CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 90 results for author: <span class="mathjax">Fleming, G T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Fleming%2C+G+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fleming, G T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fleming%2C+G+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fleming, G T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fleming%2C+G+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fleming%2C+G+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fleming%2C+G+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14540">arXiv:2412.14540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14540">pdf</a>, <a href="https://arxiv.org/format/2412.14540">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hyper Stealth Dark Matter and Long-Lived Particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P+M">Pavlos M. Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14540v1-abstract-short" style="display: inline;"> A new dark matter candidate is proposed that arises as the lightest baryon from a confining $SU(N)$ gauge theory which equilibrates with the Standard Model only through electroweak interactions. Surprisingly, this candidate can be as light as a few GeV. The lower bound arises from the intersection of two competing requirements: i) the equilibration sector of the model must be sufficiently heavy, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14540v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14540v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14540v1-abstract-full" style="display: none;"> A new dark matter candidate is proposed that arises as the lightest baryon from a confining $SU(N)$ gauge theory which equilibrates with the Standard Model only through electroweak interactions. Surprisingly, this candidate can be as light as a few GeV. The lower bound arises from the intersection of two competing requirements: i) the equilibration sector of the model must be sufficiently heavy, at least several TeV, to avoid bounds from colliders, and ii) the lightest dark meson (that may be the dark $畏&#39;$, $蟽$, or the lightest glueball) has suppressed interactions with the SM, and must decay before BBN. The low energy dark sector consists of one flavor that is electrically neutral and an almost electroweak singlet. The dark matter candidate is the lightest baryon consisting of $N$ of these light flavors leading to a highly suppressed elastic scattering rate with the SM. The equilibration sector consists of vector-like dark quarks that transform under the electroweak group, ensuring that the dark sector can reach thermal equilibrium with the SM in the early Universe. The lightest dark meson lifetimes vary between $10^{-3} \lesssim c 蟿\lesssim 10^7$~meters, providing an outstanding target for LHC production and experimental detection. We delineate the interplay between the lifetime of the light mesons, the suppressed direct detection cross section of the lightest baryon, and the scale of equilibration sector that can be probed at the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14540v1-abstract-full').style.display = 'none'; document.getElementById('2412.14540v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-2001590 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13080">arXiv:2407.13080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13080">pdf</a>, <a href="https://arxiv.org/format/2407.13080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fermion determinants on a quantum computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shyamsundar%2C+P">Prasanth Shyamsundar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Unmuth-Yockey%2C+J">Judah Unmuth-Yockey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13080v1-abstract-short" style="display: inline;"> We present a quantum algorithm to compute the logarithm of the determinant of the fermion matrix, assuming access to a classical lattice gauge field configuration. The algorithm uses the quantum eigenvalue transform, and quantum mean estimation, giving a query complexity that scales like $O(V\log(V))$ in the matrix dimension $V$. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13080v1-abstract-full" style="display: none;"> We present a quantum algorithm to compute the logarithm of the determinant of the fermion matrix, assuming access to a classical lattice gauge field configuration. The algorithm uses the quantum eigenvalue transform, and quantum mean estimation, giving a query complexity that scales like $O(V\log(V))$ in the matrix dimension $V$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13080v1-abstract-full').style.display = 'none'; document.getElementById('2407.13080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, one table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0264-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07836">arXiv:2312.07836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07836">pdf</a>, <a href="https://arxiv.org/format/2312.07836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter spectrum using LapH and Irreps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Culver%2C+C">Christopher Culver</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">James Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">Xiao Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">Evan Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07836v1-abstract-short" style="display: inline;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07836v1-abstract-full" style="display: none;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter self-interactions. Here, we focus on reducing excited state contamination in the single baryon channel by applying the Laplacian Heaviside method, as well as projecting our baryon operators onto the irreducible representations of the octahedral group. We compare our resulting spectrum to previous work involving Gaussian smeared non-projected operators and find good agreement with reduced statistical uncertainties. We also present the spectrum of the low-lying odd-parity baryons for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'none'; document.getElementById('2312.07836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-808-T, RIKEN-iTHEMS-Report-23, IPPP/23/71, LLNL-JRNL-858123 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01100">arXiv:2311.01100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01100">pdf</a>, <a href="https://arxiv.org/format/2311.01100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The Operator Product Expansion for Radial Lattice Quantization of 3D $蠁^4$ Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ayyar%2C+V">Venkitesh Ayyar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gl%C3%BCck%2C+A+E">Anna-Maria E. Gl眉ck</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E+K">Evan K. Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01100v1-abstract-short" style="display: inline;"> At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3d Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the Quantum Finite Elements method to implement radially quantized critical $蠁^4$ theory on simplicial lattices approaching $\mathbb{R} \times S^2$. Computing the four-point function of identical scalars&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01100v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01100v1-abstract-full" style="display: none;"> At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3d Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the Quantum Finite Elements method to implement radially quantized critical $蠁^4$ theory on simplicial lattices approaching $\mathbb{R} \times S^2$. Computing the four-point function of identical scalars, we demonstrate the power of radial quantization by the accurate determination of the scaling dimensions $螖_蔚$ and $螖_{T}$ as well as ratios of the operator product expansion (OPE) coefficients $f_{蟽蟽蔚}$ and $f_{蟽蟽T}$ of the first spin-0 and spin-2 primary operators $蔚$ and $T$ of the 3d Ising CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01100v1-abstract-full').style.display = 'none'; document.getElementById('2311.01100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-631-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05111">arXiv:2309.05111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05111">pdf</a>, <a href="https://arxiv.org/format/2309.05111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Beyond Generalized Eigenvalues in Lattice Quantum Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05111v1-abstract-short" style="display: inline;"> Two analysis techniques, the generalized eigenvalue method (GEM) or Prony&#39;s (or related) method (PM), are commonly used to analyze statistical estimates of correlation functions produced in lattice quantum field theory calculations. GEM takes full advantage of the matrix structure of correlation functions but only considers individual pairs of time separations when much more data exists. PM can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05111v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05111v1-abstract-full" style="display: none;"> Two analysis techniques, the generalized eigenvalue method (GEM) or Prony&#39;s (or related) method (PM), are commonly used to analyze statistical estimates of correlation functions produced in lattice quantum field theory calculations. GEM takes full advantage of the matrix structure of correlation functions but only considers individual pairs of time separations when much more data exists. PM can be applied to many time separations and many individual matrix elements simultaneously but does not fully exploit the matrix structure of the correlation function. We combine both these methods into a single framework based on matrix polynomials. As these algebraic methods are well known for producing extensive spectral information about statistically-noisy data, the method should be paired with some information criteria, like the recently proposed Bayesean model averaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05111v1-abstract-full').style.display = 'none'; document.getElementById('2309.05111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, preliminary version of this work was presented as a poster at LATTICE 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-495-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06095">arXiv:2306.06095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06095">pdf</a>, <a href="https://arxiv.org/format/2306.06095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Light Scalar Meson and Decay Constant in SU(3) Gauge Theory with Eight Dynamical Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lattice+Strong+Dynamics+Collaboration"> Lattice Strong Dynamics Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">E. Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Culver%2C+C">C. Culver</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06095v1-abstract-short" style="display: inline;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06095v1-abstract-full" style="display: none;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we study the finite-volume dependence of the $蟽$ meson correlation function computed in lattice gauge theory and determine the $蟽$ meson mass and decay constant extrapolated to the infinite-volume limit. We also determine the infinite volume mass and decay constant of the flavor-nonsinglet scalar meson $a_0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'none'; document.getElementById('2306.06095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures, supplementary data in zenodo https://dx.doi.org/10.5281/zenodo.8007955</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-286-T; LLNL-JRNL-850169; RIKEN-iTHEMS-Report-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03665">arXiv:2305.03665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03665">pdf</a>, <a href="https://arxiv.org/format/2305.03665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.L091505">10.1103/PhysRevD.108.L091505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden Conformal Symmetry from the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=LSD+Collaboration"> LSD Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03665v2-abstract-short" style="display: inline;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars aris&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'inline'; document.getElementById('2305.03665v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03665v2-abstract-full" style="display: none;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars arise from spontaneous breaking of chiral symmetry. Identifying the scalar in this case as an approximate dilaton, we fit the lattice data to a dilaton effective field theory, finding that it yields a good fit even at lowest order. For comparison, we then consider the possibility that the theory is inside the conformal window. The fermion mass provides a deformation, triggering confinement. We employ simple scaling laws to fit the lattice data, and find that it is of lesser quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'none'; document.getElementById('2305.03665v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23, LLNL-JRNL-853554, FERMILAB-CONF-23-260-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, L091505 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13534">arXiv:2106.13534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13534">pdf</a>, <a href="https://arxiv.org/format/2106.13534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034505">10.1103/PhysRevD.105.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Goldstone Boson Scattering with a Light Composite Scalar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13534v2-abstract-short" style="display: inline;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13534v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13534v2-abstract-full" style="display: none;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is measured both for different values of the underlying fermion mass and for different values of the scattering momentum. We examine the effect of a light flavor-singlet scalar (reported in earlier studies) on Goldstone boson scattering, employing a dilaton effective field theory (EFT) at the tree level. The EFT gives a good description of the scattering data, insofar as the magnitude of deviations between EFT and lattice data are no larger than the expected size of next-to-leading order corrections in the EFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'none'; document.getElementById('2106.13534v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 4 tables. References and clarifying comments added. To match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-21, LLNL-JRNL-823329, SI-HEP-2021-18 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01810">arXiv:2007.01810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.01810">pdf</a>, <a href="https://arxiv.org/format/2007.01810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014504">10.1103/PhysRevD.103.014504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-conformal dynamics in a chirally broken system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01810v2-abstract-short" style="display: inline;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'inline'; document.getElementById('2007.01810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01810v2-abstract-full" style="display: none;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by a conformal fixed point in the ultraviolet but are chirally broken in the infrared. In this work we use lattice field theory calculations with domain wall fermions to investigate a system with four light and six heavy flavors. We demonstrate how a nearby conformal fixed point affects the properties of the four light flavors that exhibit chiral symmetry breaking in the infrared. Specifically we describe hyperscaling of dimensionful physical quantities and determine the corresponding anomalous mass dimension. We obtain $y_m=1+纬^*= 1.47(5)$ suggesting that $N_f=10$ lies inside the conformal window. Comparing the low energy spectrum to predictions of dilaton chiral perturbation theory, we observe excellent agreement which supports the expectation that the 4+6 mass-split system exhibits near-conformal dynamics with a relatively light $0^{++}$ isosinglet scalar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'none'; document.getElementById('2007.01810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, v2 version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-812164 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16429">arXiv:2006.16429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16429">pdf</a>, <a href="https://arxiv.org/format/2006.16429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014505">10.1103/PhysRevD.103.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter confinement transition and gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K">K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">G. D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16429v2-abstract-short" style="display: inline;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'inline'; document.getElementById('2006.16429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16429v2-abstract-full" style="display: none;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in the fundamental representation, producing a stable spin-0 &#39;dark baryon&#39; as a viable composite dark matter candidate. Future searches for stochastic gravitational waves will provide a new way to discover or constrain stealth dark matter, in addition to previously investigated direct-detection and collider experiments. As a first step to enabling this phenomenology, we determine how heavy the dark fermions need to be in order to produce a first-order stealth dark matter confinement transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'none'; document.getElementById('2006.16429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data release at doi.org/10.5281/zenodo.3921870</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-811356; RIKEN-iTHEMS-Report-20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014505 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15636">arXiv:2006.15636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15636">pdf</a>, <a href="https://arxiv.org/format/2006.15636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094502">10.1103/PhysRevD.104.094502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radial Lattice Quantization of 3D $蠁^4$ Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15636v1-abstract-short" style="display: inline;"> The quantum extension of classical finite elements, referred to as quantum finite elements ({\bf QFE})~\cite{Brower:2018szu,Brower:2016vsl}, is applied to the radial quantization of 3d $蠁^4$ theory on a simplicial lattice for the $\mathbb R \times \mathbb S^2$ manifold. Explicit counter terms to cancel the one- and two-loop ultraviolet defects are implemented to reach the quantum continuum theory.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15636v1-abstract-full').style.display = 'inline'; document.getElementById('2006.15636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15636v1-abstract-full" style="display: none;"> The quantum extension of classical finite elements, referred to as quantum finite elements ({\bf QFE})~\cite{Brower:2018szu,Brower:2016vsl}, is applied to the radial quantization of 3d $蠁^4$ theory on a simplicial lattice for the $\mathbb R \times \mathbb S^2$ manifold. Explicit counter terms to cancel the one- and two-loop ultraviolet defects are implemented to reach the quantum continuum theory. Using the Brower-Tamayo~\cite{Brower:1989mt} cluster Monte Carlo algorithm, numerical results support the QFE ansatz that the critical conformal field theory (CFT) is reached in the continuum with the full isometries of $\mathbb R \times \mathbb S^2$ restored. The Ricci curvature term, while technically irrelevant in the quantum theory, is shown to dramatically improve the convergence opening, the way for high precision Monte Carlo simulation to determine the CFT data: operator dimensions, trilinear OPE couplings and the central charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15636v1-abstract-full').style.display = 'none'; document.getElementById('2006.15636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08205">arXiv:1912.08205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.08205">pdf</a>, <a href="https://arxiv.org/format/1912.08205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.043303">10.1103/PhysRevE.102.043303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Automated label flows for excited states of correlation functions in lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08205v1-abstract-short" style="display: inline;"> Extracting excited states from lattice gauge theory correlation functions can be achieved through chi-squared minimization fits or algebraic approaches such as the variational method and Prony&#39;s method. Performing any kind of error analysis, such as bootstrap resampling, often leads to overlapping confidence regions of model parameters, even when