CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 54 results for author: <span class="mathjax">Sprung, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Sprung%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sprung, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sprung%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sprung, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sprung%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sprung%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sprung%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15105">arXiv:2408.15105</a> <span> [<a href="https://arxiv.org/pdf/2408.15105">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resolving the pressure induced 'self-insertion' in skutterudite CoSb3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Bihan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Pakhomova%2C+A">Anna Pakhomova</a>, <a href="/search/cond-mat?searchtype=author&query=Khandarkhaeva%2C+S">Saiana Khandarkhaeva</a>, <a href="/search/cond-mat?searchtype=author&query=Pillaca%2C+M">Mirtha Pillaca</a>, <a href="/search/cond-mat?searchtype=author&query=Gille%2C+P">Peter Gille</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zhe Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/cond-mat?searchtype=author&query=Alexeev%2C+P">Pavel Alexeev</a>, <a href="/search/cond-mat?searchtype=author&query=Sergeev%2C+I">Ilya Sergeev</a>, <a href="/search/cond-mat?searchtype=author&query=Kulkarni%2C+S">Satishkumar Kulkarni</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+T">Tsu-Chien Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Liermann%2C+H">Hanns-Peter Liermann</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Glazyrin%2C+K">Konstantin Glazyrin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15105v1-abstract-short" style="display: inline;"> CoSb3, a skutterudite compound, is key in studying thermoelectric materials. Under compression, it undergoes a 'self-insertion' isostructural transition, redistributing large Sb atoms among crystallographic sites. We investigated CoSb3's structural stability up to 70 GPa using single crystal X-ray diffraction and high-resolution X-ray scattering, including Bragg Coherent Diffraction Imaging. We ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15105v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15105v1-abstract-full" style="display: none;"> CoSb3, a skutterudite compound, is key in studying thermoelectric materials. Under compression, it undergoes a 'self-insertion' isostructural transition, redistributing large Sb atoms among crystallographic sites. We investigated CoSb3's structural stability up to 70 GPa using single crystal X-ray diffraction and high-resolution X-ray scattering, including Bragg Coherent Diffraction Imaging. We examined the material in three pressure transmitting media (PTMs), exploring how PTMs and nonhydrostatic stresses affect CoSb3. Notably, the 'self-insertion' transition may reduce or even make compressibility negative. Additionally, we report a previously unknown phase transformation from cubic Im-3 to trigonal R-3 above 40 GPa and discuss the phases' distinctive behaviors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15105v1-abstract-full').style.display = 'none'; document.getElementById('2408.15105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript: 27 pages, 12 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05041">arXiv:2408.05041</a> <span> [<a href="https://arxiv.org/pdf/2408.05041">pdf</a>, <a href="https://arxiv.org/format/2408.05041">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dynamic X-ray coherent diffraction analysis: bridging the timescales between imaging and photon correlation spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hinsley%2C+G+N">Gerard N. Hinsley</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeister%2C+F">Fabian Westermeister</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Bihan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ngoi%2C+K+H">Kuan Hoon Ngoi</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+S">Shweta Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Rysov%2C+R">Rustam Rysov</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Kewish%2C+C+M">Cameron M. Kewish</a>, <a href="/search/cond-mat?searchtype=author&query=van+Riessen%2C+G+A">Grant A. van Riessen</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05041v1-abstract-short" style="display: inline;"> The advent of diffraction limited sources and developments in detector technology opens up new possibilities for the study of materials in situ and operando. Coherent X-ray diffraction techniques such as coherent X-ray diffractive imaging (CXDI) and X-ray photon correlation spectroscopy (XPCS) are capable for this purpose and provide complimentary information, although due to signal-to-noise requi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05041v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05041v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05041v1-abstract-full" style="display: none;"> The advent of diffraction limited sources and developments in detector technology opens up new possibilities for the study of materials in situ and operando. Coherent X-ray diffraction techniques such as coherent X-ray diffractive imaging (CXDI) and X-ray photon