CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 76 results for author: <span class="mathjax">Zeng, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zeng%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zeng, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zeng%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zeng, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zeng%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zeng%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zeng%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03275">arXiv:2409.03275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03275">pdf</a>, <a href="https://arxiv.org/format/2409.03275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Inverse Design of Winding Tuple for Non-Hermitian Topological Edge Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zihe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kunling Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yong Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03275v2-abstract-short" style="display: inline;"> The interplay between topological localization and non-Hermiticity localization in non-Hermitian crystal systems results in a diversity of shapes of topological edge modes (EMs), offering opportunities to manipulate these modes for potential topological applications. The conventional strategy for characterizing the domain of EMs is to calculate the topological invariants, but which does not provid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03275v2-abstract-full').style.display = 'inline'; document.getElementById('2409.03275v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03275v2-abstract-full" style="display: none;"> The interplay between topological localization and non-Hermiticity localization in non-Hermitian crystal systems results in a diversity of shapes of topological edge modes (EMs), offering opportunities to manipulate these modes for potential topological applications. The conventional strategy for characterizing the domain of EMs is to calculate the topological invariants, but which does not provide the wavefunction forms of EMs. This leads to the the bulk-boundary correspondence typically being verified only through numerical methods. In this work, by recognizing EMs as specified solutions of eigenequation, we derive their wavefunctions in an extended non-Hermitian Su-Schrieffer-Heeger model. We then inversely construct a winding tuple $\left \{ w_{\scriptscriptstyle GBZ},w_{\scriptscriptstyle BZ}\right \} $ that characterizes the existence of EMs and their spatial distribution. Moreover, we define a new spectral winding number equivalent to $w_{\scriptscriptstyle BZ}$, which is determined by the product of energies of different bands. The inverse design of topological invariants allows us to categorize the localized nature of EMs even in systems lacking sublattice symmetry, which can facilitate the manipulation and utilization of EMs in the development of novel quantum materials and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03275v2-abstract-full').style.display = 'none'; document.getElementById('2409.03275v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19992">arXiv:2406.19992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19992">pdf</a>, <a href="https://arxiv.org/format/2406.19992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L140302">10.1103/PhysRevB.110.L140302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Abnormal Frequency Response Determined by Saddle Points in Non-Hermitian Crystal Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kunling Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yong Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19992v2-abstract-short" style="display: inline;"> In non-Hermitian crystal systems under open boundary condition (OBC), it is generally believed that the OBC modes with frequencies containing positive imaginary parts, when excited by external driving, will experience exponential growth in population, thereby leading to instability. However, our work challenges this conventional understanding. In such a system, we find an anomalous response that g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19992v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19992v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19992v2-abstract-full" style="display: none;"> In non-Hermitian crystal systems under open boundary condition (OBC), it is generally believed that the OBC modes with frequencies containing positive imaginary parts, when excited by external driving, will experience exponential growth in population, thereby leading to instability. However, our work challenges this conventional understanding. In such a system, we find an anomalous response that grows exponentially with the frequency aligned with those of saddle points. The frequencies of these saddle points on the complex plane are below the maximum imaginary part of OBC spectrum, but they can lie within or beyond the OBC spectrum. We derive general formulas of excitation-response relationships and find that this anomalous response can occur because the excitation of OBC modes eventually evolve toward these saddle points at long times. Only when the frequencies of all these saddle points are below the real axis do the non-Hermitian crystal systems remain stable under periodic excitation. Thus our results also provide new insights on the stability criterion of non-Hermitian crystal systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19992v2-abstract-full').style.display = 'none'; document.getElementById('2406.19992v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L140302, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12522">arXiv:2406.12522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12522">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Photohermal Microswimmer Penetrate Cell Membrane with Cavitation Bubble </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+J">Jialin Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaxin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Changjin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qingxin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaofeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jinyao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12522v2-abstract-short" style="display: inline;"> Self-propelled micromotors can efficiently convert ambient energy into mechanical motion, which is of great interest for its potential biomedical applications in delivering therapeutics noninvasively. However, navigating these micromotors through biological barriers remains a significant challenge as most micromotors do not provide sufficient disruption forces in in-vivo conditions. In this study,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12522v2-abstract-full').style.display = 'inline'; document.getElementById('2406.12522v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12522v2-abstract-full" style="display: none;"> Self-propelled micromotors can efficiently convert ambient energy into mechanical motion, which is of great interest for its potential biomedical applications in delivering therapeutics noninvasively. However, navigating these micromotors through biological barriers remains a significant challenge as most micromotors do not provide sufficient disruption forces in in-vivo conditions. In this study, we employed focused scanning laser from conventional confocal microscope to manipulate carbon microbottle based microswimmers. With the increasing of the laser power, the microswimmers&#39; motions translates from autonomous to directional, and finally the high power laser induced the microswimmer explosions, which effectively deliveres microbottle fragments through the cell membrane. It is revealed that photothermally-induced cavitation bubbles enable the propulsion of microbottles in liquids, where the motion direction can be precisely regulated by the scanning orientation of the laser. Furthermore, the membrane penetration ability of the microbottles promised potential applications in drug delivery and cellular injections. As microbottles navigate toward cells, we strategically increase the laser power to trigger their explosion. By loading microswimmers with transfection genes, cytoplasmic transfection can be realized, which is demonstrated by successful gene transfection of GPF in cells. Our findings open new possibilities for cell injection and gene transfection using micromotors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12522v2-abstract-full').style.display = 'none'; document.getElementById('2406.12522v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 00Axx </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16019">arXiv:2403.16019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16019">pdf</a>, <a href="https://arxiv.org/format/2403.16019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Shaping a Surface Microdroplet by Marangoni Forces along a Moving Contact Line of Four Immiscible Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haichang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Q">Qiuyun Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Yaowen Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xiahui Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yijun Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B+B">Ben Bin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xuehua Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16019v1-abstract-short" style="display: inline;"> The ability to transfer microdroplets between fluid phases offers numerous advantages in various fields, enabling better control, manipulation, and utilization of small volumes of fluids in pharmaceutical formulations, microfluidics, and lab-on-a-chip devices, single-cell analysis or droplet-based techniques for nanomaterial synthesis. This study focuses on the stability and morphology of a sessil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16019v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16019v1-abstract-full" style="display: none;"> The ability to transfer microdroplets between fluid phases offers numerous advantages in various fields, enabling better control, manipulation, and utilization of small volumes of fluids in pharmaceutical formulations, microfluidics, and lab-on-a-chip devices, single-cell analysis or droplet-based techniques for nanomaterial synthesis. This study focuses on the stability and morphology of a sessile oil microdroplet at the four-phase contact line of solid-water-oil-air during the droplet transfer from underwater to air. We observed a distinct transition in microdroplet dynamics, characterized by a shift from a scenario dominated by Marangoni forces to one dominated by capillary forces. In the regime dominated by Marangoni forces, the oil microdroplets spread in response to the contact between the water-air interface and the water-oil interface and the emergence of an oil concentration gradient along the water-air interface. The spreading distance along the four-phase contact line follows a power law relationship of $t^{3/4}$, reflecting the balance between Marangoni forces and viscous forces. On the other hand, in the capillarity-dominated regime, the oil microdroplets remain stable at the contact line and after being transferred into the air. We identify the crossover between these two regimes in the parameter space defined by three factors: the approaching velocity of the solid-water-air contact line ($v_{cl}$), the radius of the oil microdroplet ($r_o$), and the radius of the water drop ($r_w$). Furthermore, we demonstrate how to use the four-phase contact line for shaping oil microdroplets using a full liquid process by the contact line lithography. The findings in this study may be also applied to materials synthesis where nanoparticles, microspheres, or nanocapsules are produced by microdroplet-based techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16019v1-abstract-full').style.display = 'none'; document.getElementById('2403.16019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04418">arXiv:2311.04418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04418">pdf</a>, <a href="https://arxiv.org/format/2311.04418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> AI-accelerated Discovery of Altermagnetic Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Ze-Feng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+S">Shuai Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bocheng Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+P">Peng-Jie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhong-Yi Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04418v3-abstract-short" style="display: inline;"> Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the limited availability of known altermagnetic materials hinders the study of such properties. Hence, discovering more types of altermagnetic materials with dif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04418v3-abstract-full').style.display = 'inline'; document.getElementById('2311.04418v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04418v3-abstract-full" style="display: none;"> Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the limited availability of known altermagnetic materials hinders the study of such properties. Hence, discovering more types of altermagnetic materials with different properties is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next generation information technologies, e.g., storage devices and high-sensitivity sensors. Since each altermagnetic material has a unique crystal structure, we propose an automated discovery approach empowered by an AI search engine that employs a pre-trained graph neural network to learn the intrinsic features of the material crystal structure, followed by fine-tuning a classifier with limited positive samples to predict the altermagnetism probability of a given material candidate. Finally, we successfully discovered 50 new altermagnetic materials that cover metals, semiconductors, and insulators confirmed by the first-principles electronic structure calculations. The wide range of electronic structural characteristics reveals that various novel physical properties manifest in these newly discovered altermagnetic materials, e.g., anomalous Hall effect, anomalous Kerr effect, and topological property. Noteworthy, we discovered 4 $i$-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of the materials with targeted properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04418v3-abstract-full').style.display = 'none'; document.getElementById('2311.04418v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages; 23 figures; 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08976">arXiv:2306.08976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.08976">pdf</a>, <a href="https://arxiv.org/format/2306.08976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Efficient Spin Seebeck and Spin Nernst Effects of Magnons in Altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+P">Ping Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08976v2-abstract-short" style="display: inline;"> We report two non-degenerate magnon modes with opposite spins or chiralities in collinearly antiferromagnetic insulators driven by symmetry-governed anisotropic exchange couplings. The consequent giant spin splitting contributes to spin Seebeck and spin Nernst effects generating longitudinal and transverse spin currents when the temperature gradient applies along and away from the main crystal axi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08976v2-abstract-full').style.display = 'inline'; document.getElementById('2306.08976v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08976v2-abstract-full" style="display: none;"> We report two non-degenerate magnon modes with opposite spins or chiralities in collinearly antiferromagnetic insulators driven by symmetry-governed anisotropic exchange couplings. The consequent giant spin splitting contributes to spin Seebeck and spin Nernst effects generating longitudinal and transverse spin currents when the temperature gradient applies along and away from the main crystal axis, without requiring any external magnetic field and spin-orbit coupling. Based on first-principle calculations, we predict feasible material candidates holding robust altermagnetic spin configurations and room-temperature structural stability to efficiently transport spin. The spin Seebeck conductivity is comparable to the records of antiferromagnets that require the magnetic field, and the spin Nernst conductivity is two orders in magnitude larger than that in antiferromagnetic monolayers that need Berry curvature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08976v2-abstract-full').style.display = 'none'; document.getElementById('2306.08976v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04348">arXiv:2306.04348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.04348">pdf</a>, <a href="https://arxiv.org/format/2306.04348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian Topological Magnonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+J">Ji Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+J+W">J. W. