CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;26 of 26 results for author: <span class="mathjax">Yi, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Yi%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yi, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yi%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yi, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04957">arXiv:2412.04957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04957">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultrahigh-temperature ferromagnetism in ultrathin insulating films with ripple-infinite-layer structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yazhuo Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Haoliang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+R">Ruiwen Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yukuai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guangzheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+J">Jiahui Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+Z">Ze Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leung%2C+C+W">Chi Wah Leung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xie-Rong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+F">Feng Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+N">Nan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Heng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+L">Liang Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+H">Hongyu An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chuanwei Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04957v1-abstract-short" style="display: inline;"> Ferromagnetism and electrical insulation are often at odds, signifying an inherent trade off. The simultaneous optimization of both in one material, essential for advancing spintronics and topological electronics, necessitates the individual manipulation over various degrees of freedom of strongly correlated electrons. Here, by selective control of the spin exchange and Coulomb interactions, we re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04957v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04957v1-abstract-full" style="display: none;"> Ferromagnetism and electrical insulation are often at odds, signifying an inherent trade off. The simultaneous optimization of both in one material, essential for advancing spintronics and topological electronics, necessitates the individual manipulation over various degrees of freedom of strongly correlated electrons. Here, by selective control of the spin exchange and Coulomb interactions, we report the achievement of SrFeO2 thin films with resistivity above 106 Ohm.cm and strong magnetization with Curie temperature extrapolated to be 1200 K. Robust ferromagnetism is obtained down to 1.0 nm thickness on substrate and 2.0 nm for freestanding films. Featuring an out of plane oriented ripple infinite layer structure, this ferromagnetic insulating phase is obtained through extensive reduction of as grown brownmillerite SrFeO2.5 films at high compressive strains. Pronounced spin Hall magnetoresistance signals up to 0.0026 is further demonstrated with a Pt Hall bar device. Our findings promise emerging spintronic and topological electronic functionalities harnessing spin dynamics with minimized power dissipations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04957v1-abstract-full').style.display = 'none'; document.getElementById('2412.04957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09512">arXiv:2309.09512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09512">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Extrinsic nonlinear Kerr rotation in topological materials under a magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shuang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yangfan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09512v1-abstract-short" style="display: inline;"> Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here we report nonlinear magneto-optical second harmonic generation (SHG) studies of non-magnetic topological materials including bilayer WTe2, monolayer WSe2 and bulk TaA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09512v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09512v1-abstract-full" style="display: none;"> Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here we report nonlinear magneto-optical second harmonic generation (SHG) studies of non-magnetic topological materials including bilayer WTe2, monolayer WSe2 and bulk TaAs. The polarization-resolved patterns of optical SHG under magnetic field show nonlinear Kerr rotation in these time-reversal symmetric materials. For materials with three-fold rotational symmetric lattice structure, the SHG polarization pattern rotates just slightly in a magnetic field, whereas in those with mirror or two-fold rotational symmetry the SHG polarization pattern rotates greatly and distorts. These different magneto-SHG characters can be understood by considering the superposition of the magnetic field-induced time-noninvariant nonlinear optical tensor and the crystal-structure-based time-invariant counterpart. The situation is further clarified by scrutinizing the Faraday rotation, whose subtle interplay with crystal symmetry accounts for the diverse behavior of the extrinsic nonlinear Kerr rotation in different materials. Our work illustrates the application of magneto-SHG techniques to directly probe nontrivial topological properties, and underlines the importance of minimizing extrinsic nonlinear Kerr rotation in polarization-resolved magneto-optical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09512v1-abstract-full').style.display = 'none'; document.getElementById('2309.09512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06497">arXiv:2202.06497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06497">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal and Efficient p-Doping of Organic Semiconductors by Electrophilic Attack of Cations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Ping-An Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanpei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xincan Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zebing Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yuanping Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+S">Shun Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Lei Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+Y">Yugang Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+T">Thuc-Quyen Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuanyuan Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06497v1-abstract-short" style="display: inline;"> Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to a small number of OSCs, seriously limiting their general application. Herein, we reveal a novel p-doping mechanism by investigating the interactions between the dopant trityl cation and poly(3-he&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06497v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06497v1-abstract-full" style="display: none;"> Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to a small number of OSCs, seriously limiting their general application. Herein, we reveal a novel p-doping mechanism by investigating the interactions between the dopant trityl cation and poly(3-hexylthiophene) (P3HT). It is found that electrophilic attack of the trityl cations on thiophenes results in the formation of alkylated ions that induce electron transfer from neighboring P3HT chains, resulting in p-doping. This unique p-doping mechanism can be employed to dope various OSCs including those with high ionization energy (IE=5.8 eV). Moreover, this doping mechanism endows trityl cation with strong doping ability, leading to polaron yielding efficiency of 100 % and doping efficiency of over 80 % in P3HT. The discovery and elucidation of this novel doping mechanism not only points out that strong electrophiles are a class of efficient p-dopants for OSCs, but also provides new opportunities towards highly efficient doping of OSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06497v1-abstract-full').style.display = 'none'; document.getElementById('2202.06497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.02219">arXiv:2003.02219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.02219">pdf</a>, <a