the spectrum is not particularly dense. In order to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08205v1-abstract-full').style.display = 'inline'; document.getElementById('1912.08205v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08205v1-abstract-full" style="display: none;"> Extracting excited states from lattice gauge theory correlation functions can be achieved through chi-squared minimization fits or algebraic approaches such as the variational method and Prony&#39;s method. Performing any kind of error analysis, such as bootstrap resampling, often leads to overlapping confidence regions of model parameters, even when the spectrum is not particularly dense. In order to correctly estimate errors, one must beware of mislabeling the states. In this work, we provide an algorithm that we call automated label flows which consistently and systematically identifies a deterministic labeling of states. In the context of Prony&#39;s method, we analyze lattice correlation functions by using automated label flows, and compare the results to fits obtained from chi-square minimization fits to exponentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08205v1-abstract-full').style.display = 'none'; document.getElementById('1912.08205v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 20 figures, submitted to Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 043303 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10695">arXiv:1902.10695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.10695">pdf</a>, <a href="https://arxiv.org/format/1902.10695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Prony methods for extracting excited states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10695v2-abstract-short" style="display: inline;"> We propose an algebraic method for extracting excited states from lattice gauge theory correlation functions. Instead of fitting to a sum of decaying exponentials, we adopt a variant of Prony&#39;s method to obtain $M$ energies (exponential decay rates) by finding the roots of an $M^{\rm th}$ order polynomial, and then solving for the amplitudes linearly. The resulting states tend to have overlapping&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10695v2-abstract-full').style.display = 'inline'; document.getElementById('1902.10695v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10695v2-abstract-full" style="display: none;"> We propose an algebraic method for extracting excited states from lattice gauge theory correlation functions. Instead of fitting to a sum of decaying exponentials, we adopt a variant of Prony&#39;s method to obtain $M$ energies (exponential decay rates) by finding the roots of an $M^{\rm th}$ order polynomial, and then solving for the amplitudes linearly. The resulting states tend to have overlapping error ellipses, making identification of states ambiguous. This is especially problematic at large Euclidean times where the signal to noise may be low, as well as when many states are extracted. We propose a variation of K-means clustering to identify each extracted state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10695v2-abstract-full').style.display = 'none'; document.getElementById('1902.10695v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures, Lattice 2018 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02624">arXiv:1809.02624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02624">pdf</a>, <a href="https://arxiv.org/ps/1809.02624">ps</a>, <a href="https://arxiv.org/format/1809.02624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.114510">10.1103/PhysRevD.98.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear Sigma EFT for Nearly Conformal Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02624v2-abstract-short" style="display: inline;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02624v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02624v2-abstract-full" style="display: none;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the PNGBs ($蟺$) over a large range of quark masses. The EFT incorporates this feature. We highlight the crucial role played by the terms in the potential that explicitly break chiral symmetry. The explicit breaking can be large enough so that a limited set of additional terms in the potential can no longer be neglected, with the EFT still weakly coupled in this new range. The additional terms contribute importantly to the scalar and pion masses. In particular, they relax the inequality $M_蟽^2 \ge 3 M_蟺^2$, allowing for consistency with current lattice data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'none'; document.getElementById('1809.02624v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1291 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 114510 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08411">arXiv:1807.08411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.08411">pdf</a>, <a href="https://arxiv.org/format/1807.08411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014509">10.1103/PhysRevD.99.014509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dynamics%2C+L+S">Lattice Strong Dynamics</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collaboration"> Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08411v2-abstract-short" style="display: inline;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'inline'; document.getElementById('1807.08411v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08411v2-abstract-full" style="display: none;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous chiral symmetry breaking, but finite-temperature transitions with fixed $N_t \leq 24$ enter a strongly coupled lattice phase as the fermion mass decreases, which prevents a direct confirmation of spontaneous chiral symmetry breaking in the chiral limit. In addition to the connected spectrum we focus on the lightest flavor-singlet scalar particle. We find it to be degenerate with the pseudo-Goldstone states down to the lightest masses reached so far by non-perturbative lattice calculations. Using the same lattice approach, we study the behavior of the composite spectrum when the number of light fermions is changed from eight to four. A heavy flavor-singlet scalar in the 4-flavor theory affirms the contrast between QCD-like dynamics and the low-energy behavior of the 8-flavor theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'none'; document.getElementById('1807.08411v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 36 figures, 8 tables. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1286; LLNL-JRNL-753511 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08512">arXiv:1803.08512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08512">pdf</a>, <a href="https://arxiv.org/format/1803.08512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014502">10.1103/PhysRevD.98.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice $蠁^4$ Field Theory on Riemann Manifolds: Numerical Tests for the 2-d Ising CFT on $\mathbb{S}^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08512v1-abstract-short" style="display: inline;"> We present a method for defining a lattice realization of the $蠁^4$ quantum field theory on a simplicial complex in order to enable numerical computation on a general Riemann manifold. The procedure begins with adopting methods from traditional Regge Calculus (RC) and finite element methods (FEM) plus the addition of ultraviolet counter terms required to reach the renormalized field theory in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08512v1-abstract-full').style.display = 'inline'; document.getElementById('1803.08512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08512v1-abstract-full" style="display: none;"> We present a method for defining a lattice realization of the $蠁^4$ quantum field theory on a simplicial complex in order to enable numerical computation on a general Riemann manifold. The procedure begins with adopting methods from traditional Regge Calculus (RC) and finite element methods (FEM) plus the addition of ultraviolet counter terms required to reach the renormalized field theory in the continuum limit. The construction is tested numerically for the two-dimensional $蠁^4$ scalar field theory on the Riemann two-sphere, $\mathbb{S}^2$, in comparison with the exact solutions to the two-dimensional Ising conformal field theory (CFT). Numerical results for the Binder cumulants (up to 12th order) and the two- and four-point correlation functions are in agreement with the exact $c = 1/2$ CFT solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08512v1-abstract-full').style.display = 'none'; document.getElementById('1803.08512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.00480">arXiv:1702.00480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.00480">pdf</a>, <a href="https://arxiv.org/format/1702.00480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Examining the Low Energy Dynamics of Walking Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.00480v2-abstract-short" style="display: inline;"> We report on an investigation into the low energy dynamics of walking gauge theory. Taking $SU(3)$ Yang Mills with eight flavors of fundamental fermions as an example, we discuss the light flavor singlet scalar appearing in the spectrum and its implications for low energy physics. We compute the maximal isospin $蟺蟺$ scattering length at the lightest quark masses yet investigated for the eight flav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.00480v2-abstract-full').style.display = 'inline'; document.getElementById('1702.00480v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.00480v2-abstract-full" style="display: none;"> We report on an investigation into the low energy dynamics of walking gauge theory. Taking $SU(3)$ Yang Mills with eight flavors of fundamental fermions as an example, we discuss the light flavor singlet scalar appearing in the spectrum and its implications for low energy physics. We compute the maximal isospin $蟺蟺$ scattering length at the lightest quark masses yet investigated for the eight flavor theory. The validity of chiral perturbation theory is assessed, and we discuss motivations for a more extensive effective field theory analysis to be carried out in future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.00480v2-abstract-full').style.display = 'none'; document.getElementById('1702.00480v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures. Proceedings for Lattice 2016; added references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08587">arXiv:1610.08587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.08587">pdf</a>, <a href="https://arxiv.org/format/1610.08587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.114510">10.1103/PhysRevD.95.