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+K">Ke Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04348v2-abstract-short" style="display: inline;"> Dissipation in mechanics, optics, acoustics, and electronic circuits is nowadays recognized to be not always detrimental but can be exploited to achieve non-Hermitian topological phases or properties with functionalities for potential device applications. As elementary excitations of ordered magnetic moments that exist in various magnetic materials, magnons are the information carriers in magnonic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04348v2-abstract-full').style.display = 'inline'; document.getElementById('2306.04348v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04348v2-abstract-full" style="display: none;"> Dissipation in mechanics, optics, acoustics, and electronic circuits is nowadays recognized to be not always detrimental but can be exploited to achieve non-Hermitian topological phases or properties with functionalities for potential device applications. As elementary excitations of ordered magnetic moments that exist in various magnetic materials, magnons are the information carriers in magnonic devices with low-energy consumption for reprogrammable logic, non-reciprocal communication, and non-volatile memory functionalities. Non-Hermitian topological magnonics deals with the engineering of dissipation and/or gain for non-Hermitian topological phases or properties in magnets that are not achievable in the conventional Hermitian scenario, with associated functionalities cross-fertilized with their electronic, acoustic, optic, and mechanic counterparts, such as giant enhancement of magnonic frequency combs, magnon amplification, (quantum) sensing of the magnetic field with unprecedented sensitivity, magnon accumulation, and perfect absorption of microwaves. In this review article, we address the unified approach in constructing magnonic non-Hermitian Hamiltonian, introduce the basic non-Hermitian topological physics, and provide a comprehensive overview of the recent theoretical and experimental progress towards achieving distinct non-Hermitian topological phases or properties in magnonic devices, including exceptional points, exceptional nodal phases, non-Hermitian magnonic SSH model, and non-Hermitian skin effect. We emphasize the non-Hermitian Hamiltonian approach based on the Lindbladian or self-energy of the magnonic subsystem but address the physics beyond it as well, such as the crucial quantum jump effect in the quantum regime and non-Markovian dynamics. We provide a perspective for future opportunities and challenges before concluding this article. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04348v2-abstract-full').style.display = 'none'; document.getElementById('2306.04348v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">101 pages, 35 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14398">arXiv:2210.14398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14398">pdf</a>, <a href="https://arxiv.org/format/2210.14398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Dissolution Dynamics of a Binary Switchable Hydrophilicty Solvent -- Polymer Drop into an Acidic Aqueous Phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Billet%2C+R">Romain Billet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lockhart%2C+J">James Lockhart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gattrell%2C+M">Mike Gattrell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hongying Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xuehua Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14398v1-abstract-short" style="display: inline;"> Switchable hydrophilicity solvents (SHSs) are solvents defined by their ability to switch from their hydrophobic form to a hydrophilic form when put in contact with an acidic trigger such as $CO_2$. As a consequence, SHSs qualify as promising alternatives to volatile organic compounds during the industrial solvent extraction processes, as greener and inexpensive methods can be applied to separate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14398v1-abstract-full').style.display = 'inline'; document.getElementById('2210.14398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14398v1-abstract-full" style="display: none;"> Switchable hydrophilicity solvents (SHSs) are solvents defined by their ability to switch from their hydrophobic form to a hydrophilic form when put in contact with an acidic trigger such as $CO_2$. As a consequence, SHSs qualify as promising alternatives to volatile organic compounds during the industrial solvent extraction processes, as greener and inexpensive methods can be applied to separate and recover SHSs. Furthermore, because of their less volatile nature, SHSs are less flammable and so increase the safety of a larger-scale extraction process. In this work, we study the dynamics and in-drop phase separation during the dissolution process of a drop composed of SHS and polymer, triggered by an acid in the surrounding aqueous environment. From 70 different experimental conditions, we found a scaling relationship between the drop dissolution time and initial volume with an overall scaling coefficient $\sim$ 0.53. We quantitatively assessed and found a shorter dissolution time related with a decrease in pH of the aqueous phase or an increase in initial polymer concentration in the drop. Examining the internal state of the drop during the dissolution revealed an in-drop phase separation behavior, resulting in a porous morphology of the final polymer particle. Our experimental results provide a microscopic view of the SHS dissolution process from droplets, and findings may help design SHS extraction processes for particle formation from emulsions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14398v1-abstract-full').style.display = 'none'; document.getElementById('2210.14398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13386">arXiv:2209.13386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13386">pdf</a>, <a href="https://arxiv.org/format/2209.13386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Radiation-free and non-Hermitian topology inertial defect states of on-chip magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13386v1-abstract-short" style="display: inline;"> Radiative damping is a strong dissipation source for the quantum emitters hybridized with propagating photons, electrons, or phonons, which is not easily avoidable for on-chip magnonic emitters as well that can radiate via the surface acoustic waves of the substrate. Here we demonstrate in an array of on-chip nano-magnets coupled in a long range via exchanging the surface acoustic waves that a poi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13386v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13386v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13386v1-abstract-full" style="display: none;"> Radiative damping is a strong dissipation source for the quantum emitters hybridized with propagating photons, electrons, or phonons, which is not easily avoidable for on-chip magnonic emitters as well that can radiate via the surface acoustic waves of the substrate. Here we demonstrate in an array of on-chip nano-magnets coupled in a long range via exchanging the surface acoustic waves that a point defect in the array, which can be introduced by the local magnon frequency shift by a local biased magnetic field or the absence of a magnetic wire, strongly localizes the magnons, in contrast to the well spreading Bloch-like collective magnon modes in such an array setting. The radiation of the magnon defect states is exponentially suppressed by the distance of the defect to the array edges. Moreover, this defect state is strikingly inertial to the non-Hermitian topology that localizes all the extended states at one boundary. Such configuration robust magnon defect states towards radiation-free limit may be suitable for high-fidelity magnon quantum information storage in the future on-chip magnonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13386v1-abstract-full').style.display = 'none'; document.getElementById('2209.13386v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06189">arXiv:2201.06189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06189">pdf</a>, <a href="https://arxiv.org/format/2201.06189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Giant Microwave Sensitivity of Magnetic Array by Long-Range Chiral Interaction Driven Skin Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06189v1-abstract-short" style="display: inline;"> Non-Hermitian skin effect was observed in one-dimensional systems with short-range chiral interaction. Long-range chiral interaction mediated by traveling waves also favors the accumulation of energy, but has not yet showed non-Hermitian topology. Here we find that the strong interference brought by the wave propagation is detrimental for accumulation. By suppression of interference via the dampin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06189v1-abstract-full').style.display = 'inline'; document.getElementById('2201.06189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06189v1-abstract-full" style="display: none;"> Non-Hermitian skin effect was observed in one-dimensional systems with short-range chiral interaction. Long-range chiral interaction mediated by traveling waves also favors the accumulation of energy, but has not yet showed non-Hermitian topology. Here we find that the strong interference brought by the wave propagation is detrimental for accumulation. By suppression of interference via the damping of traveling waves, we predict the non-Hermitian skin effect of magnetic excitation in a periodic array of magnetic nanowires that are coupled chirally via spin waves of thin magnetic films. The local excitation of a wire at one edge by weak microwaves of magnitude $\sim 渭{\rm T}$ leads to a considerable spin-wave amplitude at the other edge, i.e. a remarkable functionality useful for sensitive, non-local, and non-reciprocal detection of microwaves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06189v1-abstract-full').style.display = 'none'; document.getElementById('2201.06189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00219">arXiv:2101.00219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.00219">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.0c02492">10.1021/acs.jpclett.0c02492 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmonic Microbubble Dynamics in Binary Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaolai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Detert%2C+M">Marvin Detert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prosperetti%2C+A">Andrea Prosperetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zandvliet%2C+H+J+W">Harold J. W. Zandvliet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lohse%2C+D">Detlef Lohse</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00219v1-abstract-short" style="display: inline;"> The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concentration-dependent behaviors. For low ethanol concentrations (f_e) of &lt; 67.5%, bubbles do not exist at the solid-liquid interface. For high f_e values o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00219v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00219v1-abstract-full" style="display: none;"> The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concentration-dependent behaviors. For low ethanol concentrations (f_e) of &lt; 67.5%, bubbles do not exist at the solid-liquid interface. For high f_e values of &gt;80%, the bubbles behave as in pure ethanol. Only in an intermediate window of 67.5% &lt; f_e &lt; 80% do we find sessile plasmonic bubbles with a highly nontrivial temporal evolution, in which as a function of time three phases can be discerned. (1) In the first phase, the microbubbles grow, while wiggling. (2) As soon as the wiggling stops, the microbubbles enter the second phase in which they suddenly shrink, followed by (3) a steady reentrant growth phase. Our experiments reveal that the sudden shrinkage of the microbubbles in the second regime is caused by a depinning event of the three phase contact line. We systematically vary the ethanol concentration, laser power, and laser spot size to unravel water recondensation as the underlying mechanism of the sudden bubble shrinkage in phase 2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00219v1-abstract-full').style.display = 'none'; document.getElementById('2101.00219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. Lett. 11, 8631(2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02388">arXiv:2004.02388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.02388">pdf</a>, <a href="https://arxiv.org/format/2004.02388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.023005">10.1103/PhysRevResearch.3.023005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating Noisy Quantum Circuits with Matrix Product Density Operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Song Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chenfeng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yongxiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+S">Shi-Yao Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+P">Pengxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02388v3-abstract-short" style="display: inline;"> Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. In this work, we simulate random quantum circuits in 1D with Matrix Product Density Operators (MPDO), for different noise models such as dephasing, dep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02388v3-abstract-full').style.display = 'inline'; document.getElementById('2004.02388v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02388v3-abstract-full" style="display: none;"> Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. In this work, we simulate random quantum circuits in 1D with Matrix Product Density Operators (MPDO), for different noise models such as dephasing, depolarizing, and amplitude damping. We show that the method based on Matrix Product States (MPS) fails to approximate the noisy output quantum states for any of the noise models considered, while the MPDO method approximates them well. Compared with the method of Matrix Product Operators (MPO), the MPDO method reflects a clear physical picture of noise (with inner indices taking care of the noise simulation) and quantum entanglement (with bond indices taking care of two-qubit gate simulation). Consequently, in case of weak system noise, the resource cost of MPDO will be significantly less than that of the MPO due to a relatively small inner dimension needed for the simulation. In case of strong system noise, a relatively small bond dimension may be sufficient to simulate the noisy circuits, indicating a regime that the noise is large enough for an `easy&#39; classical simulation. Moreover, we propose a more effective tensor updates scheme with optimal truncations for both the inner and the bond dimensions, performed after each layer of the circuit, which enjoys a canonical form of the MPDO for improving simulation accuracy. With truncated inner dimension to a maximum value $魏$ and bond dimension to a maximum value $蠂$, the cost of our simulation scales as $\sim ND魏^3蠂^3$, for an $N$-qubit circuit with depth $D$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02388v3-abstract-full').style.display = 'none'; document.getElementById('2004.02388v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 023005 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.03030">arXiv:2002.03030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.03030">pdf</a>, <a href="https://arxiv.org/format/2002.03030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.9b00298">10.1021/acs.jpcc.9b00298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solvent Exchange in a Hele-Shaw Cell Universality of Surface Nanodroplet Nucleation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xuehua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lohse%2C+D">Detlef Lohse</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.03030v1-abstract-short" style="display: inline;"> Solvent exchange (also called solvent shifting or Ouzo effect) is a generally used bottom-up process to mass-produce nanoscale droplets. In this process, a good solvent for some oil is displaced by a poor one, leading to oil nanodroplet nucleation and subsequent growth. Here we perform this process on a hydrophobic substrate so that sessile droplets so-called surface nanodroplets-develop, followin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03030v1-abstract-full').style.display = 'inline'; document.getElementById('2002.03030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.03030v1-abstract-full" style="display: none;"> Solvent exchange (also called solvent shifting or Ouzo effect) is a generally used bottom-up process to mass-produce nanoscale droplets. In this process, a good solvent for some oil is displaced by a poor one, leading to oil nanodroplet nucleation and subsequent growth. Here we perform this process on a hydrophobic substrate so that sessile droplets so-called surface nanodroplets-develop, following the work of Zhang et al. [Zhang, X.; Lu, Z.; Tan, H.; Bao, L.; He, Y.; Sun, C.; Lohse, D. Proc. Natl. Acad. Sci. U.S.A. 2015, 122, 9253-9257]. In contrast to what was done in that paper, we chose a very well-controlled Hele-Shaw geometry with negligible gravitational effects, injecting the poor solvent in the center of the Hele-Shaw cell, and characterize the emerging nanodroplets as a function of radial distance and flow rates. We find that the mean droplet volume per area &lt;Vol&gt;_area strongly depends on the local Peclet number Pe and follows a universal scaling law &lt;Vol&gt;_area~Pe^(3/4). Moreover, the probability distribution function of the droplet volume strongly depends on the local Pe as well, regardless of the flow rates and radial distance, giving strong support to the theoretical model of the solvent exchange process developed in Zhang et al.