CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;12 of 12 results for author: <span class="mathjax">Hua, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hua%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hua, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hua%2C+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hua, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01658">arXiv:2412.01658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01658">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54870-2">10.1038/s41467-024-54870-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Moire magnetism in CrBr3 multilayers emerging from differential strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+F">Fengrui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+D">Dario Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gabrovski%2C+I+A">Ivo A. Gabrovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multian%2C+V">Volodymyr Multian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibertini%2C+M">Marco Gibertini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Lezama%2C+I">Ignacio Gutierrez-Lezama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rademaker%2C+L">Louk Rademaker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morpurgo%2C+A+F">Alberto F. Morpurgo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01658v1-abstract-short" style="display: inline;"> Interfaces between twisted 2D materials host a wealth of physical phenomena originating from the long-scale periodicity associated with the resulting moire structure. Besides twisting, an alternative route to create structures with comparably long or even longer periodicities is inducing a differential strain between adjacent layers in a van der Waals (vdW) material. Despite recent theoretical eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01658v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01658v1-abstract-full" style="display: none;"> Interfaces between twisted 2D materials host a wealth of physical phenomena originating from the long-scale periodicity associated with the resulting moire structure. Besides twisting, an alternative route to create structures with comparably long or even longer periodicities is inducing a differential strain between adjacent layers in a van der Waals (vdW) material. Despite recent theoretical efforts analyzing its benefits, this route has not yet been implemented experimentally. Here we report evidence for the simultaneous presence of ferromagnetic and antiferromagnetic regions in CrBr3 _a hallmark of moire magnetism_ from the observation of an unexpected magnetoconductance in CrBr3 tunnel barriers with ferromagnetic Fe3GeTe2 and graphene electrodes. The observed magnetoconductance evolves with temperature and magnetic field as the magnetoconductance measured in small angle CrBr3 twisted junctions, in which moire magnetism occurs. Consistent with Raman measurements and theoretical modeling, we attribute the phenomenon to the presence of a differential strain in the CrBr3 multilayer, which locally modifies the stacking and the interlayer exchange between adjacent CrBr3 layers, resulting in spatially modulated spin textures. Our conclusions indicate that inducing differential strain in vdW multilayers is a viable strategy to create moire-like superlattices, which in the future may offer in-situ continuous tunability even at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01658v1-abstract-full').style.display = 'none'; document.getElementById('2412.01658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 10377 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04830">arXiv:2411.04830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04830">pdf</a>, <a href="https://arxiv.org/format/2411.04830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Non-destructive imaging of bulk electrical &#39;hidden&#39; state switching in a 1T-TaS2 cryo-memory device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Burri%2C+C">Corinna Burri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+D+F">Dario Ferreira Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wenxiang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+H+G">Henry G. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venturini%2C+R">Rok Venturini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McConnell%2C+A+G">Aidan G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dizdarevic%2C+F">Faris Dizdarevic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mraz%2C+A">Anze Mraz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svetin%2C+D">Damjan Svetin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lipovsek%2C+B">Benjamin Lipovsek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Topic%2C+M">Marko Topic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kazazis%2C+D">Dimitrios Kazazis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aeppli%2C+G">Gabriel Aeppli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grolimund%2C+D">Daniel Grolimund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ekinci%2C+Y">Yasin Ekinci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">Dragan Mihailovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">Simon Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04830v1-abstract-short" style="display: inline;"> In transition metal dichalcogenides a plethora of emergent states arise from competing electron-electron and electron-phonon interactions. Among these, the non-volatile metallic &#39;hidden&#39; state of 1T-TaS2 can be induced from its insulating equilibrium charge-density wave ground state using either optical or electrical pulses. Here we report in-operando micro-beam X-ray diffraction, fluorescence, an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04830v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04830v1-abstract-full" style="display: none;"> In transition metal dichalcogenides a plethora of emergent states arise from competing electron-electron and electron-phonon interactions. Among these, the non-volatile metallic &#39;hidden&#39; state of 1T-TaS2 can be induced from its insulating equilibrium charge-density wave ground state using either optical or electrical pulses. Here we report in-operando micro-beam X-ray diffraction, fluorescence, and concurrent transport measurements, allowing us to spatially image the non-thermal hidden state induced by electrical switching of a 1T-TaS2 device. Our findings reveal that the