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Dirac Fermions on a Simplicial Riemannian Manifold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08587v1-abstract-short" style="display: inline;"> The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere ${\mathbb S}^2$ in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08587v1-abstract-full').style.display = 'inline'; document.getElementById('1610.08587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08587v1-abstract-full" style="display: none;"> The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere ${\mathbb S}^2$ in the limit of an increasingly refined sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on ${\mathbb S}^2$. Convergence is tested for the two point, $\langle 蔚(x_1) 蔚(x_2) \rangle$, and the four point, $\langle 蟽(x_1) 蔚(x_2) 蔚(x_3 )蟽(x_4) \rangle $, correlators for the energy, $蔚(x) = i \bar 蠄(x)蠄(x)$, and twist operators, $蟽(x)$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08587v1-abstract-full').style.display = 'none'; document.getElementById('1610.08587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 114510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04027">arXiv:1601.04027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.04027">pdf</a>, <a href="https://arxiv.org/format/1601.04027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.114514">10.1103/PhysRevD.93.114514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly interacting dynamics and the search for new physics at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04027v2-abstract-short" style="display: inline;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'inline'; document.getElementById('1601.04027v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04027v2-abstract-full" style="display: none;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the context of the search for new physics beyond the standard model at the Large Hadron Collider (LHC). Connecting our results to models of dynamical electroweak symmetry breaking, we estimate the vector resonance mass to be about 2 TeV with a width of roughly 450 GeV, and predict additional resonances with masses below ~3 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'none'; document.getElementById('1601.04027v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. Added report number. Version submitted to journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-680732, NSF-KITP-16-004 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 114514 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04205">arXiv:1503.04205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04205">pdf</a>, <a href="https://arxiv.org/format/1503.04205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.171803">10.1103/PhysRevLett.115.171803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Detection of Stealth Dark Matter through Electromagnetic Polarizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04205v2-abstract-short" style="display: inline;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- &#34;Stealth Dark Matter&#34;, that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scatteri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04205v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04205v2-abstract-full" style="display: none;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- &#34;Stealth Dark Matter&#34;, that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest baryons in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure, however the steep dependence on the dark matter mass, $1/m_B^6$, suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'none'; document.getElementById('1503.04205v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, citations added, typos fixed, minor clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-005, LLNL-JRNL-667121 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 171803 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04203">arXiv:1503.04203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04203">pdf</a>, <a href="https://arxiv.org/format/1503.04203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.075030">10.1103/PhysRevD.92.075030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth Dark Matter: Dark scalar baryons through the Higgs portal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04203v2-abstract-short" style="display: inline;"> We present a new model of &#34;Stealth Dark Matter&#34;: a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-bre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04203v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04203v2-abstract-full" style="display: none;"> We present a new model of &#34;Stealth Dark Matter&#34;: a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to $SU(4)$, and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass $m_B \gtrsim 300$ GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including: collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04203v2-abstract-full').style.display = 'none'; document.getElementById('1503.04203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures, citations added, typos fixed, minor clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-004, LLNL-JRNL-667446 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 075030 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.7597">arXiv:1407.7597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.7597">pdf</a>, <a href="https://arxiv.org/format/1407.7597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Improved Lattice Radial Quantization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.7597v1-abstract-short" style="display: inline;"> Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7597v1-abstract-full').style.display = 'inline'; document.getElementById('1407.7597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.7597v1-abstract-full" style="display: none;"> Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $蠁^4$ Lagrangian on $\mathbb R \times \mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7597v1-abstract-full').style.display = 'none'; document.getElementById('1407.7597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.4752">arXiv:1405.4752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.4752">pdf</a>, <a href="https://arxiv.org/format/1405.4752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.114502">10.1103/PhysRevD.90.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations with eight flavors of domain wall fermions in SU(3) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.4752v2-abstract-short" style="display: inline;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'inline'; document.getElementById('1405.4752v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.4752v2-abstract-full" style="display: none;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our previous studies of the two- and six-flavor systems. Our results for the Nf=8 spectrum suggest spontaneous chiral symmetry breaking, though fits to the fermion mass dependence of spectral quantities do not strongly disfavor the hypothesis of mass-deformed infrared conformality. Compared to Nf=2 we observe a significant enhancement of the chiral condensate relative to the symmetry breaking scale F, similar to the situation for Nf=6. The reduction of the S parameter, related to parity doubling in the vector and axial-vector channels, is also comparable to our six-flavor results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'none'; document.getElementById('1405.4752v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-665913 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 114502 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.2761">arXiv:1403.2761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.2761">pdf</a>, <a href="https://arxiv.org/format/1403.2761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.014503">10.1103/PhysRevD.90.014503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximum-Likelihood Approach to Topological Charge Fluctuations in Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.2761v2-abstract-short" style="display: inline;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'inline'; document.getElementById('1403.2761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.2761v2-abstract-full" style="display: none;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'none'; document.getElementById('1403.2761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-650193 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 014503 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6656">arXiv:1402.6656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6656">pdf</a>, <a href="https://arxiv.org/format/1402.6656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094508">10.1103/PhysRevD.89.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6656v1-abstract-short" style="display: inline;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6656v1-abstract-full" style="display: none;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the latest LUX results leads to tight bounds on the fraction of the constituent-fermion mass that may arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum and the Higgs-dark matter coupling are performed on quenched $16^{3} \times 32$, $32^{3} \times 64$, $48^{3} \times 96$, and $64^{3} \times128$ lattices with three different lattice spacings, using Wilson fermions with moderate to heavy pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical study of composite baryonic dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'none'; document.getElementById('1402.6656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 094508 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.5298">arXiv:1312.5298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.5298">pdf</a>, <a href="https://arxiv.org/format/1312.5298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/9789814566254_0006">10.1142/9789814566254_0006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Lattice Strong Dynamics to Phenomenology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.5298v1-abstract-short" style="display: inline;"> We present updated results on the chiral properties of SU(3) gauge theories with 2 and 6 massless Dirac fermions in the fundamental representation. Our focus is on the ratio $\langle \bar蠄 蠄\rangle / F^3$, where $\langle \bar蠄 蠄\rangle$ is the chiral condensate and $F$ is the pseudo-Nambu-Goldstone-boson decay constant. This ratio is of interest in the context of fermion mass generation within com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.5298v1-abstract-full').style.display = 'inline'; document.getElementById('1312.5298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.5298v1-abstract-full" style="display: none;"> We present updated results on the chiral properties of SU(3) gauge theories with 2 and 6 massless Dirac fermions in the fundamental representation. Our focus is on the ratio $\langle \bar蠄 蠄\rangle / F^3$, where $\langle \bar蠄 蠄\rangle$ is the chiral condensate and $F$ is the pseudo-Nambu-Goldstone-boson decay constant. This ratio is of interest in the context of fermion mass generation within composite Higgs theories. By re-expanding certain ratios using next-to-leading-order chiral perturbation theory, we confirm our previous result of significant enhancement of this ratio at $N_f = 6$ over $N_f = 2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.5298v1-abstract-full').style.display = 'none'; document.getElementById('1312.5298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures. Proceedings of the SCGT &#39;12 workshop, &#34;Strong Coupling Gauge Theories in the LHC Perspective.