&#39;s work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03030v1-abstract-full').style.display = 'none'; document.getElementById('2002.03030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76-05 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Physical Chemistry C, 123, (2019), 5571-5577 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00693">arXiv:2002.00693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.00693">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.langmuir.8b02173">10.1021/acs.langmuir.8b02173 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entrapment and Dissolution of Microbubbles Inside Microwells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaolai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanshen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Huanshu Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zandvliet%2C+H+J+W">Harold J. W. Zandvliet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xuehua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lohse%2C+D">Detlef Lohse</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00693v1-abstract-short" style="display: inline;"> The formation and evolution of immersed surface micro- and nanobubbles are essential in various practical applications, such as the usage of superhydrophobic rematerials, drug delivery, and mineral flotation. In this work, we investigate the entrapment of microbubbles on a hydrophobic surface, structured with microwells, when water flow passes along, and the subsequent microbubble dissolution. At&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00693v1-abstract-full').style.display = 'inline'; document.getElementById('2002.00693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00693v1-abstract-full" style="display: none;"> The formation and evolution of immersed surface micro- and nanobubbles are essential in various practical applications, such as the usage of superhydrophobic rematerials, drug delivery, and mineral flotation. In this work, we investigate the entrapment of microbubbles on a hydrophobic surface, structured with microwells, when water flow passes along, and the subsequent microbubble dissolution. At entrapment, the microbubble is initially pinned at the edge of the microwell. At some point, the three-phase contact line detaches from one side of the edge and separates from the wall, after which it further recedes. We systematically investigate the evolution of the footprint diameter and the contact angle of the entrapped microbubbles, which reveals that the dissolution process is in the constant contact angle mode. By varying the gas undersaturation level, we quantify how a high gas undersaturation enhances the dissolution process, and compare with simplified theoretical predictions for dissolving bubbles on a plane surface. We find that geometric partial blockage effects of the diffusive flux out of the microbubble trapped in the microwell lead to reduced dissolution rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00693v1-abstract-full').style.display = 'none'; document.getElementById('2002.00693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 74-05 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Langmuir 34(2018) 10659-10667 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01733">arXiv:1808.01733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01733">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab16fc">10.1088/1361-648X/ab16fc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stress-sign-tunable Poisson&#39;s Ratio in Monolayer Blue Phosphorus Oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bowen Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+M">Mengqiu Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Yulan Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jin Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shidong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yougen Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yongli Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01733v2-abstract-short" style="display: inline;"> Negative Poisson&#39;s ratio (NPR) materials have attracted tremendous interest due to their unusual physical properties and potential applications. Certain two-dimensional (2D) monolayer materials have also been found to exhibit NPR and the corresponding deformation mechanism varies. In this study, we found, based on first-principles calculations, that the Poisson&#39;s ratio (PR) sign of monolayer Blue&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01733v2-abstract-full').style.display = 'inline'; document.getElementById('1808.01733v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01733v2-abstract-full" style="display: none;"> Negative Poisson&#39;s ratio (NPR) materials have attracted tremendous interest due to their unusual physical properties and potential applications. Certain two-dimensional (2D) monolayer materials have also been found to exhibit NPR and the corresponding deformation mechanism varies. In this study, we found, based on first-principles calculations, that the Poisson&#39;s ratio (PR) sign of monolayer Blue Phosphorus Oxide (BPO) can be tuned by strain: the PR is positive under uniaxial strain &lt;= -1% but becomes negative under &gt; 0. The deformation mechanism for BPO under strain depends on the mutual competition between the P-P attraction and P-O repulsion effect, and these two factors induce two different deformation pathways (one with positive PR, and the other with NPR). Moreover, with increasing of strain, both the decreased strength of P-P attraction and the increased strength of P-O repulsion effect modulate the PR of BPO from positive to negative. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01733v2-abstract-full').style.display = 'none'; document.getElementById('1808.01733v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 Pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter, 2019, 31:295702 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.03817">arXiv:1805.03817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.03817">pdf</a>, <a href="https://arxiv.org/ps/1805.03817">ps</a>, <a href="https://arxiv.org/format/1805.03817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.256601">10.1103/PhysRevLett.122.256601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant Anisotropic Magnetoresistance due to Purely Orbital Rearrangement in the Quadrupolar Heavy Fermion Superconductor PrV$_2$Al$_{20}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shimura%2C+Y">Yasuyuki Shimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">Daniel Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%7Fonemann%2C+R+U">Rico Uwe Schonemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsujimoto%2C+M">Masaki Tsujimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsumoto%2C+Y">Yosuke Matsumoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakai%2C+A">Akito Sakai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakakibara%2C+T">Toshiro Sakakibara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Araki%2C+K">Koji Araki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+W">Wenkai Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Q">Qiong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakatsuji%2C+S">Satoru Nakatsuji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.03817v1-abstract-short" style="display: inline;"> We report the discovery of giant and anisotropic magnetoresistance due to the orbital rearrangement in a non-magnetic correlated metal. In particular, we measured the magnetoresistance under fields up to 31.4 T in the cubic Pr-based heavy fermion superconductor PrV$_2$Al$_{20}$ with a non-magnetic $螕_3$ doublet ground state, exhibiting antiferro-quadrupole ordering below 0.7 K. For the [100] direc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03817v1-abstract-full').style.display = 'inline'; document.getElementById('1805.03817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.03817v1-abstract-full" style="display: none;"> We report the discovery of giant and anisotropic magnetoresistance due to the orbital rearrangement in a non-magnetic correlated metal. In particular, we measured the magnetoresistance under fields up to 31.4 T in the cubic Pr-based heavy fermion superconductor PrV$_2$Al$_{20}$ with a non-magnetic $螕_3$ doublet ground state, exhibiting antiferro-quadrupole ordering below 0.7 K. For the [100] direction, we find that the high-field phase appears between 12 T and 25 T, accompanied by a large jump at 12 T in the magnetoresistance ($螖MR \sim $ 100 $\% $) and in the anisotropic magnetoresistivity (AMR) ratio by $\sim $ 20 $\% $. These observations indicate that the strong hybridization between the conduction electrons and anisotropic quadrupole moments leads to the Fermi surface reconstruction upon crossing the field-induced antiferro-quadrupole (orbital) rearrangement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03817v1-abstract-full').style.display = 'none'; document.getElementById('1805.03817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 256601 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.06458">arXiv:1712.06458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.06458">pdf</a>, <a href="https://arxiv.org/format/1712.06458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-019-0166-7">10.1038/s41534-019-0166-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Simulation of the Non-Fermi-Liquid State of Sachdev-Ye-Kitaev Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Z">Zhihuang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jian%2C+C">Chao-Ming Jian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Cenke Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laflamme%2C+R">Raymond Laflamme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.06458v2-abstract-short" style="display: inline;"> The Sachdev-Ye-Kitaev (SYK) model incorporates rich physics, ranging from exotic non-Fermi liquid states without quasiparticle excitations, to holographic duality and quantum chaos. However, its experimental realization remains a daunting challenge due to various unnatural ingredients of the SYK Hamiltonian such as its strong randomness and fully nonlocal fermion interaction. At present, construct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06458v2-abstract-full').style.display = 'inline'; document.getElementById('1712.06458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.06458v2-abstract-full" style="display: none;"> The Sachdev-Ye-Kitaev (SYK) model incorporates rich physics, ranging from exotic non-Fermi liquid states without quasiparticle excitations, to holographic duality and quantum chaos. However, its experimental realization remains a daunting challenge due to various unnatural ingredients of the SYK Hamiltonian such as its strong randomness and fully nonlocal fermion interaction. At present, constructing such a nonlocal Hamiltonian and exploring its dynamics is best through digital quantum simulation, where state-of-the-art techniques can already handle a moderate number of qubits. Here we demonstrate a first step towards simulation of the SYK model on a nuclear-spin-chain simulator. We observed the fermion paring instability of the non-Fermi liquid state and the chaotic-nonchaotic transition at simulated temperatures, as was predicted by previous theories. As the realization of the SYK model in practice, our experiment opens a new avenue towards investigating the key features of non-Fermi liquid states, as well as the quantum chaotic systems and the AdS/CFT duality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06458v2-abstract-full').style.display = 'none'; document.getElementById('1712.06458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NPJ Quantum Information, 5, 7 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08366">arXiv:1710.08366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.08366">pdf</a>, <a href="https://arxiv.org/format/1710.08366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys4295">10.1038/nphys4295 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hartstein%2C+M">M. Hartstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toews%2C+W+H">W. H. Toews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y+-">Y. -T. Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+R">Q. R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakamura%2C+S">S. Nakamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Padgett%2C+A+S">A. S. Padgett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodway-Gant%2C+G">G. Rodway-Gant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berk%2C+J">J. Berk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kingston%2C+M+K">M. K. Kingston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G+H">G. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M+K">M. K. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamashita%2C+S">S. Yamashita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakakibara%2C+T">T. Sakakibara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takano%2C+Y">Y. Takano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+-">J. -H. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shitsevalova%2C+N">N. Shitsevalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+R+W">R. W. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutherland%2C+M">M. Sutherland</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08366v1-abstract-short" style="display: inline;"> The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low energy excitations. Here we reveal another route to experimentally realise a Fermi surface in the absence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08366v1-abstract-full').style.display = 'inline'; document.getElementById('1710.08366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08366v1-abstract-full" style="display: none;"> The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low energy excitations. Here we reveal another route to experimentally realise a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB$_6$ positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures ($\ll 1$ K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB$_6$, a Fermi surface arises from novel itinerant low energy excitations that couple to magnetic fields, but not weak DC electric fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08366v1-abstract-full').style.display = 'none'; document.getElementById('1710.08366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2017): nphys4295 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.00920">arXiv:1705.00920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.00920">pdf</a>, <a href="https://arxiv.org/format/1705.00920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.115138">10.1103/PhysRevB.100.115138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Planar Hall-effect, Anomalous planar Hall-effect, and Magnetic Field-Induced Phase Transitions in TaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+R">Q. R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+Y+C">Y. C. Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoenemann%2C+R">R. Schoenemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Memaran%2C+S">S. Memaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+W">W. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">D. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K+-">K. -W. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Besara%2C+T">T. Besara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sankar%2C+R">R. Sankar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+F">F. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCandless%2C+G+T">G. T. McCandless</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+J+Y">J. Y. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alidoust%2C+N">N. Alidoust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S+-">S. -Y. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">I. Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Z. Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakirev%2C+F+F">F. F. Balakirev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.00920v3-abstract-short" style="display: inline;"> We evaluate the topological character of TaAs through a detailed study of the angular, magnetic-field and temperature dependence of its magnetoresistivity and Hall-effect(s), and of its bulk electronic structure through quantum oscillatory phenomena. At low temperatures, and for fields perpendicular to the electrical current, we extract an extremely large Hall angle $螛_H$ at higher fields, that is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00920v3-abstract-full').style.display = 'inline'; document.getElementById('1705.00920v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.00920v3-abstract-full" style="display: none;"> We evaluate the topological character of TaAs through a detailed study of the angular, magnetic-field and temperature dependence of its magnetoresistivity and Hall-effect(s), and of its bulk electronic structure through quantum oscillatory phenomena. At low temperatures, and for fields perpendicular to the electrical current, we extract an extremely large Hall angle $螛_H$ at higher fields, that is $螛_H \sim 82.5^{\circ}$, implying a very pronounced Hall signal superimposed into its magnetoresistivity. For magnetic fields and electrical currents perpendicular to the \emph{c}-axis we observe a very pronounced planar Hall-effect, when the magnetic field is rotated within the basal plane. This effect is observed even at higher temperatures, i.e. as high as $T = 100$ K, and predicted recently to result from the chiral anomaly among Weyl points. Superimposed onto this planar Hall, which is an even function of the field, we observe an anomalous planar Hall-signal akin to the one reported for that is an odd function of the field. Below 100 K, negative longitudinal magnetoresistivity (LMR), initially ascribed to the chiral anomaly and subsequently to current inhomogeneities, is observed in samples having different geometries and contact configurations, once the large Hall signal is subtracted. Our measurements reveal a phase transition upon approaching the quantum limit that leads to the reconstruction of the FS and to the concomitant suppression of the negative LMR indicating that it is intrinsically associated with the Weyl dispersion at the Fermi level. For fields along the \emph{a}-axis it also leads to a pronounced hysteresis pointing to a field-induced electronic phase-transition. This collection of unconventional tranport observations points to the prominent role played by the axial anomaly among Weyl nodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00920v3-abstract-full').style.display = 'none'; document.getElementById('1705.00920v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures, Supplemental File not included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 115138 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.00365">arXiv:1705.00365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.00365">pdf</a>, <a href="https://arxiv.org/ps/1705.00365">ps</a>, <a href="https://arxiv.org/format/1705.00365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-019-0145-z">10.1038/s41534-019-0145-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring Holographic Entanglement Entropy on a Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Keren Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+M">Muxin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+D">Dongxue Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zichang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+G">Guilu Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laflamme%2C+R">Raymond Laflamme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.00365v2-abstract-short" style="display: inline;"> Quantum simulation promises to have wide applications in many fields where problems are hard to model with classical computers. Various quantum devices of different platforms have been built to tackle the problems in, say, quantum chemistry, condensed matter physics, and high-energy physics. Here, we report an experiment towards the simulation of quantum gravity by simulating the holographic entan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00365v2-abstract-full').style.display = 'inline'; document.getElementById('1705.00365v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.00365v2-abstract-full" style="display: none;"> Quantum simulation promises to have wide applications in many fields where problems are hard to model with classical computers. Various quantum devices of different platforms have been built to tackle the problems in, say, quantum chemistry, condensed matter physics, and high-energy physics. Here, we report an experiment towards the simulation of quantum gravity by simulating the holographic entanglement entropy. On a six-qubit nuclear magnetic resonance quantum simulator, we demonstrate a key result of Anti-de Sitter/conformal field theory(\adscft) correspondence---the Ryu-Takayanagi formula is demonstrated by measuring the relevant entanglement entropies on the perfect tensor state. The fidelity of our experimentally prepared the six-qubit state is 85.0\% via full state tomography and reaches 93.7\% if the signal-decay due to decoherence is taken into account. Our experiment serves as the basic module of simulating more complex tensor network states that exploring \adscft correspondence. As the initial experimental attempt to study \adscft via quantum information processing, our work opens up new avenues exploring quantum gravity phenomena on quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00365v2-abstract-full').style.display = 'none'; document.getElementById('1705.00365v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in NPJ quantum information. All comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information, volume 5, Article number: 30 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04504">arXiv:1612.04504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.04504">pdf</a>, <a href="https://arxiv.org/ps/1612.04504">ps</a>, <a href="https://arxiv.org/format/1612.04504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa7235">10.1088/1367-2630/aa7235 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Invariant Perfect Tensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Youning Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+M">Muxin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grassl%2C+M">Markus Grassl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04504v1-abstract-short" style="display: inline;"> Invariant tensors are states in the SU(2) tensor product representation that are invariant under the SU(2) action. They play an important role in the study of loop quantum gravity. On the other hand, perfect tensors are highly entangled many-body quantum states with local density matrices maximally mixed. Recently, the notion of perfect tensors recently has attracted a lot of attention in the fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04504v1-abstract-full').style.display = 'inline'; document.getElementById('1612.04504v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04504v1-abstract-full" style="display: none;"> Invariant tensors are states in the SU(2) tensor product representation that are invariant under the SU(2) action. They play an important role in the study of loop quantum gravity. On the other hand, perfect tensors are highly entangled many-body quantum states with local density matrices maximally mixed. Recently, the notion of perfect tensors recently has attracted a lot of attention in the fields of quantum information theory, condensed matter theory, and quantum gravity. In this work, we introduce the concept of an invariant perfect tensor (IPT), which is a $n$-valent tensor that is both invariant and perfect. We discuss the existence and construction of IPT. For bivalent tensors, the invariant perfect tensor is the unique singlet state for each local dimension. The trivalent invariant perfect tensor also exists and is uniquely given by Wigner&#39;s $3j$ symbol. However, we show that, surprisingly, there does not exist four-valent invariant perfect tensors for any dimension. On the contrary, when the dimension is large, almost all invariant tensors are perfect asymptotically, which is a consequence of the phenomenon of concentration of measure for multipartite quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04504v1-abstract-full').style.display = 'none'; document.getElementById('1612.04504v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, comment welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics 19, 063029 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.01180">arXiv:1612.01180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.01180">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C7CP01404J">10.1039/C7CP01404J <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular organization in the twist-bend nematic phase by resonant X-ray scattering at the Se K-edge and by SAXS, WAXS and GIXRD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stevenson%2C+W+D">W. D. Stevenson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X+B">X. B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Welch%2C+C">C. Welch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ungar%2C+G">G. Ungar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehl%2C+G+H">G. H. Mehl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.01180v1-abstract-short" style="display: inline;"> Using a novel Se-labelled dimer mixed with DTC5C7 aligned by magnetic field, the twist-bend nematic phase (Ntb) in dimers was studied by hard X-ray resonant scattering and by small and wide angle X-ray scattering (SAXS, WAXS). Resonant diffraction spots indicated a helix with a 9-12 nm pitch in the Ntb phase. Unprecedentedly high helix orien-tation enabled deconvolution of global and local order p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01180v1-abstract-full').style.display = 'inline'; document.getElementById('1612.01180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.01180v1-abstract-full" style="display: none;"> Using a novel Se-labelled dimer mixed with DTC5C7 aligned by magnetic field, the twist-bend nematic phase (Ntb) in dimers was studied by hard X-ray resonant scattering and by small and wide angle X-ray scattering (SAXS, WAXS). Resonant diffraction spots indicated a helix with a 9-12 nm pitch in the Ntb phase. Unprecedentedly high helix orien-tation enabled deconvolution of global and local order parameters. This, combined with simultaneous resonant and non-resonant SAXS and WAXS data, allowed us to construct a modified model of the Ntb phase matching twisted molecular conformations and the local heliconical director field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01180v1-abstract-full').style.display = 'none'; document.getElementById('1612.01180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 5 pages, 4 figures Supporting information: 27 pages, 9 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.01246">arXiv:1609.01246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.01246">pdf</a>, <a href="https://arxiv.org/format/1609.01246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.031011">10.1103/PhysRevX.7.031011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">Ruihua Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hengyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+B">Bingtian Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+H">Hui Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.01246v3-abstract-short" style="display: inline;"> The idea of the out-of-time-order correlator (OTOC) has recently emerged in the study of both condensed matter systems and gravitational systems. It not only plays a key role in investigating the holographic duality between a strongly interacting quantum system and a gravitational system, but also diagnoses the chaotic behavior of many-body quantum systems and characterizes the information scrambl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01246v3-abstract-full').style.display = 'inline'; document.getElementById('1609.01246v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.01246v3-abstract-full" style="display: none;"> The idea of the out-of-time-order correlator (OTOC) has recently emerged in the study of both condensed matter systems and gravitational systems. It not only plays a key role in investigating the holographic duality between a strongly interacting quantum system and a gravitational system, but also diagnoses the chaotic behavior of many-body quantum systems and characterizes the information scrambling. Based on the OTOCs, three different concepts -- quantum chaos, holographic duality, and information scrambling -- are found to be intimately related to each other. Despite of its theoretical importance, the experimental measurement of the OTOC is quite challenging and so far there is no experimental measurement of the OTOC for local operators. Here we report the measurement of OTOCs of local operators for an Ising spin chain on a nuclear magnetic resonance quantum simulator. We observe that the OTOC behaves differently in the integrable and non-integrable cases. Based on the recent discovered relationship between OTOCs and the growth of entanglement entropy in the many-body system, we extract the entanglement entropy from the measured OTOCs, which clearly shows that the information entropy oscillates in time for integrable models and scrambles for non-intgrable models. With the measured OTOCs, we also obtain the experimental result of the butterfly velocity, which measures the speed of correlation propagation. Our experiment paves a way for experimentally studying quantum chaos, holographic duality, and information scrambling in many-body quantum systems with quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01246v3-abstract-full').style.display = 'none'; document.getElementById('1609.01246v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 031011 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06932">arXiv:1608.06932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.06932">pdf</a>, <a href="https://arxiv.org/format/1608.06932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.080502">10.1103/PhysRevLett.118.080502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Keren Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+T">Tian Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+G">Guilu Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laflamme%2C+R">Raymond Laflamme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06932v2-abstract-short" style="display: inline;"> Topological orders can be used as media for topological quantum computing --- a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06932v2-abstract-full').style.display = 'inline'; document.getElementById('1608.06932v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06932v2-abstract-full" style="display: none;"> Topological orders can be used as media for topological quantum computing --- a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular $S$ and $T$ matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the $\Z_2$ toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06932v2-abstract-full').style.display = 'none'; document.getElementById('1608.06932v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; to appear in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 080502 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.01333">arXiv:1607.01333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.01333">pdf</a>, <a href="https://arxiv.org/ps/1607.01333">ps</a>, <a href="https://arxiv.org/format/1607.01333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.094511">10.1103/PhysRevB.94.094511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional superconductivity in a bulk single-crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+R">Q. R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">D. