynamics of the spin-1/2 ladder compound C$_9$H$_{18}$N$_2$CuBr$_4$. Single-crystal heat capacity and neutron diffraction measurements reveal that the N$\rm \acute{e}$el-ordered phase breaks down beyond a critical pressure of $P_{\rm c}$$\sim$1.0 GPa through a continuous quantum phase transition. Estimates of the critical exponents suggest that this transition may fall outside the traditional Landau paradigm. The inelastic neutron scattering spectra at 1.3 GPa are characterized by two well-separated gapped modes, including one continuum-like and another resolution-limited excitation in distinct scattering channels, which further indicates an exotic quantum-disordered phase above $P_{\rm c}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04477v3-abstract-full').style.display = 'none'; document.getElementById('2011.04477v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The revised version includes 10 pages and 5 figures in the main text. To appear in Nature Communications. Any comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 13, 3073 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.11164">arXiv:2010.11164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.11164">pdf</a>, <a href="https://arxiv.org/format/2010.11164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.037201">10.1103/PhysRevLett.127.037201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying and controlling entanglement in the quantum magnet Cs$_2$CoCl$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">Pontus Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">Allen Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+C+J">Chiron J. Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koza%2C+M+M">Michael M. Koza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enderle%2C+M">Mechtild Enderle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tylczynski%2C+Z">Zbigniew Tylczynski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">Radu Coldea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alvarez%2C+G">Gonzalo Alvarez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.11164v2-abstract-short" style="display: inline;"> The lack of methods to experimentally detect and quantify entanglement in quantum matter impedes our ability to identify materials hosting highly entangled phases, such as quantum spin liquids. We thus investigate the feasibility of using inelastic neutron scattering (INS) to implement a model-independent measurement protocol for entanglement based on three entanglement witnesses: one-tangle, two-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11164v2-abstract-full').style.display = 'inline'; document.getElementById('2010.11164v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.11164v2-abstract-full" style="display: none;"> The lack of methods to experimentally detect and quantify entanglement in quantum matter impedes our ability to identify materials hosting highly entangled phases, such as quantum spin liquids. We thus investigate the feasibility of using inelastic neutron scattering (INS) to implement a model-independent measurement protocol for entanglement based on three entanglement witnesses: one-tangle, two-tangle, and quantum Fisher information (QFI). We perform high-resolution INS measurements on Cs$_2$CoCl$_4$, a close realization of the $S=1/2$ transverse-field XXZ spin chain, where we can control entanglement using the magnetic field, and compare with density-matrix renormalization group calculations for validation. The three witnesses allow us to infer entanglement properties and make deductions about the quantum state in the material. We find QFI to be a particularly robust experimental probe of entanglement, whereas the one- and two-tangles require more careful analysis. Our results lay the foundation for a general entanglement detection protocol for quantum spin systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11164v2-abstract-full').style.display = 'none'; document.getElementById('2010.11164v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 4 figures. Supplementary Information: 15 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 037201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10405">arXiv:2010.10405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.10405">pdf</a>, <a href="https://arxiv.org/format/2010.10405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41427-022-00369-5">10.1038/s41427-022-00369-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning quantum transport by controlling spin reorientations in Dirac semimetal candidates Eu$_{1-x}$Sr$_{x}$MnSb$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phelan%2C+W+A">W. Adam Phelan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiTusa%2C+J+F">J. F. DiTusa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10405v1-abstract-short" style="display: inline;"> Magnetic topological semimetals have attracted intense attention recently since these materials carry a great promise for potential applications in novel spintronic devices. Here, we report an intimate interplay between lattice, Eu magnetic order and topological semimetallic behavior in Eu$_{1-x}$Sr$_{x}$MnSb$_{2}$ driven by nonmagnetic Sr doping on magnetic Eu site. Different types of Eu spin reo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10405v1-abstract-full').style.display = 'inline'; document.getElementById('2010.10405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10405v1-abstract-full" style="display: none;"> Magnetic topological semimetals have attracted intense attention recently since these materials carry a great promise for potential applications in novel spintronic devices. Here, we report an intimate interplay between lattice, Eu magnetic order and topological semimetallic behavior in Eu$_{1-x}$Sr$_{x}$MnSb$_{2}$ driven by nonmagnetic Sr doping on magnetic Eu site. Different types of Eu spin reorientations are controllable by the Sr concentration, temperature or magnetic field, and coupled to the quantum transport properties of Dirac fermions generated by the 2D Sb layers. Our study opens a new pathway to achieving exotic magnetic order and topological semimetallic state via controlling spin reorientation. The effective strategy of substituting rare-earth site by nonmagnetic element demonstrated here may be applicable to the AMnCh$_{2}$ (A=rare-earth elements; Ch=Bi/Sb) family and a wide variation of other layered compounds involving spatially separated rare-earth and transition metal layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10405v1-abstract-full').style.display = 'none'; document.getElementById('2010.10405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures, 2 tables, plus supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NPG Asia Materials volume 14, Article number: 22 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13535">arXiv:2009.13535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13535">pdf</a>, <a href="https://arxiv.org/format/2009.13535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-021-01191-6">10.1038/s41567-021-01191-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-$1/2$ chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A">A. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sherman%2C+N+E">N. E. Sherman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dupont%2C+M">M. Dupont</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granroth%2C+G+E">G. E. Granroth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">J. E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13535v2-abstract-short" style="display: inline;"> Classical hydrodynamics is a remarkably versatile description of the coarse-grained behavior of many-particle systems once local equilibrium has been established. The form of the hydrodynamical equations is determined primarily by the conserved quantities present in a system. Some quantum spin chains are known to possess, even in the simplest cases, a greatly expanded set of conservation laws, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13535v2-abstract-full').style.display = 'inline'; document.getElementById('2009.13535v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13535v2-abstract-full" style="display: none;"> Classical hydrodynamics is a remarkably versatile description of the coarse-grained behavior of many-particle systems once local equilibrium has been established. The form of the hydrodynamical equations is determined primarily by the conserved quantities present in a system. Some quantum spin chains are known to possess, even in the simplest cases, a greatly expanded set of conservation laws, and recent work suggests that these laws strongly modify collective spin dynamics even at high temperature. Here, by probing the dynamical exponent of the one-dimensional Heisenberg antiferromagnet KCuF$_3$ with neutron scattering, we find evidence that the spin dynamics are well described by the dynamical exponent $z=3/2$, which is consistent with the recent theoretical conjecture that the dynamics of this quantum system are described by the Kardar-Parisi-Zhang universality class. This observation shows that low-energy inelastic neutron scattering at moderate temperatures can reveal the details of emergent quantum fluid properties like those arising in non-Fermi liquids in higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13535v2-abstract-full').style.display = 'none'; document.getElementById('2009.13535v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 4 figures. Includes 1 pages of methods and &gt;&gt; 1 pages Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09499">arXiv:2003.09499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.09499">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab60e5">10.1088/1361-648X/ab60e5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsed Neutron Spectroscopy of Low Dimensional Magnets: Past, Present, and Future </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">Stephen E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09499v1-abstract-short" style="display: inline;"> The early 1990s saw the first useful application of pulsed neutron spectroscopy to the study of excitations in low dimensional magnetic systems, with Roger Cowley as a key participant in important early experiments. Since that time the technique has blossomed as a powerful tool utilizing vastly improved neutron instrumentation coupled with more powerful pulsed sources. Here we review representativ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09499v1-abstract-full').style.display = 'inline'; document.getElementById('2003.09499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09499v1-abstract-full" style="display: none;"> The early 1990s saw the first useful application of pulsed neutron spectroscopy to the study of excitations in low dimensional magnetic systems, with Roger Cowley as a key participant in important early experiments. Since that time the technique has blossomed as a powerful tool utilizing vastly improved neutron instrumentation coupled with more powerful pulsed sources. Here we review representative experiments illustrating some of the fascinating physics that has been revealed in quasi-one and two dimensional systems <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09499v1-abstract-full').style.display = 'none'; document.getElementById('2003.09499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper to be published in a special issue of Journal of Physics Condensed Matter in honor of the late Professor Roger A. Cowley</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11275">arXiv:1906.11275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.11275">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-14660-y">10.1038/s41467-020-14660-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine Learning Assisted Insight to Spin Ice Dy$_2$Ti$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">Anjana M Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barros%2C+K">Kipton Barros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+W">Ying Wai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisenbach%2C+M">Markus Eisenbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+Z+L">Z. L. Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigera%2C+S+A">Santiago A. Grigera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">Cristian D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11275v3-abstract-short" style="display: inline;"> Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy$_2$Ti$_2$O$_7$. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use a novel automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11275v3-abstract-full').style.display = 'inline'; document.getElementById('1906.11275v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11275v3-abstract-full" style="display: none;"> Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy$_2$Ti$_2$O$_7$. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use a novel automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy$_2$Ti$_2$O$_7$. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11275v3-abstract-full').style.display = 'none'; document.getElementById('1906.11275v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00539">arXiv:1906.00539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.00539">pdf</a>, <a href="https://arxiv.org/format/1906.00539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.236401">10.1103/PhysRevLett.124.236401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Singularity Induced Chiral Kohn Anomaly in a Weyl Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+T">Thanh Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+F">Fei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrejevic%2C+N">Nina Andrejevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pablo-Pedro%2C+R">Ricardo Pablo-Pedro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Apte%2C+A">Anuj Apte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsurimaki%2C+Y">Yoichiro Tsurimaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Z">Zhiwei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kunyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alatas%2C+A">Ahmet Alatas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alp%2C+E+E">Ercan E. Alp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez-Baca%2C+J">Jaime Fernandez-Baca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhijun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lynn%2C+J+W">Jeffrey W. Lynn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengxi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingda Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00539v2-abstract-short" style="display: inline;"> The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition and polaron effects in semiconductors, lifetime of hot carriers, transition temperature in BCS superconductors, and even spin relaxation in diamond nitrogen-vacancy centers for quantum information processing. How&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00539v2-abstract-full').style.display = 'inline'; document.getElementById('1906.00539v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00539v2-abstract-full" style="display: none;"> The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition and polaron effects in semiconductors, lifetime of hot carriers, transition temperature in BCS superconductors, and even spin relaxation in diamond nitrogen-vacancy centers for quantum information processing. However, due to the weak EPI strength, most phenomena have focused on electronic properties rather than on phonon properties. One prominent exception is the Kohn anomaly, where phonon softening can emerge when the phonon wavevector nests