&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4889">arXiv:1311.4889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.4889">pdf</a>, <a href="https://arxiv.org/ps/1311.4889">ps</a>, <a href="https://arxiv.org/format/1311.4889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.111601">10.1103/PhysRevLett.112.111601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Color Theory with Novel Infrared Behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4889v1-abstract-short" style="display: inline;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'inline'; document.getElementById('1311.4889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4889v1-abstract-full" style="display: none;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the theory either is governed in the infrared by a fixed point of considerable strength, unseen so far in non-supersymmetric gauge theories, or breaks its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'none'; document.getElementById('1311.4889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">six pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 111601 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.1693">arXiv:1301.1693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.1693">pdf</a>, <a href="https://arxiv.org/format/1301.1693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.014502">10.1103/PhysRevD.88.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of composite dark matter form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wasem%2C+J">J. Wasem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.1693v2-abstract-short" style="display: inline;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'inline'; document.getElementById('1301.1693v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.1693v2-abstract-full" style="display: none;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'none'; document.getElementById('1301.1693v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. v2: update to journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-608695; NT-LBL-13-002; UCB-NPAT-13-002; FERMILAB-PUB-13-014-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D88, 014502 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.1757">arXiv:1212.1757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.1757">pdf</a>, <a href="https://arxiv.org/ps/1212.1757">ps</a>, <a href="https://arxiv.org/format/1212.1757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Radial Quantization for Conformal Field Theories on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neuberger%2C+H">Herbert Neuberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.1757v1-abstract-short" style="display: inline;"> We consider radial quantization for conformal quantum field theory with a lattice regulator. A Euclidean field theory on $\mathbb R^D$ is mapped to a cylindrical manifold, $\mathbb R\times \mathbb S^{D-1}$, whose length is logarithmic in scale separation. To test the approach, we apply this to the 3D Ising model and compute $畏$ for the first $Z_2$ odd primary operator. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.1757v1-abstract-full" style="display: none;"> We consider radial quantization for conformal quantum field theory with a lattice regulator. A Euclidean field theory on $\mathbb R^D$ is mapped to a cylindrical manifold, $\mathbb R\times \mathbb S^{D-1}$, whose length is logarithmic in scale separation. To test the approach, we apply this to the 3D Ising model and compute $畏$ for the first $Z_2$ odd primary operator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1757v1-abstract-full').style.display = 'none'; document.getElementById('1212.1757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.6000">arXiv:1204.6000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.6000">pdf</a>, <a href="https://arxiv.org/format/1204.6000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Approaching Conformality with Ten Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Na%2C+H">Heechang Na</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.6000v3-abstract-short" style="display: inline;"> We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with ten light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6000v3-abstract-full').style.display = 'inline'; document.getElementById('1204.6000v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.6000v3-abstract-full" style="display: none;"> We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with ten light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window, with mass anomalous dimension consistent with 1 over the range of scales simulated. We stress that we cannot rule out the possibility of spontaneous chiral-symmetry breaking at scales well below our infrared cutoff. We discuss important systematic effects, including finite-volume corrections, and consider directions for future improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6000v3-abstract-full').style.display = 'none'; document.getElementById('1204.6000v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Submitted to Physical Review Letters. v2: corrected global fits. v3: corrected estimation of confidence intervals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-12-111-T; LLNL-JRNL-548639; NSF-KITP-12-069 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.3977">arXiv:1201.3977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.3977">pdf</a>, <a href="https://arxiv.org/format/1201.3977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.074505">10.1103/PhysRevD.85.074505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WW Scattering Parameters via Pseudoscalar Phase Shifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wasem%2C+J">Joseph Wasem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.3977v1-abstract-short" style="display: inline;"> Using domain-wall lattice simulations, we study pseudoscalar-pseudoscalar scattering in the maximal isospin channel for an SU(3) gauge theory with two and six fermion flavors in the fundamental representation. This calculation of the S-wave scattering length is related to the next-to-leading order corrections to WW scattering through the low-energy coefficients of the chiral Lagrangian. While two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3977v1-abstract-full').style.display = 'inline'; document.getElementById('1201.3977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.3977v1-abstract-full" style="display: none;"> Using domain-wall lattice simulations, we study pseudoscalar-pseudoscalar scattering in the maximal isospin channel for an SU(3) gauge theory with two and six fermion flavors in the fundamental representation. This calculation of the S-wave scattering length is related to the next-to-leading order corrections to WW scattering through the low-energy coefficients of the chiral Lagrangian. While two and six flavor scattering lengths are similar for a fixed ratio of the pseudoscalar mass to its decay constant, six-flavor scattering shows a somewhat less repulsive next-to-leading order interaction than its two-flavor counterpart. Estimates are made for the WW scattering parameters and the plausibility of detection is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3977v1-abstract-full').style.display = 'none'; document.getElementById('1201.3977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-499587; FERMILAB-PUB-12-012-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.2148">arXiv:1106.2148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.2148">pdf</a>, <a href="https://arxiv.org/format/1106.2148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.054501">10.1103/PhysRevD.84.054501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Simulations and Infrared Conformality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D+A">David A. Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.2148v3-abstract-short" style="display: inline;"> We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2148v3-abstract-full').style.display = 'inline'; document.getElementById('1106.2148v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.2148v3-abstract-full" style="display: none;"> We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2148v3-abstract-full').style.display = 'none'; document.getElementById('1106.2148v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. v2: added new fit including finite-volume corrections. v3: updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-11-269-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84:054501,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.0562">arXiv:1012.0562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.0562">pdf</a>, <a href="https://arxiv.org/ps/1012.0562">ps</a>, <a href="https://arxiv.org/format/1012.0562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.054510">10.1103/PhysRevD.85.054510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring strange nucleon form factors on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ronald Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.0562v3-abstract-short" style="display: inline;"> We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 &lt; 1 GeV^2. The strange electric and magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0562v3-abstract-full').style.display = 'inline'; document.getElementById('1012.0562v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.0562v3-abstract-full" style="display: none;"> We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 &lt; 1 GeV^2. The strange electric and magnetic form factors, G_E^s(Q^2) and G_M^s(Q^2), are