href="https://arxiv.org/format/2003.02219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.186802">10.1103/PhysRevLett.125.186802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yifei Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhesen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.02219v3-abstract-short" style="display: inline;"> In this paper, we study the conditions under which on-site dissipations can induce non-Hermitian skin modes in non-Hermitian systems. When the original Hermitian Hamiltonian has spinless time-reversal symmetry, it is impossible to have skin modes; on the other hand, if the Hermitian Hamiltonian has spinful time-reversal symmetry, skin modes can be induced by on-site dissipations under certain circ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.02219v3-abstract-full').style.display = 'inline'; document.getElementById('2003.02219v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.02219v3-abstract-full" style="display: none;"> In this paper, we study the conditions under which on-site dissipations can induce non-Hermitian skin modes in non-Hermitian systems. When the original Hermitian Hamiltonian has spinless time-reversal symmetry, it is impossible to have skin modes; on the other hand, if the Hermitian Hamiltonian has spinful time-reversal symmetry, skin modes can be induced by on-site dissipations under certain circumstance. As a concrete example, we employ the Rice-Mele model to illustrate our results. Furthermore, we predict that the skin modes can be detected by the chiral tunneling effect, that is, the tunneling favors the direction where the skin modes are localized. Our work reveals a no-go theorem for the emergence of skin modes, and paves the way for searching for quantum systems with skin modes and studying their novel physical responses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.02219v3-abstract-full').style.display = 'none'; document.getElementById('2003.02219v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages main text + 27 pages supplemental material, to appear in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 186802 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03577">arXiv:1904.03577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.03577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1445-3">10.1038/s41586-019-1445-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant and nonreciprocal second harmonic generation from layered antiferromagnetism in bilayer CrI3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yangfan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+G">Genevieve Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bevin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+Y">Yuwei Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shuang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+C">Chunlei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhanghai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M">Michael McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Ting Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03577v1-abstract-short" style="display: inline;"> Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. Recently, the van der Waals magnet, chromium triiodide (CrI3), emerged as the first layered antiferromagnetic insulator in its few-layer form, opening up ample opportunities for novel device functionalities. Here, we discovered an emergent nonreciprocal second order nonlinear o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03577v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03577v1-abstract-full" style="display: none;"> Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. Recently, the van der Waals magnet, chromium triiodide (CrI3), emerged as the first layered antiferromagnetic insulator in its few-layer form, opening up ample opportunities for novel device functionalities. Here, we discovered an emergent nonreciprocal second order nonlinear optical effect in bilayer CrI3. The observed second harmonic generation (SHG) is giant: several orders of magnitude larger than known magnetization induced SHG and comparable to SHG in the best 2D nonlinear optical materials studied so far (e.g. MoS2). We showed that while the parent lattice of bilayer CrI3 is centrosymmetric and thus does not contribute to the SHG signal, the observed nonreciprocal SHG originates purely from the layered antiferromagnetic order, which breaks both spatial inversion and time reversal symmetries. Furthermore, polarization-resolved measurements revealed the underlying C2h symmetry, and thus monoclinic stacking order in CrI3 bilayers, providing crucial structural information for the microscopic origin of layered antiferromagnetism. Our results highlight SHG as a highly sensitive probe that can reveal subtle magnetic order and open novel nonlinear and nonreciprocal optical device possibilities based on 2D magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03577v1-abstract-full').style.display = 'none'; document.getElementById('1904.03577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 572, 497-501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08381">arXiv:1810.08381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08381">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.064056">10.1103/PhysRevApplied.13.064056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A highly scalable and energy-efficient artificial neuron using an Ovonic Threshold Switch (OTS) featuring the spike-frequency adaptation and chaotic activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Milim Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Youngjo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+S+W">Seong Won Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwak%2C+J+Y">Joon Young Kwak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+H">Hyunsu Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yeonjin Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+B">Byung-ki Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Suyoun Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08381v1-abstract-short" style="display: inline;"> As an essential building block for developing a large-scale brain-inspired computing system, we present a highly scalable and energy-efficient artificial neuron device composed of an Ovonic Threshold Switch (OTS) and a few passive electrical components. It shows not only the basic integrate-and-fire (I&amp;F) function and the rate coding ability, but also the spike-frequency adaptation (SFA) property&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08381v1-abstract-full').style.display = 'inline'; document.getElementById('1810.08381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08381v1-abstract-full" style="display: none;"> As an essential building block for developing a large-scale brain-inspired computing system, we present a highly scalable and energy-efficient artificial neuron device composed of an Ovonic Threshold Switch (OTS) and a few passive electrical components. It shows not only the basic integrate-and-fire (I&amp;F) function and the rate coding ability, but also the spike-frequency adaptation (SFA) property and the chaotic activity. The latter two, being the most common features found in the mammalian cortex, are particularly essential for the realization of the energy-efficient signal processing, learning, and adaptation to environments1-3, but have been hard to achieve up to now. Furthermore, with our OTS-based neuron device employing the reservoir computing technique combined with delayed feedback dynamics, spoken-digit recognition task has been performed with a considerable degree of recognition accuracy. From a comparison with a Mott memristor-based artificial neuron device, it is shown that the OTS-based artificial neuron is much more energy-efficient by about 100 times. These results show that our OTS-based artificial neuron device is promising for the application in the development of a large-scale brain-inspired computing system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08381v1-abstract-full').style.display = 'none'; document.getElementById('1810.08381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 064056 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01733">arXiv:1808.01733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01733">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab16fc">10.1088/1361-648X/ab16fc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stress-sign-tunable Poisson&#39;s Ratio in Monolayer Blue Phosphorus Oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+M">Mengqiu Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Yulan Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jin Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shidong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yougen Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yongli Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01733v2-abstract-short" style="display: inline;"> Negative Poisson&#39;s ratio (NPR) materials have attracted tremendous interest due to their unusual physical properties and potential applications. Certain two-dimensional (2D) monolayer materials have also been found to exhibit NPR and the corresponding deformation mechanism varies. In this study, we found, based on first-principles calculations, that the Poisson&#39;s ratio (PR) sign of monolayer Blue&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01733v2-abstract-full').style.display = 'inline'; document.getElementById('1808.01733v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01733v2-abstract-full" style="display: none;"> Negative Poisson&#39;s ratio (NPR) materials have attracted tremendous interest due to their unusual physical properties and potential applications. Certain two-dimensional (2D) monolayer materials have also been found to exhibit NPR and the corresponding deformation mechanism varies. In this study, we found, based on first-principles calculations, that the Poisson&#39;s ratio (PR) sign of monolayer Blue Phosphorus Oxide (BPO) can be tuned by strain: the PR is positive under uniaxial strain &lt;= -1% but becomes negative under &gt; 0. The deformation mechanism for BPO under strain depends on the mutual competition between the P-P attraction and P-O repulsion effect, and these two factors induce two different deformation pathways (one with positive PR, and the other with NPR). Moreover, with increasing of strain, both the decreased strength of P-P attraction and the increased strength of P-O repulsion effect modulate the PR of BPO from positive to negative. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01733v2-abstract-full').style.display = 'none'; document.getElementById('1808.01733v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 Pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter, 2019, 31:295702 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.04758">arXiv:1710.04758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.04758">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-018-0175-7">10.1038/s41566-018-0175-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate tunable third-order nonlinear optical response of massless Dirac fermions in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+T">Tao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinluo Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xiaodong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhihong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+Y">Yuwei Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yangfan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yunyun Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+C">Changgan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zi%2C+J">Jian Zi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sipe%2C+J+E">J. E. Sipe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yuen-Ron Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.04758v1-abstract-short" style="display: inline;"> Materials with massless Dirac fermions can possess exceptionally strong and widely tunable optical nonlinearities. Experiments on graphene monolayer have indeed found very large third-order nonlinear responses, but the reported variation of the nonlinear optical coefficient by orders of magnitude is not yet understood. A large part of the difficulty is the lack of information on how doping or chem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04758v1-abstract-full').style.display = 'inline'; document.getElementById('1710.04758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.04758v1-abstract-full" style="display: none;"> Materials with massless Dirac fermions can possess exceptionally strong and widely tunable optical nonlinearities. Experiments on graphene monolayer have indeed found very large third-order nonlinear responses, but the reported variation of the nonlinear optical coefficient by orders of magnitude is not yet understood. A large part of the difficulty is the lack of information on how doping or chemical potential affects the different nonlinear optical processes. Here we report the first experimental study, in corroboration with theory, on third harmonic generation (THG) and four-wave mixing (FWM) in graphene that has its chemical potential tuned by ion-gel gating. THG was seen to have enhanced by ~30 times when pristine graphene was heavily doped, while difference-frequency FWM appeared just the opposite. The latter was found to have a strong divergence toward degenerate FWM in undoped graphene, leading to a giant third-order nonlinearity. These truly amazing characteristics of graphene come from the possibility to gate-control the chemical potential, which selectively switches on and off one- and multi-photon resonant transitions that coherently contribute to the optical nonlinearity, and therefore can be utilized to develop graphene-based nonlinear optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04758v1-abstract-full').style.display = 'none'; document.getElementById('1710.04758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted for publication on August 14th, 2017</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics 12, 430-436 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.07731">arXiv:1607.07731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.07731">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.075107">10.1103/PhysRevB.96.075107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The origin of bias independent conductance plateaus and zero bias conductance peaks in Bi2Se3/NbSe2 hybrid structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">Tong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jun He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huanwen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huachen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hong-Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Ya Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Changming Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">Kam Tuen Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+H">Hongtao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiannong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.07731v1-abstract-short" style="display: inline;"> Superconducting proximity effect (SPE) in topological insulator (TI) and superconductor (SC) hybrid structure has attracted intense attention in recent years in an effort to search for mysterious Majorana fermions (MFs) in condensed matter systems. Here we report on the SPE in a Bi2Se3/NbSe2 junction fabricated with an all-dry transfer method. Resulting from the highly transparent interface, two s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07731v1-abstract-full').style.display = 'inline'; document.getElementById('1607.07731v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.07731v1-abstract-full" style="display: none;"> Superconducting proximity effect (SPE) in topological insulator (TI) and superconductor (SC) hybrid structure has attracted intense attention in recent years in an effort to search for mysterious Majorana fermions (MFs) in condensed matter systems. Here we report on the SPE in a Bi2Se3/NbSe2 junction fabricated with an all-dry transfer method. Resulting from the highly transparent interface, two sharp resistance drops are observed at 7 K and 2 K, respectively, corresponding to the superconducting transition of NbSe2 flake and the SPE induced superconductivity in Bi2Se3 flake. Experimentally measured differential conductance spectra exhibit a bias-independent conductance plateau (BICP) in the vicinity of zero bias below 7 K. As temperatures further decrease a zero bias conductance peak (ZBCP) emerges from the plateau and becomes more enhanced and sharpened at lower temperatures. Our numerically simulated differential conductance spectra reproduce the observed BICP and ZBCP and show that the SPE in topological surface states (TSS) is much stronger than that in the bulk states of Bi2Se3. The SPE induced