correlation spectroscopy (XPCS) are capable for this purpose and provide complimentary information, although due to signal-to-noise requirements, their simultaneous demonstration has been limited. Here, we demonstrate a strategy for the simultaneous use of CXDI and XPCS to study in situ the Brownian motion of colloidal gold nanoparticles of 200 nm diameter suspended in a glycerol-water mixture. We visualise the process of agglomeration, examine the spatiotemporal space accessible with the combination of techniques, and demonstrate CXDI with 22 ms temporal resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05041v1-abstract-full').style.display = 'none'; document.getElementById('2408.05041v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 12 figures, 40 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12306">arXiv:2403.12306</a> <span> [<a href="https://arxiv.org/pdf/2403.12306">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> On the interplay of liquid-like and stress-driven dynamics in a metallic glass former observed by temperature scanning XPCS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Frey%2C+M">Maximilian Frey</a>, <a href="/search/cond-mat?searchtype=author&query=Neuber%2C+N">Nico Neuber</a>, <a href="/search/cond-mat?searchtype=author&query=Riegler%2C+S+S">Sascha Sebastian Riegler</a>, <a href="/search/cond-mat?searchtype=author&query=Cornet%2C+A">Antoine Cornet</a>, <a href="/search/cond-mat?searchtype=author&query=Chushkin%2C+Y">Yuriy Chushkin</a>, <a href="/search/cond-mat?searchtype=author&query=Zontone%2C+F">Federico Zontone</a>, <a href="/search/cond-mat?searchtype=author&query=Ruschel%2C+L">Lucas Ruschel</a>, <a href="/search/cond-mat?searchtype=author&query=Adam%2C+B">Bastian Adam</a>, <a href="/search/cond-mat?searchtype=author&query=Nabahat%2C+M">Mehran Nabahat</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">Fabian Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Cangialosi%2C+D">Daniele Cangialosi</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Lisio%2C+V">Valerio Di Lisio</a>, <a href="/search/cond-mat?searchtype=author&query=Gallino%2C+I">Isabella Gallino</a>, <a href="/search/cond-mat?searchtype=author&query=Busch%2C+R">Ralf Busch</a>, <a href="/search/cond-mat?searchtype=author&query=Ruta%2C+B">Beatrice Ruta</a>, <a href="/search/cond-mat?searchtype=author&query=Pineda%2C+E">Eloi Pineda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12306v2-abstract-short" style="display: inline;"> Modern detector technology and highly brilliant fourth-generation synchrotrons allow to improve the temporal resolution in time-resolved diffraction studies. Profiting from this, we applied temperature scanning X-ray photon correlation spectroscopy (XPCS) to probe the dynamics of a Pt-based metallic glass former in the glass, glass transition region, and supercooled liquid, covering up to six orde… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12306v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12306v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12306v2-abstract-full" style="display: none;"> Modern detector technology and highly brilliant fourth-generation synchrotrons allow to improve the temporal resolution in time-resolved diffraction studies. Profiting from this, we applied temperature scanning X-ray photon correlation spectroscopy (XPCS) to probe the dynamics of a Pt-based metallic glass former in the glass, glass transition region, and supercooled liquid, covering up to six orders of magnitude in time scales. Our data demonstrates that the structural alpha-relaxation process is still observable in the glass, although it is partially masked by a faster source of decorrelation observed at atomic scale. We present an approach that interprets these findings as the superposition of heterogeneous liquid-like and stress-driven ballistic-like atomic motions. This work not only extends the dynamical range probed by standard isothermal XPCS, but also clarifies the fate of the alpha-relaxation across the glass transition and provides a new perception on the anomalous, compressed temporal decay of the density-density correlation functions observed in metallic glasses and many out-of-equilibrium soft materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12306v2-abstract-full').style.display = 'none'; document.getElementById('2403.12306v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05298">arXiv:2402.05298</a> <span> [<a href="https://arxiv.org/pdf/2402.05298">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High pressure X-Ray Photon Correlation Spectroscopy at 4th generation synchrotron sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cornet%2C+A">Antoine Cornet</a>, <a href="/search/cond-mat?searchtype=author&query=Ronca%2C+A">Alberto Ronca</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zontone%2C+F">Federico Zontone</a>, <a href="/search/cond-mat?searchtype=author&query=Chushkin%2C+Y">Yuriy Chushkin</a>, <a href="/search/cond-mat?searchtype=author&query=Cammarata%2C+M">Marco Cammarata</a>, <a href="/search/cond-mat?searchtype=author&query=Garbarino%2C+G">Gaston Garbarino</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Westermaier%2C+F">Fabian Westermaier</a>, <a href="/search/cond-mat?searchtype=author&query=Deschamps%2C+T">Thierry Deschamps</a>, <a href="/search/cond-mat?searchtype=author&query=Ruta%2C+B">Beatrice