found to be small and consistent with zero within the statistics of our calculation. The lattice data favor a small negative value for the strange axial form factor G_A^s(Q^2) and exhibit a strong signal for the bare strange scalar matrix element &lt;N|ss|N&gt;_0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0562v3-abstract-full').style.display = 'none'; document.getElementById('1012.0562v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures; v2 includes additional references; v3 as appears in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 85, 054510 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.5967">arXiv:1009.5967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.5967">pdf</a>, <a href="https://arxiv.org/format/1009.5967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.231601">10.1103/PhysRevLett.106.231601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parity Doubling and the S Parameter Below the Conformal Window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.5967v1-abstract-short" style="display: inline;"> We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with $N_f = 2$ and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when $N_f$ is increased from 2 to 6, motivating study of these tre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.5967v1-abstract-full').style.display = 'inline'; document.getElementById('1009.5967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.5967v1-abstract-full" style="display: none;"> We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with $N_f = 2$ and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when $N_f$ is increased from 2 to 6, motivating study of these trends as $N_f$ is increased further, toward the critical value for transition from confinement to infrared conformality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.5967v1-abstract-full').style.display = 'none'; document.getElementById('1009.5967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures; to be submitted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.106:231601,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.3777">arXiv:1002.3777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.3777">pdf</a>, <a href="https://arxiv.org/format/1002.3777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice study of ChPT beyond QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Avakian%2C+A">Adam Avakian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joseph Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.3777v2-abstract-short" style="display: inline;"> We describe initial results by the Lattice Strong Dynamics (LSD) collaboration of a study into the variation of chiral properties of chiral properties of SU(3) Yang-Mills gauge theory as the number of massless flavors changes from $N_f = 2$ to $N_f = 6$, with a focus on the use of chiral perturbation theory. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.3777v2-abstract-full" style="display: none;"> We describe initial results by the Lattice Strong Dynamics (LSD) collaboration of a study into the variation of chiral properties of chiral properties of SU(3) Yang-Mills gauge theory as the number of massless flavors changes from $N_f = 2$ to $N_f = 6$, with a focus on the use of chiral perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.3777v2-abstract-full').style.display = 'none'; document.getElementById('1002.3777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Presented at the 6th International Workshop on Chiral Dynamics, University of Bern, Switzerland, July 6-10 2009</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS CD09:088,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.3816">arXiv:0910.3816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.3816">pdf</a>, <a href="https://arxiv.org/ps/0910.3816">ps</a>, <a href="https://arxiv.org/format/0910.3816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon form factors from high statistics mixed-action calculations with 2+1 flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=LHPC+Collaboration"> LHPC Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroers%2C+W">Wolfram Schroers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bratt%2C+J+D">Jonathan D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George Taminga Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hagler%2C+P">Philipp Hagler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Mei-Feng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Musch%2C+B">Bernhard Musch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Negele%2C+J+W">John W. Negele</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Procura%2C+M">Massimiliano Procura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Renner%2C+D+B">Dru B. Renner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S+N">Sergey N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A+P">Andre P. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.3816v1-abstract-short" style="display: inline;"> We present new high-statistics results for nucleon form factors at pion masses of approximately 290, 350, 500, and 600 MeV using a mixed action of domain wall valence quarks on an improved staggered sea. We perform chiral fits to both vector and axial form factors and compare our results to experiment. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.3816v1-abstract-full" style="display: none;"> We present new high-statistics results for nucleon form factors at pion masses of approximately 290, 350, 500, and 600 MeV using a mixed action of domain wall valence quarks on an improved staggered sea. We perform chiral fits to both vector and axial form factors and compare our results to experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.3816v1-abstract-full').style.display = 'none'; document.getElementById('0910.3816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; contribution to the proceedings of the XXVII International Symposium on Lattice Field Theory - LAT2009, July 26-31, 2009, Peking University, Beijing, China. To appear as PoS(LAT2009)142</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:142,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.2224">arXiv:0910.2224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.2224">pdf</a>, <a href="https://arxiv.org/ps/0910.2224">ps</a>, <a href="https://arxiv.org/format/0910.2224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.104.071601">10.1103/PhysRevLett.104.071601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toward TeV Conformality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Avakian%2C+A">Adam Avakian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joseph Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.2224v2-abstract-short" style="display: inline;"> We study the chiral condensate $&lt;\bar蠄 蠄&gt;$ for an SU(3) gauge theory with $N_f$ massless Dirac fermions in the fundamental representation when $N_f$ is increased from 2 to 6. For $N_f=2$, our lattice simulations of $&lt;\bar蠄 蠄&gt;/F^3$, where $F$ is the Nambu-Goldstone-boson decay constant, agree with the measured QCD value. For $N_f = 6$, this ratio shows significant enhancement, presaging an even l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2224v2-abstract-full').style.display = 'inline'; document.getElementById('0910.2224v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.2224v2-abstract-full" style="display: none;"> We study the chiral condensate $&lt;\bar蠄 蠄&gt;$ for an SU(3) gauge theory with $N_f$ massless Dirac fermions in the fundamental representation when $N_f$ is increased from 2 to 6. For $N_f=2$, our lattice simulations of $&lt;\bar蠄 蠄&gt;/F^3$, where $F$ is the Nambu-Goldstone-boson decay constant, agree with the measured QCD value. For $N_f = 6$, this ratio shows significant enhancement, presaging an even larger enhancement anticipated as $N_f$ increases further, toward the critical value for transition from confinement to infrared conformality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2224v2-abstract-full').style.display = 'none'; document.getElementById('0910.2224v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures. v2: revised version for PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.104:071601,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.3063">arXiv:0903.3063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.3063">pdf</a>, <a href="https://arxiv.org/ps/0903.3063">ps</a>, <a href="https://arxiv.org/format/0903.3063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Structure with Domain Wall Fermions at a = 0.084 fm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bratt%2C+J+D">J. D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Negele%2C+J+W">J. W. Negele</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Procura%2C+M">M. Procura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%A4gler%2C+P">Ph. H盲gler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Musch%2C+B">B. Musch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Renner%2C+D+B">D. B. Renner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroers%2C+W">W. Schroers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.3063v1-abstract-short" style="display: inline;"> We present initial calculations of nucleon matrix elements of twist-two operators with 2+1 flavors of domain wall fermions at a lattice spacing a = 0.084 fm for pion masses down to 300 MeV. We also compare the results with the domain wall calculations on a coarser lattice. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.3063v1-abstract-full" style="display: none;"> We present initial calculations of nucleon matrix elements of twist-two operators with 2+1 flavors of domain wall fermions at a lattice spacing a = 0.084 fm for pion masses down to 300 MeV. We also compare the results with the domain wall calculations on a coarser lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.3063v1-abstract-full').style.display = 'none'; document.getElementById('0903.3063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 10 figures. Talks presented at the XXVI International Symposium on Lattice Field Theory, July 14 - 19 2008, Williamsburg, Virginia, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2008:169,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.2314">arXiv:0903.2314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.2314">pdf</a>, <a href="https://arxiv.org/ps/0903.2314">ps</a>, <a href="https://arxiv.org/format/0903.2314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.80.074506">10.1103/PhysRevD.80.