superconducting gap for the TSS of Bi2Se3 is comparable to that of NbSe2 and gives rise to the observed BICP below 7 K. In contrast, the SPE induced superconducting gap for the bulk states of Bi2Se3 is an order of magnitude smaller than that of NbSe2 and superconducting TSS. These weakly paired bulk states in Bi2Se3 give rise to the ZBCP below 2 K. Our study has clearly unveiled the different roles of TSS and bulk stats in SPE, clarified the physical origin of the SPE induced features, and shined light on further investigation of SPE and MF in TI/SC hybrid structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07731v1-abstract-full').style.display = 'none'; document.getElementById('1607.07731v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 075107 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.08836">arXiv:1606.08836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.08836">pdf</a>, <a href="https://arxiv.org/format/1606.08836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4964737">10.1063/1.4964737 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High spatial frequency laser induced periodic surface structure formation in germanium by mid-IR femtosecond pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Austin%2C+D+R">Drake. R. Austin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kafka%2C+K+R+P">Kyle R. P. Kafka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+Y+H">Yu Hang Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kaikai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blaga%2C+C+I">Cosmin I. Blaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+A+Y">Allen Y. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+E+A">Enam A. Chowdhury</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.08836v1-abstract-short" style="display: inline;"> Formation of high spatial frequency laser induced periodic surface structures (HSFL) in germanium by femtosecond mid-IR pulses with wavelengths between $位=2.0$ and $3.6 \; \mathrm{渭m}$ was studied with varying angle of incidence and polarization. The period of these structures varied from $位/3$ to $位/8$. A modified surface-scattering model including Drude excitation and the optical Kerr effect exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08836v1-abstract-full').style.display = 'inline'; document.getElementById('1606.08836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.08836v1-abstract-full" style="display: none;"> Formation of high spatial frequency laser induced periodic surface structures (HSFL) in germanium by femtosecond mid-IR pulses with wavelengths between $位=2.0$ and $3.6 \; \mathrm{渭m}$ was studied with varying angle of incidence and polarization. The period of these structures varied from $位/3$ to $位/8$. A modified surface-scattering model including Drude excitation and the optical Kerr effect explains spatial period scaling of HSFL across the mid-IR wavelengths. Transmission electron microscopy (TEM) shows the presence of a $30 \; \mathrm{n m}$ amorphous layer above the structure of crystalline germanium. Various mechanisms including two photon absorption and defect-induced amorphization are discussed as probable causes for the formation of this layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08836v1-abstract-full').style.display = 'none'; document.getElementById('1606.08836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages total (1 page of supplementary material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05523">arXiv:1508.05523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05523">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaa6486">10.1126/science.aaa6486 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of tunable bandgap and anisotropic Dirac semimetal state in black phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jimin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baik%2C+S+S">Seung Su Baik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+S+H">Sae Hee Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+Y">Yeongsup Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Soohyung Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+B">Byeong-Gyu Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yeonjin Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H+J">Hyoung Joon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+S">Keun Su Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05523v1-abstract-short" style="display: inline;"> Black phosphorus consists of stacked layers of phosphorene, a two-dimensional semiconductor with promising device characteristics. We report the realization of a widely tunable bandgap in few-layer black phosphorus doped with potassium using an in-situ surface doping technique. Through band-structure measurements and calculations, we demonstrate that a vertical electric field from dopants modulate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05523v1-abstract-full').style.display = 'inline'; document.getElementById('1508.05523v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05523v1-abstract-full" style="display: none;"> Black phosphorus consists of stacked layers of phosphorene, a two-dimensional semiconductor with promising device characteristics. We report the realization of a widely tunable bandgap in few-layer black phosphorus doped with potassium using an in-situ surface doping technique. Through band-structure measurements and calculations, we demonstrate that a vertical electric field from dopants modulates the bandgap owing to the giant Stark effect and tunes the material from a moderate-gap semiconductor to a band-inverted semimetal. At the critical field of this band inversion, the material becomes a Dirac semimetal with anisotropic dispersion, linear in armchair and quadratic in zigzag directions. The tunable band structure of black phosphorus may allow great flexibility in design and optimization of electronic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05523v1-abstract-full').style.display = 'none'; document.getElementById('1508.05523v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 349, 723-726 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.04932">arXiv:1508.04932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.04932">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.5b04106">10.1021/acs.nanolett.5b04106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of Two-Dimensional Massless Dirac Fermions, Chiral Pseudospins, and Berry&#39;s Phase in Potassium Doped Few-Layer Black Phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Baik%2C+S+S">Seung Su Baik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+S">Keun Su Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yeonjin Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H+J">Hyoung Joon Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.04932v2-abstract-short" style="display: inline;"> Thin flakes of black phosphorus (BP) are a two-dimensional (2D) semiconductor whose energy gap is predicted being sensitive to the number of layers and external perturbations. Very recently, it was found that a simple method of potassium (K) doping on the surface of BP closes its band gap completely, producing a Dirac semimetal state with a linear band dispersion in the armchair direction and a qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04932v2-abstract-full').style.display = 'inline'; document.getElementById('1508.04932v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.04932v2-abstract-full" style="display: none;"> Thin flakes of black phosphorus (BP) are a two-dimensional (2D) semiconductor whose energy gap is predicted being sensitive to the number of layers and external perturbations. Very recently, it was found that a simple method of potassium (K) doping on the surface of BP closes its band gap completely, producing a Dirac semimetal state with a linear band dispersion in the armchair direction and a quadratic one in the zigzag direction. Here, based on first-principles density functional calculations, we predict that, beyond the critical K density of the gap closure, 2D massless Dirac Fermions (i.e., Dirac cones) emerge in K-doped few-layer BP, with linear band dispersions in all momentum directions, and the electronic states around Dirac points have chiral pseudospins and Berry&#39;s phase. These features are robust with respect to the spin-orbit interaction and may lead to graphene-like electronic transport properties with greater flexibility for potential