CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 135 results for author: <span class="mathjax">Conder, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Conder%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Conder, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Conder%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Conder, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08112">arXiv:2306.08112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.08112">pdf</a>, <a href="https://arxiv.org/format/2306.08112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physc.2023.1354332">10.1016/j.physc.2023.1354332 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oxygen isotope effect on the superfluid density within the $d-$wave and $s-$wave pairing channels of YBa$_2$Cu$_4$O$_8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">Rustem Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shengelaya%2C+A">Alexander Shengelaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karpinski%2C+J">Janusz Karpinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bussmann-Holder%2C+A">Annette Bussmann-Holder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">Hugo Keller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08112v1-abstract-short" style="display: inline;"> We report on measurements of the oxygen isotope ($^{16}$O/$^{18}$O) effect (OIE) on the transition temperature $T_{\rm c}$ and the zero-temperature in-plane magnetic penetration depth $位_{\rm ab}(0)$ in the stoichiometric cuprate superconductor YBa$_2$Cu$_4$O$_8$ by means of muon-spin rotation/relaxation. An analysis of the temperature evolution of $位^{-2}_{\rm ab}$ in terms of coexisting $s+d-$wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08112v1-abstract-full').style.display = 'inline'; document.getElementById('2306.08112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08112v1-abstract-full" style="display: none;"> We report on measurements of the oxygen isotope ($^{16}$O/$^{18}$O) effect (OIE) on the transition temperature $T_{\rm c}$ and the zero-temperature in-plane magnetic penetration depth $位_{\rm ab}(0)$ in the stoichiometric cuprate superconductor YBa$_2$Cu$_4$O$_8$ by means of muon-spin rotation/relaxation. An analysis of the temperature evolution of $位^{-2}_{\rm ab}$ in terms of coexisting $s+d-$wave order parameters reveals that the OIE on the superfluid density $蟻_{\rm s}(0)\propto位^{-2}_{\rm ab}(0)$ stems predominantly from the $d-$wave component while the contribution of the $s-$wave one is almost zero. The OIE on the transition temperature $T_{\rm c}$ is found to be rather small: $未T_{\rm c}/T_{\rm c}= -0.32(7)$%, compared to the total OIE on the superfluid density $蟻_{\rm s}(0)$: $未蟻_{\rm s}(0)/蟻_{\rm s}(0)= -2.8(1.0)$%. The partial OIE&#39;s on the corresponding $d-$wave and $s-$wave components of $蟻_{\rm s}(0)$ are $未蟻_{\rm s,d}(0)/蟻_{\rm s}(0)= -3.0(1.2)$%, and $未蟻_{\rm s,s}(0)/蟻_{\rm s}(0)= 0.2(1.2)$%, respectively. Our results demonstrate that polaron formation in the CuO$_2$ planes is the origin of the observed OIE in the $d-$wave channel. In the much weaker $s-$wave channel, fermionic quasiparticles are present, which do not contribute to the OIE on $蟻_{\rm s}(0)$. Our results support the original idea of K. Alex M眉ller on the polaronic nature of the supercarries in high-temperature cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08112v1-abstract-full').style.display = 'none'; document.getElementById('2306.08112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to a special issue by Physica C: &#34;Oxide superconductors and beyond - In memoriam of Professor Karl Alex M眉ller&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica C: Superconductivity and its Applications, 613, 1354332 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14492">arXiv:2009.14492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14492">pdf</a>, <a href="https://arxiv.org/format/2009.14492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03411-8">10.1038/s41586-021-03411-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quantum magnetic analogue to the critical point of water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez%2C+J+L">J. Larrea Jim茅nez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crone%2C+S+P+G">S. P. G. Crone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fogh%2C+E">E. Fogh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zayed%2C+M+E">M. E. Zayed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lortz%2C+R">R. Lortz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A4uchli%2C+A+M">A. M. L盲uchli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+L">L. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wessel%2C+S">S. Wessel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Honecker%2C+A">A. Honecker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corboz%2C+P">P. Corboz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mila%2C+F">F. Mila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14492v1-abstract-short" style="display: inline;"> At the familiar liquid-gas phase transition in water, the density jumps discontinuously at atmospheric pressure, but the line of these first-order transitions defined by increasing pressures terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, a critical point was predicted and measured terminating the line of Mott metal-insulator t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14492v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14492v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14492v1-abstract-full" style="display: none;"> At the familiar liquid-gas phase transition in water, the density jumps discontinuously at atmospheric pressure, but the line of these first-order transitions defined by increasing pressures terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, a critical point was predicted and measured terminating the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge density. In quantum spin systems, continuous quantum phase transitions (QPTs) have been investigated extensively, but discontinuous QPTs have received less attention. The frustrated quantum antiferromagnet SrCu$_2$(BO$_3$)$_2$ constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model and displays exotic phenomena including magnetization plateaux, anomalous thermodynamics and discontinuous QPTs. We demonstrate by high-precision specific-heat measurements under pressure and applied magnetic field that, like water, the pressure-temperature phase diagram of SrCu$_2$(BO$_3$)$_2$ has an Ising critical point terminating a first-order transition line, which separates phases with different densities of magnetic particles (triplets). We achieve a quantitative explanation of our data by detailed numerical calculations using newly-developed finite-temperature tensor-network methods. These results open a new dimension in understanding the thermodynamics of quantum magnetic materials, where the anisotropic spin interactions producing topological properties for spintronic applications drive an increasing focus on first-order QPTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14492v1-abstract-full').style.display = 'none'; document.getElementById('2009.14492v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+4 pages, 4+3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature {\bf 592}, 370 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02102">arXiv:1901.02102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.02102">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.184411">10.1103/PhysRevB.98.184411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics of edge-sharing spin chains in SrCa13Cu24O41 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">Guochu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mole%2C+R">Richard Mole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">Michel Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yano%2C+S">Shin-ichiro Yano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chin-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rule%2C+K+C">Kirrily C. Rule</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gardner%2C+J+S">Jason S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulrich%2C+C">Clemens Ulrich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Imperia%2C+P">Paolo Imperia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McIntyrea%2C+G+J">Garry J. McIntyrea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02102v1-abstract-short" style="display: inline;"> The low-energy magnetic excitation from the highly Ca-doped quasi-one-dimensional magnet SrCa13Cu24O41 was studied in the magnetic ordered state by using inelastic neutron scattering. We observed the gapless spin-wave excitation, dispersive along the a and c axes but nondispersive along the b axis. Such excitations are attributed to the spin wave from the spin-chain sublattice. Model fitting to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02102v1-abstract-full').style.display = 'inline'; document.getElementById('1901.02102v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02102v1-abstract-full" style="display: none;"> The low-energy magnetic excitation from the highly Ca-doped quasi-one-dimensional magnet SrCa13Cu24O41 was studied in the magnetic ordered state by using inelastic neutron scattering. We observed the gapless spin-wave excitation, dispersive along the a and c axes but nondispersive along the b axis. Such excitations are attributed to the spin wave from the spin-chain sublattice. Model fitting to the experimental data gives the nearest-neighbour interaction Jc as 5.4 meV and the interchain interaction Ja = 4.4 meV. Jc is antiferromagnetic and its value is close to the nearest-neighbour interactions of the similar edge-sharing spin-chain systems such as CuGeO3. Comparing with the hole-doped spin chains in Sr14Cu24O41, which shows a spin gap due to spin dimers formed around Zhang-Rice singlets, the chains in SrCa13Cu24O41 show a gapless excitation in this study. We ascribe such a change from gapped to gapless excitations to holes transferring away from the chain sublattice into the ladder sublattice upon Ca doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02102v1-abstract-full').style.display = 'none'; document.getElementById('1901.02102v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08816">arXiv:1808.08816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.08816">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.136401">10.1103/PhysRevLett.121.136401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of Coulomb interaction induced Lifshitz transition and robust hybrid Weyl semimetal in Td MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+W">Z. W. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Magrez%2C+A">A. Magrez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bugnon%2C+P">P. Bugnon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+H">H. Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">R. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08816v1-abstract-short" style="display: inline;"> Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of Td MoTe2. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08816v1-abstract-full').style.display = 'inline'; document.getElementById('1808.08816v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08816v1-abstract-full" style="display: none;"> Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of Td MoTe2. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations. Unveiling the importance of Coulomb interaction opens up a new route to comprehend the unique properties of MoTe2, and is significant for understanding the interplay between correlation effects, strong spin-orbit coupling and superconductivity in this van der Waals material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08816v1-abstract-full').style.display = 'none'; document.getElementById('1808.08816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted on May 02 2018, to appear in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 136401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03952">arXiv:1808.03952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.03952">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aaf777">10.1088/1361-648X/aaf777 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-pressure polymorphism of BaFe2Se3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Svitlyk%2C+V">V. Svitlyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+A+D">A. D. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nunez-Regueiro%2C+M">M. Nunez-Regueiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mezouar%2C+M">M. Mezouar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03952v1-abstract-short" style="display: inline;"> BaFe2Se3 is a potential superconductor material exhibiting transition at 11 K and ambient pressure. Here we extended the structural and performed electrical resistivity measurements on this compound up to 51 GPa and 20 GPa, respectively, in order to distinguish if the superconductivity in this sample is intrinsic to the BaFe2Se3 phase or if it is originating from minor FeSe impurities that show a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03952v1-abstract-full').style.display = 'inline'; document.getElementById('1808.03952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03952v1-abstract-full" style="display: none;"> BaFe2Se3 is a potential superconductor material exhibiting transition at 11 K and ambient pressure. Here we extended the structural and performed electrical resistivity measurements on this compound up to 51 GPa and 20 GPa, respectively, in order to distinguish if the superconductivity in this sample is intrinsic to the BaFe2Se3 phase or if it is originating from minor FeSe impurities that show a similar superconductive transition temperature. The electrical resistance measurements as a function of pressure show that at 5 GPa the superconducting transition is observed at around 10 K, similar to the one previously observed for this sample at ambient pressure. This indicates that the superconductivity in this sample is intrinsic to the BaFe2Se3 phase and not to FeSe with Tc &gt; 20 K at these pressures. Further increase in pressure suppressed the superconductive signal and the sample remained in an insulating state up to the maximum achieved pressure of 20 GPa. Single-crystal and powder X-ray diffraction measurements revealed two structural transformations in BaFe2Se3: a second order transition above 3.5 GPa from Pnma (CsAg2I3-type structure) to Cmcm (CsCu2Cl3-type structure) and a first order transformation at 16.6 GPa. Here, 纬-BaFe2Se3 transforms into 未-BaFe2Se3 (Cmcm, CsCu2Cl3-type average structure) via a first order phase transition mechanism. This transitions is characterized by a significant shortening of the b lattice parameter of 纬-BaFe2Se3 (17%) and accompanied by an anisotropic expansion in the orthogonal ac plane at the transition point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03952v1-abstract-full').style.display = 'none'; document.getElementById('1808.03952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 31 (2019) 085401 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01269">arXiv:1808.01269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01269">pdf</a>, <a href="https://arxiv.org/format/1808.01269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.064424">10.1103/PhysRevB.98.064424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoupled spin dynamics in the rare-earth orthoferrite YbFeO$_3$: Evolution of magnetic excitations through the spin-reorientation transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nikitin%2C+S+E">S. E. Nikitin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L+S">L. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sefat%2C+A+S">A. S. Sefat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaykhutdinov%2C+K+A">K. A. Shaykhutdinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Z. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">S. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E+V">E. V. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">G. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lumsden%2C+M+D">M. D. Lumsden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">A. I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barilo%2C+S">S. Barilo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guretskii%2C+S+A">S. A. Guretskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inosov%2C+D+S">D. S. Inosov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A">A. Podlesnyak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01269v2-abstract-short" style="display: inline;"> In this paper we present a comprehensive study of magnetic dynamics in the rare-earth orthoferrite YbFeO$_3$ at temperatures below and above the spin-reorientation (SR) transition $T_{\mathrm{SR}}=7.6$ K, in magnetic fields applied along the $a, b$ and $c$ axes. Using single-crystal inelastic neutron scattering, we observed that the spectrum of magnetic excitations consists of two collective modes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01269v2-abstract-full').style.display = 'inline'; document.getElementById('1808.01269v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01269v2-abstract-full" style="display: none;"> In this paper we present a comprehensive study of magnetic dynamics in the rare-earth orthoferrite YbFeO$_3$ at temperatures below and above the spin-reorientation (SR) transition $T_{\mathrm{SR}}=7.6$ K, in magnetic fields applied along the $a, b$ and $c$ axes. Using single-crystal inelastic neutron scattering, we observed that the spectrum of magnetic excitations consists of two collective modes well separated in energy: 3D gapped magnons with a bandwidth of $\sim$60 meV, associated with the antiferromagnetically (AFM) ordered Fe subsystem, and quasi-1D AFM fluctuations of $\sim$1 meV within the Yb subsystem, with no hybridization of those modes. The spin dynamics of the Fe subsystem changes very little through the SR transition and could be well described in the frame of semiclassical linear spin-wave theory. On the other hand, the rotation of the net moment of the Fe subsystem at $T_{\mathrm{SR}}$ drastically changes the excitation spectrum of the Yb subsystem, inducing the transition between two regimes with magnon and spinon-like fluctuations. At $T &lt; T_{\mathrm{SR}}$, the Yb spin chains have a well defined field-induced ferromagnetic (FM) ground state, and the spectrum consists of a sharp single-magnon mode, a two-magnon bound state, and a two-magnon continuum, whereas at $T &gt; T_{\mathrm{SR}}$ only a gapped broad spinon-like continuum dominates the spectrum. In this work we show that a weak quasi-1D coupling within the Yb subsystem $J_\text{Yb-Yb}$, mainly neglected in previous studies, creates unusual quantum spin dynamics on the low energy scales. The results of our work may stimulate further experimental search for similar compounds with several magnetic subsystems and energy scales, where low-energy fluctuations and underlying physics could be &#34;hidden&#34; by a dominating interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01269v2-abstract-full').style.display = 'none'; document.getElementById('1808.01269v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text (12 pages, 7 figures) &amp; Supplementary Information (5 pages, 8 figures); v.2 with the correct references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 064424 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.09327">arXiv:1804.09327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.09327">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.161111">10.1103/PhysRevB.97.161111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg(P1-xAsx) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+Y+T">Y. T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q+S">Q. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Autes%2C+G">G. Autes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B+Q">B. Q. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M+Y">M. Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O+V">O. V. Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.09327v1-abstract-short" style="display: inline;"> By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg(P1-xAsx). We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09327v1-abstract-full').style.display = 'inline'; document.getElementById('1804.09327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.09327v1-abstract-full" style="display: none;"> By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg(P1-xAsx). We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of &#34;negative&#34; hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x = 0.38. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09327v1-abstract-full').style.display = 'none'; document.getElementById('1804.09327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 161111(R) (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08610">arXiv:1802.08610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.08610">pdf</a>, <a href="https://arxiv.org/ps/1802.08610">ps</a>, <a href="https://arxiv.org/format/1802.08610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.174417">10.1103/PhysRevB.97.174417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the Magnetic Structure and Charge Ordering in La$_{1/3}$Sr$_{2/3}$FeO$_3$ by Neutron Powder Diffraction and M枚ssbauer Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">F. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">V. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazet%2C+T">T. Mazet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sibille%2C+R">R. Sibille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malaman%2C+B">B. Malaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+R">R. Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08610v2-abstract-short" style="display: inline;"> The magnetic ordering of La$_{1/3}$Sr$_{2/3}$FeO$_3$ perovskite has been studied by neutron powder diffraction and $^{57}$Fe M枚ssbauer spectroscopy down to 2 K. From symmetry analysis, a chiral helical model and a collinear model are proposed to describe the magnetic structure. Both are commensurate, with propagation vector k = (0,0,1) in R-3c space group. In the former model, the magnetic moments&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08610v2-abstract-full').style.display = 'inline'; document.getElementById('1802.08610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08610v2-abstract-full" style="display: none;"> The magnetic ordering of La$_{1/3}$Sr$_{2/3}$FeO$_3$ perovskite has been studied by neutron powder diffraction and $^{57}$Fe M枚ssbauer spectroscopy down to 2 K. From symmetry analysis, a chiral helical model and a collinear model are proposed to describe the magnetic structure. Both are commensurate, with propagation vector k = (0,0,1) in R-3c space group. In the former model, the magnetic moments of Fe adopt the magnetic space group P3$_{2}$21 and have helical and antiferromagnetic ordering propagating along the c axis. The model allows only one Fe site, with a magnetic moment of 3.46(2) $渭_{\rm{B}}$ at 2 K. In the latter model, the magnetic moments of iron ions adopt the magnetic space group C2/c or C2&#39;/c&#39; and are aligned collinearly. The model allows the presence of two inequivalent Fe sites with magnetic moments of amplitude 3.26(3) $渭_{\rm{B}}$ and 3.67(2) $渭_{\rm{B}}$, respectively. The neutron diffraction pattern is equally well fitted by either model. The M枚ssbauer spectroscopy study suggests a single charge state Fe$^{3.66+}$ above the magnetic transition and a charge disproportionation into Fe$^{(3.66-味)+}$ and Fe$^{(3.66+2味)+}$ below the magnetic transition. The compatibility of the magnetic structure models with the M枚ssbauer spectroscopy results is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08610v2-abstract-full').style.display = 'none'; document.getElementById('1802.08610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 174417 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02244">arXiv:1712.02244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.02244">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.214512">10.1103/PhysRevB.97.214512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of single-phase disordered CsxFe2-ySe2 at high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Svitlyk%2C+V">V. Svitlyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mezouar%2C+M">M. Mezouar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02244v2-abstract-short" style="display: inline;"> A single-phase high pressure (HP) modification of CsxFe2-ySe2 was synthesized at 11.8 GPa at ambient temperature. Structurally this polymorph is similar to the minor low pressure (LP) superconducting phase, namely they both crystallize in a ThCr2Si2-type structure without ordering of the Fe vacancies within the Fe-deficient FeSe4 layers. The HP CsxFe2-ySe2 polymorph is found to be less crystalline&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02244v2-abstract-full').style.display = 'inline'; document.getElementById('1712.02244v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02244v2-abstract-full" style="display: none;"> A single-phase high pressure (HP) modification of CsxFe2-ySe2 was synthesized at 11.8 GPa at ambient temperature. Structurally this polymorph is similar to the minor low pressure (LP) superconducting phase, namely they both crystallize in a ThCr2Si2-type structure without ordering of the Fe vacancies within the Fe-deficient FeSe4 layers. The HP CsxFe2-ySe2 polymorph is found to be less crystalline and nearly twice as soft compared to the parent major and minor phases of CsxFe2-ySe2. It can be quenched to low pressures and is stable at least on the scale of weeks. At ambient pressure the HP polymorph of CsxFe2-ySe2 is expected to exhibit different superconducting properties compared to its LP minor phase (Tc = 27 K). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02244v2-abstract-full').style.display = 'none'; document.getElementById('1712.02244v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 214512 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.09189">arXiv:1707.09189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.09189">pdf</a>, <a href="https://arxiv.org/ps/1707.09189">ps</a>, <a href="https://arxiv.org/format/1707.09189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSCP.21.011028">10.7566/JPSCP.21.011028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting properties of Cu intercalated Bi$_2$Se$_3$ studied by Muon Spin Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanigel%2C+A">Amit Kanigel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riback%2C+A">Amit Riback</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chashka%2C+K+B">Khanan B. Chashka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morenzoni%2C+E">Elvezio Morenzoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">Andreas Suter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.09189v1-abstract-short" style="display: inline;"> We present muon spin rotation measurements on superconducting Cu intercalated Bi$_2$Se$_3$, which was suggested as a realization of a topological superconductor. We observe a clear evidence of the superconducting transition below 4 K, where the width of magnetic field distribution increases as the temperature is decreased. The measured broadening at mK temperatures suggests a large London penetrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09189v1-abstract-full').style.display = 'inline'; document.getElementById('1707.09189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.09189v1-abstract-full" style="display: none;"> We present muon spin rotation measurements on superconducting Cu intercalated Bi$_2$Se$_3$, which was suggested as a realization of a topological superconductor. We observe a clear evidence of the superconducting transition below 4 K, where the width of magnetic field distribution increases as the temperature is decreased. The measured broadening at mK temperatures suggests a large London penetration depth in the $ab$ plane ($位_{\mathrm{eff}}\sim 1.6$ $\mathrm渭$m). We show that the temperature dependence of this broadening follows the BCS prediction, but could be consistent with several gap symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09189v1-abstract-full').style.display = 'none'; document.getElementById('1707.09189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.05195">arXiv:1704.05195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.05195">pdf</a>, <a href="https://arxiv.org/format/1704.05195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.087002">10.1103/PhysRevLett.119.087002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complementary response of static spin-stripe order and superconductivity to non-magnetic impurities in cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uemura%2C+Y+J">Y. J. Uemura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">H. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shengelaya%2C+A">A. Shengelaya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.05195v2-abstract-short" style="display: inline;"> We report muon-spin rotation and neutron-scattering experiments on non-magnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x = 1/8, the spin-stripe ordering temperature T_so decreases linearly with Zn doping y and disappears at around y = 4\%, demonstrating a high sensitivity of static&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05195v2-abstract-full').style.display = 'inline'; document.getElementById('1704.05195v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.05195v2-abstract-full" style="display: none;"> We report muon-spin rotation and neutron-scattering experiments on non-magnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x = 1/8, the spin-stripe ordering temperature T_so decreases linearly with Zn doping y and disappears at around y = 4\%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO_2 plane. Moreover, T_so is suppressed by Zn in the same manner as is the superconducting transition temperature T_c for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent on intertwining with superconducting correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05195v2-abstract-full').style.display = 'none'; document.getElementById('1704.05195v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages and 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 087002 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.08321">arXiv:1703.08321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.08321">pdf</a>, <a href="https://arxiv.org/format/1703.08321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.041014">10.1103/PhysRevX.7.041014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global formation of topological defects in the multiferroic hexagonal manganites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+Q+N">Q. N. Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lilienblum%2C+M">M. Lilienblum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffin%2C+S+M">S. M. Griffin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Z. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourret%2C+E">E. Bourret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+D">D. Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lichtenberg%2C+F">F. Lichtenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salje%2C+E+K+H">E. K. H. Salje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spaldin%2C+N+A">N. A. Spaldin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiebig%2C+M">M. Fiebig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+A">A. Cano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.08321v1-abstract-short" style="display: inline;"> The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic lengthscales. Its verification is challenging, however, in particular at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08321v1-abstract-full').style.display = 'inline'; document.getElementById('1703.08321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.08321v1-abstract-full" style="display: none;"> The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic lengthscales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding e.g. its degree of universality. Here we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburg and mean-field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08321v1-abstract-full').style.display = 'none'; document.getElementById('1703.08321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 041014 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01934">arXiv:1702.01934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.01934">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.106406">10.1103/PhysRevLett.118.106406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct evolutions of Weyl fermion quasiparticles and Fermi arcs with bulk band topology in Weyl semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Autes%2C+G">G. Autes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B+Q">B. Q. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M+Y">M. Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisti%2C+F">F. Bisti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D">D. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O+V">O. V. Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01934v1-abstract-short" style="display: inline;"> The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01934v1-abstract-full').style.display = 'inline'; document.getElementById('1702.01934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01934v1-abstract-full" style="display: none;"> The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principle calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two non-trivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g. NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magneto-transport properties observed in TaAs, TaP and NbP, where the Fermi arc states are similar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01934v1-abstract-full').style.display = 'none'; document.getElementById('1702.01934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.03372">arXiv:1608.03372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.03372">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13758">10.1038/ncomms13758 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning magnetic spirals beyond room temperature with chemical disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morin%2C+M">Micka毛l Morin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Can%C3%A9vet%2C+E">Emmanuel Can茅vet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raynaud%2C+A">Adrien Raynaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartkowiak%2C+M">Marek Bartkowiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ban%2C+V">Voraksmy Ban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">Michel Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">Marisa Medarde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.03372v2-abstract-short" style="display: inline;"> In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets with spiral magnetic orders. Such materials are of high current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low magnetic order temperatures (typically &lt;100K) greatly restrict their fields of applica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.03372v2-abstract-full').style.display = 'inline'; document.getElementById('1608.03372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.03372v2-abstract-full" style="display: none;"> In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets with spiral magnetic orders. Such materials are of high current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low magnetic order temperatures (typically &lt;100K) greatly restrict their fields of application. Here we demonstrate that the stability domain of the spiral phase in the perovskite YBaCuFeO5 can be enlarged by more than 150K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25掳C at zero magnetic field. Our findings demonstrate that the properties of a magnetic spiral, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.03372v2-abstract-full').style.display = 'none'; document.getElementById('1608.03372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, Volume 7, id. 13758 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.04251">arXiv:1606.04251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.04251">pdf</a>, <a href="https://arxiv.org/format/1606.04251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.014514">10.1103/PhysRevB.95.014514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for strong lattice effects as revealed from huge unconventional oxygen isotope effects on the pseudogap temperature in La$_{2-x}$Sr$_{x}$CuO$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bendele%2C+M">M. Bendele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Rohr%2C+F">F. von Rohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bianconi%2C+A">A. Bianconi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simon%2C+A">A. Simon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bussmann-Holder%2C+A">A. Bussmann-Holder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">H. Keller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.04251v2-abstract-short" style="display: inline;"> The oxygen isotope ($^{16}$O/$^{18}$O) effect (OIE) on the pseudogap (charge-stripe ordering) temperature $T^{\ast}$ is investigated for the cuprate superconductor La$_{2-x}$Sr$_{x}$CuO$_{4}$ as a function of doping $x$ by means of x-ray absorption near edge structure (XANES) studies. A strong $x$ dependent and sign reversed OIE on $T^{\ast}$ is observed. The OIE exponent $伪_{T^{\ast}}$ systematic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04251v2-abstract-full').style.display = 'inline'; document.getElementById('1606.04251v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.04251v2-abstract-full" style="display: none;"> The oxygen isotope ($^{16}$O/$^{18}$O) effect (OIE) on the pseudogap (charge-stripe ordering) temperature $T^{\ast}$ is investigated for the cuprate superconductor La$_{2-x}$Sr$_{x}$CuO$_{4}$ as a function of doping $x$ by means of x-ray absorption near edge structure (XANES) studies. A strong $x$ dependent and sign reversed OIE on $T^{\ast}$ is observed. The OIE exponent $伪_{T^{\ast}}$ systematically decreases from $伪_{T^{\ast}} = - 0.6(1.3)$ for $x = 0.15$ to $伪_{T^{\ast}} = - 4.4(1.1)$ for $x = 0.06$, corresponding to increasing $T^{\ast}$ and decreasing superconducting transition temperature $T_{c}$. Both $T^{\ast}(^{16}{\rm O})$ and $T^{\ast}(^{18}{\rm O})$ exhibit a linear doping dependence with different slopes and critical end points (where $T^{\ast}(^{16}{\rm O})$ and $T^{\ast}(^{18}{\rm O})$ fall to zero) at $x_{c}(^{16}{\rm O}) = 0.201(4)$ and $x_{c}(^{18}{\rm O}) = 0.182(3)$, indicating a large positive OIE of $x_{c}$ with an exponent of $伪_{x_{c}} = 0.84(22)$. The remarkably large and strongly doping dependent OIE on $T^{\ast}$ signals a substantial involvement of the lattice in the formation of the pseudogap, consistent with a polaronic approach to cuprate superconductivity and the vibronic character of its ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04251v2-abstract-full').style.display = 'none'; document.getElementById('1606.04251v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 014514 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.01050">arXiv:1606.01050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.01050">pdf</a>, <a href="https://arxiv.org/ps/1606.01050">ps</a>, <a href="https://arxiv.org/format/1606.01050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.220504">10.1103/PhysRevB.93.220504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully gapped superconductivity in the topological superconductor beta-PdBi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sibille%2C+R">R. Sibille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baines%2C+C">C. Baines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gavilano%2C+J+L">J. L. Gavilano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">M. Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morenzoni%2C+E">E. Morenzoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.01050v1-abstract-short" style="display: inline;"> The recent discovery of the topologically protected surface states in the beta-phase of PdBi2 has reignited the research interest in this class of superconductors. Here, we show results of our muon spin relaxation and rotation (muSR) measurements carried out to investigate the superconducting and magnetic properties and the topological effect in the superconducting ground state of beta-PdBi2. Zero&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01050v1-abstract-full').style.display = 'inline'; document.getElementById('1606.01050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.01050v1-abstract-full" style="display: none;"> The recent discovery of the topologically protected surface states in the beta-phase of PdBi2 has reignited the research interest in this class of superconductors. Here, we show results of our muon spin relaxation and rotation (muSR) measurements carried out to investigate the superconducting and magnetic properties and the topological effect in the superconducting ground state of beta-PdBi2. Zero-field muSR data reveal that no sizeable spontaneous magnetization arises with the onset of superconductivity implying that the time reversal symmetry is preserved in the superconducting state of beta-PdBi2. Further, a strong diamagnetic shift of the applied field has been observed in the transverse-field (TF) muSR experiments, indicating that any triplet-pairing channel, if present, does not dominate the superconducting condensate. Using TF-muSR, we estimate that the magnetic penetration depth is 263(10) nm at zero temperature. Temperature dependence of the magnetic penetration depth provides evidence for the existence of a nodeless single s-wave type isotropic energy gap of 0.78(1) meV at zero temperature. Our results further suggest that the topologically protected surface states have no effect on the bulk of the superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01050v1-abstract-full').style.display = 'none'; document.getElementById('1606.01050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication as a Rapid Communication in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 220504 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.06825">arXiv:1604.06825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.06825">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4954780">10.1063/1.4954780 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase separation in iron chalcogenide superconductor Rb0.8+xFe1.6+ySe2 as seen by Raman light scattering and band structure calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pashkevich%2C+Y">Yu. Pashkevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gnezdilov%2C+V">V. Gnezdilov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemmens%2C+P">P. Lemmens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shevtsova%2C+T">T. Shevtsova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gusev%2C+A">A. Gusev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamonova%2C+K">K. Lamonova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wulferding%2C+D">D. Wulferding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gnatchenko%2C+S">S. Gnatchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.06825v1-abstract-short" style="display: inline;"> We report Raman light scattering in the phase separated superconducting single crystal Rb0.77Fe1.61Se2 with Tc = 32 K. The spectra have been measured in a wide temperature range 3K -500K. The observed phonon lines from the majority vacancy ordered Rb2Fe4Se5 (245) antiferromagnetic phase with TN= 525 K demonstrate modest anomalies in frequency, intensity and halfwidth at the superconductive phase t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06825v1-abstract-full').style.display = 'inline'; document.getElementById('1604.06825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.06825v1-abstract-full" style="display: none;"> We report Raman light scattering in the phase separated superconducting single crystal Rb0.77Fe1.61Se2 with Tc = 32 K. The spectra have been measured in a wide temperature range 3K -500K. The observed phonon lines from the majority vacancy ordered Rb2Fe4Se5 (245) antiferromagnetic phase with TN= 525 K demonstrate modest anomalies in frequency, intensity and halfwidth at the superconductive phase transition. We identify phonon lines from the minority compressed Rb未Fe2Se2 (122) conductive phase. The superconducting gap with dx2-y2 symmetry is also detected in our spectra. In the range 0-600 cm-1 we observed the low intensive but highly polarized B1g-type background which becomes well structured under cooling. The possible magnetic or multiorbital origin of this background has been discussed. We argue that phase separation in M0.8+xFe1.6+ySe2 has pure magnetic origin. It occurs below Neel temperature when iron magnetic moment achieves some critical magnitude. We state that there is a spacer between the majority 245 and minority 122 phases. Using ab-initio spin polarized band structure calculations we demonstrate that compressed vacancy ordered Rb2Fe4Se5 phase can be conductive and therefore may serve as a protective interface spacer between the pure metallic Rb未Fe2Se2 phase and the insulating Rb2Fe4Se5 phase providing the percolative Josephson-junction like superconductivity in the whole sample of Rb0.8+xFe1.6+ySe2 Our lattice dynamics calculations show significant difference in the phonon spectra of the conductive and insulating Rb2Fe4.Se5 phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06825v1-abstract-full').style.display = 'none'; document.getElementById('1604.06825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is devoted to the memory of academician Kirill Borisovich Tolpygo, prominent Physicist, Teacher and Citizen, who made a great contribution to the lattice dynamics theory and many other branches of solid state physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journ. Low Temp. Physics (FNT) 42, 628 (2016) and Low Temperature Physics 42, 491 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.02116">arXiv:1604.02116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.02116">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+J">Z. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Magrez%2C+A">A. Magrez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bugnon%2C+P">P. Bugnon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+H">H. Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J+Z">J. Z. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+B+B">B. B. Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B+Q">B. Q. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.02116v1-abstract-short" style="display: inline;"> A new type of Weyl semimetal state, in which the energy values of Weyl nodes are not the local extrema, has been theoretically proposed recently, namely type II Weyl semimetal. Distinguished from type I semimetal (e.g. TaAs), the Fermi surfaces in a type II Weyl semimetal consist of a pair of electron and hole pockets touching at the Weyl node. In addition, Weyl fermions in type II Weyl semimetals&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02116v1-abstract-full').style.display = 'inline'; document.getElementById('1604.02116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.02116v1-abstract-full" style="display: none;"> A new type of Weyl semimetal state, in which the energy values of Weyl nodes are not the local extrema, has been theoretically proposed recently, namely type II Weyl semimetal. Distinguished from type I semimetal (e.g. TaAs), the Fermi surfaces in a type II Weyl semimetal consist of a pair of electron and hole pockets touching at the Weyl node. In addition, Weyl fermions in type II Weyl semimetals violate Lorentz invariance. Due to these qualitative differences distinct spectroscopy and magnetotransport properties are expected in type II Weyl semimetals. Here, we present the direct observation of the Fermi arc states in MoTe2 by using angle resolved photoemission spectroscopy. Two arc states are identified for each pair of Weyl nodes whoes surface projections of them possess single topological charge, which is a unique property for type II Weyl semimetals. The experimentally determined Fermi arcs are consistent with our first principle calculations. Our results unambiguously establish that MoTe2 is a type II Weyl semimetal, which serves as a great test bed to investigate the phenomena of new type of Weyl fermions with Lorentz invariance violated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.02116v1-abstract-full').style.display = 'none'; document.getElementById('1604.02116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.02039">arXiv:1603.02039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.02039">pdf</a>, <a href="https://arxiv.org/format/1603.02039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys4190">10.1038/nphys4190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a 4-spin Plaquette Singlet State in the Shastry-Sutherland compound SrCu2(BO3)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zayed%2C+M+E">Mohamed E. Zayed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Christian R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larrea%2C+J">Julio Larrea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A4uchli%2C+A+M">Andreas M. L盲uchli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panagopoulos%2C+C">Christos Panagopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+S+S">Siddharth S. Saxena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ellerby%2C+M">Mark