electrically and optically switched hidden states are structurally equivalent. Additionally, we observe a bulk switching channel extending beyond the intergap space to partially underneath the electrodes, suggesting that the non-equilibrium phase is caused by a combination of charge flow and lattice response. Besides identifying strain propagation as an important factor for non-thermal switching of layered materials, our results illustrate the power of non-destructive, three-dimensional X-ray imaging for studying phase-change materials and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04830v1-abstract-full').style.display = 'none'; document.getElementById('2411.04830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10050">arXiv:2408.10050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10050">pdf</a>, <a href="https://arxiv.org/format/2408.10050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Imaging ultrafast electronic domain fluctuations with X-ray speckle visibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+P">P. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">N. Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoychev%2C+B+K">B. K. Stoychev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+E+S">E. S. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madhavi%2C+M">M. Madhavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botu%2C+S+T">S. T. Botu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeppson%2C+S">S. Jeppson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cl%C3%A9mence%2C+M">M. Cl茅mence</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McConnell%2C+A+G">A. G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zerdane%2C+S">S. Zerdane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemke%2C+H+T">H. T. Lemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sander%2C+M">M. Sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+P">P. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">T. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">O. G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">R. Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10050v1-abstract-short" style="display: inline;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection du&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10050v1-abstract-full" style="display: none;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection due to experimental limitations, such as insufficient X-ray coherent flux. Here we demonstrate a nonequilibrium speckle visibility experiment using a split-and-delay setup at an X-ray free-electron laser. Photoinduced electronic domain fluctuations of the magnetic model material Fe$_{3}$O$_{4}$ reveal changes of the trimeron network configuration due to charge dynamics that exhibit liquid-like fluctuations, analogous to a supercooled liquid phase. This suggests that ultrafast dynamics of electronic heterogeneities under optical stimuli are fundamentally different from thermally-driven ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'none'; document.getElementById('2408.10050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08146">arXiv:2407.08146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08146">pdf</a>, <a href="https://arxiv.org/format/2407.08146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Extending the Takagi-Taupin equations for x-ray nanobeam Bragg coherent diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">T. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cherukara%2C+M+J">M. J. Cherukara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kandel%2C+S">S. Kandel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allain%2C+M">M. Allain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O">O. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takamura%2C+Y">Y. Takamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Z">Z. Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hruszkewycz%2C+S+O">S. O. Hruszkewycz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+M+V">M. V. Holt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08146v1-abstract-short" style="display: inline;"> We present a new approach for simulating x-ray nanobeam Bragg coherent diffraction patterns based on the Takagi-Taupin equations. Compared to conventional methods, the current approach can be universally applied to any weakly strained system including semi-infinite crystals that diffract dynamically. It addresses issues such as the curved wavefront and re-divergence of the focused incident beam. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08146v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08146v1-abstract-full" style="display: none;"> We present a new approach for simulating x-ray nanobeam Bragg coherent diffraction patterns based on the Takagi-Taupin equations. Compared to conventional methods, the current approach can be universally applied to any weakly strained system including semi-infinite crystals that diffract dynamically. It addresses issues such as the curved wavefront and re-divergence of the focused incident beam. We show excellent agreement against experimental data on a strained La0.7Sr0.3MnO3 thin film on SrTiO3 substrate, and a path to extracting physical information using automatic differentiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08146v1-abstract-full').style.display = 'none'; document.getElementById('2407.08146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00267">arXiv:2403.00267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00267">pdf</a>, <a href="https://arxiv.org/format/2403.00267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Critical slowing of the spin and charge density wave order in thin film Cr following photoexcitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorobtsov%2C+O+Y">Oleg Yu. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cela%2C+D">Devin Cela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabalin%2C+A+G">Anatoly G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wingert%2C+J">James Wingert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">Oleg G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00267v2-abstract-short" style="display: inline;"> We report on the evolution of the charge density wave (CDW) and spin density wave (SDW) order of a chromium film following photoexcitation with an ultrafast optical laser pulse. The CDW is measured by ultrafast time-resolved x-ray diffraction of the CDW satellite that tracks the suppression and recovery of the CDW following photoexcitation. We find that as the temperature of the film approaches a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00267v2-abstract-full').style.display = 'inline'; document.getElementById('2403.00267v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00267v2-abstract-full" style="display: none;"> We report on the evolution of the charge density wave (CDW) and spin density wave (SDW) order of a chromium film following photoexcitation with an ultrafast optical laser pulse. The CDW is measured by ultrafast time-resolved x-ray diffraction of the CDW satellite that tracks the suppression and recovery of the CDW following photoexcitation. We find that as the temperature of the film approaches a discontinuous phase transition in the CDW and SDW order, the time scales of recovery increase exponentially from the expected thermal time scales. We extend a Landau model for SDW systems to account for this critical slowing with the appropriate boundary conditions imposed by the geometry of the thin film system. This model allows us to assess the energy barrier between available CDW/SDW states with different spatial periodicities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00267v2-abstract-full').style.display = 'none'; document.getElementById('2403.00267v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author typo fixed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12765">arXiv:2312.12765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12765">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Operando real-space imaging of a structural phase transformation in a high-voltage electrode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yifei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hy%2C+S">Sunny Hy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wingert%2C+J">James Wingert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harder%2C+R">Ross Harder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y+S">Ying Shirley Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O">Oleg Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12765v1-abstract-short" style="display: inline;"> Discontinuous solid-solid phase transformations play a pivotal role in determining properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LixNi0.5Mn1.5O4 within a fully operational battery. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12765v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12765v1-abstract-full" style="display: none;"> Discontinuous solid-solid phase transformations play a pivotal role in determining properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LixNi0.5Mn1.5O4 within a fully operational battery. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle. Supported by the microelasticity model, the operando imaging unveils an evolution from a curved coherent to planar semi-coherent interface driven by dislocation dynamics. We hypothesize these dislocations exhibit a glissile motion that facilitates interface migration without diffusion of host ions, leaving the particle defect-free post-transformation. Our data indicates negligible kinetic limitations impacting the transformation kinetics, even at discharge rates as fast as C/2. This study underscores BCDI&#39;s capability to provide operando insights into nanoscale phase transformations, offering valuable guidance for electrochemical materials design and optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12765v1-abstract-full').style.display = 'none'; document.getElementById('2312.12765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18644">arXiv:2310.18644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18644">pdf</a>, <a href="https://arxiv.org/format/2310.18644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic properties of $尾$-Li$_2$IrO$_3$ after grazing-angle focused ion beam thinning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breitner%2C+F">Franziska Breitner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesche%2C+A">Anton Jesche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Christian R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gegenwart%2C+P">Philipp Gegenwart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18644v1-abstract-short" style="display: inline;"> Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18644v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18644v1-abstract-full" style="display: none;"> Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials exist as single crystals that are often difficult to manipulate, thereby limiting their studies to a certain subset of experimental techniques. One particular class of these materials are the lithium and sodium iridates that are promising candidates for hosting a Kitaev quantum spin liquid state. Here we present a controlled method of using a focused ion beam at grazing incidence to reduce the size of a $尾$-Li$_2$IrO$_3$ single crystal to a thickness of 1 $渭m$. Subsequent x-ray diffraction measurements show the lattice remains intact, albeit with a larger mosaic spread. The integrity of the magnetic order is also preserved as the temperature dependent magnetic diffraction peak follows the same trend as its bulk counterpart with a transition temperature at TN = 37.5 K. Our study demonstrates a technique that opens up the possibility of nonequilibrium experiments where submicron thin samples are often essential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18644v1-abstract-full').style.display = 'none'; document.getElementById('2310.18644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06439">arXiv:2108.06439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.06439">pdf</a>, <a href="https://arxiv.org/format/2108.06439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.095003">10.1103/PhysRevMaterials.5.095003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton distribution visualization in perovskite nickelate devices utilizing nanofocused X-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sprau%2C+P+O">Peter O. Sprau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+R">Richard Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hai-Tian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+T+J">Tae Joon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoychev%2C+B">Boyan Stoychev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cherukara%2C+M+J">Mathew J. Cherukara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+M+V">Martin V. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nazarertski%2C+E">Evgeny Nazarertski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiaojing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hanfei Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pattammattel%2C+A">Ajith Pattammattel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y+S">Yong S. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ong%2C+S+P">Shyue Ping Ong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramanathan%2C+S">Shriram Ramanathan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">Oleg G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">Alex Frano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06439v1-abstract-short" style="display: inline;"> We use a 30-nm x-ray beam to study the spatially resolved properties of a SmNiO$_3$-based nanodevice that is doped with protons. The x-ray absorption spectra supported by density-functional theory (DFT) simulations show partial reduction of nickel valence in the region with high proton concentration, which leads to the insulating behavior. Concurrently, x-ray diffraction reveals only a small latti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06439v1-abstract-full').style.display = 'inline'; document.getElementById('2108.06439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06439v1-abstract-full" style="display: none;"> We use a 30-nm x-ray beam to study the spatially resolved properties of a SmNiO$_3$-based nanodevice that is doped with protons. The x-ray absorption spectra supported by density-functional theory (DFT) simulations show partial reduction of nickel valence in the region with high proton concentration, which leads to the insulating behavior. Concurrently, x-ray diffraction reveals only a small lattice distortion in the doped regions. Together, our results directly show that the knob which proton doping modifies is the electronic valency, and not the crystal lattice. The studies are relevant to on-going efforts to disentangle structural and electronic effects across metal-insulator phase transitions in correlated oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06439v1-abstract-full').style.display = 'none'; document.getElementById('2108.06439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 095003 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05353">arXiv:2012.05353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05353">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Phonon-assisted formation of an itinerant electronic density wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaruo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorobtsov%2C+O+Y">Oleg Yu. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregory%2C+B">Benjamin Gregory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabalin%2C+A+G">Anatoly G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S">Stjepan Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wingert%2C+J">James Wingert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cela%2C+D">Devin Cela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">Oleg G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05353v1-abstract-short" style="display: inline;"> Electronic instabilities drive ordering transitions in condensed matter. Despite many advances in the microscopic understanding of the ordered states, a more nuanced and profound question often remains unanswered: how do the collective excitations influence the electronic order formation? Here, we experimentally show that a phonon affects the spin density wave (SDW) formation after an SDW-quench b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05353v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05353v1-abstract-full" style="display: none;"> Electronic instabilities drive ordering transitions in condensed matter. Despite many advances in the microscopic understanding of the ordered states, a more nuanced and profound question often remains unanswered: how do the collective excitations influence the electronic order formation? Here, we experimentally show that a phonon affects the spin density wave (SDW) formation after an SDW-quench by femtosecond laser pulses. In a thin film, the temperature-dependent SDW period is quantized, allowing us to track the out-of-equilibrium formation path of the SDW precisely. By exploiting its persistent coupling to the lattice, we probe the SDW through the transient lattice distortion, measured by femtosecond X-ray diffraction. We find that within 500 femtoseconds after a complete quench, the SDW forms with the low-temperature period, directly bypassing a thermal state with the high-temperature period. We argue that a momentum-matched phonon launched by the quench changes the formation path of the SDW through the dynamic pinning of the order parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05353v1-abstract-full').style.display = 'none'; document.getElementById('2012.05353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11719">arXiv:2001.11719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11719">pdf</a>, <a href="https://arxiv.org/format/2001.11719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast perturbation of magnetic domains by optical pumping in a ferromagnetic multilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zusin%2C+D">Dmitriy Zusin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iacocca%2C+E">Ezio Iacocca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">William F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tian-Min Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wandel%2C+S+F">Scott F. Wandel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tengdin%2C+P+M">Phoebe M. Tengdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabalin%2C+A">Anatoly Shabalin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nembach%2C+H+T">Hans T. Nembach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+J+M">Justin M. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blonsky%2C+A">Adam Blonsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gentry%2C+C">Christian Gentry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoefer%2C+M+A">Mark A. Hoefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murnane%2C+M+M">Margaret M. Murnane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapteyn%2C+H+C">Henry C. Kapteyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O">Oleg Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11719v4-abstract-short" style="display: inline;"> Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to 5th order. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11719v4-abstract-full').style.display = 'inline'; document.getElementById('2001.11719v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11719v4-abstract-full" style="display: none;"> Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to 5th order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps. In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by 6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In particular, we demonstrate that a radial shift explained by domain wall broadening can be ruled out. With the unprecedented dynamic range of our data, our results provide convincing evidence that labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium conditions, albeit the mechanism inducing the perturbations remains yet to be clarified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11719v4-abstract-full').style.display = 'none'; document.getElementById('2001.11719v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.04426">arXiv:1709.04426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.04426">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.207601">10.1103/PhysRevLett.120.207601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium phase precursors to the insulator-metal transition in V2O3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramirez%2C+J+G">Juan Gabriel Ramirez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valmianski%2C+I">Ilya Valmianski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cela%2C+D">Devin Cela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">Roopali Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wingert%2C+J">James Wingert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalchuk%2C+O">Olesya Kovalchuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sikiroski%2C+M">Marcin Sikiroski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+M">Martin Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuller%2C+I+K">Ivan K. Schuller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">Oleg G. Shpyrko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.04426v1-abstract-short" style="display: inline;"> The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance, the mesoscale processes underpinning phase transitions often remain elusive because of the vast differences in timescales between atomic and electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04426v1-abstract-full').style.display = 'inline'; document.getElementById('1709.04426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.04426v1-abstract-full" style="display: none;"> The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance, the mesoscale processes underpinning phase transitions often remain elusive because of the vast differences in timescales between atomic and electronic changes and thermodynamic transformations. Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3. Despite the ultrafast change in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale blocks govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the non-equilibrium structural phases play during electronic phase transitions in correlated electrons systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04426v1-abstract-full').style.display = 'none'; document.getElementById('1709.04426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 207601 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.03031">arXiv:1706.03031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.03031">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41560-018-0184-2">10.1038/s41560-018-0184-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleation of dislocations and their dynamics in layered oxides cathode materials during battery charging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hy%2C+S">S. Hy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cela%2C+D">D. Cela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+C">C. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+B">B. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Y. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulvestad%2C+A">A. Ulvestad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wingert%2C+J">J. Wingert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maxey%2C+E">E. Maxey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harder%2C+R">R. Harder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y+S">Y. S. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">O. G. Shpyrko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.03031v1-abstract-short" style="display: inline;"> Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides have emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03031v1-abstract-full').style.display = 'inline'; document.getElementById('1706.03031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.03031v1-abstract-full" style="display: none;"> Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides have emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used compounds. Oxygen-redox reactions are believed to be responsible for the excess capacity, however, voltage fading has prevented commercialization of these new materials. Despite extensive research the understanding of the mechanisms underpinning oxygen-redox reactions and voltage fade remain incomplete. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe nucleation of a mobile dislocation network in nanoparticles of lithium-rich layered oxide material. Surprisingly, we find that dislocations form more readily in the lithium-rich layered oxide material as compared with a conventional layered oxide material, suggesting a link between the defects and the anomalously high capacity in lithium-rich layered oxides. The formation of a network of partial dislocations dramatically alters the local lithium environment and contributes to the voltage fade. Based on our findings we design and demonstrate a method to recover the original high voltage functionality. Our findings reveal that the voltage fade in lithium-rich layered oxides is reversible and call for new paradigms for improved design of oxygen-redox active materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03031v1-abstract-full').style.display = 'none'; document.getElementById('1706.03031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10