device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04932v2-abstract-full').style.display = 'none'; document.getElementById('1508.04932v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 15, 7788 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.00374">arXiv:1508.00374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.00374">pdf</a>, <a href="https://arxiv.org/ps/1508.00374">ps</a>, <a href="https://arxiv.org/format/1508.00374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4927473">10.1063/1.4927473 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous behavior of trapping in extended dendrimers with a perfect trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhongzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Huan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yuhao Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.00374v1-abstract-short" style="display: inline;"> Compact and extended dendrimers are two important classes of dendritic polymers. The impact of the underlying structure of compact dendrimers on dynamical processes has been much studied, yet the relation between the dynamical and structural properties of extended dendrimers remains not well understood. In this paper, we study the trapping problem in extended dendrimers with generation-dependent s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.00374v1-abstract-full').style.display = 'inline'; document.getElementById('1508.00374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.00374v1-abstract-full" style="display: none;"> Compact and extended dendrimers are two important classes of dendritic polymers. The impact of the underlying structure of compact dendrimers on dynamical processes has been much studied, yet the relation between the dynamical and structural properties of extended dendrimers remains not well understood. In this paper, we study the trapping problem in extended dendrimers with generation-dependent segment lengths, which is different from that of compact dendrimers where the length of the linear segments is fixed. We first consider a particular case that the deep trap is located at the central node, and derive an exact formula for the average trapping time (ATT) defined as the average of the source-to-trap mean first passage time over all starting points. Then, using the obtained result we deduce a closed-form expression for the ATT to an arbitrary trap node, based on which we further obtain an explicit solution to the ATT corresponding to the trapping issue with the trap uniformly distributed in the polymer systems. We show that the trap location has a substantial influence on the trapping efficiency measured by the ATT, which increases with the shortest distance from the trap to the central node, a phenomenon similar to that for compact dendrimers. In contrast to this resemblance, the leading terms of ATTs for the three trapping problems differ drastically between extended and compact dendrimers, with the trapping processes in the extended dendrimers being less efficient than in compact dendrimers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.00374v1-abstract-full').style.display = 'none'; document.getElementById('1508.00374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Chemical Physics 143, 064901 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.00098">arXiv:1501.00098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.00098">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.245112">10.1103/PhysRevB.90.245112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yuanping Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.00098v1-abstract-short" style="display: inline;"> We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00098v1-abstract-full').style.display = 'inline'; document.getElementById('1501.00098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.00098v1-abstract-full" style="display: none;"> We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply band-like transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00098v1-abstract-full').style.display = 'none'; document.getElementById('1501.00098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 245112 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5088">arXiv:1112.5088</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.245201">10.1103/PhysRevB.85.245201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry Effects on Nonlocal Electron-Phonon Coupling in Organic Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yuanping Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coropceanu%2C+V">Veaceslav Coropceanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5088v3-abstract-short" style="display: inline;"> The electronic and electrical properties of crystalline organic semiconductors, such as the dispersions of the electronic bands and the dependence of charge-carrier mobility on temperature, are greatly impacted by the nonlocal electron-phonon interactions associated with intermolecular lattice vibrations. Here, we present a theoretical description that underlines that these properties vary differe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5088v3-abstract-full').style.display = 'inline'; document.getElementById('1112.5088v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5088v3-abstract-full" style="display: none;"> The electronic and electrical properties of crystalline organic semiconductors, such as the dispersions of the electronic bands and the dependence of charge-carrier mobility on temperature, are greatly impacted by the nonlocal electron-phonon interactions associated with intermolecular lattice vibrations. Here, we present a theoretical description that underlines that these properties vary differently as a function of the symmetry of the nonlocal electron-phonon coupling mechanism. The electron-phonon coupling patterns in real space are seen to have a direct and significant impact on the interactions in reciprocal space. Our findings demonstrate the importance of aspects that are usually missing in current transport models. Importantly, an adequate description of the electronic and charge-transport properties of organic semiconductors requires that the models take into account both antisymmetric and symmetric contributions to the nonlocal electron-phonon coupling mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5088v3-abstract-full').style.display = 'none'; document.getElementById('1112.5088v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Please refer to: PhysRevB.85.245201(2012)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.85.245201(2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.1088">arXiv:1108.1088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.1088">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Graded index and randomly oriented core-shell silicon nanowires with broadband and wide angle antireflection for photovoltaic cell applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pignalosa%2C+P">P. Pignalosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">H. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">L. Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+M">M. Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yasha Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.1088v1-abstract-short" style="display: inline;"> Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60\degre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1088v1-abstract-full').style.display = 'inline'; document.getElementById('1108.1088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.1088v1-abstract-full" style="display: none;"> Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60\degree) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1088v1-abstract-full').style.display = 'none'; document.getElementById('1108.1088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP ADVANCES Vol.1, 032124 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.0284">arXiv:1008.0284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.0284">pdf</a>, <a href="https://arxiv.org/format/1008.0284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Metallic nanoparticle on micro ring resonator for bio optical detection and sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Haddadpour%2C+A">Ali Haddadpour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yasha Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.0284v1-abstract-short" style="display: inline;"> We have investigated the unique effects of metallic