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excited-State Effective Masses in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pereyra%2C+V">Victor Pereyra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.2314v1-abstract-short" style="display: inline;"> We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2314v1-abstract-full').style.display = 'inline'; document.getElementById('0903.2314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.2314v1-abstract-full" style="display: none;"> We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2314v1-abstract-full').style.display = 'none'; document.getElementById('0903.2314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-09-957 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D80:074506,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.3766">arXiv:0901.3766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0901.3766">pdf</a>, <a href="https://arxiv.org/format/0901.3766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.79.076010">10.1103/PhysRevD.79.076010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.3766v2-abstract-short" style="display: inline;"> Using lattice simulations, we study the extent of the conformal window for an SU(3) gauge theory with N_f Dirac fermions in the fundamental representation. We extend our recently reported work, describing the general framework and the lattice simulations in more detail. We find that the theory is conformal in the infrared for N_f = 12, governed by an infrared fixed point, whereas the N_f = 8 the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3766v2-abstract-full').style.display = 'inline'; document.getElementById('0901.3766v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.3766v2-abstract-full" style="display: none;"> Using lattice simulations, we study the extent of the conformal window for an SU(3) gauge theory with N_f Dirac fermions in the fundamental representation. We extend our recently reported work, describing the general framework and the lattice simulations in more detail. We find that the theory is conformal in the infrared for N_f = 12, governed by an infrared fixed point, whereas the N_f = 8 theory exhibits confinement and chiral symmetry breaking. We therefore conclude that the low end of the conformal window N_f^c lies in the range 8 &lt;= N_f^c &lt;= 12. We discuss open questions and the potential relevance of the present work to physics beyond the standard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3766v2-abstract-full').style.display = 'none'; document.getElementById('0901.3766v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 7 figures. v2: assorted minor updates and corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D79:076010,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0812.2035">arXiv:0812.2035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0812.2035">pdf</a>, <a href="https://arxiv.org/ps/0812.2035">ps</a>, <a href="https://arxiv.org/format/0812.2035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Strong Interactions for the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0812.2035v1-abstract-short" style="display: inline;"> Dynamical electroweak symmetry breaking (DEWSB) has been a viable option for the completion of the standard model for over thirty years. Precision electroweak studies indicate that the new strong interactions that break EW symmetry cannot be a scaled-up copy of QCD. Building viable models of DEWSB is difficult without a detailed understanding of such non-QCD gauge theories which still confine an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.2035v1-abstract-full').style.display = 'inline'; document.getElementById('0812.2035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0812.2035v1-abstract-full" style="display: none;"> Dynamical electroweak symmetry breaking (DEWSB) has been a viable option for the completion of the standard model for over thirty years. Precision electroweak studies indicate that the new strong interactions that break EW symmetry cannot be a scaled-up copy of QCD. Building viable models of DEWSB is difficult without a detailed understanding of such non-QCD gauge theories which still confine and break chiral symmetry. We review past difficulties of studying these theories using lattice methods and describe recent progress, focusing on the role of approximate infrared conformal symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.2035v1-abstract-full').style.display = 'none'; document.getElementById('0812.2035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures, plenary talk given at the XXVI International Symposium on Lattice Field Theory (LATTICE 2008), July 14-19, 2008, Williamsburg, Virginia, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2008:021,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.5746">arXiv:0810.5746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0810.5746">pdf</a>, <a href="https://arxiv.org/ps/0810.5746">ps</a>, <a href="https://arxiv.org/format/0810.5746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.79.025015">10.1103/PhysRevD.79.025015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice super-Yang-Mills using domain wall fermions in the chiral limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.5746v2-abstract-short" style="display: inline;"> Lattice N=1 super-Yang-Mills theory formulated using Ginsparg-Wilson fermions provides a rigorous non-perturbative definition of the continuum theory that requires no fine-tuning as the lattice spacing is reduced to zero. Domain wall fermions are one explicit scheme for achieving this and using them we have performed large-scale Monte Carlo simulations of the theory for gauge group SU(2). We hav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.5746v2-abstract-full').style.display = 'inline'; document.getElementById('0810.5746v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.5746v2-abstract-full" style="display: none;"> Lattice N=1 super-Yang-Mills theory formulated using Ginsparg-Wilson fermions provides a rigorous non-perturbative definition of the continuum theory that requires no fine-tuning as the lattice spacing is reduced to zero. Domain wall fermions are one explicit scheme for achieving this and using them we have performed large-scale Monte Carlo simulations of the theory for gauge group SU(2). We have measured the gaugino condensate, static potential, Creutz ratios and residual mass for several values of the domain wall separation L_s, four-dimensional lattice volume, and two values of the gauge coupling. With this data we are able to extrapolate the gaugino condensate to the chiral limit, to express it in physical units, and to establish important benchmarks for future studies of super-Yang-Mills on the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.5746v2-abstract-full').style.display = 'none'; document.getElementById('0810.5746v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages; v2: fixed sign error in (3.2), corrected tables, added data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D79:025015,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.1933">arXiv:0810.1933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0810.1933">pdf</a>, <a href="https://arxiv.org/ps/0810.1933">ps</a>, <a href="https://arxiv.org/format/0810.1933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Aspects of Precision Calculations of Nucleon Generalized Form Factors with Domain Wall Fermions on an Asqtad Sea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bratt%2C+J+D">J. D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hagler%2C+P">Ph. Hagler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Musch%2C+B">B. Musch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Negele%2C+J+W">J. W. Negele</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Procura%2C+M">M. Procura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Renner%2C+D+B">D. B. Renner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroers%2C+W">W. Schroers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">S. Syritsyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.1933v1-abstract-short" style="display: inline;"> In order to advance lattice calculations of moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon to a new level of precision, this work investigates several key aspects of precision lattice calculations. We calculate the number of configurations required for constant statistical errors as a function of pion ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1933v1-abstract-full').style.display = 'inline'; document.getElementById('0810.1933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.1933v1-abstract-full" style="display: none;"> In order to advance lattice calculations of moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon to a new level of precision, this work investigates several key aspects of precision lattice calculations. We calculate the number of configurations required for constant statistical errors as a function of pion mass, describe the coherent sink method to help achieve these statistics, examine the statistical correlations between separate measurements, study correlations in the behavior of form factors at different momentum transfer, examine volume dependence, and compare mixed action results with those using comparable dynamical domain wall configurations. We also show selected form factor results and comment on the QCD evolution of our calculations of the flavor non-singlet nucleon angular momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1933v1-abstract-full').style.display = 'none'; document.getElementById('0810.1933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 17 figures. Talks presented at the XXVI International Symposium on Lattice Field Theory, July 14 - 19 2008, Williamsburg, Virginia, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 3991 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2008:141,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0807.2032">arXiv:0807.2032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0807.2032">pdf</a>, <a href="https://arxiv.org/ps/0807.2032">ps</a>, <a href="https://arxiv.org/format/0807.2032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/9789812838667_0029">10.1142/9789812838667_0029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluinos condensing at the CCNI: 4096 CPUs weigh in </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0807.2032v2-abstract-short" style="display: inline;"> We report preliminary results of lattice super-Yang-Mills computations using domain wall fermions, performed at an actual rate of 1000 Gflop/s, over the course of six months, using two BlueGene/L racks at Rensselaer&#39;s CCNI supercomputing center. This has allowed us to compute the gluino condensate and string tension over a wide range of