Ruta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05298v2-abstract-short" style="display: inline;"> A new experimental setup combining X-Ray Photon Correlation Spectroscopy (XPCS) in the hard x-ray regime and a high-pressure sample environment is developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-GPa range, from room temperature to 600K. The high flux of coherent high energy x-rays at 4th generation synchrotron source solv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05298v2-abstract-full').style.display = 'inline'; document.getElementById('2402.05298v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05298v2-abstract-full" style="display: none;"> A new experimental setup combining X-Ray Photon Correlation Spectroscopy (XPCS) in the hard x-ray regime and a high-pressure sample environment is developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-GPa range, from room temperature to 600K. The high flux of coherent high energy x-rays at 4th generation synchrotron source solves the problems caused by the absorption of the Diamond Anvil Cells used to generate the high pressure, enabling the measurement of the intermediate scattering function over 6 orders of magnitude in time, from $10^{-3}$ s to $10^{3}$s. The constraints posed by the high-pressure generation such as the preservation of the x-ray's coherence, as well as the sample, pressure and temperature stability are discussed, and the feasibility of high pressure XPCS is demonstrated through results obtained on metallic glasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05298v2-abstract-full').style.display = 'none'; document.getElementById('2402.05298v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.12485">arXiv:2304.12485</a> <span> [<a href="https://arxiv.org/pdf/2304.12485">pdf</a>, <a href="https://arxiv.org/format/2304.12485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L201111">10.1103/PhysRevB.108.L201111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay between atomic fluctuations and charge density waves in La$_{2-x}$Sr$_{x}$CuO$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+L">L. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&query=Burdet%2C+N+G">N. G. Burdet</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+M">M. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Petsch%2C+A+N">A. N. Petsch</a>, <a href="/search/cond-mat?searchtype=author&query=Croft%2C+T+P">T. P. Croft</a>, <a href="/search/cond-mat?searchtype=author&query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Z. Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">F. Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/cond-mat?searchtype=author&query=Blackburn%2C+E">E. Blackburn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.12485v1-abstract-short" style="display: inline;"> In the cuprate superconductors, the spatial coherence of the charge density wave (CDW) state grows rapidly below a characteristic temperature $T_\mathrm{CDW}$, the nature of which is debated. We have combined a set of x-ray scattering techniques to study La$_{1.88}$Sr$_{0.12}$CuO$_{4}$ ($T_\mathrm{CDW}$~$\approx$~80\,K) to shed light on this discussion. We observe the emergence of a crystal struct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12485v1-abstract-full').style.display = 'inline'; document.getElementById('2304.12485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.12485v1-abstract-full" style="display: none;"> In the cuprate superconductors, the spatial coherence of the charge density wave (CDW) state grows rapidly below a characteristic temperature $T_\mathrm{CDW}$, the nature of which is debated. We have combined a set of x-ray scattering techniques to study La$_{1.88}$Sr$_{0.12}$CuO$_{4}$ ($T_\mathrm{CDW}$~$\approx$~80\,K) to shed light on this discussion. We observe the emergence of a crystal structure, which is consistent with the CDW modulation in symmetry, well above $T_\mathrm{CDW}$. This global structural change also induces strong fluctuations of local atomic disorder in the intermediate temperature region. At $T_\mathrm{CDW}$, the temperature dependence of this structure develops a kink, while the atomic disorder is minimized. We find that the atomic relaxation dynamics cross over from a cooperative to an incoherent response at $T_\mathrm{CDW}$. These results reveal a rich interplay between the CDWs and atomic fluctuations of distinct spatio-temporal scales. For example, the CDW coherence is enhanced on quasi-elastic timescales by incoherent atomic relaxation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12485v1-abstract-full').style.display = 'none'; document.getElementById('2304.12485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11043">arXiv:2301.11043</a> <span> [<a href="https://arxiv.org/pdf/2301.11043">pdf</a>, <a href="https://arxiv.org/format/2301.11043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcb.3c02492">10.1021/acs.jpcb.3c02492 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bin%2C+M">Maddalena Bin</a>, <a href="/search/cond-mat?searchtype=author&query=Reiser%2C+M">Mario Reiser</a>, <a href="/search/cond-mat?searchtype=author&query=Filianina%2C+M">Mariia Filianina</a>, <a href="/search/cond-mat?searchtype=author&query=Berkowicz%2C+S">Sharon Berkowicz</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sudipta Das</a>, <a