nanoparticle on the ring resonator, especially multiple Au nanoparticles on the micro ring resonator with the 4-port configuration on chip. For the Au nanoparticle, because it has smaller real refractive index than air and large absorption refractive index, we found that there is a blue shift for the ring resonance wavelength, instead of red shif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.0284v1-abstract-full').style.display = 'inline'; document.getElementById('1008.0284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.0284v1-abstract-full" style="display: none;"> We have investigated the unique effects of metallic nanoparticle on the ring resonator, especially multiple Au nanoparticles on the micro ring resonator with the 4-port configuration on chip. For the Au nanoparticle, because it has smaller real refractive index than air and large absorption refractive index, we found that there is a blue shift for the ring resonance wavelength, instead of red shift normally observed for dielectric nanoparticles. The drop port intensity is strongly dependent on both number and size of nanoparticles, while relatively independent on position of nanoparticles. The correlation between the penetration depth of Au and the resonance mode evanescent tail is also discussed to reveal the unique properties of Au nanoparticle to be used for detection, sensing and nano medicine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.0284v1-abstract-full').style.display = 'none'; document.getElementById('1008.0284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Biomedical Optics Express, 2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.0282">arXiv:1008.0282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.0282">pdf</a>, <a href="https://arxiv.org/format/1008.0282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3474623">10.1063/1.3474623 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Coupling between On Chip Notched Ring Resonator and Nanoparticle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">S. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broderick%2C+K">K. Broderick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+H">H. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Y. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.0282v1-abstract-short" style="display: inline;"> We have demonstrated a new photonic structure to achieve strong optical coupling between nanoparticle and photonic molecule by utilizing a notched micro ring resonators. By creating a notch in the ring resonator and putting a nanoparticle inside the notch, large spectral shifts and splittings at nm scale can be achieved, compared to only pm scale observed by fiber tip evanescently coupled to the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.0282v1-abstract-full').style.display = 'inline'; document.getElementById('1008.0282v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.0282v1-abstract-full" style="display: none;"> We have demonstrated a new photonic structure to achieve strong optical coupling between nanoparticle and photonic molecule by utilizing a notched micro ring resonators. By creating a notch in the ring resonator and putting a nanoparticle inside the notch, large spectral shifts and splittings at nm scale can be achieved, compared to only pm scale observed by fiber tip evanescently coupled to the surface of microsphere, thereby significantly lowered the quality factor requirement for single nanoparticle detection. The ability for sorting the type of nanoparticles due to very different mode shift and splitting behavior of dielectric and metallic nanoparticles is also emphasized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.0282v1-abstract-full').style.display = 'none'; document.getElementById('1008.0282v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted,</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/math/0405112">arXiv:math/0405112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/math/0405112">pdf</a>, <a href="https://arxiv.org/ps/math/0405112">ps</a>, <a href="https://arxiv.org/format/math/0405112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Quasiperiodic Dynamics in Bose-Einstein Condensates in Periodic Lattices and Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=van+Noort%2C+M">Martijn van Noort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+M+A">Mason A. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yingfei Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chow%2C+S">Shui-Nee Chow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="math/0405112v4-abstract-short" style="display: inline;"> We employ KAM theory to rigorously investigate quasiperiodic dynamics in cigar-shaped Bose-Einstein condensates (BEC) in periodic lattices and superlattices. Toward this end, we apply a coherent structure ansatz to the Gross-Pitaevskii equation to obtain a parametrically forced Duffing equation describing the spatial dynamics of the condensate. For shallow-well, intermediate-well, and deep-well&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('math/0405112v4-abstract-full').style.display = 'inline'; document.getElementById('math/0405112v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="math/0405112v4-abstract-full" style="display: none;"> We employ KAM theory to rigorously investigate quasiperiodic dynamics in cigar-shaped Bose-Einstein condensates (BEC) in periodic lattices and superlattices. Toward this end, we apply a coherent structure ansatz to the Gross-Pitaevskii equation to obtain a parametrically forced Duffing equation describing the spatial dynamics of the condensate. For shallow-well, intermediate-well, and deep-well potentials, we find KAM tori and Aubry-Mather sets to prove that one obtains mostly quasiperiodic dynamics for condensate wave functions of sufficiently large amplitude, where the minimal amplitude depends on the experimentally adjustable BEC parameters. We show that this threshold scales with the square root of the inverse of the two-body scattering length, whereas the rotation number of tori above this threshold is proportional to the amplitude. As a consequence, one obtains the same dynamical picture for lattices of all depths, as an increase in depth essentially only affects scaling in phase space. Our approach is applicable to periodic superlattices with an arbitrary number of rationally dependent wave numbers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('math/0405112v4-abstract-full').style.display = 'none'; document.getElementById('math/0405112v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 6 figures (several with multiple parts; higher-quality versions of some of them available at http://www.its.caltech.edu/~mason/papers), to appear very soon in Journal of Nonlinear Science</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> MSC: 37J40; 70H99; 37N20; PACS: 05.45.-a; 03.75.Lm; 05.30.Jp; 05.45.Ac; 03.75.Nt </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0211515">arXiv:cond-mat/0211515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0211515">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Room Temperature Ballistic Conduction in Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Poncharal%2C+P">Philippe Poncharal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+C">Claire Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+L">Z. L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Heer%2C+W+A">Walt A. de Heer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0211515v1-abstract-short" style="display: inline;"> Multiwalled carbon nanotubes are shown to be ballistic conductors at room temperature, with mean free paths of the order of tens of microns. These experiments follow and extend the original experiments by Frank et al (Science, 280 1744 1998) including in-situ electron microscopy experiments and a detailed analysis of the length dependence of the resistance. The per unit length resistance r &lt; 100&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0211515v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0211515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0211515v1-abstract-full" style="display: none;"> Multiwalled carbon nanotubes are shown to be ballistic conductors at room temperature, with mean free paths of the order of tens of microns. These experiments follow and extend the original experiments by Frank et al (Science, 280 1744 1998) including in-situ electron microscopy experiments and a detailed analysis of the