lattice parameters, setting the stage for continuum, chiral&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.2032v2-abstract-full').style.display = 'inline'; document.getElementById('0807.2032v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0807.2032v2-abstract-full" style="display: none;"> We report preliminary results of lattice super-Yang-Mills computations using domain wall fermions, performed at an actual rate of 1000 Gflop/s, over the course of six months, using two BlueGene/L racks at Rensselaer&#39;s CCNI supercomputing center. This has allowed us to compute the gluino condensate and string tension over a wide range of lattice parameters, setting the stage for continuum, chiral extrapolations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.2032v2-abstract-full').style.display = 'none'; document.getElementById('0807.2032v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, talk given at &#34;Continuous Advances in QCD 2008,&#34; Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN, May 15-18, 2008; v2: reference added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0712.0609">arXiv:0712.0609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0712.0609">pdf</a>, <a href="https://arxiv.org/ps/0712.0609">ps</a>, <a href="https://arxiv.org/format/0712.0609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.100.171607">10.1103/PhysRevLett.100.171607 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Study of the Conformal Window in QCD-like Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0712.0609v2-abstract-short" style="display: inline;"> Using lattice simulations, we study the extent of the conformal window for an $\text{SU}(3)$ gauge theory with $N_f$ Dirac fermions in the fundamental representation. We present evidence that the infrared behavior is conformal for $12 \leq N_f \leq 16$, governed by an infrared fixed point, while confinement and chiral symmetry breaking are present for $N_f \leq 8$. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0712.0609v2-abstract-full" style="display: none;"> Using lattice simulations, we study the extent of the conformal window for an $\text{SU}(3)$ gauge theory with $N_f$ Dirac fermions in the fundamental representation. We present evidence that the infrared behavior is conformal for $12 \leq N_f \leq 16$, governed by an infrared fixed point, while confinement and chiral symmetry breaking are present for $N_f \leq 8$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0712.0609v2-abstract-full').style.display = 'none'; document.getElementById('0712.0609v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures. v2: assorted edits for style and length</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.100:171607,2008; Erratum-ibid.102:149902,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0710.4538">arXiv:0710.4538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0710.4538">pdf</a>, <a href="https://arxiv.org/format/0710.4538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The Pion Form Factor at Large Momentum Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hsu%2C+P+J">Pai-hsien Jennifer Hsu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0710.4538v1-abstract-short" style="display: inline;"> We present our calculations of the electromagnetic form factor of pions. We explore the properties of pion form factor at momentum transfer larger than previous studies by including more combinations of source and sink momenta and using more configurations.We fit our results using vector meson dominance (VMD) hypothesis. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0710.4538v1-abstract-full" style="display: none;"> We present our calculations of the electromagnetic form factor of pions. We explore the properties of pion form factor at momentum transfer larger than previous studies by including more combinations of source and sink momenta and using more configurations.We fit our results using vector meson dominance (VMD) hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0710.4538v1-abstract-full').style.display = 'none'; document.getElementById('0710.4538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures. Talk given at 25th International Symposium on Lattice Field Theory, Regensburg, Germany, 30 Jul - 4 Aug 2007</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2007:145,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0710.3571">arXiv:0710.3571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0710.3571">pdf</a>, <a href="https://arxiv.org/ps/0710.3571">ps</a>, <a href="https://arxiv.org/format/0710.3571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Group Theoretical Construction of Nucleon Operators using All-to-All Quark Propagators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">B. Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">K. J. Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lichtl%2C+A">A. Lichtl</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C+J">C. J. Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wallace%2C+S+J">S. J. Wallace</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0710.3571v1-abstract-short" style="display: inline;"> We describe a method to construct irreducible baryon operators using all-to-all quark propagators. It was demonstrated earlier that a large basis of extended baryon operators on anisotropic, quenched lattices can be used to reliably extract the masses of 5 or more excited states in the nucleon channel. All-to-all quark propagators are expected to be needed when studying these excited states on l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0710.3571v1-abstract-full').style.display = 'inline'; document.getElementById('0710.3571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0710.3571v1-abstract-full" style="display: none;"> We describe a method to construct irreducible baryon operators using all-to-all quark propagators. It was demonstrated earlier that a large basis of extended baryon operators on anisotropic, quenched lattices can be used to reliably extract the masses of 5 or more excited states in the nucleon channel. All-to-all quark propagators are expected to be needed when studying these excited states on light, dynamical configurations because contributions from multi-particle states are expected to be significant. The dilution method is used to approximate the all-to-all quark propagators. Low-lying eigenmodes can also be used if necessary. For efficient computation of matrix elements of the interpolating operators, the algorithms should exploit the fact that many extended baryon operators can be obtained from the different linear combinations of three-quark colour-singlet operators. The sparseness of the diluted noise vectors also afford several computation simplifications. Some preliminary results are presented for nucleon effective masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0710.3571v1-abstract-full').style.display = 'none'; document.getElementById('0710.3571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, talk presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4, 2007, Regensburg, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2007:108,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0709.0008">arXiv:0709.0008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0709.0008">pdf</a>, <a href="https://arxiv.org/ps/0709.0008">ps</a>, <a href="https://arxiv.org/format/0709.0008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.76.074504">10.1103/PhysRevD.76.074504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD determination of patterns of excited baryon states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Basak%2C+S">Subhasish Basak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">K. J. Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lichtl%2C+A">A. Lichtl</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">C. Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sato%2C+I">I. Sato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wallace%2C+S+J">S. J. Wallace</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0709.0008v3-abstract-short" style="display: inline;"> Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a latt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0709.0008v3-abstract-full').style.display = 'inline'; document.getElementById('0709.0008v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0709.0008v3-abstract-full" style="display: none;"> Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0709.0008v3-abstract-full').style.display = 'none'; document.getElementById('0709.0008v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DOE/ER/40762-398, JLAB-THY-07-707 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D76:074504,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0705.4295">arXiv:0705.4295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0705.4295">pdf</a>, <a href="https://arxiv.org/ps/0705.4295">ps</a>, <a href="https://arxiv.org/format/0705.4295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.77.094502">10.1103/PhysRevD.77.094502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon Generalized Parton Distributions from Full Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%A4gler%2C+P">Ph. H盲gler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroers%2C+W">W. Schroers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bratt%2C+J">J. Bratt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Musch%2C+B">B. Musch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Negele%2C+J+W">J. W. Negele</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Renner%2C+D+B">D. B. Renner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">D. G. Richards</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0705.4295v2-abstract-short" style="display: inline;"> We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.4295v2-abstract-full').style.display = 'inline'; document.getElementById('0705.4295v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0705.4295v2-abstract-full" style="display: none;"> We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.4295v2-abstract-full').style.display = 'none'; document.getElementById('0705.4295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 49 figures; Revised chiral extrapolations in sections A-K, main conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 07-077, JLAB-THY-07-651, TUM-T39-07-09 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D77:094502,2008 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fleming%2C+G+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fleming%2C+G+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fleming%2C+G+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10