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johannes%2C+M+D">M. D. Johannes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.01333v1-abstract-short" style="display: inline;"> Both Nb$_3$Pd$_x$Se$_7$ and Ta$_4$Pd$_3$Te$_{16}$ crystallize in a monoclinic point group while exhibiting superconducting transition temperatures as high as $T_c\sim 3.5$ and $\sim 4.7 $ K, respectively. Disorder was claimed to lead to the extremely large upper critical fields ($H_{c2}$) observed in related compounds. Despite the presence of disorder and heavier elements, $H_{c2}$s in Ta$_4$Pd&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.01333v1-abstract-full').style.display = 'inline'; document.getElementById('1607.01333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.01333v1-abstract-full" style="display: none;"> Both Nb$_3$Pd$_x$Se$_7$ and Ta$_4$Pd$_3$Te$_{16}$ crystallize in a monoclinic point group while exhibiting superconducting transition temperatures as high as $T_c\sim 3.5$ and $\sim 4.7 $ K, respectively. Disorder was claimed to lead to the extremely large upper critical fields ($H_{c2}$) observed in related compounds. Despite the presence of disorder and heavier elements, $H_{c2}$s in Ta$_4$Pd$_3$Te$_{16}$ are found to be considerably smaller than those of Nb$_3$Pd$_x$Se$_7$ while displaying an anomalous, non-saturating linear dependence on temperature $T$ for fields along all three crystallographic axes. In contrast, crystals of the latter compound displaying the highest $T_c$s display $H_{c2}\propto (1-T/T_c)^{1/2}$, which in monolayers of transition metal dichalcogenides is claimed to be evidence for an Ising paired superconducting state resulting from strong spin-orbit coupling. This anomalous $T$-dependence indicates that the superconducting state of Nb$_3$Pd$_x$Se$_7$ is quasi-two-dimensional in nature. This is further supported by a nearly divergent anisotropy in upper-critical fields, i.e. $纬= H_{c2}^{b}/H_{c2}^{a^{\prime}}$, upon approaching $T_c$. Hence, in Nb$_3$Pd$_x$Se$_7$ the increase of $T_c$ correlates with a marked reduction in electronic dimensionality as observed, for example, in intercalated FeSe. For the Nb compound, Density functional theory (DFT) calculations indicate that an increase in the external field produces an anisotropic orbital response, with especially strong polarization at the Pd sites when the field is perpendicular to their square planar environment. Therefore, DFT suggests the field-induced pinning of the spin to the lattice as a possible mechanism for decoupling the superconducting planes. Overall, our observations represent further evidence for unconventional superconductivity in the Pd chalcogenides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.01333v1-abstract-full').style.display = 'none'; document.getElementById('1607.01333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 094511 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.05178">arXiv:1606.05178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.05178">pdf</a>, <a href="https://arxiv.org/format/1606.05178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.245152">10.1103/PhysRevB.93.245152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of Weyl Physics and Planar Defects in Semimetals TaP and TaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Besara%2C+T">Tiglet Besara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D+A">Daniel A. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kuan-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Suvadip Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+R">Qiu R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jifeng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+Y">Yan Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumbach%2C+R+E">Ryan E. Baumbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manousakis%2C+E">Efstratios Manousakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+D+J">David J. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siegrist%2C+T">Theo Siegrist</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.05178v1-abstract-short" style="display: inline;"> We report a structural study of the Weyl semimetals TaAs and TaP, utilizing diffraction and imaging techniques, where we show that they contain a high density of defects, leading to non-stoichiometric single crystals of both semimetals. Despite the observed defects and non-stoichiometry on samples grown using techniques already reported in the literature, de Haas-van Alphen measurements on TaP rev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05178v1-abstract-full').style.display = 'inline'; document.getElementById('1606.05178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.05178v1-abstract-full" style="display: none;"> We report a structural study of the Weyl semimetals TaAs and TaP, utilizing diffraction and imaging techniques, where we show that they contain a high density of defects, leading to non-stoichiometric single crystals of both semimetals. Despite the observed defects and non-stoichiometry on samples grown using techniques already reported in the literature, de Haas-van Alphen measurements on TaP reveal quantum oscillations and a high carrier mobility, an indication that the crystals are of quality comparable to those reported elsewhere. Electronic structure calculations on TaAs reveal that the position of the Weyl points relative to the Fermi level shift with the introduction of vacancies and stacking faults. In the case of vacancies the Fermi surface becomes considerably altered, while the effect of stacking faults on the electronic structure is to allow the Weyl pockets to remain close to the Fermi surface. The observation of quantum oscillations in a non-stoichiometric crystal and the persistence of Weyl fermion pockets near the Fermi surface in a crystal with stacking faults point to the robustness of these quantum phenomena in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05178v1-abstract-full').style.display = 'none'; document.getElementById('1606.05178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures. Some of the results were reported in arXiv:1511.03221, but are more extensively described here. This manuscript has been accepted for publication in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.03245">arXiv:1603.03245</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.03245">pdf</a>, <a href="https://arxiv.org/format/1603.03245">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.042333">10.1103/PhysRevA.94.042333 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dichotomy of entanglement depth for symmetric states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Ji-Yao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhengfeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+N">Nengkun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.03245v2-abstract-short" style="display: inline;"> Entanglement depth characterizes the minimal number of particles in a system that are mutually entangled. For symmetric states, we show that there is a dichotomy for entanglement depth: an $N$-particle symmetric state is either fully separable, or fully entangled---the entanglement depth is either $1$ or $N$. This property is even stable under non-symmetric noise. We propose an experimentally acce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03245v2-abstract-full').style.display = 'inline'; document.getElementById('1603.03245v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.03245v2-abstract-full" style="display: none;"> Entanglement depth characterizes the minimal number of particles in a system that are mutually entangled. For symmetric states, we show that there is a dichotomy for entanglement depth: an $N$-particle symmetric state is either fully separable, or fully entangled---the entanglement depth is either $1$ or $N$. This property is even stable under non-symmetric noise. We propose an experimentally accessible method to detect entanglement depth in atomic ensembles based on a bound on the particle number population of Dicke states, and demonstrate that the entanglement depth of some Dicke states, for example the twin Fock state, is very stable even under a large arbitrary noise. Our observation can be applied to atomic Bose-Einstein condensates to infer that these systems can be highly entangled with the entanglement depth that is of the order of the system size (i.e. several thousands of atoms). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03245v2-abstract-full').style.display = 'none'; document.getElementById('1603.03245v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We thank Geza Toth for bringing Refs. [16-18] into our attention. More comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 042333 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.03221">arXiv:1511.03221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.03221">pdf</a>, <a href="https://arxiv.org/format/1511.03221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.245152">10.1103/PhysRevB.93.245152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-stoichiometry and Defects in the Weyl Semimetals TaAs, TaP, NbP, and NbAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Besara%2C+T">Tiglet Besara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">Daniel Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kuan-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+Y">Yan Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumbach%2C+R+E">Ryan E. Baumbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siegrist%2C+T">Theo Siegrist</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.03221v2-abstract-short" style="display: inline;"> We report a structural study of the Weyl semimetals TaAs, TaP, NbP, and NbAs, utilizing diffraction techniques (single crystal x-ray diffraction and energy dispersive spectroscopy) and imaging techniques (transmission electron microscopy/scanning transmission electron microscopy). We observe defects of various degrees, leading to non-stoichiometric single crystals of all four semimetals. While TaP&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03221v2-abstract-full').style.display = 'inline'; document.getElementById('1511.03221v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.03221v2-abstract-full" style="display: none;"> We report a structural study of the Weyl semimetals TaAs, TaP, NbP, and NbAs, utilizing diffraction techniques (single crystal x-ray diffraction and energy dispersive spectroscopy) and imaging techniques (transmission electron microscopy/scanning transmission electron microscopy). We observe defects of various degrees, leading to non-stoichiometric single crystals of all four semimetals. While TaP displays a large pnictide deficiency with composition TaP$_{0.83(3)}$, and stacking faults accompanied by anti-site disorder and site vacancies, TaAs displays transition metal deficiency with composition Ta$_{0.92(2)}$As and a high density of stacking faults. NbP also displays pnictide deficiency, yielding composition NbP$_{0.95(2)}$, and lastly, NbAs display very little deviation from a 1:1 composition, NbAs$_{1.00(3)}$, and is therefore recommended to serve as the model compound for these semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03221v2-abstract-full').style.display = 'none'; document.getElementById('1511.03221v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 245152 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.03886">arXiv:1508.03886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.03886">pdf</a>, <a href="https://arxiv.org/format/1508.03886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.93.012309">10.1103/PhysRevA.93.012309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry of reduced density matrices for symmetry-protected topological phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Ji-Yao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhengfeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng-Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yi Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.03886v2-abstract-short" style="display: inline;"> In this paper, we study the geometry of reduced density matrices for states with symmetry-protected topological (SPT) order. We observe ruled surface structures on the boundary of the convex set of low dimension projections of the reduced density matrices. In order to signal the SPT order using ruled surfaces, it is important that we add a symmetry-breaking term to the boundary of the system---no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03886v2-abstract-full').style.display = 'inline'; document.getElementById('1508.03886v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.03886v2-abstract-full" style="display: none;"> In this paper, we study the geometry of reduced density matrices for states with symmetry-protected topological (SPT) order. We observe ruled surface structures on the boundary of the convex set of low dimension projections of the reduced density matrices. In order to signal the SPT order using ruled surfaces, it is important that we add a symmetry-breaking term to the boundary of the system---no ruled surface emerges in systems without boundary or when we add a symmetry-breaking term representing a thermodynamic quantity. Although the ruled surfaces only appear in the thermodynamic limit where the ground-state degeneracy is exact, we analyze the precision of our numerical algorithm and show that a finite system calculation suffices to reveal the ruled surface structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03886v2-abstract-full').style.display = 'none'; document.getElementById('1508.03886v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures. Close to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 93, 012309 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.02595">arXiv:1508.02595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.02595">pdf</a>, <a href="https://arxiv.org/format/1508.02595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Information Meets Quantum Matter -- From Quantum Entanglement to Topological Phase in Many-Body Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Duan-Lu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+X">Xiao-Gang Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.02595v4-abstract-short" style="display: inline;"> This is the draft version of a textbook, which aims to introduce the quantum information science viewpoints on condensed matter physics to graduate students in physics (or interested researchers). We keep the writing in a self-consistent way, requiring minimum background in quantum information science. Basic knowledge in undergraduate quantum physics and condensed matter physics is assumed. We sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.02595v4-abstract-full').style.display = 'inline'; document.getElementById('1508.02595v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.02595v4-abstract-full" style="display: none;"> This is the draft version of a textbook, which aims to introduce the quantum information science viewpoints on condensed matter physics to graduate students in physics (or interested researchers). We keep the writing in a self-consistent way, requiring minimum background in quantum information science. Basic knowledge in undergraduate quantum physics and condensed matter physics is assumed. We start slowly from the basic ideas in quantum information theory, but wish to eventually bring the readers to the frontiers of research in condensed matter physics, including topological phases of matter, tensor networks, and symmetry-protected topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.02595v4-abstract-full').style.display = 'none'; document.getElementById('1508.02595v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated figures. Minor updates elsewhere. This draft is by no means final. More comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06981">arXiv:1507.06981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06981">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms12492">10.1038/ncomms12492 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic torque anomaly in the quantum limit of the Weyl semi-metal NbAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potter%2C+A+C">Andrew C. Potter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B">Brad Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Modic%2C+K">Kimberly Modic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riggs%2C+S">Scott Riggs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghimire%2C+N+J">Nirmal J. Ghimire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kealhofer%2C+R">Robert Kealhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+N">Nityan Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Analytis%2C+J+G">James G. Analytis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06981v1-abstract-short" style="display: inline;"> Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue physicists due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasipart&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06981v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06981v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06981v1-abstract-full" style="display: none;"> Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue physicists due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we report a large anomaly in the magnetic torque of the Weyl semi-metal NbAs upon entering the &#34;quantum limit&#34; state in high magnetic fields, where topological corrections to the energy spectrum become dominant. The quantum limit torque displays a striking change in sign, signaling a reversal of the magnetic anisotropy that can be directly attributed to the topological properties of the Weyl semi-metal. Our results establish that anomalous quantum limit torque measurements provide a simple experimental method to identify Weyl- and Dirac- semi-metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06981v1-abstract-full').style.display = 'none'; document.getElementById('1507.06981v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.01129">arXiv:1507.01129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.01129">pdf</a>, <a href="https://arxiv.org/format/1507.01129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaa7974">10.1126/science.aaa7974 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional Fermi surface in an insulating state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+B+S">B. S. Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y+-">Y. -T. Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartstein%2C+M">M. Hartstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiourlappou%2C+M">M. Kiourlappou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srivastava%2C+A">A. Srivastava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johannes%2C+M+D">M. D. Johannes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+T+P">T. P. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+-">J. -H. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.01129v1-abstract-short" style="display: inline;"> Insulators occur in more than one guise, a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01129v1-abstract-full').style.display = 'inline'; document.getElementById('1507.01129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.01129v1-abstract-full" style="display: none;"> Insulators occur in more than one guise, a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. The quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behaviour. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01129v1-abstract-full').style.display = 'none'; document.getElementById('1507.01129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 349, 287-290 (published online July 2 2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.01242">arXiv:1505.01242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.01242">pdf</a>, <a href="https://arxiv.org/ps/1505.01242">ps</a>, <a href="https://arxiv.org/format/1505.01242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.125152">10.1103/PhysRevB.92.125152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of spin-orbit coupling and evolution of the electronic structure of WTe$_2$ under an external magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">D. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+R">Q. R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pradhan%2C+N+R">N. R. Pradhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">N. Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manousakis%2C+E">E. Manousakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.01242v2-abstract-short" style="display: inline;"> Here, we present a detailed study on the temperature and angular dependence of the Shubnikov-de-Haas (SdH) effect in the semi-metal WTe$_2$. This compound was recently shown to display a very large non-saturating magnetoresistance which was attributed to nearly perfectly compensated densities of electrons and holes. We observe four fundamental SdH frequencies and attribute them to spin-orbit split&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01242v2-abstract-full').style.display = 'inline'; document.getElementById('1505.01242v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.01242v2-abstract-full" style="display: none;"> Here, we present a detailed study on the temperature and angular dependence of the Shubnikov-de-Haas (SdH) effect in the semi-metal WTe$_2$. This compound was recently shown to display a very large non-saturating magnetoresistance which was attributed to nearly perfectly compensated densities of electrons and holes. We observe four fundamental SdH frequencies and attribute them to spin-orbit split, electron- and hole-like, Fermi surface (FS) cross-sectional areas. Their angular dependence seems consistent with ellipsoidal FSs with volumes suggesting a modest excess in the density of electrons with respect to that of the holes. We show that density functional theory (DFT) calculations fail to correctly describe the FSs of WTe$_2$. When their cross-sectional areas are adjusted to reflect the experimental data, the resulting volumes of the electron/hole FSs obtained from the DFT calculations would imply a pronounced imbalance between the densities of electrons and holes. We find evidence for field-dependent Fermi surface cross-sectional areas by fitting the oscillatory component superimposed onto the magnetoresistivity signal to several Lifshitz-Kosevich components. We also observe a pronounced field-induced renormalization of the effective masses. Taken together, our observations suggest that the electronic structure of WTe$_2$ evolves with the magnetic field. This evolution might be a factor contributing to its pronounced magnetoresistivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01242v2-abstract-full').style.display = 'none'; document.getElementById('1505.01242v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 125152 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.07394">arXiv:1502.07394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.07394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms7663">10.1038/ncomms7663 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field induced density wave in the heavy fermion compound CeRhIn5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galeski%2C+S">Stanislaw Galeski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakirev%2C+F+F">Fedor F. Balakirev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">Filip Ronning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.07394v1-abstract-short" style="display: inline;"> Metals containing Ce often show strong electron correlations due to the proximity of the 4f state to the Fermi energy, leading to strong coupling with the conduction electrons. This coupling typically induces a variety of competing ground states, including heavy-fermion metals, magnetism and unconventional superconductivity. The d-wave superconductivity in CeTMIn5 (TM=Co, Rh, Ir) has attracted sig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07394v1-abstract-full').style.display = 'inline'; document.getElementById('1502.07394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.07394v1-abstract-full" style="display: none;"> Metals containing Ce often show strong electron correlations due to the proximity of the 4f state to the Fermi energy, leading to strong coupling with the conduction electrons. This coupling typically induces a variety of competing ground states, including heavy-fermion metals, magnetism and unconventional superconductivity. The d-wave superconductivity in CeTMIn5 (TM=Co, Rh, Ir) has attracted significant interest due to its qualitative similarity to the cuprate high-Tc superconductors. Here, we show evidence for a field induced phase-transition to a state akin to a density-wave (DW) in the heavy fermion CeRhIn5, existing in proximity to its unconventional superconductivity. The DW state is signaled by a hysteretic anomaly in the in-plane resistivity accompanied by the appearance of non-linear electrical transport at high magnetic fields (&gt;27T), which are the distinctive characteristics of density-wave states. The unusually large hysteresis enables us to directly investigate the Fermi surface of a supercooled electronic system and to clearly associate a Fermi surface reconstruction with the transition. Key to our observation is the fabrication of single crystal microstructures, which are found to be highly sensitive to &#34;subtle&#34; phase transitions involving only small portions of the Fermi surface. Such subtle order might be a common feature among correlated electron systems, and its clear observation adds a new perspective on the similarly subtle CDW state in the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07394v1-abstract-full').style.display = 'none'; document.getElementById('1502.07394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Nature Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02343">arXiv:1501.02343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.02343">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Amplitude- and phase-resolved nano-spectral imaging of phonon polaritons in hexagonal boron nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bechte%2C+H+A">Hans A. Bechte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berweger%2C+S">Samuel Berweger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yinghui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bo Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Chenhao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+H">Henry Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+M+C">Michael C. Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raschke%2C+M+B">Markus B. Raschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02343v1-abstract-short" style="display: inline;"> Phonon polaritons are quasiparticles resulting from strong coupling of photons with optical phonons. Excitation and control of these quasiparticles in 2D materials offer the opportunity to confine and transport light at the nanoscale. Here, we image the phonon polariton (PhP) spectral response in thin hexagonal boron nitride (hBN) crystals as a representative 2D material using amplitude- and phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02343v1-abstract-full').style.display = 'inline'; document.getElementById('1501.02343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02343v1-abstract-full" style="display: none;"> Phonon polaritons are quasiparticles resulting from strong coupling of photons with optical phonons. Excitation and control of these quasiparticles in 2D materials offer the opportunity to confine and transport light at the nanoscale. Here, we image the phonon polariton (PhP) spectral response in thin hexagonal boron nitride (hBN) crystals as a representative 2D material using amplitude- and phase-resolved near-field interferometry with broadband mid-IR synchrotron radiation. The large spectral bandwidth enables the simultaneous measurement of both out-of-plane (780 cm-1) and in-plane (1370 cm-1) hBN phonon modes. In contrast to the strong and dispersive in-plane mode, the out-of-plane mode PhP response is weak. Measurements of the PhP wavelength reveal a proportional dependence on sample thickness for thin hBN flakes, which can be understood by a general model describing two-dimensional polariton excitation in ultrathin materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02343v1-abstract-full').style.display = 'none'; document.getElementById('1501.02343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4120">arXiv:1412.4120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4120">pdf</a>, <a href="https://arxiv.org/ps/1412.4120">ps</a>, <a href="https://arxiv.org/format/1412.4120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Field-Induced Quadrupolar Quantum Criticality in PrV2Al20 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shimura%2C+Y">Yasuyuki Shimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsujimoto%2C+M">Masaki Tsujimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakai%2C+A">Akito Sakai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakatsuji%2C+S">Satoru Nakatsuji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4120v1-abstract-short" style="display: inline;"> PrV2Al20 is the heavy fermion superconductor based on the cubic Gamma3 doublet that exhibits non- magnetic quadrupolar ordering below ~ 0.6 K. Our magnetotransport study on PrV2Al20 reveals field-induced quadrupolar quantum criticality at Hc ~ 11 T applied along the [111] direction. Near the critical field Hc required to suppress the quadrupolar state, we find a marked enhancement of the resistivi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4120v1-abstract-full').style.display = 'inline'; document.getElementById('1412.4120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4120v1-abstract-full" style="display: none;"> PrV2Al20 is the heavy fermion superconductor based on the cubic Gamma3 doublet that exhibits non- magnetic quadrupolar ordering below ~ 0.6 K. Our magnetotransport study on PrV2Al20 reveals field-induced quadrupolar quantum criticality at Hc ~ 11 T applied along the [111] direction. Near the critical field Hc required to suppress the quadrupolar state, we find a marked enhancement of the resistivity rho(H, T), a divergent effective mass of quasiparticles and concomitant non-Fermi liquid (NFL) behavior (i.e. rho(T) ~ T^n with n &lt; 0.5). We also observe the Shubnikov de Haas-effect above ?Hc, indicating the enhanced effective mass m/m0 ~ 10. This reveals the competition between the nonmagnetic Kondo effect and the intersite quadrupolar coupling, leading to the pronounced NFL behavior in an extensive region of T and H emerging from the quantum critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4120v1-abstract-full').style.display = 'none'; document.getElementById('1412.4120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages and 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.2178">arXiv:1412.2178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.2178">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl503670d">10.1021/nl503670d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing Broadband Terahertz Modulation with Hybrid Graphene/Metasurface Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S+-">S. -F. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H+-">H. -L. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">X. Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+H+-">H. -Z. Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+H+S">H. S. Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zettl%2C+A">A. Zettl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">M. F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">F. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.2178v1-abstract-short" style="display: inline;"> We demonstrate efficient terahertz (THz) modulation by coupling graphene strongly with a broadband THz metasurface device. This THz metasurface, made of periodic gold slit arrays, shows near unity broadband transmission, which arises from coherent radiation of the enhanced local-field in the slits. Utilizing graphene as an active load with tunable conductivity, we can significantly modify the loca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2178v1-abstract-full').style.display = 'inline'; document.getElementById('1412.2178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.2178v1-abstract-full" style="display: none;"> We demonstrate efficient terahertz (THz) modulation by coupling graphene strongly with a broadband THz metasurface device. This THz metasurface, made of periodic gold slit arrays, shows near unity broadband transmission, which arises from coherent radiation of the enhanced local-field in the slits. Utilizing graphene as an active load with tunable conductivity, we can significantly modify the local-field enhancement and strongly modulate the THz wave transmission. This hybrid device also provides a new platform for future nonlinear THz spectroscopy study of graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2178v1-abstract-full').style.display = 'none'; document.getElementById('1412.2178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.3955">arXiv:1411.3955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.3955">pdf</a>, <a href="https://arxiv.org/format/1411.3955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2015.05.025">10.1016/j.nuclphysb.2015.05.025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zeroth Order Phase Transition in a Holographic Superconductor with Single Impurity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H+B">Hua Bi Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hai-Qing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.3955v4-abstract-short" style="display: inline;"> We investigate the single normal impurity effect in a superconductor by the holographic method. When the size of impurity is much smaller than the host superconductor, we can reproduce the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic) impurity with small impurity strength. However, by increasing the size of the impurity in a fixed-siz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3955v4-abstract-full').style.display = 'inline'; document.getElementById('1411.3955v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.3955v4-abstract-full" style="display: none;"> We investigate the single normal impurity effect in a superconductor by the holographic method. When the size of impurity is much smaller than the host superconductor, we can reproduce the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic) impurity with small impurity strength. However, by increasing the size of the impurity in a fixed-size host superconductor, we find a decreasing critical temperature $T_c$ of the host superconductor, which agrees with the results in condensed matter literatures. More importantly, the phase transition at the critical impurity strength (or the critical temperature) is of zeroth order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3955v4-abstract-full').style.display = 'none'; document.getElementById('1411.3955v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.7825">arXiv:1409.7825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.7825">pdf</a>, <a href="https://arxiv.org/format/1409.7825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.155101">10.1103/PhysRevB.90.155101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CeCu_2Ge_2: Challenging our Understanding of Quantum Criticality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+R">Q. R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">D. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimura%2C+Y">Y. Shimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+D">D. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumbach%2C+R+E">R. E. Baumbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlottmann%2C+P">P. Schlottmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ebihara%2C+T">T. Ebihara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.7825v1-abstract-short" style="display: inline;"> Here, we unveil evidence for a quantum phase-transition in CeCu_2Ge_2 which displays both an incommensurate spin-density wave (SDW) ground-state, and a strong renormalization of the quasiparticle effective masses (mu) due to the Kondo-effect. For all angles theta between an external magnetic field (H) and the crystallographic c-axis, the application of H leads to the suppression of the SDW-state t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7825v1-abstract-full').style.display = 'inline'; document.getElementById('1409.7825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.7825v1-abstract-full" style="display: none;"> Here, we unveil evidence for a quantum phase-transition in CeCu_2Ge_2 which displays both an incommensurate spin-density wave (SDW) ground-state, and a strong renormalization of the quasiparticle effective masses (mu) due to the Kondo-effect. For all angles theta between an external magnetic field (H) and the crystallographic c-axis, the application of H leads to the suppression of the SDW-state through a 2^nd-order phase-transition at a theta-dependent critical-field H_p(theta) leading to the observation of small Fermi surfaces (FSs) in the paramagnetic (PM) state. For H || c-axis, these FSs are characterized by light mu&#39;s pointing also to the suppression of the Kondo-effect at H_p with surprisingly, no experimental evidence for quantum-criticality (QC). But as $H$ is rotated towards the a-axis, these mu&#39;s increase considerably becoming undetectable for 胃&gt; 56^0 between H and the c-axis. Around H_p^a~ 30 T the resistivity becomes proportional T which, coupled to the divergence of mu, indicates the existence of a field-induced QC-point at H_p^a(T=0 K). This observation, suggesting FS hot-spots associated with the SDW nesting-vector, is at odds with current QC scenarios for which the continuous suppression of all relevant energy scales at H_p(theta,T) should lead to a line of quantum-critical points in the H-theta plane. Finally, we show that the complexity of its magnetic phase-diagram(s) makes CeCu_2Ge_2 an ideal system to explore field-induced quantum tricritical and QC end-points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7825v1-abstract-full').style.display = 'none'; document.getElementById('1409.7825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, Phys. Rev. B (in press)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 155101 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.3413">arXiv:1407.3413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.3413">pdf</a>, <a href="https://arxiv.org/format/1407.3413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Topological and Error-Correcting Properties for Symmetry-Protected Topological Order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Duan-Lu Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.3413v1-abstract-short" style="display: inline;"> We discuss the symmetry-protected topological (SPT) orders for bosonic systems from an information-theoretic viewpoint. We show that with a proper choice of the onsite basis, the degenerate ground-state space of SPT orders (on a manifold with boundary) is a quantum error-correcting code with macroscopic classical distance, hence is stable against any local bit-flip errors. We show that this error-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3413v1-abstract-full').style.display = 'inline'; document.getElementById('1407.3413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.3413v1-abstract-full" style="display: none;"> We discuss the symmetry-protected topological (SPT) orders for bosonic systems from an information-theoretic viewpoint. We show that with a proper choice of the onsite basis, the degenerate ground-state space of SPT orders (on a manifold with boundary) is a quantum error-correcting code with macroscopic classical distance, hence is stable against any local bit-flip errors. We show that this error-correcting property of the SPT orders has a natural connection to that of the symmetry-breaking orders, whose degenerate ground-state space is a classical error-correcting code with a macroscopic distance, providing a new angle for the hidden symmetry-breaking properties in SPT orders. We propose new types of topological entanglement entropy that probe the STP orders hidden in their symmetric ground states, which also signal the topological phase transitions protected by symmetry. Combined with the original definition of topological entanglement entropy that probes the &#39;intrinsic topological orders&#39;, and the recent proposed one that probes the symmetry-breaking orders, the set of different types of topological entanglement entropy may hence distinguish topological orders, SPT orders, and symmetry-breaking orders, which may be mixed up in a single system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3413v1-abstract-full').style.display = 'none'; document.getElementById('1407.3413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.5090">arXiv:1406.5090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.5090">pdf</a>, <a href="https://arxiv.org/format/1406.5090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.125121">10.1103/PhysRevB.91.125121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+X">Xiao-Gang Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.5090v2-abstract-short" style="display: inline;"> In this work we present some new understanding of topological order, including three main aspects: (1) It was believed that classifying topological orders corresponds to classifying gapped quantum states. We show that such a statement is not precise. We introduce the concept of \emph{gapped quantum liquid} as a special kind of gapped quantum states that can &#34;dissolve&#34; any product states on additio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5090v2-abstract-full').style.display = 'inline'; document.getElementById('1406.5090v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.5090v2-abstract-full" style="display: none;"> In this work we present some new understanding of topological order, including three main aspects: (1) It was believed that classifying topological orders corresponds to classifying gapped quantum states. We show that such a statement is not precise. We introduce the concept of \emph{gapped quantum liquid} as a special kind of gapped quantum states that can &#34;dissolve&#34; any product states on additional sites. Topologically ordered states actually correspond to gapped quantum liquids with stable ground-state degeneracy. Symmetry-breaking states for on-site symmetry are also gapped quantum liquids, but with unstable ground-state degeneracy. (2) We point out that the universality classes of generalized local unitary (gLU) transformations (without any symmetry) contain both topologically ordered states and symmetry-breaking states. This allows us to use a gLU invariant -- topological entanglement entropy -- to probe the symmetry-breaking properties hidden in the exact ground state of a finite system, which does not break any symmetry. This method can probe symmetry- breaking orders even without knowing the symmetry and the associated order parameters. (3) The universality classes of topological orders and symmetry-breaking orders can be distinguished by \emph{stochastic local (SL) transformations} (i.e.\ \emph{local invertible transformations}): small SL transformations can convert the symmetry-breaking classes to the trivial class of product states with finite probability of success, while the topological-order classes are stable against any small SL transformations, demonstrating a phenomenon of emergence of unitarity. This allows us to give a new definition of long-range entanglement based on SL transformations, under which only topologically ordered states are long-range entangled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5090v2-abstract-full').style.display = 'none'; document.getElementById('1406.5090v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version. Figures and references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.5046">arXiv:1406.5046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.5046">pdf</a>, <a href="https://arxiv.org/format/1406.5046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/8/083019">10.1088/1367-2630/17/8/083019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discontinuity of Maximum Entropy Inference and Quantum Phase Transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhengfeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chi-Kwong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poon%2C+Y">Yiu-Tung Poon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yi Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+N">Nengkun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D">Duanlu Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.5046v2-abstract-short" style="display: inline;"> In this paper, we discuss the connection between two genuinely quantum phenomena --- the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5046v2-abstract-full').style.display = 'inline'; document.getElementById('1406.5046v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.5046v2-abstract-full" style="display: none;"> In this paper, we discuss the connection between two genuinely quantum phenomena --- the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5046v2-abstract-full').style.display = 'none'; document.getElementById('1406.5046v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Major revision. 26 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 17 083019, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6762">arXiv:1402.6762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6762">pdf</a>, <a href="https://arxiv.org/ps/1402.6762">ps</a>, <a href="https://arxiv.org/format/1402.6762">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.140503">10.1103/PhysRevB.89.140503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Power Law Like Correlation between Condensation Energy and Superconducting Transition Temperatures in Iron Pnictide/Chalcogenide Superconductors: Beyond the BCS Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+J">Jie Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bing Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J">J. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T+S">T. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">Hai-Hu Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6762v1-abstract-short" style="display: inline;"> Superconducting condensation energy $U_0^{int}$ has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that $U_0^{int}\propto T_c^n$ with $n$ = 3 to 4, which is in sharp contrast to the simple BCS prediction $U_0^{BCS}=1/2N_F螖_s^2$ with $N_F$ the quasiparticle density of states at the Fermi energy, $螖_s$ the superconduct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6762v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6762v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6762v1-abstract-full" style="display: none;"> Superconducting condensation energy $U_0^{int}$ has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that $U_0^{int}\propto T_c^n$ with $n$ = 3 to 4, which is in sharp contrast to the simple BCS prediction $U_0^{BCS}=1/2N_F螖_s^2$ with $N_F$ the quasiparticle density of states at the Fermi energy, $螖_s$ the superconducting gap. A similar correlation holds if we compute the condensation energy through $U_0^{cal}=3纬_n^{eff}螖_s^2/4蟺^2k_B^2$ with $纬_n^{eff}$ the effective normal state electronic specific heat coefficient. This indicates a general relationship $纬_n^{eff} \propto T_c^m$ with $m$ = 1 to 2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6762v1-abstract-full').style.display = 'none'; document.getElementById('1402.6762v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 140503(R) (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.2412">arXiv:1402.2412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.2412">pdf</a>, <a href="https://arxiv.org/format/1402.2412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.195146">10.1103/PhysRevB.90.195146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Oscillations in EuFe2As2 single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garitezi%2C+T+M">T. M. Garitezi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grant%2C+T">T. Grant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisk%2C+Z">Z. Fisk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urbano%2C+R+R">R. R. Urbano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pagliuso%2C+P+G">P. G. Pagliuso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.2412v1-abstract-short" style="display: inline;"> Quantum oscillation measurements can provide important information about the Fermi surface (FS) properties of strongly correlated metals. Here, we report a Shubnikov-de Haas (SdH) effect study on the pnictide parent compounds EuFe$_{2}$As$_{2}$ (Eu122) and BaFe$_{2}$As$_{2}$ (Ba122) grown by In-flux. Although both members are isovalent compounds with approximately the same density of states at the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2412v1-abstract-full').style.display = 'inline'; document.getElementById('1402.2412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.2412v1-abstract-full" style="display: none;"> Quantum oscillation measurements can provide important information about the Fermi surface (FS) properties of strongly correlated metals. Here, we report a Shubnikov-de Haas (SdH) effect study on the pnictide parent compounds EuFe$_{2}$As$_{2}$ (Eu122) and BaFe$_{2}$As$_{2}$ (Ba122) grown by In-flux. Although both members are isovalent compounds with approximately the same density of states at the Fermi level, our results reveal subtle changes in their fermiology. Eu122 displays a complex pattern in the Fourier spectrum, with band splitting, magnetic breakdown orbits, and effective masses sistematically larger when compared to Ba122, indicating that the former is a more correlated metal. Moreover, the observed pockets in Eu122 are more isotropic and 3D-like, suggesting an equal contribution from the Fe $3d$ orbitals to the FS. We speculate that these FS changes may be responsible for the higher spin-density wave ordering temperature in Eu122. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2412v1-abstract-full').style.display = 'none'; document.getElementById('1402.2412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.5753">arXiv:1310.5753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.5753">pdf</a>, <a href="https://arxiv.org/format/1310.5753">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.126004">10.1103/PhysRevD.88.126004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible Anderson localization in a holographic superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H+B">Hua Bi Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.5753v4-abstract-short" style="display: inline;"> We study the effect of disorder in a holographic superconductor by introducing a quasi-periodic chemical potential. When the condensation of the superconductor is sufficiently small compared with the strength of disorder, we find that there exists a discontinuous phase transition from superconducting state to normal state with increasing disorder strength. For relatively large condensation, we fin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.5753v4-abstract-full').style.display = 'inline'; document.getElementById('1310.5753v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.5753v4-abstract-full" style="display: none;"> We study the effect of disorder in a holographic superconductor by introducing a quasi-periodic chemical potential. When the condensation of the superconductor is sufficiently small compared with the strength of disorder, we find that there exists a discontinuous phase transition from superconducting state to normal state with increasing disorder strength. For relatively large condensation, we find that disorder suppress but not completely destroy superconductivity. This model may provide a holographic realization of Anderson Localization in two-dimensional superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.5753v4-abstract-full').style.display = 'none'; document.getElementById('1310.5753v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 126004 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.0369">arXiv:1310.0369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.0369">pdf</a>, <a href="https://arxiv.org/format/1310.0369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.144518">10.1103/PhysRevB.88.144518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Small and nearly isotropic hole-like Fermi surfaces in LiFeAs detected through de Haas van Alphen-effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+D">D. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+R">Q. R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Besara%2C+T">T. Besara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+T+S+L+Y">T. Siegrist L. Y. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+C">X. C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C+Q">C. Q. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goswami%2C+P">P. Goswami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johannes%2C+M+D">M. D. Johannes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.0369v1-abstract-short" style="display: inline;"> LiFeAs is unique among the arsenic based Fe-pnictide superconductors because it is the only nearly stoichiometric compound which does not exhibit magnetic order. This is at odds with electronic structure calculations which and a very stable magnetic state and predict cylindrical hole- and electron-like Fermi surface sheets whose geometry suggests spin uctuations and a possible instability toward l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0369v1-abstract-full').style.display = 'inline'; document.getElementById('1310.0369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.0369v1-abstract-full" style="display: none;"> LiFeAs is unique among the arsenic based Fe-pnictide superconductors because it is the only nearly stoichiometric compound which does not exhibit magnetic order. This is at odds with electronic structure calculations which and a very stable magnetic state and predict cylindrical hole- and electron-like Fermi surface sheets whose geometry suggests spin uctuations and a possible instability toward long-range ordering at the nesting vector. In fact, a complex magnetic phase-diagram is indeed observed in the isostructural NaFeAs compound. Previous angle resolved photoemission (ARPES) experiments revealed the existence of both hole and electron-like surfaces, but with rather distinct cross-sectional areas and an absence of the nesting that is thought to underpin both magnetic order and superconductivity in the pnictide family of superconductors. These ARPES observations were challenged by subsequent de Haas van Alphen (dHvA) measurements which detected a few, electron like Fermi surface sheets in rough agreement with the original band calculations. Here, we show a detailed dHvA study unveiling additional, small and nearly isotropic Fermi surface sheets in LiFeAs single crystals, which ought to correspond to hole-like orbits, as previously observed by ARPES. Therefore, our results conciliate the apparent discrepancy between ARPES and the previous dHvA results5. The small size of these Fermi surface pockets suggests a prominent role for the electronic correlations in LiFeAs. The absence of gap nodes, in combination with the coexistence of quasi-two-dimensional and three-dimensional Fermi surfaces, favor a s-wave pairing symmetry for LiFeAs. But similar electron-like Fermi surfaces combined with very different hole pockets between LiFeAs and LiFeP, suggest that the nodes in the gap function of LiFeP might be located on the hole-pockets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0369v1-abstract-full').style.display = 'none'; document.getElementById('1310.0369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 88, 144518 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.0331">arXiv:1310.0331</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Statistics of Two Kinds of Entangled Quantum Many-body Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H+B">Hua Bi Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.0331v4-abstract-short" style="display: inline;"> In this paper, we show two kinds of entangled many body systems with special statistic properties. Firstly, an entangled fermions system with a pairwise entanglement between every two particles in the lowest energy energy level obeys the fractional statistics. As a check, for particle number N=2, N=3 and N=4, considering that any two fermions in the lowest Landau level are entangled in a proper wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0331v4-abstract-full').style.display = 'inline'; document.getElementById('1310.0331v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.0331v4-abstract-full" style="display: none;"> In this paper, we show two kinds of entangled many body systems with special statistic properties. Firstly, an entangled fermions system with a pairwise entanglement between every two particles in the lowest energy energy level obeys the fractional statistics. As a check, for particle number N=2, N=3 and N=4, considering that any two fermions in the lowest Landau level are entangled in a proper way, the Laughlin wave function can be derived. The results reveals the explicit entanglement pattern of the Laughlin states. Secondly, we noticed that both Bose-Einstein statistics and Fermi-Dirac distributions are derived from computing the partial function of a free quantum many body system in a certain ensemble without considering entanglement. We extend the computation of the partial function to an entangled quantum many body system without interaction, in this system we assume that every particle in energy level $蔚_i$ is entangled with a particle in the energy level $蔚_{i+1}$ ($i=1,3,5,...$) and also every particle in energy level $蔚_i+1$ is entangled with a particle in the energy level $蔚_{i}$ ($i=1,3,5,...$), which indicates that the two energy level have the same number of particles. In the entangled system, we find that the partial function will be changed. As a results, both the Bose-Einstein Statics and the Fermi-Dirac distributions will be modified at finite temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0331v4-abstract-full').style.display = 'none'; document.getElementById('1310.0331v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">this paper has been withdrawn by the author due to a crucial sign error in equation 5</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.5398">arXiv:1308.5398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.5398">pdf</a>, <a href="https://arxiv.org/format/1308.5398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2014)096">10.1007/JHEP07(2014)096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A thermal quench induces spatial inhomogeneities in a holographic superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Garc%C3%ADa%2C+A+M">Antonio M. Garc铆a-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+H+B">Hua Bi Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H+Q">Hai Qing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.5398v3-abstract-short" style="display: inline;"> Holographic duality is a powerful tool to investigate the far-from equilibrium dynamics of superfluids and other phases of quantum matter. For technical reasons it is usually assumed that, after a quench, the far-from equilibrium fields are still spatially uniform. Here we relax this assumption and study the time evolution of a holographic superconductor after a temperature quench but allowing spa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5398v3-abstract-full').style.display = 'inline'; document.getElementById('1308.5398v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.5398v3-abstract-full" style="display: none;"> Holographic duality is a powerful tool to investigate the far-from equilibrium dynamics of superfluids and other phases of quantum matter. For technical reasons it is usually assumed that, after a quench, the far-from equilibrium fields are still spatially uniform. Here we relax this assumption and study the time evolution of a holographic superconductor after a temperature quench but allowing spatial variations of the order parameter. Even though the initial state and the quench are spatially uniform we show the order parameter develops spatial oscillations with an amplitude that increases with time until it reaches a stationary value. The free energy of these inhomogeneous solutions is lower than that of the homogeneous ones. Therefore the former corresponds to the physical configuration that could be observed experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5398v3-abstract-full').style.display = 'none'; document.getElementById('1308.5398v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">corrected typos, added references and new results for a different quench</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.6868">arXiv:1306.6868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.6868">pdf</a>, <a href="https://arxiv.org/ps/1306.6868">ps</a>, <a href="https://arxiv.org/format/1306.6868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.024508">10.1103/PhysRevB.88.024508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous metallic state and anisotropic multiband superconductivity in Nb3Pd0.7Se7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">D. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Besara%2C+T">T. Besara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siegrist%2C+T">T. Siegrist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johannes%2C+M+D">M. D. Johannes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.6868v1-abstract-short" style="display: inline;"> We report the discovery of superconductivity in Nb$_3$Pd$_{x}$Se$_7$ with a $x$-dependent superconducting transition-temperature as high as $T_c \simeq 2.1 $ K for $x \simeq0.7$ (middle point of the resistive transition). Needle-like single crystals display anisotropic upper-critical fields with an anisotropy $纬= H^{b}_{c2}/H^{a}_{c2}$ as large as 6 between fields applied along their needle axis (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.6868v1-abstract-full').style.display = 'inline'; document.getElementById('1306.6868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.6868v1-abstract-full" style="display: none;"> We report the discovery of superconductivity in Nb$_3$Pd$_{x}$Se$_7$ with a $x$-dependent superconducting transition-temperature as high as $T_c \simeq 2.1 $ K for $x \simeq0.7$ (middle point of the resistive transition). Needle-like single crystals display anisotropic upper-critical fields with an anisotropy $纬= H^{b}_{c2}/H^{a}_{c2}$ as large as 6 between fields applied along their needle axis (or $b-$axis) or along the $a-$axis. As for the Fe based superconductors $纬$ is temperature-dependent suggesting that Nb$_3$Pd$_{0.7}$Se$_7$ is a multi-band superconductor. This is supported by band structure calculations which reveal a Fermi surface composed of quasi-one-dimensional and quasi-two-dimensional sheets of hole character, as well as three-dimensional sheets of both hole- and electron-character. Remarkably, $H^{b}_{c2}$ is observed to saturate at $H^{b}_{c2}(T \rightarrow 0 \text{K}) \simeq 14.1$ T which is $4.26 \times H_p$ where $H_p$ is the Pauli-limiting field in the weak-coupling regime. The synthesis procedure yields additional crystals belonging to the Nb$_2$Pd$_{x}$Se$_5$ phase which also becomes superconducting when the fraction of Pd is varied. For both phases we find that superconductivity condenses out of an anomalous metallic state, i.e. displaying $\partial 蟻/ \partial T &lt; 0$ above $T_c$ similarly to what is observed in the pseudogap-phase of the underdoped cuprates. An anomalous metallic state, low-dimensionality, multi-band character, extremely high and anisotropic $H_{c2}$s, are all ingredients for unconventional superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.6868v1-abstract-full').style.display = 'none'; document.getElementById('1306.6868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, to appear in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 024508 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.3193">arXiv:1303.3193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.3193">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep01446">10.1038/srep01446 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity with extremely large upper critical fields in Nb2Pd0.81S5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+D">D. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiswandhi%2C+A">A. Kiswandhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Besara%2C+T">T. Besara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">B. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">J. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siegrist%2C+T">T. Siegrist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johannes%2C+M+D">M. D. Johannes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">L. Balicas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.3193v1-abstract-short" style="display: inline;"> Here, we report the discovery of superconductivity in a new transition metal-chalcogenide compound, i.e. Nb2Pd0.81S5, with a transition temperature Tc &gt; 6.6 K. Despite its relatively low Tc, it displays remarkably high and anisotropic superconducting upper critical fields, e.g. mu_0 H_{c2} (T approaching 0 K). 37 T for fields applied along the crystallographic b-axis. For a field applied perpendic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3193v1-abstract-full').style.display = 'inline'; document.getElementById('1303.3193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.3193v1-abstract-full" style="display: none;"> Here, we report the discovery of superconductivity in a new transition metal-chalcogenide compound, i.e. Nb2Pd0.81S5, with a transition temperature Tc &gt; 6.6 K. Despite its relatively low Tc, it displays remarkably high and anisotropic superconducting upper critical fields, e.g. mu_0 H_{c2} (T approaching 0 K). 37 T for fields applied along the crystallographic b-axis. For a field applied perpendicularly to the b-axis, mu_0 H_{c2} shows a linear dependence in temperature which coupled to a temperature-dependent anisotropy of the upper critical fields, suggests that Nb2Pd0.81S5 is a multi-band superconductor. This is consistent with band structure calculations which reveal nearly cylindrical and quasi-one-dimensional Fermi surface sheets having hole and electron character, respectively. The static spin susceptibility as calculated through the random phase approximation, reveals strong peaks suggesting proximity to a magnetic state and therefore the possibility of unconventional superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3193v1-abstract-full').style.display = 'none'; document.getElementById('1303.3193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 3, 1446 (2013) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zeng%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zeng%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zeng%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10