Ellerby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Desmond F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Straessle%2C+T">Thierry Straessle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klotz%2C+S">Stefan Klotz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamel%2C+G">Gerard Hamel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadykov%2C+R+A">Ravil A. Sadykov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boehm%2C+M">Martin Boehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jimenez-Ruiz%2C+M">Monica Jimenez-Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneidewind%2C+A">Astrid Schneidewind</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stingaciu%2C+M">Marian Stingaciu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronnow%2C+H+M">Henrik M. Ronnow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.02039v1-abstract-short" style="display: inline;"> The study of interacting spin systems is of fundamental importance for modern condensed matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated 2D Shastry-Sutherland lattice realized by SrCu2(BO3)2 is an important test to our understanding of quantum magnetism. It was constructe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02039v1-abstract-full').style.display = 'inline'; document.getElementById('1603.02039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.02039v1-abstract-full" style="display: none;"> The study of interacting spin systems is of fundamental importance for modern condensed matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated 2D Shastry-Sutherland lattice realized by SrCu2(BO3)2 is an important test to our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning at 21.5 kbar. This gapped plaquette singlet state with strong 4-spin correlations leads to a transition to an ordered Neel state above 40 kbar, which can realize a deconfined quantum critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.02039v1-abstract-full').style.display = 'none'; document.getElementById('1603.02039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01745">arXiv:1603.01745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.01745">pdf</a>, <a href="https://arxiv.org/format/1603.01745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.037002">10.1103/PhysRevLett.117.037002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-Resolved Electronic Structure of the High-$T_{c}$ Superconductor Parent Compound BaBiO$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">D. J. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Risti%C4%87%2C+Z">Z. Risti膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">J. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B+Q">B. Q. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+T">T. Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovi%C4%87%2C+M">M. Radovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01745v2-abstract-short" style="display: inline;"> We investigate the band structure of BaBiO$_{3}$, an insulating parent compound of doped high-$T_{c}$ superconductors, using \emph{in situ} angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01745v2-abstract-full').style.display = 'inline'; document.getElementById('1603.01745v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01745v2-abstract-full" style="display: none;"> We investigate the band structure of BaBiO$_{3}$, an insulating parent compound of doped high-$T_{c}$ superconductors, using \emph{in situ} angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO$_{6}$ breathing distortions. Though the distortions are often thought to coincide with Bi$^{3+}$/Bi$^{5+}$ charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth $6s$ states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O $2p$ orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01745v2-abstract-full').style.display = 'none'; document.getElementById('1603.01745v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">minor changes to text and other figures; includes link to online Supplemental Material; accepted to Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 037002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.06627">arXiv:1512.06627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.06627">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.17265/1934-7375/2016.04.001">10.17265/1934-7375/2016.04.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel synthesis method of nonstoichiometric Na2-xIrO3. Crystal structure, transport and magnetic properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rolfs%2C+K">Katharina Rolfs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.06627v1-abstract-short" style="display: inline;"> Transition metal oxides with 4d or 5d metals are of great interest due to the competing interactions, of the Coulomb repulsion and the itineracy of the d-electrons, opening a possibility of building new quantum ground states. Particularly the 5d metal oxides containing Iridium have received significant attention within the last years, due to their unexpected physical properties, caused by a strong&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06627v1-abstract-full').style.display = 'inline'; document.getElementById('1512.06627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.06627v1-abstract-full" style="display: none;"> Transition metal oxides with 4d or 5d metals are of great interest due to the competing interactions, of the Coulomb repulsion and the itineracy of the d-electrons, opening a possibility of building new quantum ground states. Particularly the 5d metal oxides containing Iridium have received significant attention within the last years, due to their unexpected physical properties, caused by a strong spin orbit coupling observed in Ir(IV). A prominent example is the Mott-insulator Sr2IrO4. Another member of this family, the honeycomb lattice compound Na2IrO3, also being a Mott-insulator having, most probably, a Kitaev spin liquid ground state. By deintercalating sodium from Na2IrO3, we were able to synthesize a new honeycomb lattice compound with more than 50% reduced sodium content. The reduction of the sodium content in this layered compound leads to a change of the oxidation state of iridium from +IV to +V/+VI and a symmetry change from C2/c to P-3. This goes along with significant changes of the physical properties. Besides the vanishing magnetic ordering at 15K, also the transport properties changes and instead insulating semiconducting properties are observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06627v1-abstract-full').style.display = 'none'; document.getElementById('1512.06627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, 1 scheme, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Chem. Eng. 10 (2016) 153-160 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.09026">arXiv:1509.09026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.09026">pdf</a>, <a href="https://arxiv.org/ps/1509.09026">ps</a>, <a href="https://arxiv.org/format/1509.09026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of Mn-doped Bi$_2$Se$_3$ compound: temperature dependence and pressure effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Panfilov%2C+A+S">A. S. Panfilov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grechnev%2C+G+E">G. E. Grechnev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorchenko%2C+A+V">A. V. Fedorchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E+V">E. V. Pomjakushina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.09026v1-abstract-short" style="display: inline;"> Magnetic susceptibility $蠂$ of Bi$_{2-x}$Mn$_{x}$Se$_3$ ($x = 0.01-0.2$) was measured in the temperature range $4.2-300$ K. For all the samples, a Curie-Weiss behaviour of $蠂(T)$ was revealed with effective magnetic moments of Mn ions corresponding to the spin value S=5/2, which couple antiferromagnetically with the paramagnetic Curie temperature $螛\sim -50$ K. In addition, for the samples of nomi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.09026v1-abstract-full').style.display = 'inline'; document.getElementById('1509.09026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.09026v1-abstract-full" style="display: none;"> Magnetic susceptibility $蠂$ of Bi$_{2-x}$Mn$_{x}$Se$_3$ ($x = 0.01-0.2$) was measured in the temperature range $4.2-300$ K. For all the samples, a Curie-Weiss behaviour of $蠂(T)$ was revealed with effective magnetic moments of Mn ions corresponding to the spin value S=5/2, which couple antiferromagnetically with the paramagnetic Curie temperature $螛\sim -50$ K. In addition, for the samples of nominal composition $x$ = 0.1 and 0.2 the effect of a hydrostatic pressure $P$ up to 2 kbar on $蠂$ has been measured at fixed temperatures 78 and 300 K that allowed to estimate the pressure derivative of $螛$ to be d$螛$/d$P\sim-0.8$ K/kbar. Based on the observed behaviour of $螛$ with varied Mn concentration and pressure, a possible mechanism of interaction between localized Mn moments is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.09026v1-abstract-full').style.display = 'none'; document.getElementById('1509.09026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.03983">arXiv:1507.03983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.03983">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms11006">10.1038/ncomms11006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Weyl nodes and Fermi arcs in TaP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H+M">H. M. Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B+Q">B. Q. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C">C. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">J. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisti%2C+F">F. Bisti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D">D. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aut%C3%A8s%2C+G">G. Aut猫s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O+V">O. V. Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Z. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">X. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aeppli%2C+G">G. Aeppli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.03983v2-abstract-short" style="display: inline;"> A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03983v2-abstract-full').style.display = 'inline'; document.getElementById('1507.03983v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.03983v2-abstract-full" style="display: none;"> A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with nonzero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03983v2-abstract-full').style.display = 'none'; document.getElementById('1507.03983v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 7, 11006 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.02830">arXiv:1507.02830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.02830">pdf</a>, <a href="https://arxiv.org/format/1507.02830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.inorgchem.5b01498">10.1021/acs.inorgchem.5b01498 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New synthesis route and magnetic structure of Tm2Mn2O7 - pyrochlore </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolfs%2C+K">Katharina Rolfs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karpinski%2C+J">Janusz Karpinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.02830v1-abstract-short" style="display: inline;"> In this work we present a new chemical route to synthesize Tm2Mn2O7 pyrochlore, a compound which is thermodynamically unstable at ambient pressure. Differently from the reported in the past high pressure synthesis of the same compound applying oxides as starting materials, we have obtained a pure phase Tm2Mn2O7 by a converting TmMnO3 at 1100 C and 1300 bar oxygen pressure. The studies of Tm2Mn2O7&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02830v1-abstract-full').style.display = 'inline'; document.getElementById('1507.02830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.02830v1-abstract-full" style="display: none;"> In this work we present a new chemical route to synthesize Tm2Mn2O7 pyrochlore, a compound which is thermodynamically unstable at ambient pressure. Differently from the reported in the past high pressure synthesis of the same compound applying oxides as starting materials, we have obtained a pure phase Tm2Mn2O7 by a converting TmMnO3 at 1100 C and 1300 bar oxygen pressure. The studies of Tm2Mn2O7 performed by a high resolution neutron powder diffraction have shown, that a pure pyrochlore cubic phase Tm2Mn2O7 (space group Fd-3m) have been obtained. On cooling below 25K there is a transition to a ferromagnetically (FM) ordered phase observed with an additional antiferromagnetic (AFM) canting suggesting a lowering of the initial cubic crystal symmetry. The magnetic transition is accompanied by small but well visible magnetostrsiction effect. Using symmetry analysis we have found a solution for the AFM structure in the maximal Shubnikov subgroup I41/am&#39;d&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02830v1-abstract-full').style.display = 'none'; document.getElementById('1507.02830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Inorg.Chem. 2015, 54, 9092-9097 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.03390">arXiv:1506.03390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.03390">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2016.01.003">10.1016/j.jmmm.2016.01.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural disorder in Li(x)[C5H5N](y)Fe(2-z)Se2 and Cs(x)Fe(2-z)Se2 superconductors studied by M枚ssbauer spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Komedera%2C+K">K. Komedera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jasek%2C+A+K">A. K. Jasek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blachowski%2C+A">A. Blachowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruebenbauer%2C+K">K. Ruebenbauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zukrowski%2C+J">J. Zukrowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.03390v2-abstract-short" style="display: inline;"> Two iron-chalcogenide superconductors Li(x)[C5H5N](y)Fe(2-z)Se2 and Cs(x)Fe(2-z)Se2 in the as-prepared and annealed state have been investigated by means of the Moessbauer spectroscopy versus temperature. Multi-component spectra are obtained. One can see a non-magnetic component due to iron located in the unperturbed Fe-Se sheets responsible for superconductivity. Remaining components are magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03390v2-abstract-full').style.display = 'inline'; document.getElementById('1506.03390v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.03390v2-abstract-full" style="display: none;"> Two iron-chalcogenide superconductors Li(x)[C5H5N](y)Fe(2-z)Se2 and Cs(x)Fe(2-z)Se2 in the as-prepared and annealed state have been investigated by means of the Moessbauer spectroscopy versus temperature. Multi-component spectra are obtained. One can see a non-magnetic component due to iron located in the unperturbed Fe-Se sheets responsible for superconductivity. Remaining components are magnetically ordered even at room temperature. There is some magnetically ordered iron in Fe-Se sheets perturbed by presence of the iron vacancies. Additionally, one can see iron dispersed between sheets in the form of magnetically ordered high spin trivalent ions, some clusters of above ions, and in the case of pyridine intercalated compound in the form of alpha-Fe precipitates. Pyridine intercalated sample shows traces of superconductivity in the as-prepared state, while cesium intercalated sample in the as-prepared state does not show any superconductivity. Superconductors with transition temperatures being 40 K and 25 K, respectively, are obtained upon annealing. Annealing leads to removal/ordering of the iron vacancies within Fe-Se sheets, while clusters of alpha-Fe grow in the pyridine intercalated sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03390v2-abstract-full').style.display = 'none'; document.getElementById('1506.03390v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Magn. Magn. Mater. 