the Fermi surface of metals. Here we report a new class of Kohn anomaly in a topological Weyl semimetal (WSM), predicted by field-theoretical calculations, and experimentally observed through inelastic x-ray and neutron scattering on WSM tantalum phosphide (TaP). Compared to the conventional Kohn anomaly, the Fermi surface in a WSM exhibits multiple topological singularities of Weyl nodes, leading to a distinct nesting condition with chiral selection, a power-law divergence, and non-negligible dynamical effects. Our work brings the concept of Kohn anomaly into WSMs and sheds light on elucidating the EPI mechanism in emergent topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00539v2-abstract-full').style.display = 'none'; document.getElementById('1906.00539v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 4 main figures, 11 supplementary figures and 1 theoretical derivation. Feedback most welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 236401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.02490">arXiv:1903.02490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.02490">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anomalous Magnetic Behavior in Ba2CoO4 with Isolated CoO4 Tetrahedra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guixin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shelton%2C+W+A">W. A. Shelton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plummer%2C+E+W">E. W. Plummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiandi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.02490v1-abstract-short" style="display: inline;"> The dimensionality of the electronic and magnetic structure of a given material is generally predetermined by its crystal structure. Here, using elastic and inelastic neutron scattering combined with magnetization measurements, we find unusual magnetic behavior in three-dimensional (3D) Ba2CoO4. In spite of isolated CoO4 tetrahedra, the system exhibits a 3D noncollinear antiferromagnetic order in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02490v1-abstract-full').style.display = 'inline'; document.getElementById('1903.02490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.02490v1-abstract-full" style="display: none;"> The dimensionality of the electronic and magnetic structure of a given material is generally predetermined by its crystal structure. Here, using elastic and inelastic neutron scattering combined with magnetization measurements, we find unusual magnetic behavior in three-dimensional (3D) Ba2CoO4. In spite of isolated CoO4 tetrahedra, the system exhibits a 3D noncollinear antiferromagnetic order in the ground state with an anomalously large Curie-Weiss temperature of 110 K compared to TN = 26 K. More unexpectedly, spin dynamics displays quasi-2D spin wave dispersion with an unusually large spin gap, and 1D magnetoelastic coupling. Our results indicate that Ba2CoO4 is a unique system for exploring the interplay between isolated polyhedra, low-dimensional magnetism, and novel spin states in oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02490v1-abstract-full').style.display = 'none'; document.getElementById('1903.02490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00056">arXiv:1903.00056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.00056">pdf</a>, <a href="https://arxiv.org/format/1903.00056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.060405">10.1103/PhysRevB.100.060405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite field regime for a quantum spin liquid in $伪$-RuCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">Christian Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lampen-Kelley%2C+P">Paula Lampen-Kelley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">Arnab Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhilun Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xinzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+S+M">Swapnil M. Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takano%2C+Y">Yasu Takano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yaohua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">Mark D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">Stephen E. Nagler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00056v3-abstract-short" style="display: inline;"> An external magnetic field can induce a transition in $伪$-RuCl$_3$ from an ordered zigzag state to a disordered state that is possibly related to the Kitaev quantum spin liquid. Here we present new field dependent inelastic neutron scattering and magnetocaloric effect measurements implying the existence of an additional transition out of the quantum spin liquid phase at an upper field limit $B_u$.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00056v3-abstract-full').style.display = 'inline'; document.getElementById('1903.00056v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00056v3-abstract-full" style="display: none;"> An external magnetic field can induce a transition in $伪$-RuCl$_3$ from an ordered zigzag state to a disordered state that is possibly related to the Kitaev quantum spin liquid. Here we present new field dependent inelastic neutron scattering and magnetocaloric effect measurements implying the existence of an additional transition out of the quantum spin liquid phase at an upper field limit $B_u$. The neutron scattering shows three distinct regimes of magnetic response. In the low field ordered state the response shows magnon peaks; the intermediate field regime shows only continuum scattering, and above $B_u$ the response shows sharp magnon peaks at the lower bound of a strong continuum. Measurable dispersion of magnon modes along the $(0,0,L)$ direction implies non-negligible inter-plane interactions. Combining the magnetocaloric effect measurements with other data a $T-B$ phase diagram is constructed. The results constrain the range where one might expect to observe quantum spin liquid behavior in $伪$-RuCl$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00056v3-abstract-full').style.display = 'none'; document.getElementById('1903.00056v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 060405 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04112">arXiv:1902.04112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04112">pdf</a>, <a href="https://arxiv.org/format/1902.04112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-08485-7">10.1038/s41467-019-08485-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tomonaga-Luttinger Liquid Behavior and Spinon Confinement in YbAlO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L+S">L. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nikitin%2C+S+E">S. E. Nikitin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">W. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A+M">A. M. Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">A. M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brando%2C+M">M. Brando</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vasylechko%2C+L">L. Vasylechko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frontzek%2C+M">M. Frontzek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savici%2C+A+T">A. T. Savici</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+G">G. Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">G. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianson%2C+A+D">A. D. Christianson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">M. D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A">A. Podlesnyak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04112v1-abstract-short" style="display: inline;"> Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even thou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04112v1-abstract-full').style.display = 'inline'; document.getElementById('1902.04112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04112v1-abstract-full" style="display: none;"> Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth based magnets because of the large effective spin anisotropy induced by the combination of strong spin-orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO$_3$ provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga-Luttinger liquid behavior and spinon confinement-deconfinement transitions in different regions of magnetic field-temperature phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04112v1-abstract-full').style.display = 'none'; document.getElementById('1902.04112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 25 pages, 7 figures; Supplementary Information: 11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2019) 10:698 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01565">arXiv:1901.01565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01565">pdf</a>, <a href="https://arxiv.org/format/1901.01565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.205105">10.1103/PhysRevB.100.205105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasi-2D magnetism and origin of the Dirac semimetallic behavior in nonstoichiometric Sr$_{1-y}$Mn$_{1-z}$Sb$_{2}$ (y, z~$&lt;$0.1) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yanglin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiTusa%2C+J">John DiTusa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01565v1-abstract-short" style="display: inline;"> Nonstoichiometric Sr$_{1-y}$Mn$_{1-z}$Sb$_{2}$ (y, z~$&lt;$0.1) is known to exhibit a coexistence of magnetic order and the nontrivial semimetallic behavior related to Dirac or Weyl fermions. Here, we report inelastic neutron scattering analyses of the spin dynamics and density functional theory studies on the electronic properties of Sr$_{1-y}$Mn$_{1-z}$Sb$_{2}$. We observe a relatively large spin e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01565v1-abstract-full').style.display = 'inline'; document.getElementById('1901.01565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01565v1-abstract-full" style="display: none;"> Nonstoichiometric Sr$_{1-y}$Mn$_{1-z}$Sb$_{2}$ (y, z~$&lt;$0.1) is known to exhibit a coexistence of magnetic order and the nontrivial semimetallic behavior related to Dirac or Weyl fermions. Here, we report inelastic neutron scattering analyses of the spin dynamics and density functional theory studies on the electronic properties of Sr$_{1-y}$Mn$_{1-z}$Sb$_{2}$. We observe a relatively large spin excitation gap $\approx$ 8.5 meV at 5 K, and the interlayer magnetic exchange constant only 2.8 \% of the dominant intralayer magnetic interaction, providing evidence that Sr$_{1-y}$Mn$_{1-z}$Sb$_{2}$ exhibits a quasi-2D magnetism. Using density functional theory, we find a strong influence of magnetic orders on the electronic band structure and the Dirac dispersions near the Fermi level along the Y-S direction in the presence of a ferromagnetic ordering. Our study unveils novel interplay between the magnetic order, magnetic transition, and electronic property in Sr$_{1-y}$Mn$_{1-z}$Sb$_{2}$, and opens new pathways to control the relativistic band structure through magnetism in ternary compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01565v1-abstract-full').style.display = 'none'; document.getElementById('1901.01565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 205105 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.00601">arXiv:1803.00601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.00601">pdf</a>, <a href="https://arxiv.org/format/1803.00601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.045121">10.1103/PhysRevB.98.045121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classical and quantum spin dynamics of the honeycomb $螕$ model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">Anjana M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wachtel%2C+G">Gideon Wachtel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamaji%2C+Y">Youhei Yamaji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">Cristian D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+B">Yong Baek Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.00601v2-abstract-short" style="display: inline;"> Quantum to classical crossover is a fundamental question in dynamics of quantum many-body systems. In frustrated magnets, for example, it is highly non-trivial to describe the crossover from the classical spin liquid with a macroscopically-degenerate ground-state manifold, to the quantum spin liquid phase with fractionalized excitations. This is an important issue as we often encounter the demand&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00601v2-abstract-full').style.display = 'inline'; document.getElementById('1803.00601v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.00601v2-abstract-full" style="display: none;"> Quantum to classical crossover is a fundamental question in dynamics of quantum many-body systems. In frustrated magnets, for example, it is highly non-trivial to describe the crossover from the classical spin liquid with a macroscopically-degenerate ground-state manifold, to the quantum spin liquid phase with fractionalized excitations. This is an important issue as we often encounter the demand for a sharp distinction between the classical and quantum spin liquid behaviors in real materials. Here we take the example of the classical spin liquid in a frustrated magnet with novel bond-dependent interactions to investigate the classical dynamics, and critically compare it with quantum dynamics in the same system. In particular, we focus on signatures in the dynamical spin structure factor. Combining Landau-Lifshitz dynamics simulations and the analytical Martin-Siggia-Rose (MSR) approach, we show that the low energy spectra are described by relaxational dynamics and highly constrained by the zero mode structure of the underlying degenerate classical manifold. Further, the higher energy spectra can be explained by precessional dynamics. Surprisingly, many of these features can also be seen in the dynamical structure factor in the quantum model studied by finite-temperature exact diagonalization. We discuss the implications of these results, and their connection to recent experiments on frustrated magnets with strong spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00601v2-abstract-full').style.display = 'none'; document.getElementById('1803.00601v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 045121 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07974">arXiv:1708.07974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.07974">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Scaling of Memories and Crossover in Glassy Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">A. M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+M">M. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katayama%2C+N">N. Katayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinclair%2C+R">R. Sinclair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diallo%2C+S+O">S. O. Diallo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">G. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wakimoto%2C+S">S. Wakimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamada%2C+K">K. Yamada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chern%2C+G">G-W. Chern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T+J">T. J. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+-">S. -H. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07974v1-abstract-short" style="display: inline;"> Glassiness is ubiquitous and diverse in characteristics in nature. Understanding their differences and classification remains a major scientific challenge. Here, we show that scaling of magnetic memories with time can be used to classify magnetic glassy materials into two distinct classes. The systems studied are high-temperature superconductor-related materials, spin-orbit Mott insulators, frustr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07974v1-abstract-full').style.display = 'inline'; document.getElementById('1708.07974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07974v1-abstract-full" style="display: none;"> Glassiness is ubiquitous and diverse in characteristics in nature. Understanding their differences and classification remains a major scientific challenge. Here, we show that scaling of magnetic memories with time can be used to classify magnetic glassy materials into two distinct classes. The systems studied are high-temperature superconductor-related materials, spin-orbit Mott insulators, frustrated magnets, and dilute magnetic alloys. Our bulk magnetization measurements reveal that most densely populated magnets exhibit similar memory behavior characterized by a relaxation exponent of 1-n ~ 0.6(1). This exponent is different from 1-n ~ 1/3 of dilute magnetic alloys that was ascribed to their hierarchical and fractal energy landscape and is also different from 1-n=1 of the conventional Debye relaxation expected for a spin solid, a state with long range order. Furthermore, our systematic study on dilute magnetic alloys with varying magnetic concentration exhibits crossovers among the two glassy states and spin solid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07974v1-abstract-full').style.display = 'none'; document.getElementById('1708.07974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.10242">arXiv:1706.10242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.10242">pdf</a>, <a href="https://arxiv.org/format/1706.10242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.134408">10.1103/PhysRevB.96.134408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comprehensive study of the dynamics of a classical Kitaev spin liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samarakoon%2C+A+M">A. M. Samarakoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+-">S. -S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamiya%2C+Y">Y. Kamiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+-">S. -H. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.10242v2-abstract-short" style="display: inline;"> We study the spin-$S$ Kitaev model in the classical ($S \to \infty$) limit using Monte Carlo simulations combined with semi-classical spin dynamics. We discuss differences and similarities in the dynamical structure factors of the spin-$1/2$ and the classical Kitaev liquids. Interestingly, the low-temperature and low-energy spectrum of the classical model exhibits a finite energy peak, which is th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.10242v2-abstract-full').style.display = 'inline'; document.getElementById('1706.10242v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.10242v2-abstract-full" style="display: none;"> We study the spin-$S$ Kitaev model in the classical ($S \to \infty$) limit using Monte Carlo simulations combined with semi-classical spin dynamics. We discuss differences and similarities in the dynamical structure factors of the spin-$1/2$ and the classical Kitaev liquids. Interestingly, the low-temperature and low-energy spectrum of the classical model exhibits a finite energy peak, which is the precursor of the one produced by the Majorana modes of the $S=1/2$ model. The classical peak is spectrally narrowed compared to the quantum result and can be explained by magnon excitations within fluctuating one-dimensional manifolds (loops). Hence the difference from the classical limit to the quantum limit can be understood by the fractionalization of magnons propagating in one-dimensional manifolds. Moreover, we show that the momentum space distribution of the low-energy spectral weight of the $S=1/2$ model follows the momentum space distribution of zero modes of the classical model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.10242v2-abstract-full').style.display = 'none'; document.getElementById('1706.10242v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 134408 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.07003">arXiv:1706.07003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.07003">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-018-0079-2">10.1038/s41535-018-0079-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitations in the field-induced quantum spin liquid state of alpha-RuCl3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lampen-Kelley%2C+P">P. Lampen-Kelley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knolle%2C+J">J. Knolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">C. Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winn%2C+B">B. Winn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D">D. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bridges%2C+C+A">C. A. Bridges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savici%2C+A+T">A. T. Savici</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakoumakos%2C+B+C">B. C. Chakoumakos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">M. D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moessner%2C+R">R. Moessner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D+G">D. G. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.07003v1-abstract-short" style="display: inline;"> The Kitaev model on a honeycomb lattice predicts a paradigmatic quantum spin liquid (QSL) exhibiting Majorana Fermion excitations. The insight that Kitaev physics might be realized in practice has stimulated investigations of candidate materials, recently including alpha-RuCl3. In all the systems studied to date, non-Kitaev interactions induce magnetic order at low temperature. However, in-plane m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07003v1-abstract-full').style.display = 'inline'; document.getElementById('1706.07003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.07003v1-abstract-full" style="display: none;"> The Kitaev model on a honeycomb lattice predicts a paradigmatic quantum spin liquid (QSL) exhibiting Majorana Fermion excitations. The insight that Kitaev physics might be realized in practice has stimulated investigations of candidate materials, recently including alpha-RuCl3. In all the systems studied to date, non-Kitaev interactions induce magnetic order at low temperature. However, in-plane magnetic fields of roughly 8 Tesla suppress the long-range magnetic order in alpha-RuCl3 raising the intriguing possibility of a field-induced QSL exhibiting non-Abelian quasiparticle excitations. Here we present inelastic neutron scattering in alpha-RuCl3 in an applied magnetic field. At a field of 8 Tesla, the spin waves characteristic of the ordered state vanish throughout the Brillouin zone. The remaining single dominant feature of the response is a broad continuum centered at the Gamma point, previously identified as a signature of fractionalized excitations. This provides compelling evidence that a field-induced QSL state has been achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07003v1-abstract-full').style.display = 'none'; document.getElementById('1706.07003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 3, 8 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.06172">arXiv:1705.06172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.06172">pdf</a>, <a href="https://arxiv.org/ps/1705.06172">ps</a>, <a href="https://arxiv.org/format/1705.06172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/NPHYS4182">10.1038/NPHYS4182 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of the Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsumoto%2C+M">Masashige Matsumoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Yiming Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wangchun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gentile%2C+T+R">Thomas R. Gentile</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+S">Shannon Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awwadi%2C+F+F">Firas F. Awwadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turnbull%2C+M+M">Mark M. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dissanayake%2C+S+E">Sachith E. Dissanayake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrawal%2C+H">Harish Agrawal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toft-Petersen%2C+R">Rasmus Toft-Petersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemke%2C+B">Bastian Klemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coester%2C+K">Kris Coester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+K+P">Kai P. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David A. Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.06172v1-abstract-short" style="display: inline;"> Spontaneous symmetry-breaking quantum phase transitions play an essential role in condensed matter physics. The collective excitations in the broken-symmetry phase near the quantum critical point can be characterized by fluctuations of phase and amplitude of the order parameter. The phase oscillations correspond to the massless Nambu$-$Goldstone modes whereas the massive amplitude mode, analogous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06172v1-abstract-full').style.display = 'inline'; document.getElementById('1705.06172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.06172v1-abstract-full" style="display: none;"> Spontaneous symmetry-breaking quantum phase transitions play an essential role in condensed matter physics. The collective excitations in the broken-symmetry phase near the quantum critical point can be characterized by fluctuations of phase and amplitude of the order parameter. The phase oscillations correspond to the massless Nambu$-$Goldstone modes whereas the massive amplitude mode, analogous to the Higgs boson in particle physics, is prone to decay into a pair of low-energy Nambu$-$Goldstone modes in low dimensions. Especially, observation of a Higgs amplitude mode in two dimensions is an outstanding experimental challenge. Here, using the inelastic neutron scattering and applying the bond-operator theory, we directly and unambiguously identify the Higgs amplitude mode in a two-dimensional S=1/2 quantum antiferromagnet C$_9$H$_{18}$N$_2$CuBr$_4$ near a quantum critical point in two dimensions. Owing to an anisotropic energy gap, it kinematically prevents such decay and the Higgs amplitude mode acquires an infinite lifetime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06172v1-abstract-full').style.display = 'none'; document.getElementById('1705.06172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures in the main text+3 figures in Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 13, 638-642 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05886">arXiv:1705.05886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.05886">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.220403">10.1103/PhysRevB.95.220403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mn-induced magnetic symmetry breaking and its correlation with the metal-insulator transition in bilayered Sr3(Ru1-xMnx)2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Biao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diao%2C+Z">Zhenyu Diao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiandi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plummer%2C+W">Ward Plummer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05886v1-abstract-short" style="display: inline;"> Bilayered Sr3Ru2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of metal-insulator transition (MIT) at TMIT and AFM ordering at TM in Sr3(Ru1-xMnx)2O7. Using elastic neutron scattering we determined the effect of Mn doping on the magnetic structure and in-plane magnetic co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05886v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05886v1-abstract-full" style="display: none;"> Bilayered Sr3Ru2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of metal-insulator transition (MIT) at TMIT and AFM ordering at TM in Sr3(Ru1-xMnx)2O7. Using elastic neutron scattering we determined the effect of Mn doping on the magnetic structure and in-plane magnetic correlation lengths in Sr3(Ru1-xMnx)2O7 (x = 0.06 and 0.12). With increasing Mn doping (x) from 0.06 to 0.12 or decreasing temperatures for x=0.12, an evolution from an in-plane short-range to long-range double-stripe AFM ground state occurs. For both compounds, the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise of the electrical resistivity and the specific heat. Since it does not induce measurable lattice distortion, the double-stripe magnetic order with anisotropic spin texture breaks the symmetry from C4v crystal lattice to C2v magnetic sublattice. These observations shed new light on an age-old question of Slater versus Mott-type MIT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05886v1-abstract-full').style.display = 'none'; document.getElementById('1705.05886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, accepted in Physical Review B (rapid communication)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 220403(R), 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00986">arXiv:1611.00986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00986">pdf</a>, <a href="https://arxiv.org/ps/1611.00986">ps</a>, <a href="https://arxiv.org/format/1611.00986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.024430">10.1103/PhysRevB.95.024430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The dynamics of linarite: Observations of magnetic excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rule%2C+K+C">K. C. Rule</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Willenberg%2C+B">B. Willenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%A4pers%2C+M">M. Sch盲pers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">A. U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drechsler%2C+S+-">S. -L. Drechsler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">G. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mole%2C+R+A">R. A. Mole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gardner%2C+J+S">J. S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%BCllow%2C+S">S. S眉llow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishimoto%2C+S">S. Nishimoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00986v3-abstract-short" style="display: inline;"> Here we present inelastic neutron scattering measurements from the frustrated, quantum spin-1/2 chain material linarite, PbCuSO_4(OH)_2. Time of flight data, taken at 0.5K and zero applied magnetic field reveals low-energy dispersive spin wave excitations below 1.5meV both parallel and perpendicular to the Cu-chain direction. From this we confirm that the interchain couplings within linarite are a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00986v3-abstract-full').style.display = 'inline'; document.getElementById('1611.00986v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00986v3-abstract-full" style="display: none;"> Here we present inelastic neutron scattering measurements from the frustrated, quantum spin-1/2 chain material linarite, PbCuSO_4(OH)_2. Time of flight data, taken at 0.5K and zero applied magnetic field reveals low-energy dispersive spin wave excitations below 1.5meV both parallel and perpendicular to the Cu-chain direction. From this we confirm that the interchain couplings within linarite are around 10% of the nearest neighbour intrachain interactions. We analyse the data within both linear spin-wave theory and density matrix renormalisation group theories and establish the main magnetic exchange interactions and the simplest realistic Hamiltonian for this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00986v3-abstract-full').style.display = 'none'; document.getElementById('1611.00986v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 024430 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.00103">arXiv:1609.00103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.00103">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aah6015">10.1126/science.aah6015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron tomography of magnetic Majorana fermions in a proximate quantum spin liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">Arnab Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knolle%2C+J">Johannes Knolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bridges%2C+C+A">Craig A. Bridges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">Mark D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D+G">David G. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">David A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moessner%2C+R">Roderich Moessner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">Stephen E. Nagler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.00103v1-abstract-short" style="display: inline;"> Quantum matter provides an effective vacuum out of which arise emergent particles not corresponding to any experimentally detected elementary particle. Topological quantum materials in particular have become a focus of intense research in part because of the remarkable possibility to realize Majorana fermions, with their potential for new, decoherence-free quantum computing architectures. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00103v1-abstract-full').style.display = 'inline'; document.getElementById('1609.00103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.00103v1-abstract-full" style="display: none;"> Quantum matter provides an effective vacuum out of which arise emergent particles not corresponding to any experimentally detected elementary particle. Topological quantum materials in particular have become a focus of intense research in part because of the remarkable possibility to realize Majorana fermions, with their potential for new, decoherence-free quantum computing architectures. In this paper we undertake a study on high-quality single crystal of $伪-RuCl_3$ which has been identified as a material realizing a proximate Kitaev state, a topological quantum state with magnetic Majorana fermions. Four-dimensional tomographic reconstruction of dynamical correlations measured using neutrons is uniquely powerful for probing such magnetic states. We discover unusual signals, including an unprecedented column of scattering over a large energy interval around the Brillouin zone center which is remarkably stable with temperature. This is straightforwardly accounted for in terms of the Majorana excitations present in Kitaev&#39;s topological quantum spin liquid. Other, more delicate, features in the scattering can be transparently associated with perturbations to an ideal model. This opens a window on emergent magnetic Majorana fermions in correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00103v1-abstract-full').style.display = 'none'; document.getElementById('1609.00103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages main text with 4 main figures, 13 Supplementary pages with 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 356 (6342), 1055-1059 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.08172">arXiv:1608.08172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.08172">pdf</a>, <a href="https://arxiv.org/ps/1608.08172">ps</a>, <a href="https://arxiv.org/format/1608.08172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms15148">10.1038/ncomms15148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+T">Tao Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Y. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsumoto%2C+M">M. Matsumoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coester%2C+K">K. Coester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+K+P">K. P. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awwadi%2C+F+F">F. F. Awwadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turnbull%2C+M+M">M. M. Turnbull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrawal%2C+H">H. Agrawal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshev%2C+A+L">A. L. Chernyshev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.08172v3-abstract-short" style="display: inline;"> The notion of a quasiparticle, such as a phonon, a roton, or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08172v3-abstract-full').style.display = 'inline'; document.getElementById('1608.08172v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.08172v3-abstract-full" style="display: none;"> The notion of a quasiparticle, such as a phonon, a roton, or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra, and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08172v3-abstract-full').style.display = 'none'; document.getElementById('1608.08172v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, some typos were corrected in the revised version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 8, 15148 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.04417">arXiv:1607.04417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.04417">pdf</a>, <a href="https://arxiv.org/ps/1607.04417">ps</a>, <a href="https://arxiv.org/format/1607.04417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.180404">10.1103/PhysRevB.94.180404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-dependent correlations in quantum magnets at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fauseweh%2C+B">B. Fauseweh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Groitl%2C+F">F. Groitl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+T">T. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolfs%2C+K">K. Rolfs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Habicht%2C+K">K. Habicht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uhrig%2C+G+S">G. S. Uhrig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.04417v2-abstract-short" style="display: inline;"> In this article we investigate the time dependence of the gap mode of copper nitrate at various temperatures. We combine state-of-the-art theoretical calculations with high precision neutron resonance spin-echo measurements to understand the anomalous decoherence effects found previously in this material. It is shown that the time domain offers a complementary view on this phenomenon, which allows&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04417v2-abstract-full').style.display = 'inline'; document.getElementById('1607.04417v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.04417v2-abstract-full" style="display: none;"> In this article we investigate the time dependence of the gap mode of copper nitrate at various temperatures. We combine state-of-the-art theoretical calculations with high precision neutron resonance spin-echo measurements to understand the anomalous decoherence effects found previously in this material. It is shown that the time domain offers a complementary view on this phenomenon, which allows us to directly compare experimental data and theoretical predictions without the need of further intensive data analysis, such as (de)convolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04417v2-abstract-full').style.display = 'none'; document.getElementById('1607.04417v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 180404(R) (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.08223">arXiv:1602.08223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.08223">pdf</a>, <a href="https://arxiv.org/ps/1602.08223">ps</a>, <a href="https://arxiv.org/format/1602.08223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.134404">10.1103/PhysRevB.93.134404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous thermal decoherence in a quantum magnet measured with neutron spin-echo spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Groitl%2C+F">Felix Groitl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+T">Thomas Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolfs%2C+K">Katharina Rolfs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Habicht%2C+K">Klaus Habicht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.08223v1-abstract-short" style="display: inline;"> The effect of temperature dependent asymmetric line broadening is investigated in Cu(NO$_3$)$_2\cdot$2.5D$_2$O, a model material for a 1-D bond alternating Heisenberg chain, using the high resolution neutron-resonance spin-echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase sensitive measurements demonstrate the potential of NRSE to resolve lin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08223v1-abstract-full').style.display = 'inline'; document.getElementById('1602.08223v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.08223v1-abstract-full" style="display: none;"> The effect of temperature dependent asymmetric line broadening is investigated in Cu(NO$_3$)$_2\cdot$2.5D$_2$O, a model material for a 1-D bond alternating Heisenberg chain, using the high resolution neutron-resonance spin-echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase sensitive measurements demonstrate the potential of NRSE to resolve line shapes, which are non-Lorentzian, opening up a new and hitherto unexplored class of experiments for the NRSE method beyond standard line width measurements. The particular advantage of NRSE is its direct access to the correlations in the time domain without convolution with the resolution function of the background spectrometer. This novel application of NRSE is very promising and establishes a basis for further experiments on different systems, since the results for Cu(NO$_3$)$_2\cdot$2.5D$_2$O are applicable to a broad range of quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08223v1-abstract-full').style.display = 'none'; document.getElementById('1602.08223v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 134404 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.08112">arXiv:1602.08112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.08112">pdf</a>, <a href="https://arxiv.org/format/1602.08112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.134423">10.1103/PhysRevB.93.134423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature crystal and magnetic structure of $伪$-RuCl3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bridges%2C+C+A">C. A. Bridges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">M. D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandrus%2C+D+G">D. G. Mandrus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakoumakos%2C+B+C">B. C. Chakoumakos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+S+E">S. E. Nagler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.08112v2-abstract-short" style="display: inline;"> Single crystals of the Kitaev spin-liquid candidate $伪$-RuCl$_3$ have been studied to determine low-temperature bulk properties, structure and the magnetic ground state. Refinements of x-ray diffraction data show that the low temperature crystal structure is described by space group $C2/m$ with a nearly-perfect honeycomb lattice exhibiting less than 0.2 \% in-plane distortion. The as-grown single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08112v2-abstract-full').style.display = 'inline'; document.getElementById('1602.08112v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.08112v2-abstract-full" style="display: none;"> Single crystals of the Kitaev spin-liquid candidate $伪$-RuCl$_3$ have been studied to determine low-temperature bulk properties, structure and the magnetic ground state. Refinements of x-ray diffraction data show that the low temperature crystal structure is described by space group $C2/m$ with a nearly-perfect honeycomb lattice exhibiting less than 0.2 \% in-plane distortion. The as-grown single crystals exhibit only one sharp magnetic transition at $T_{N}$ = 7~K. The magnetic order below this temperature exhibits a propagation vector of $k$ = (0, 1, 1/3), which coincides with a 3-layer stacking of the $C2/m$ unit cells. Magnetic transitions at higher temperatures up to 14~K can be introduced by deformations of the crystal that result in regions in the crystal with a 2-layer stacking sequence. The best fit symmetry allowed magnetic structure of the as-grown crystals shows that the spins lie in the $ac$-plane, with a zigzag configuration in each honeycomb layer. The three layer repeat out-of-plane structure can be refined as a 120$^o$ spiral order or a collinear structure with spin direction 35$^o$ away from the $a$-axis. The collinear spin configuration yields a slightly better fit and also is physically preferred. The average ordered moment in either structure is less than 0.45(5) $渭_B$ per Ru$^{3+}$ ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.08112v2-abstract-full').style.display = 'none'; document.getElementById('1602.08112v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, and 1 table. Please email any communication to Huibo Cao (caoh@ornl.gov) and Arnab Banerjee (arnabanerjee@gmail.com)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 134423 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07978">arXiv:1507.07978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07978">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4953">10.1038/nmat4953 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A magnetic topological semimetal Sr1-yMn1-zSb2 (y, z&lt; 0.1) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">J. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radmanesh%2C+S+M+A">S. M. A. Radmanesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adams%2C+D+J">D. J. Adams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y+L">Y. L. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G+F">G. F. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phelan%2C+W+A">W. A. Phelan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+J">J. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiTusa%2C+J+F">J. F. DiTusa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiorescu%2C+I">I. Chiorescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spinu%2C+L">L. Spinu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z+Q">Z. Q. Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07978v3-abstract-short" style="display: inline;"> Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. In this Article, we report a new type of magnetic semi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07978v3-abstract-full').style.display = 'inline'; document.getElementById('1507.07978v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07978v3-abstract-full" style="display: none;"> Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. In this Article, we report a new type of magnetic semimetal Sr1-yMn1-zSb2 (y,z&lt;0.1) with nearly massless relativistic fermion behaviour (m*=0.04-0.05m0, where m0 is the free electron mass). This material exhibits a ferromagnetic order for 304K &lt; T &lt; 565K, but a canted antiferromagnetic order with a ferromagnetic component for T &lt; 304K. The combination of relativistic fermion behaviour and ferromagnetism in Sr1-yMn1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07978v3-abstract-full').style.display = 'none'; document.getElementById('1507.07978v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Nature Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 16, 905-910 (2017) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tennant%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tennant%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tennant%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10