length dependence of the resistance. The per unit length resistance r &lt; 100 Ohm/micron, indicating free paths l &gt; 65 microns, unambiguously demonstrate ballistic conduction at room temperature up to macroscopic distances. The nanotube-metal contact resistances are in the range 0.1-1 kOhm micron. Contact scattering can explain why the measured conductances are about half the expected theoretical value of 2 G0 . For V&gt;0.1V the conductance rises linearly (dG/dV~0.3 G0 /V) reflecting the linear increase in the density-of-states in a metallic nanotube above the energy gap. Increased resistances (r =2- 10 k Ohm/micron) and anomalous I-V dependences result from impurities and surfactants on the tubes.Evidence is presented that ballistic transport occurs in undoped and undamaged tubed for which the top layer is metallic and the next layer is semiconducting. The diffusive properties of lithographically contacted multiwalled nanotubes most likely result from purification and other processing steps that damage and dope the nanotubes thereby making them structurally and electronically different than the pristine nanotubes investigated here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0211515v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0211515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. B 2002, 106, 12104-12118 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0002097">arXiv:cond-mat/0002097</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0002097">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0002097">ps</a>, <a href="https://arxiv.org/format/cond-mat/0002097">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/12/21/102">10.1088/0953-8984/12/21/102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge localization and phonon spectra in hole doped La2NiO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bishop%2C+A+R">A. R. Bishop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Ya-Sha Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z+G">Z. G. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0002097v1-abstract-short" style="display: inline;"> The in-plane oxygen vibrations in La2NiO4 are investigated for several hole-doping concentrations both theoretically and experimentally via inelastic neutron scattering. Using an inhomogeneous Hartree-Fock plus RPA numerical method in a two-dimensional Peierls-Hubbard model, it is found that the doping induces stripe ordering of localized charges, and that the strong electron-lattice coupling ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0002097v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0002097v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0002097v1-abstract-full" style="display: none;"> The in-plane oxygen vibrations in La2NiO4 are investigated for several hole-doping concentrations both theoretically and experimentally via inelastic neutron scattering. Using an inhomogeneous Hartree-Fock plus RPA numerical method in a two-dimensional Peierls-Hubbard model, it is found that the doping induces stripe ordering of localized charges, and that the strong electron-lattice coupling causes the in-plane oxygen modes to split into two subbands. This result agrees with the phonon band splitting observed by inelastic neutron scattering in La2-xSrxNiO4. Predictions of strong electron-lattice coupling in La2NiO4, the proximity of both oxygen-centered and nickel-centered charge ordering, and the relation between charged stripe ordering and the splitting of the in-plane phonon band upon doping are emphasized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0002097v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0002097v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, in RevTeX</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LAUR-00-382 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9805161">arXiv:cond-mat/9805161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9805161">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9805161">ps</a>, <a href="https://arxiv.org/format/cond-mat/9805161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.58.503">10.1103/PhysRevB.58.503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of Stripe Phases in Hole Doped $La_2NiO_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Ya-Sha Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zhi-Gang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bishop%2C+A+R">A. R. Bishop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gammel%2C+J+T">J. Tinka Gammel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9805161v1-abstract-short" style="display: inline;"> We study nickelate-centered and oxygen-centered stripe phases in doped La$_{2}$NiO$_{4}$ materials. We use an inhomogeneous Hartree-Fock and random-phase approximation approach including both electron-electron and electron-lattice(e-l) coupling for a layer of La$_{2}$NiO$_{4}$. We find that whether the ground state after commensurate hole doping comprises Ni-centered or O-centered charge-localiz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9805161v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9805161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9805161v1-abstract-full" style="display: none;"> We study nickelate-centered and oxygen-centered stripe phases in doped La$_{2}$NiO$_{4}$ materials. We use an inhomogeneous Hartree-Fock and random-phase approximation approach including both electron-electron and electron-lattice(e-l) coupling for a layer of La$_{2}$NiO$_{4}$. We find that whether the ground state after commensurate hole doping comprises Ni-centered or O-centered charge-localized stripes depends sensitively on the e-l interaction. With increasing e-l interaction strength, a continuous transition from an O-centered stripe phase to a Ni-centered one is found. Various low- and high-energy signatures of these two kinds of stripe phases are predicted, which can clearly distinguish them. These signatures reflect the strongly correlated spin-charge-lattice features in the vicinity of Ni-centered or O-centered stripe domains. The importance of e-l interaction for recent experiments on stripe phases is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9805161v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9805161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, to appear in Phys.Rev.B(July 1,1998)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9805160">arXiv:cond-mat/9805160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9805160">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9805160">ps</a>, <a href="https://arxiv.org/format/cond-mat/9805160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.58.4077">10.1103/PhysRevB.58.4077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Aharonov-Anandan Effect Induced by Spin-Orbit Interaction and Charge-Density-Waves in Mesoscopic Rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Ya-Sha Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bishop%2C+A+R">A. R. Bishop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9805160v1-abstract-short" style="display: inline;"> We study the spin-dependent geometric phase effect in mesoscopic rings of charge-density-wave(CDW) materials. When electron spin is explicitly taken into account, we show that the spin-dependent Aharonov-Casher phase can have a pronounced frustration effects on such CDW materials with appropriate electron filling. We show that this frustration has observable consequences for transport experiment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9805160v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9805160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9805160v1-abstract-full" style="display: none;"> We study the spin-dependent geometric phase effect in mesoscopic rings of charge-density-wave(CDW) materials. When electron spin is explicitly taken into account, we show that the spin-dependent Aharonov-Casher phase can have a pronounced frustration effects on such CDW materials with appropriate electron filling. We show that this frustration has observable consequences for transport experiment. We identify a phase transition from a Peierls insulator to metal, which is induced by spin-dependent phase interference effects. Mesoscopic CDW materials and spin-dependent geometric phase effects, and their interplay, are becoming attractive opportunities for exploitation with the rapid development of modern fabrication technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9805160v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9805160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, to appear in Phys.Rev.B(Aug.15, 1998)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9705073">arXiv:cond-mat/9705073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9705073">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9705073">ps</a>, <a href="https://arxiv.org/format/cond-mat/9705073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217979297001039">10.1142/S0217979297001039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $E\otimes e$ Jahn-Teller Effect in $C_{70}^{3-}$ Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+L">Lin Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Ya-Sha Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chui-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Z">Zhao-Bin Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9705073v1-abstract-short" style="display: inline;"> The electron-phonon interaction in $C_{70}$ anions is studied by making use of a lattice relaxation approach. We find there exists a Jahn-Teller effect in $C_{70}^{3-}$ system, due to an extra electron being doped to the double degenerate $E_{1}^{&#39;&#39;}$ state. As a result of this effect, the original $D_{5h}$ symmetry of the ground state becomes unstable, which causes distortion of the lattice con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9705073v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9705073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9705073v1-abstract-full" style="display: none;"> The electron-phonon interaction in $C_{70}$ anions is studied by making use of a lattice relaxation approach. We find there exists a Jahn-Teller effect in $C_{70}^{3-}$ system, due to an extra electron being doped to the double degenerate $E_{1}^{&#39;&#39;}$ state. As a result of this effect, the original $D_{5h}$ symmetry of the ground state becomes unstable, which causes distortion of the lattice configuration. The only symmetry maintained in the final state of the relaxation is the $x-y$ plane reflection symmetry. We further find that besides the Jahn-Teller active $A_{1}^{&#39;}, A_{2}^{&#39;}, E_{2}^{&#39;}$ modes, the non-Jahn-Teller active $E_{1}^{&#39;}$ vibrations also contribute to the relaxation process, which come from the nonlinear effect and are two or three orders smaller than those of the Jahn-Teller active modes. We suggest that the $C_{70}^{3-}$ molecule is a promising Berry Phase candidate in this effective $E \otimes e$ Jahn-Teller system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9705073v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9705073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, to appear in Mod. Phys. Lett. B (1997)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9705054">arXiv:cond-mat/9705054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9705054">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9705054">ps</a>, <a href="https://arxiv.org/format/cond-mat/9705054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.55.10631">10.1103/PhysRevB.55.10631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Precession and Time-Reversal Symmetry Breaking in Quantum Transport of Electrons Through Mesoscopic Rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Ya-Sha Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tie-Zheng Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Z">Zhao-Bin Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9705054v1-abstract-short" style="display: inline;"> We consider the motion of electrons through a mesoscopic ring in the presence of spin-orbit interaction, Zeeman coupling, and magnetic flux. The coupling between the spin and the orbital degrees of freedom results in the geometric and the dynamical phases associated with a cyclic evolution of spin state. Using a non-adiabatic Aharonov-Anandan phase approach, we obtain the exact solution of the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9705054v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9705054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9705054v1-abstract-full" style="display: none;"> We consider the motion of electrons through a mesoscopic ring in the presence of spin-orbit interaction, Zeeman coupling, and magnetic flux. The coupling between the spin and the orbital degrees of freedom results in the geometric and the dynamical phases associated with a cyclic evolution of spin state. Using a non-adiabatic Aharonov-Anandan phase approach, we obtain the exact solution of the system and identify the geometric and the dynamical phases for the energy eigenstates. Spin precession of electrons encircling the ring can lead to various interference phenomena such as oscillating persistent current and conductance. We investigate the transport properties of the ring connected to current leads to explore the roles of the time-reversal symmetry and its breaking therein with the spin degree of freedom being fully taken into account. We derive an exact expression for the transmission probability through the ring. We point out that the time-reversal symmetry breaking due to Zeeman coupling can totally invalidate the picture that spin precession results in effective, spin-dependent Aharonov-Bohm flux for interfering electrons. Actually, such a picture is only valid in the Aharonov-Casher effect induced by spin-orbit interaction only. Unfortunately, this point has not been realized in prior works on the transmission probability in the presence of both SO interaction and Zeeman coupling. We carry out numerical computation to illustrate the joint effects of spin-orbit interaction, Zeeman coupling and magnetic flux. By examining the resonant tunneling of electrons in the weak coupling limit, we establish a connection between the observable time-reversal symmetry breaking effects manifested by the persistent current and by the transmission probability. For a ring formed by two-dimensional electron gas, we <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9705054v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9705054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B vol. 55 page 10631, 1997 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9605144">arXiv:cond-mat/9605144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9605144">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9605144">ps</a>, <a href="https://arxiv.org/format/cond-mat/9605144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.55.4065">10.1103/PhysRevB.55.4065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent Current From the Competition Between Zeeman Coupling and Spin-Orbit Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tie-Zheng Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Ya-Sha Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Z">Zhao-Bin Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9605144v2-abstract-short" style="display: inline;"> Applying the non-adiabatic Aharonov-Anandan phase approach to a mesoscopic ring with non-interacting many electrons in the presence of the spin-orbit interaction, Zeeman coupling and magnetic flux, we show that the time-reversal symmetry breaking due to Zeeman coupling is intrinsically different from that due to magnetic flux. We find that the direction of the persistent currents induced by the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9605144v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9605144v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9605144v2-abstract-full" style="display: none;"> Applying the non-adiabatic Aharonov-Anandan phase approach to a mesoscopic ring with non-interacting many electrons in the presence of the spin-orbit interaction, Zeeman coupling and magnetic flux, we show that the time-reversal symmetry breaking due to Zeeman coupling is intrinsically different from that due to magnetic flux. We find that the direction of the persistent currents induced by the Zeeman coupling changes periodically with the particle number, while the magnetic flux determines the direction of the induced currents by its sign alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9605144v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9605144v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 1996; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, ReVTeX, including 3 figures on request,Submitted to Phys.Rev.Lett</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10