406 (2016) 244 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02527">arXiv:1505.02527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.02527">pdf</a>, <a href="https://arxiv.org/format/1505.02527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.144114">10.1103/PhysRevB.91.144114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional Cs-vacancy superstructure in iron-based superconductor $Cs_{0.8}Fe_{1.6}Se_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cemal%2C+E">E. Cemal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voneshen%2C+D+J">D. J. Voneshen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refson%2C+K">K. Refson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutmann%2C+M+J">M. J. Gutmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goff%2C+J+P">J. P. Goff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02527v1-abstract-short" style="display: inline;"> Single crystal neutron diffraction is combined with synchrotron x-ray scattering to identify the different superlattice phases present in $Cs_{0.8}Fe_{1.6}Se_2$. A combination of single crystal refinements and first principles modelling are used to provide structural solutions for the $\sqrt{5}\times\sqrt{5}$ and $\sqrt{2}\times\sqrt{2}$ superlattice phases. The $\sqrt{5}\times\sqrt{5}$ superlatti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02527v1-abstract-full').style.display = 'inline'; document.getElementById('1505.02527v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02527v1-abstract-full" style="display: none;"> Single crystal neutron diffraction is combined with synchrotron x-ray scattering to identify the different superlattice phases present in $Cs_{0.8}Fe_{1.6}Se_2$. A combination of single crystal refinements and first principles modelling are used to provide structural solutions for the $\sqrt{5}\times\sqrt{5}$ and $\sqrt{2}\times\sqrt{2}$ superlattice phases. The $\sqrt{5}\times\sqrt{5}$ superlattice structure is predominantly composed of ordered Fe vacancies and Fe distortions, whereas the $\sqrt{2}\times\sqrt{2}$ superlattice is composed of ordered Cs vacancies. The Cs vacancies only order within the plane, causing Bragg rods in reciprocal space. By mapping x-ray diffraction measurements with narrow spatial resolution over the surface of the sample, the structural domain pattern was determined, consistent with the notion of a majority antiferromagnetic $\sqrt{5}\times\sqrt{5}$ phase and a superconducting $\sqrt{2}\times\sqrt{2}$ phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02527v1-abstract-full').style.display = 'none'; document.getElementById('1505.02527v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">REVTex 4.1, 7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 144114 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.02760">arXiv:1504.02760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.02760">pdf</a>, <a href="https://arxiv.org/format/1504.02760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.035147">10.1103/PhysRevB.92.035147 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the electron-phonon interaction in correlated systems with coherent lattice fluctuation spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mann%2C+A">Andreas Mann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldini%2C+E">Edoardo Baldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tramontana%2C+A">Antonio Tramontana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arrell%2C+C">Christopher Arrell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Mourik%2C+F">Frank van Mourik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lorenzana%2C+J">Jos茅 Lorenzana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbone%2C+F">Fabrizio Carbone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.02760v1-abstract-short" style="display: inline;"> Tailoring the properties of correlated oxides is accomplished by chemical doping, pressure, temperature or magnetic field. Photoexcitation is a valid alternative to reach out-of-equilibrium states otherwise inaccessible. Here, we quantitatively estimate the coupling between a lattice distortion and the charge-transfer excitation in (La$_2$CuO$_{4+未}$). We photoinduce a coherent La ion vibration an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02760v1-abstract-full').style.display = 'inline'; document.getElementById('1504.02760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.02760v1-abstract-full" style="display: none;"> Tailoring the properties of correlated oxides is accomplished by chemical doping, pressure, temperature or magnetic field. Photoexcitation is a valid alternative to reach out-of-equilibrium states otherwise inaccessible. Here, we quantitatively estimate the coupling between a lattice distortion and the charge-transfer excitation in (La$_2$CuO$_{4+未}$). We photoinduce a coherent La ion vibration and monitor the response of the optical constants in a broad energy range, providing quantitative information on the electron-phonon matrix element that can be compared to theoretical models. We propose the same methodology to probe electron-electron interactions in other materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02760v1-abstract-full').style.display = 'none'; document.getElementById('1504.02760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 035147 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01779">arXiv:1504.01779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.01779">pdf</a>, <a href="https://arxiv.org/format/1504.01779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.024508">10.1103/PhysRevB.92.024508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oxygen Isotope Effects on Lattice Properties of La_{2-x}Ba_xCuO_4 (x = 1/8) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheptyakov%2C+D">D. Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shengelaya%2C+A">A. Shengelaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simon%2C+A">A. Simon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bussmann-Holder%2C+A">A. Bussmann-Holder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">H. Keller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01779v1-abstract-short" style="display: inline;"> A novel negative oxygen-isotope (16O/18O) effect (OIE) on the low-temperature tetragonal phase transition temperature T_{LTT} was observed in La_{2-x}Ba_xCuO_4 (x = 1/8) using high-resolution neutron powder diffraction. The corresponding OIE exponent alpha(T_{LTT}) = - 0.36(5) has the same sign as alpha(T_{so}) = -0.57(6) found for the spin-stripe order temperature T_so. The fact that the LTT tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01779v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01779v1-abstract-full" style="display: none;"> A novel negative oxygen-isotope (16O/18O) effect (OIE) on the low-temperature tetragonal phase transition temperature T_{LTT} was observed in La_{2-x}Ba_xCuO_4 (x = 1/8) using high-resolution neutron powder diffraction. The corresponding OIE exponent alpha(T_{LTT}) = - 0.36(5) has the same sign as alpha(T_{so}) = -0.57(6) found for the spin-stripe order temperature T_so. The fact that the LTT transition is accompanied by charge ordering (CO) implies the presence of an OIE also for the CO temperature T_co. Furthermore, a temperature dependent shortening of the c-axis with the heavier isotope is observed. These results combined with model calculations demonstrate that anharmonic electron-lattice interactions are essential for all transitions observed in the stripe phase of cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01779v1-abstract-full').style.display = 'none'; document.getElementById('1504.01779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages and 7 figures, including supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 024508 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08102">arXiv:1503.08102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08102">pdf</a>, <a href="https://arxiv.org/format/1503.08102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.024101">10.1103/PhysRevB.92.024101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal structure and phonon softening in Ca3Ir4Sn13 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gavilano%2C+J+L">J. L. Gavilano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sibille%2C+R">R. Sibille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delley%2C+B">B. Delley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramakrishnan%2C+M">M. Ramakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neugebauer%2C+M">M. Neugebauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+L+P">L. P. Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piovano%2C+A">A. Piovano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez-Diaz%2C+T+M">T. M. Fernandez-Diaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">M. Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08102v2-abstract-short" style="display: inline;"> We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T &gt; T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08102v2-abstract-full').style.display = 'inline'; document.getElementById('1503.08102v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08102v2-abstract-full" style="display: none;"> We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T &gt; T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode is identified as a &#39;breathing&#39; mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single crystal diffraction data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08102v2-abstract-full').style.display = 'none'; document.getElementById('1503.08102v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 024101 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.01935">arXiv:1501.01935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.01935">pdf</a>, <a href="https://arxiv.org/ps/1501.01935">ps</a>, <a href="https://arxiv.org/format/1501.01935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.064408">10.1103/PhysRevB.91.064408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Incommensurate magnetic structure, Fe/Cu chemical disorder and magnetic interactions in the high-temperature multiferroic YBaCuFeO5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morin%2C+M">M. Morin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scaramucci%2C+A">A. Scaramucci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartkowiak%2C+M">M. Bartkowiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">G. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheptyakov%2C+D">D. Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Carvajal%2C+J">J. Rodriguez-Carvajal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spaldin%2C+N+A">N. A. Spaldin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">M. Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">M. Medarde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.01935v1-abstract-short" style="display: inline;"> Motivated by the recent observations of incommensurate magnetic order and electric polarization in YBaCuFeO5 up to temperatures TN2 as high as 230K [1,2] we report here for the first time a model for the incommensurate magnetic structure of this material that we complement with ab-initio calculations of the magnetic exchange parameters. Using neutron powder diffraction we show that the appearance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01935v1-abstract-full').style.display = 'inline'; document.getElementById('1501.01935v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.01935v1-abstract-full" style="display: none;"> Motivated by the recent observations of incommensurate magnetic order and electric polarization in YBaCuFeO5 up to temperatures TN2 as high as 230K [1,2] we report here for the first time a model for the incommensurate magnetic structure of this material that we complement with ab-initio calculations of the magnetic exchange parameters. Using neutron powder diffraction we show that the appearance of polarization below TN2 is accompanied by the replacement of the high temperature collinear magnetic order by a circular inclined spiral with propagation vector ki=(1/2, 1/2, 1/2+-q). Moreover, we find that the polarization approximately scales with the modulus of the magnetic modulation vector q down to the lowest temperature investigated (T=3K). Further, we observe occupational Fe/Cu disorder in the FeO5-CuO5 bipyramids, although a preferential occupation of such units by Fe-Cu pairs is supported by the observed magnetic order and by density functional calculations. We calculate exchange coupling constants for different Fe/Cu distributions and show that, for those containing Fe-Cu dimers, the resulting magnetic order is compatible with the experimentally observed collinear magnetic structure (kc=(1/2, 1/2, 1/2), TN2 &gt; T &gt; TN1 = 440K). Based on these results we discuss possible origins for the incommensurate modulation and its coupling with ferroelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01935v1-abstract-full').style.display = 'none'; document.getElementById('1501.01935v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 Figures, Accepted for publication in Physical Review B (8 Jan 2015)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 064408 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4024">arXiv:1412.4024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ssc.2015.01.016">10.1016/j.ssc.2015.01.016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism of BaFe2Se3 studied by M枚ssbauer spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Komedera%2C+K">K. Komedera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jasek%2C+A+K">A. K. Jasek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blachowski%2C+A">A. Blachowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruebenbauer%2C+K">K. Ruebenbauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piskorz%2C+M">M. Piskorz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zukrowski%2C+J">J. Zukrowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4024v2-abstract-short" style="display: inline;"> The compound BaFe2Se3 (Pnma) has been synthesized in the form of single crystals with the average composition Ba0.992Fe1.998Se3. The Moessbauer spectroscopy used for investigation of the valence states of Fe in this compound at temperature ranging from 4.2 K till room temperature revealed the occurrence of mixed-valence state for iron. The spectrum is characterized by sharply defined electric quad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4024v2-abstract-full').style.display = 'inline'; document.getElementById('1412.4024v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4024v2-abstract-full" style="display: none;"> The compound BaFe2Se3 (Pnma) has been synthesized in the form of single crystals with the average composition Ba0.992Fe1.998Se3. The Moessbauer spectroscopy used for investigation of the valence states of Fe in this compound at temperature ranging from 4.2 K till room temperature revealed the occurrence of mixed-valence state for iron. The spectrum is characterized by sharply defined electric quadrupole doublet above magnetic ordering at about 250 K. For the magnetically ordered state one sees four iron sites at least and each of them is described by separate axially symmetric electric field gradient tensor with the principal component making some angle with the hyperfine magnetic field. They form two groups occurring in equal abundances. It is likely that each group belongs to separate spin ladder with various tilts of the FeSe4 tetrahedral units along the ladder. Two impurity phases are found, i.e., superconducting FeSe and some other unidentified iron-bearing phase being magnetically disordered above 80 K. Powder form of BaFe2Se3 is unstable in contact with the air and decomposes slowly to this unidentified phase exhibiting almost the same quadrupole doublet as BaFe2Se3 above magnetic transition temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4024v2-abstract-full').style.display = 'none'; document.getElementById('1412.4024v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Solid State Commun. 207 (2015) 5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.7090">arXiv:1408.7090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.7090">pdf</a>, <a href="https://arxiv.org/format/1408.7090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.085148">10.1103/PhysRevB.90.085148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhaka%2C+R+S">R. S. Dhaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D">D. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V">V. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.7090v1-abstract-short" style="display: inline;"> Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.7090v1-abstract-full').style.display = 'inline'; document.getElementById('1408.7090v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.7090v1-abstract-full" style="display: none;"> Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temperature and binding energy, which differs from Fermi-Liquid behavior. Most intriguingly, we observe that the hybridization between the d and f states builds gradually over a wide temperature region (30 K &lt; T &lt; 110 K). The surface states appear when the hybridization starts to develop. Our detailed temperature-dependence results give a complete interpretation of the exotic resistivity result of SmB6, as well as the discrepancies among experimental results concerning the temperature regions in which the topological surface states emerge and the Kondo gap opens, and give new insights into the exotic Kondo crossover and its relationship with the topological surface states in the topological Kondo insulator SmB6. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.7090v1-abstract-full').style.display = 'none'; document.getElementById('1408.7090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 90, 085148 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.3135">arXiv:1408.3135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.3135">pdf</a>, <a href="https://arxiv.org/format/1408.3135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.067201">10.1103/PhysRevLett.113.067201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu$_2$(BO$_3$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zayed%2C+M+E">M. E. Zayed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Str%C3%A4ssle%2C+T">Th. Str盲ssle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roessli%2C+U+S+B">U. Stuhr B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ay%2C+M">M. Ay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Link%2C+P">P. Link</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stingaciu%2C+M">M. Stingaciu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.3135v1-abstract-short" style="display: inline;"> The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu$_2$(BO$_3$)$_2$ is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature while the integrated spectral weight can be explained by an isolated dimer model up to 10~K. Analyzing this anomalous spectral line-shape&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3135v1-abstract-full').style.display = 'inline'; document.getElementById('1408.3135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.3135v1-abstract-full" style="display: none;"> The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu$_2$(BO$_3$)$_2$ is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature while the integrated spectral weight can be explained by an isolated dimer model up to 10~K. Analyzing this anomalous spectral line-shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens. We explain the underlying mechanism through a simple yet quantitatively accurate model of correlated decay of triplons: an excited triplon is long-lived if no thermally populated triplons are near-by but decays quickly if there are. The phenomenon is a direct consequence of frustration induced triplon localization in the Shastry--Sutherland lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3135v1-abstract-full').style.display = 'none'; document.getElementById('1408.3135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 067201 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.8118">arXiv:1407.8118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.8118">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms5566">10.1038/ncomms5566 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of the spin texture in strongly correlated SmB6 as evidence of the topological Kondo insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhaka%2C+R+S">R. S. Dhaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landolt%2C+G">G. Landolt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muff%2C+S">S. Muff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S+V">S. V. Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">R. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H+-">H. -M. Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Z. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">X. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.8118v1-abstract-short" style="display: inline;"> The concept of a topological Kondo insulator (TKI) has been brought forward as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to the strong spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D) topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk [4]. Furthermore, strong elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8118v1-abstract-full').style.display = 'inline'; document.getElementById('1407.8118v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.8118v1-abstract-full" style="display: none;"> The concept of a topological Kondo insulator (TKI) has been brought forward as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to the strong spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D) topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk [4]. Furthermore, strong electron correlations are present in the system, which may interact with the novel topological phase. Applying spin- and angle-resolved photoemission spectroscopy (SARPES) to the Kondo insulator SmB6, a promising TKI candidate, we reveal that the surface states of SmB6 are spin polarized, and the spin is locked to the crystal momentum. Counter-propagating states (i.e. at k and -k) have opposite spin polarizations protected by time-reversal symmetry. Together with the odd number of Fermi surfaces of surface states between the 4 time-reversal invariant momenta in the surface Brillouin zone [5], these findings prove, for the first time, that SmB6 can host non-trivial topological surface states in a full insulating gap in the bulk stemming from the Kondo effect. Hence our experimental results establish that SmB6 is the first realization of a 3D TKI. It can also serve as an ideal platform for the systematic study of the interplay between novel topological quantum states with emergent effects and competing order induced by strongly correlated electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8118v1-abstract-full').style.display = 'none'; document.getElementById('1407.8118v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 5:4566 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.0837">arXiv:1406.0837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.0837">pdf</a>, <a href="https://arxiv.org/ps/1406.0837">ps</a>, <a href="https://arxiv.org/format/1406.0837">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.024520">10.1103/PhysRevB.90.024520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High resolution characterisation of microstructural evolution in Rb$_{x}$Fe$_{2-y}$Se$_{2}$ crystals on annealing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Speller%2C+S+C">S. C. Speller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudin%2C+P">P. Dudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fitzgerald%2C+S">S. Fitzgerald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hughes%2C+G+M">G. M. Hughes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kruska%2C+K">K. Kruska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Britton%2C+T+B">T. B. Britton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barinov%2C+A">A. Barinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grovenor%2C+C+R+M">C. R. M. Grovenor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.0837v2-abstract-short" style="display: inline;"> The superconducting and magnetic properties of phase-separated A$_x$Fe$_{2-y}$Se$_2$ compounds are known to depend on post-growth heat treatments and cooling profiles. This paper focusses on the evolution of microstructure on annealing, and how this influences the superconducting properties of Rb$_x$Fe$_2-y$Se$_2$ crystals. We find that the minority phase in the as-grown crystal has increased unit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0837v2-abstract-full').style.display = 'inline'; document.getElementById('1406.0837v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.0837v2-abstract-full" style="display: none;"> The superconducting and magnetic properties of phase-separated A$_x$Fe$_{2-y}$Se$_2$ compounds are known to depend on post-growth heat treatments and cooling profiles. This paper focusses on the evolution of microstructure on annealing, and how this influences the superconducting properties of Rb$_x$Fe$_2-y$Se$_2$ crystals. We find that the minority phase in the as-grown crystal has increased unit cell anisotropy (c/a ratio), reduced Rb content and increased Fe content compared to the matrix. The microstructure is rather complex, with two-phase mesoscopic plate-shaped features aligned along {113} habit planes. The minority phase are strongly facetted on the {113} planes, which we have shown to be driven by minimising the volume strain energy introduced as a result of the phase transformation. Annealing at 488K results in coarsening of the mesoscopic plate-shaped features and the formation of a third distinct phase. The subtle differences in structure and chemistry of the minority phase(s) in the crystals are thought to be responsible for changes in the superconducting transition temperature. In addition, scanning photoemission microscopy has clearly shown that the electronic structure of the minority phase has a higher occupied density of states of the low binding energy Fe3d orbitals, characteristic of crystals that exhibit superconductivity. This demonstrates a clear correlation between the Fe-vacancy-free phase with high c/a ratio and the electronic structure characteristics of the superconducting phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0837v2-abstract-full').style.display = 'none'; document.getElementById('1406.0837v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures v2 is exactly the same as v1. The typesetting errors in the abstract have been corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 024520 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.6846">arXiv:1405.6846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.6846">pdf</a>, <a href="https://arxiv.org/format/1405.6846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.057002">10.1103/PhysRevLett.113.057002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La_(2-x)Ba_xCuO_4 (x = 1/8) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bendele%2C+M">M. Bendele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shengelaya%2C+A">A. Shengelaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">H. Keller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.6846v1-abstract-short" style="display: inline;"> Large negative oxygen-isotope (16O/18O) effects (OIE&#39;s) on the static spin-stripe ordering temperature T_so and the magnetic volume fraction V_m were observed in La_(2-x)Ba_xCuO_4 (x = 1/8) by means of muon spin rotation experiments. The corresponding OIE exponents were found to be alpha_(T_so) = -0.57(6) and alpha_(V_m) = -0.71(9), which are sign reversed to alpha_(T_c) = 0.46(6) measured for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6846v1-abstract-full').style.display = 'inline'; document.getElementById('1405.6846v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.6846v1-abstract-full" style="display: none;"> Large negative oxygen-isotope (16O/18O) effects (OIE&#39;s) on the static spin-stripe ordering temperature T_so and the magnetic volume fraction V_m were observed in La_(2-x)Ba_xCuO_4 (x = 1/8) by means of muon spin rotation experiments. The corresponding OIE exponents were found to be alpha_(T_so) = -0.57(6) and alpha_(V_m) = -0.71(9), which are sign reversed to alpha_(T_c) = 0.46(6) measured for the superconducting transition temperature T_c. This indicates that the electron-lattice interaction is involved in the stripe formation and plays an important role in the competition between bulk superconductivity and static stripe order in the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6846v1-abstract-full').style.display = 'none'; document.getElementById('1405.6846v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 057002 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.0165">arXiv:1405.0165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.0165">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface vs bulk electronic structures of a moderately correlated topological insulator YbB6 revealed by ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matt%2C+C+E">C. E. Matt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landolt%2C+G">G. Landolt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J+-">J. -Z. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">X. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhaka%2C+R+S">R. S. Dhaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mesot%2C+J">J. Mesot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.0165v1-abstract-short" style="display: inline;"> Systematic angle-resolved photoemission spectroscopy (ARPES) experiments have been carried out to investigate the bulk and (100) surface electronic structures of a topological mixed-valence insulator candidate, YbB6. The bulk states of YbB6 were probed with bulk-sensitive soft X-ray ARPES, which show strong three-dimensionality as required by cubic symmetry. Surprisingly the measured Yb 4f states&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0165v1-abstract-full').style.display = 'inline'; document.getElementById('1405.0165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.0165v1-abstract-full" style="display: none;"> Systematic angle-resolved photoemission spectroscopy (ARPES) experiments have been carried out to investigate the bulk and (100) surface electronic structures of a topological mixed-valence insulator candidate, YbB6. The bulk states of YbB6 were probed with bulk-sensitive soft X-ray ARPES, which show strong three-dimensionality as required by cubic symmetry. Surprisingly the measured Yb 4f states are located around 1 eV and 2.3 eV below the Fermi level (EF), instead of being near EF as indicated by first principle calculations. The dispersive bands near EF are B 2p states, which hybridize with the 4f states. Using surface-sensitive vacuum-ultraviolet ARPES, we revealed two-dimensional surface states which form three electron-like Fermi surfaces (FSs) with Dirac-cone-like dispersions. The odd number of surface FSs gives the first indication that YbB6 is a moderately correlated topological insulator. The spin-resolved ARPES measurements provide further evidence that these surface states are spin polarized with spin locked to the crystal momentum. We have observed a second set of surface states with different topology (hole-like pockets). Clear folding of the bands suggest their origin from a 1X2 reconstructed surface. The topological property of the reconstructed surface states needs further studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0165v1-abstract-full').style.display = 'none'; document.getElementById('1405.0165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.3835">arXiv:1404.3835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.3835">pdf</a>, <a href="https://arxiv.org/ps/1404.3835">ps</a>, <a href="https://arxiv.org/format/1404.3835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.161107">10.1103/PhysRevB.89.161107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature magnetic fluctuations in the Kondo insulator SmB6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Z. Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morenzoni%2C+E">E. Morenzoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Rohr%2C+F">F. von Rohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paul%2C+D+M">D. McK. Paul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schilling%2C+A">A. Schilling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baines%2C+C">C. Baines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.3835v1-abstract-short" style="display: inline;"> We present the results of a systematic investigation of the magnetic properties of the three-dimensional Kondo topological insulator SmB6 using magnetization and muon-spin relaxation/rotation (muSR) measurements. The muSR measurements exhibit magnetic field fluctuations in SmB6 below 15 K due to electronic moments present in the system. However, no evidence for magnetic ordering is found down to 1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3835v1-abstract-full').style.display = 'inline'; document.getElementById('1404.3835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.3835v1-abstract-full" style="display: none;"> We present the results of a systematic investigation of the magnetic properties of the three-dimensional Kondo topological insulator SmB6 using magnetization and muon-spin relaxation/rotation (muSR) measurements. The muSR measurements exhibit magnetic field fluctuations in SmB6 below 15 K due to electronic moments present in the system. However, no evidence for magnetic ordering is found down to 19 mK. The observed magnetism in SmB6 is homogeneous in nature throughout the full volume of the sample. Bulk magnetization measurements on the same sample show consistent behavior. The agreement between muSR, magnetization, and NMR results strongly indicate the appearance of intrinsic bulk magnetic in-gap states associated with fluctuating magnetic fields in SmB6 at low temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3835v1-abstract-full').style.display = 'none'; document.getElementById('1404.3835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 161107(R) (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.7286">arXiv:1402.7286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.7286">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.144106">10.1103/PhysRevB.89.144106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compressibility and pressure-induced disorder in superconducting phase-separated Cs0.72Fe1.57Se2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Svitlyk%2C+V">V. Svitlyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bosak%2C+A">A. Bosak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">V. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dmitriev%2C+V">V. Dmitriev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mezouar%2C+M">M. Mezouar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.7286v1-abstract-short" style="display: inline;"> Pressure-dependent diffraction response of the superconducting phase separated Cs0.72Fe1.57Se2 has been studied using synchrotron radiation up to the pressure of 19 GPa. The main and secondary phases of Cs0.72Fe1.57Se2 have been observed in the whole pressure range. The main ordered phase has been found to undergo an order-disorder transition in the Fe-sublattice at least at P = 11 GPa with the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7286v1-abstract-full').style.display = 'inline'; document.getElementById('1402.7286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.7286v1-abstract-full" style="display: none;"> Pressure-dependent diffraction response of the superconducting phase separated Cs0.72Fe1.57Se2 has been studied using synchrotron radiation up to the pressure of 19 GPa. The main and secondary phases of Cs0.72Fe1.57Se2 have been observed in the whole pressure range. The main ordered phase has been found to undergo an order-disorder transition in the Fe-sublattice at least at P = 11 GPa with the corresponding kinetics on the order of hours. Contrary to the analogous temperature induced transition, the secondary phase has not been suppressed suggesting that its stability pressure range is higher than 19 GPa or the corresponding transformation kinetics is slower at room temperature. Together with the previously reported pressure-dependent resistivity and magnetic susceptibility measurements, this work indicates that superconductivity in the AxFe2-ySe2 (A - alkali metals) phases could be related to the Fe-vacancy ordering in the main phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7286v1-abstract-full').style.display = 'none'; document.getElementById('1402.7286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89 (2014) 144106 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.4072">arXiv:1401.4072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.4072">pdf</a>, <a href="https://arxiv.org/format/1401.4072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.054507">10.1103/PhysRevB.88.054507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature-dependent electron-phonon coupling in La$_{2-x}$Sr$_x$CuO$_4$ probed by femtosecond X-ray diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mansart%2C+B">B. Mansart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cottet%2C+M+J+G">M. J. G. Cottet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mancini%2C+G+F">G. F. Mancini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarlborg%2C+T">T. Jarlborg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dugdale%2C+S+B">S. B. Dugdale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+S+L">S. L. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mariager%2C+S+O">S. O. Mariager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Milne%2C+C+J">C. J. Milne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaud%2C+P">P. Beaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%BCbel%2C+S">S. Gr眉bel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+J+A">J. A. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubacka%2C+T">T. Kubacka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ingold%2C+G">G. Ingold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prsa%2C+K">K. Prsa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chergui%2C+M">M. Chergui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbone%2C+F">F. Carbone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.4072v1-abstract-short" style="display: inline;"> The strength of the electron-phonon coupling parameter and its evolution throughout a solid&#39;s phase diagram often determines phenomena such as superconductivity, charge- and spin-density waves. Its experimental determination relies on the ability to distinguish thermally activated phonons from those emitted by conduction band electrons, which can be achieved in an elegant way by ultrafast techniqu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.4072v1-abstract-full').style.display = 'inline'; document.getElementById('1401.4072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.4072v1-abstract-full" style="display: none;"> The strength of the electron-phonon coupling parameter and its evolution throughout a solid&#39;s phase diagram often determines phenomena such as superconductivity, charge- and spin-density waves. Its experimental determination relies on the ability to distinguish thermally activated phonons from those emitted by conduction band electrons, which can be achieved in an elegant way by ultrafast techniques. Separating the electronic from the out-of-equilibrium lattice subsystems, we probed their re-equilibration by monitoring the transient lattice temperature through femtosecond X-ray diffraction in La$_{2-x}$Sr$_x$CuO$_4$ single crystals with $x$=0.1 and 0.21. The temperature dependence of the electron-phonon coupling is obtained experimentally and shows similar trends to what is expected from the \textit{ab-initio} calculated shape of the electronic density-of-states near the Fermi energy. This study evidences the important role of band effects in the electron-lattice interaction in solids, in particular in superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.4072v1-abstract-full').style.display = 'none'; document.getElementById('1401.4072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 88, 054507 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.0633">arXiv:1312.0633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.0633">pdf</a>, <a href="https://arxiv.org/format/1312.0633">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.085113">10.1103/PhysRevB.89.085113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum and thermal ionic motion, oxygen isotope effect, and superexchange distribution in La$_2$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4fliger%2C+P+S">P. S. H盲fliger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pramod%2C+R">R. Pramod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnells%2C+V+I">V. I. Schnells</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piazza%2C+B+d">B. dalla Piazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chati%2C+R">R. Chati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">V. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dreau%2C+L+L">L. Le Dreau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sylju%C3%A5sen%2C+O+F">O. F. Sylju氓sen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.0633v1-abstract-short" style="display: inline;"> We study the zero-point and thermal ionic motion in La$_2$CuO$_4$ by means of high-resolution neutron diffraction experiments. Our results demonstrate anisotropic motion of O and to a lesser extent of Cu ions, both consistent with the structure of coupled CuO$_6$ octahedra, and quantify the relative effects of zero-point and thermal contributions to ionic motion. By substitution of $^{18}$O, we fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.0633v1-abstract-full').style.display = 'inline'; document.getElementById('1312.0633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.0633v1-abstract-full" style="display: none;"> We study the zero-point and thermal ionic motion in La$_2$CuO$_4$ by means of high-resolution neutron diffraction experiments. Our results demonstrate anisotropic motion of O and to a lesser extent of Cu ions, both consistent with the structure of coupled CuO$_6$ octahedra, and quantify the relative effects of zero-point and thermal contributions to ionic motion. By substitution of $^{18}$O, we find that the oxygen isotope effect on the lattice dimensions is small and negative ($-0.01\%$), while the isotope effect on the ionic displacement parameters is significant ($-6$ to $50\%$). We use our results as input for theoretical estimates of the distribution of magnetic interaction parameters, $J$, in an effective one-band model for the cuprate plane. We find that ionic motion causes only small ($1\%$) effects on the average value $\langle J\rangle$, which vary with temperature and O isotope, but results in dramatic ($10$-$20\%$) fluctuations in $J$ values that are subject to significant ($8$-$12\%$) isotope effects. We demonstrate that this motional broadening of $J$ can have substantial effects on certain electronic and magnetic properties in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.0633v1-abstract-full').style.display = 'none'; document.getElementById('1312.0633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 89, 085113 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.8131">arXiv:1310.8131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.8131">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/26/21/215702">10.1088/0953-8984/26/21/215702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in a new layered bismuth oxyselenide: LaO0.5F0.5BiSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">V. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">H. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.8131v2-abstract-short" style="display: inline;"> We report superconductivity in a new layered bismuth oxyselenide LaO0.5F0.5BiSe2 with the ZrCuSiAs-type structure composed of alternating superconducting BiSe2 and blocking LaO layers. The superconducting transition temperature is TC = 2.6K, as revealed from DC magnetization, resistivity and muon spin rotation (muSR) experiments. DC magnetization measurements indicate a superconducting volume frac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8131v2-abstract-full').style.display = 'inline'; document.getElementById('1310.8131v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.8131v2-abstract-full" style="display: none;"> We report superconductivity in a new layered bismuth oxyselenide LaO0.5F0.5BiSe2 with the ZrCuSiAs-type structure composed of alternating superconducting BiSe2 and blocking LaO layers. The superconducting transition temperature is TC = 2.6K, as revealed from DC magnetization, resistivity and muon spin rotation (muSR) experiments. DC magnetization measurements indicate a superconducting volume fraction of approximately 80%, which is at least twice higher in comparison to that found in corresponding sulphide LaO0.5F0.5BiS2. Importantly, the bulk character of superconductivity in LaO0.5F0.5BiSe2 was confirmed by muSR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8131v2-abstract-full').style.display = 'none'; document.getElementById('1310.8131v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 26 (2014) 215702 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.3683">arXiv:1309.3683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.3683">pdf</a>, <a href="https://arxiv.org/format/1309.3683">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.014420">10.1103/PhysRevB.89.014420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inelastic neutron scattering studies of YFeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hahn%2C+S+E">S. E. Hahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podlesnyak%2C+A+A">A. A. Podlesnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fishman%2C+R+S">R. S. Fishman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehlers%2C+G">G. Ehlers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granroth%2C+G+E">G. E. Granroth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">A. I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.3683v2-abstract-short" style="display: inline;"> Spin waves in the the rare earth orthorferrite YFeO$_3$ have been studied by inelastic neutron scattering and analyzed with a full four-sublattice model including contributions from both the weak ferromagnetic and hidden antiferromagnetic orders. Antiferromagnetic (AFM) exchange interactions of $J_1 = -4.23 \pm 0.08$ (nearest-neighbors only) or $J_1 = -4.77 \pm 0.08$ meV and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.3683v2-abstract-full').style.display = 'inline'; document.getElementById('1309.3683v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.3683v2-abstract-full" style="display: none;"> Spin waves in the the rare earth orthorferrite YFeO$_3$ have been studied by inelastic neutron scattering and analyzed with a full four-sublattice model including contributions from both the weak ferromagnetic and hidden antiferromagnetic orders. Antiferromagnetic (AFM) exchange interactions of $J_1 = -4.23 \pm 0.08$ (nearest-neighbors only) or $J_1 = -4.77 \pm 0.08$ meV and $J_2 = -0.21 \pm 0.04$ meV lead to excellent fits for most branches at both low and high energies. An additional branch associated with the hidden antiferromagnetic order was observed. This work paves the way for studies of other materials in this class containing spin reorientation transitions and magnetic rare earth ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.3683v2-abstract-full').style.display = 'none'; document.getElementById('1309.3683v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 page, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.1831">arXiv:1308.1831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.1831">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.014504">10.1103/PhysRevB.88.014504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin gap evolution upon Ca doping in the spin ladder series $Sr_{14-x}Ca_xCu_{24}O_{41}$ by inelastic neutron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">Guochu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsyrulin%2C+N">N. Tsyrulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourges%2C+P">P. Bourges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamago%2C+D">D. Lamago</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronnow%2C+H">H. Ronnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">M. Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Danilkin%2C+S">S. Danilkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.1831v1-abstract-short" style="display: inline;"> The spin gap evolution upon Ca doping in Sr14-xCaxCu24O41 was systematically investigated using inelastic neutron scattering. We discover that the singlet-triplet spin gap excitation survives in this series with x up to 13, indicating the singlet dimer ground state in these compounds. This observation corrects the previous speculation that the spin gap collapses at x~13 by the NMR technique. The s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1831v1-abstract-full').style.display = 'inline'; document.getElementById('1308.1831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.1831v1-abstract-full" style="display: none;"> The spin gap evolution upon Ca doping in Sr14-xCaxCu24O41 was systematically investigated using inelastic neutron scattering. We discover that the singlet-triplet spin gap excitation survives in this series with x up to 13, indicating the singlet dimer ground state in these compounds. This observation corrects the previous speculation that the spin gap collapses at x~13 by the NMR technique. The strong intensity modulation along QH in x=0 gradually evolves into a Q-independent feature in x&gt;11. This could be attributed to the localized Cu moment magnetism developing into an itinerant magnetism with increasing x. It is a surprise that the spin gap persists in the normal state of this spin ladder system with metallic behaviour, which evidences the possibility of magnetically-mediated carrier pairing mechanism in a two-leg spin ladder lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1831v1-abstract-full').style.display = 'none'; document.getElementById('1308.1831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 014504 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.4305">arXiv:1306.4305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.4305">pdf</a>, <a href="https://arxiv.org/format/1306.4305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.180506">10.1103/PhysRevB.88.180506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay of the electronic and lattice degrees of freedom in A_{1-x}Fe_{2-y}Se_{2} superconductors under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bendele%2C+M">M. Bendele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marini%2C+C">C. Marini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+B">B. Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pierantozzi%2C+G+M">G. M. Pierantozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caporale%2C+A+S">A. S. Caporale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Irifune%2C+T">T. Irifune</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shinmei%2C+T">T. Shinmei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pascarelli%2C+S">S. Pascarelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bianconi%2C+A">A. Bianconi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dore%2C+P">P. Dore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saini%2C+N+L">N. L. Saini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Postorino%2C+P">P. Postorino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.4305v1-abstract-short" style="display: inline;"> The local structure and electronic properties of Rb$_{1-x}$Fe$_{2-y}$Se$_2$ are investigated by means of site selective polarized x-ray absorption spectroscopy at the iron and selenium K-edges as a function of pressure. A combination of dispersive geometry and novel nanodiamond anvil pressure-cell has permitted to reveal a step-like decrease in the Fe-Se bond distance at $p\simeq11$ GPa. The posit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4305v1-abstract-full').style.display = 'inline'; document.getElementById('1306.4305v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.4305v1-abstract-full" style="display: none;"> The local structure and electronic properties of Rb$_{1-x}$Fe$_{2-y}$Se$_2$ are investigated by means of site selective polarized x-ray absorption spectroscopy at the iron and selenium K-edges as a function of pressure. A combination of dispersive geometry and novel nanodiamond anvil pressure-cell has permitted to reveal a step-like decrease in the Fe-Se bond distance at $p\simeq11$ GPa. The position of the Fe K-edge pre-peak, which is directly related to the position of the chemical potential, remains nearly constant until $\sim6$ GPa, followed by an increase until $p\simeq 11$ GPa. Here, as in the local structure, a step-like decrease of the chemical potential is seen. Thus, the present results provide compelling evidence that the origin of the reemerging superconductivity in $A_{1-x}$Fe$_{2-y}$Se$_2$ in vicinity of a quantum critical transition is caused mainly by the changes in the electronic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4305v1-abstract-full').style.display = 'none'; document.getElementById('1306.4305v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 180506(R) (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.0844">arXiv:1305.0844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.0844">pdf</a>, <a href="https://arxiv.org/ps/1305.0844">ps</a>, <a href="https://arxiv.org/format/1305.0844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.104505">10.1103/PhysRevB.88.104505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic studies of the normal and superconducting state of Ca3Ir4Sn13 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">Simon Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gavilano%2C+J+L">Jorge L. Gavilano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baines%2C+C">Christopher Baines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">Kazimierz Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.0844v2-abstract-short" style="display: inline;"> We report on muon spin rotation (muSR) studies of the superconducting and magnetic properties of the ternary intermetallic stannide Ca3Ir4Sn13. This material has recently been the focus of intense research activity due to a proposed interplay of ferromagnetic spin fluctuations and superconductivity. In the temperature range T=1.6-200 K, we find that the zero-field muon relaxation rate is very low&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.0844v2-abstract-full').style.display = 'inline'; document.getElementById('1305.0844v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.0844v2-abstract-full" style="display: none;"> We report on muon spin rotation (muSR) studies of the superconducting and magnetic properties of the ternary intermetallic stannide Ca3Ir4Sn13. This material has recently been the focus of intense research activity due to a proposed interplay of ferromagnetic spin fluctuations and superconductivity. In the temperature range T=1.6-200 K, we find that the zero-field muon relaxation rate is very low and does not provide evidence for spin fluctuations on the muSR time scale. The field-induced magnetization cannot be attributed to localized magnetic moments. In particular, our muSR data reveal that the anomaly observed in thermal and transport properties at T*~38 K is not of magnetic origin. Results for the transverse-field muon relaxation rate at T=0.02-12 K, suggest that superconductivity emerges out of a normal state that is not of a Fermi-liquid type. This is unusual for an electronic system lacking partially filled f-electron shells. The superconducting state is dominated by a nodeless order parameter with a London penetration depth of lambda=385(1) nm and the electron-phonon pairing interaction is in the strong-coupling limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.0844v2-abstract-full').style.display = 'none'; document.getElementById('1305.0844v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 88, 104505 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.0921">arXiv:1303.0921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.0921">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> A spin ladder compound doubles its superconducting TC under a gentle uniaxial pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Radheep%2C+D+M">D. Mohan Radheep</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiyagarjan%2C+R">R. Thiyagarjan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esakkimuthu%2C+S">S. Esakkimuthu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">Guochu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prajapat%2C+C+L">C. L. Prajapat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravikumar%2C+G">G. Ravikumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baskaran%2C+G">G. Baskaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arumugam%2C+S">S. Arumugam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.0921v1-abstract-short" style="display: inline;"> Discovery of new high TC superconductors, with TC &gt; 23 K, continues to be challenging. We have doubled the existing TC of single crystal Sr3Ca11Cu24O41, a spin ladder cuprate, from 12K to 24K, using a gentle uniaxial pressure ~ 0.06 GPa. In contrast, earlier works used a nearly 100 times larger hydrostatic pressure 5 GPa, only to reach a maximum TC ~ 12K. Our work exposes large and nearly equal, b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.0921v1-abstract-full').style.display = 'inline'; document.getElementById('1303.0921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.0921v1-abstract-full" style="display: none;"> Discovery of new high TC superconductors, with TC &gt; 23 K, continues to be challenging. We have doubled the existing TC of single crystal Sr3Ca11Cu24O41, a spin ladder cuprate, from 12K to 24K, using a gentle uniaxial pressure ~ 0.06 GPa. In contrast, earlier works used a nearly 100 times larger hydrostatic pressure 5 GPa, only to reach a maximum TC ~ 12K. Our work exposes large and nearly equal, but opposing contributions to changes in TC, arising from compressions along and perpendicular to ladder planes, in hydrostatic pressure experiments. In our resistivity measurements, uniaxial pressure applied along ladder planes increase TC, while that perpendicular to ladder planes decrease TC. Our findings i) offers a new hope for further increase in TC in spin ladder compounds and ii) calls for a large shift in phase boundaries of the currently accepted pressure-temperature phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.0921v1-abstract-full').style.display = 'none'; document.getElementById('1303.0921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures and 24 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.0509">arXiv:1301.0509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.0509">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/25/31/315403">10.1088/0953-8984/25/31/315403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal Structure of BaFe2Se3 as a Function of Temperature and Pressure: Phase Transition Phenomena and High-Order Expansion of Landau Potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Svitlyk%2C+V">V. Svitlyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushin%2C+V">V. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pottgen%2C+R">R. Pottgen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dmitriev%2C+V">V. Dmitriev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.0509v1-abstract-short" style="display: inline;"> BaFe2Se3 (Pnma, CsAg2I3-type structure), recently assumed to show superconductivity at ~ 11 K, exhibits a pressure-dependent structural transition to the CsCu2Cl3-type structure (Cmcm space group) around 60 kbar, as evidenced from pressure-dependent synchrotron powder diffraction data. Temperature-dependent synchrotron powder diffraction data indicate an evolution of the room-temperature BaFe2Se3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0509v1-abstract-full').style.display = 'inline'; document.getElementById('1301.0509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.0509v1-abstract-full" style="display: none;"> BaFe2Se3 (Pnma, CsAg2I3-type structure), recently assumed to show superconductivity at ~ 11 K, exhibits a pressure-dependent structural transition to the CsCu2Cl3-type structure (Cmcm space group) around 60 kbar, as evidenced from pressure-dependent synchrotron powder diffraction data. Temperature-dependent synchrotron powder diffraction data indicate an evolution of the room-temperature BaFe2Se3 structure towards a high symmetry CsCu2Cl3 form upon heating. Around 425 K BaFe2Se3 undergoes a reversible, first order isostructural transition, that is supported by the differential scanning calorimetry data. The temperature-dependent structural changes occur in two stages, as determined by the alignment of the FeSe4 tetrahedra and corresponding adjustments of the positions of Ba atoms. On further heating, a second order phase transformation into the Cmcm structure is observed at 660 K. A rather unusual combination of isostructural and second-order phase transformations is parameterized within phenomenological theory assuming high-order expansion of Landau potential. A generic phase diagram mapping observed structures is proposed on the basis of the parameterization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0509v1-abstract-full').style.display = 'none'; document.getElementById('1301.0509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 25 (2013) 315403 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.3584">arXiv:1211.3584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.3584">pdf</a>, <a href="https://arxiv.org/ps/1211.3584">ps</a>, <a href="https://arxiv.org/format/1211.3584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.054401">10.1103/PhysRevB.87.054401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of pressure on the Cu and Pr magnetism in Nd(1-x)Pr(x)Ba2Cu3O7 investigated by muon spin rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maisuradze%2C+A">A. Maisuradze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graneli%2C+B">B. Graneli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shengelaya%2C+A">A. Shengelaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">H. Keller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.3584v2-abstract-short" style="display: inline;"> The effect of pressure on the copper and praseodymium magnetic order in the system Nd(1-x)$Pr(x)Ba2Cu3$O7 with x=0.3, 0.5, 0.7, and 1 was investigated by means of the muon spin rotation (muSR) technique. It was found that the effect of pressure on the Neel temperatures of both copper and praseodymium is positive for the whole range of Pr concentrations (0.3&lt;x&lt;1) studied. These findings are in cont&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3584v2-abstract-full').style.display = 'inline'; document.getElementById('1211.3584v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.3584v2-abstract-full" style="display: none;"> The effect of pressure on the copper and praseodymium magnetic order in the system Nd(1-x)$Pr(x)Ba2Cu3$O7 with x=0.3, 0.5, 0.7, and 1 was investigated by means of the muon spin rotation (muSR) technique. It was found that the effect of pressure on the Neel temperatures of both copper and praseodymium is positive for the whole range of Pr concentrations (0.3&lt;x&lt;1) studied. These findings are in contrast with a number of previous reports and clarify some of the puzzles related to the effect of pressure on superconductivity and magnetism in the praseodymium-substituted R}(1-x)$Pr(x)Ba2Cu3O7 systems, where R is a rare earth element. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3584v2-abstract-full').style.display = 'none'; document.getElementById('1211.3584v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 87, 054401 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.5279">arXiv:1209.5279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.5279">pdf</a>, <a href="https://arxiv.org/ps/1209.5279">ps</a>, <a href="https://arxiv.org/format/1209.5279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.137003">10.1103/PhysRevLett.110.137003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic phase separation and superfluid density measurements in alkali metal-organic solvent intercalated iron selenide superconductor Lix(C5H5N)yFe2-zSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krzton-Maziopa%2C+A">A. Krzton-Maziopa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.5279v1-abstract-short" style="display: inline;"> We report the low-temperature electronic and magnetic properties of the alkali metal-organic solvent intercalated iron selenide superconductor Lix(C5H5N)yFe2-zSe using muon-spin-spectroscopy measurements. The zero-field \muSR results indicate that nearly half of the sample is magnetically ordered and there is a spatial phase separation between the superconducting and the magnetic fraction. The tra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5279v1-abstract-full').style.display = 'inline'; document.getElementById('1209.5279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.5279v1-abstract-full" style="display: none;"> We report the low-temperature electronic and magnetic properties of the alkali metal-organic solvent intercalated iron selenide superconductor Lix(C5H5N)yFe2-zSe using muon-spin-spectroscopy measurements. The zero-field \muSR results indicate that nearly half of the sample is magnetically ordered and there is a spatial phase separation between the superconducting and the magnetic fraction. The transverse-field \muSR results show that the temperature dependence of the penetration depth 位(T) in the mixed state of Lix(C5H5N)yFe2-zSe can be explained using a two-gap s+s-wave model with gap values of 6.82(92) and 0.93(7) meV. This implies that the symmetry of the superconducting gap in this system remains unaltered to the parent compound FeSe even after the intercalation with the molecular spacer layer. We obtain 位(0) = 485(21) nm at T = 0 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5279v1-abstract-full').style.display = 'none'; document.getElementById('1209.5279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Lett. 110, 137003 (2013) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Conder%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10