href="/search/cond-mat?searchtype=author&query=Timmermann%2C+S">Sonja Timmermann</a>, <a href="/search/cond-mat?searchtype=author&query=Roseker%2C+W">Wojciech Roseker</a>, <a href="/search/cond-mat?searchtype=author&query=Bauer%2C+R">Robert Bauer</a>, <a href="/search/cond-mat?searchtype=author&query=%C3%96str%C3%B6m%2C+J">Jonatan 脰str枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Karina%2C+A">Aigerim Karina</a>, <a href="/search/cond-mat?searchtype=author&query=Amann-Winkel%2C+K">Katrin Amann-Winkel</a>, <a href="/search/cond-mat?searchtype=author&query=Ladd-Parada%2C+M">Marjorie Ladd-Parada</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">Fabian Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+J">Johannes M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Lehmk%C3%BChler%2C+F">Felix Lehmk眉hler</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">Christian Gutt</a>, <a href="/search/cond-mat?searchtype=author&query=Perakis%2C+F">Fivos Perakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11043v1-abstract-short" style="display: inline;"> Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamic response in the deeply super… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11043v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11043v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11043v1-abstract-full" style="display: none;"> Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamic response in the deeply supercooled regime (T = 180 K) which is typically not accessible through equilibrium methods. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalised variance $蠂_T$. Our study provides new insights into X-ray stimulated stress relaxation and the underlying mechanisms behind spatio-temporal fluctuations in biological granular materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11043v1-abstract-full').style.display = 'none'; document.getElementById('2301.11043v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09569">arXiv:2209.09569</a> <span> [<a href="https://arxiv.org/pdf/2209.09569">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Disentangling structural and kinetic components of the 伪-relaxation in supercooled metallic liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Neuber%2C+N">Nico Neuber</a>, <a href="/search/cond-mat?searchtype=author&query=Gross%2C+O">Oliver Gross</a>, <a href="/search/cond-mat?searchtype=author&query=Frey%2C+M">Maximilian Frey</a>, <a href="/search/cond-mat?searchtype=author&query=Bochtler%2C+B">Benedikt Bochtler</a>, <a href="/search/cond-mat?searchtype=author&query=Kuball%2C+A">Alexander Kuball</a>, <a href="/search/cond-mat?searchtype=author&query=Hechler%2C+S">Simon Hechler</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Pineda%2C+E">Eloi Pineda</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">Fabian Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Gallino%2C+I">Isabella Gallino</a>, <a href="/search/cond-mat?searchtype=author&query=Busch%2C+R">Ralf Busch</a>, <a href="/search/cond-mat?searchtype=author&query=Ruta%2C+B">Beatrice Ruta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09569v1-abstract-short" style="display: inline;"> The particle motion associated to the 伪-relaxation in supercooled liquids is still challenging scientists due to its difficulty to be probed experimentally. By combining synchrotron techniques, we found the existence of microscopic structure-dynamics relationships in Pt42.5Cu27Ni9.5P21 and Pd42.5Cu27Ni9.5P21 liquids which allows us to disentangle structural and kinetic contributions to the 伪-proce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09569v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09569v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09569v1-abstract-full" style="display: none;"> The particle motion associated to the 伪-relaxation in supercooled liquids is still challenging scientists due to its difficulty to be probed experimentally. By combining synchrotron techniques, we found the existence of microscopic structure-dynamics relationships in Pt42.5Cu27Ni9.5P21 and Pd42.5Cu27Ni9.5P21 liquids which allows us to disentangle structural and kinetic contributions to the 伪-process. While the two alloys show similar kinetic fragilities, their structural fragilities differ and correlate with the temperature dependence of the stretching parameter describing the decay of the density fluctuations. This implies that the evolution of dynamical heterogeneities in supercooled alloys is determined by the rigidity of the melt structure. We find also that the atomic motion not only reflects the topological order but also the chemical short-range order, which can lead to a surprising slowdown of the 伪-process at the mesoscopic length scale. These results will contribute to the comprehension of the glass transition, which is still missing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09569v1-abstract-full').style.display = 'none'; document.getElementById('2209.09569v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01213">arXiv:2207.01213</a> <span> [<a href="https://arxiv.org/pdf/2207.01213">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39255-1">10.1038/s41467-023-39255-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain and Crystallographic Identification of the Helically Concaved Surfaces of Nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">Sungwook Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Im%2C+S+W">Sang Won Im</a>, <a href="/search/cond-mat?searchtype=author&query=Huh%2C+J">Ji-Hyeok Huh</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sungwon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jaeseung Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Lim%2C+Y">Yae-Chan Lim</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+R+M">Ryeong Myeong Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+J+H">Jeong Hyun Han</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+H">Hyeohn Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S+Y">Su Yong Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Cha%2C+W">Wonsuk Cha</a>, <a href="/search/cond-mat?searchtype=author&query=Harder%2C+R">Ross Harder</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S">Seungwoo Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Nam%2C+K+T">Ki Tae Nam</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+H">Hyunjung Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01213v1-abstract-short" style="display: inline;"> Identifying the three-dimensional (3D) crystal-plane and strain-field distributions of nanocrystals is essential for optical, catalytic, and electronic applications. Here, we developed a methodology for visualizing the 3D information of chiral gold nanoparticles with concave gap structures by Bragg coherent X-ray diffraction imaging. The distribution of the high-Miller-index planes constituting th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01213v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01213v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01213v1-abstract-full" style="display: none;"> Identifying the three-dimensional (3D) crystal-plane and strain-field distributions of nanocrystals is essential for optical, catalytic, and electronic applications. Here, we developed a methodology for visualizing the 3D information of chiral gold nanoparticles with concave gap structures by Bragg coherent X-ray diffraction imaging. The distribution of the high-Miller-index planes constituting the concave chiral gap was precisely determined. The highly strained region adjacent to the chiral gaps was resolved, which was correlated to the 432-symmetric morphology of the nanoparticles and its corresponding plasmonic properties were numerically predicted from the atomically defined structures. This approach can serve as a general characterization platform for visualizing the 3D crystallographic and strain distributions of nanoparticles, especially for applications where structural complexity and local heterogeneity are major determinants, as exemplified in plasmonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01213v1-abstract-full').style.display = 'none'; document.getElementById('2207.01213v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Sungwook Choi and Sang Won Im contributed equally to this work. Corresponding author. Email: nkitae@snu.ac.kr, hkim@sogang.ac.kr</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01518">arXiv:2205.01518</a> <span> [<a href="https://arxiv.org/pdf/2205.01518">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-022-18925-y">10.1038/s41598-022-18925-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale inhomogeneity of charge density waves dynamics in La$_{2-x}$Sr$_x$NiO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Campi%2C+G">Gaetano Campi</a>, <a href="/search/cond-mat?searchtype=author&query=Bianconi%2C+A">Antonio Bianconi</a>, <a href="/search/cond-mat?searchtype=author&query=Joseph%2C+B">Boby Joseph</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S+K">Shrawan Kr Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Muller%2C+L">Leonard Muller</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A">Alexey Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Nugroho%2C+A+A">Agustinus Agung Nugroho</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">Alessandro Ricci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01518v1-abstract-short" style="display: inline;"> While stripe phases with broken rotational symmetry of charge density appear in many complex correlated systems, the heterogeneity of spatial ordering and dynamics remains elusive. This missing info is at the heart of understanding the structure and function relation in quantum complex materials. We focus here on the spatial heterogeneity of the motion of charge density wave (CDW) at nanoscale in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01518v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01518v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01518v1-abstract-full" style="display: none;"> While stripe phases with broken rotational symmetry of charge density appear in many complex correlated systems, the heterogeneity of spatial ordering and dynamics remains elusive. This missing info is at the heart of understanding the structure and function relation in quantum complex materials. We focus here on the spatial heterogeneity of the motion of charge density wave (CDW) at nanoscale in the archetypal case of La$_{2-x}$Sr$_x$NiO$_{4+y}$ perovskite at low temperature. We report compelling evidence that the unconventional increasing motion of CDW at T < 50K is related with the decreasing of its correlation length using resonant soft X-ray photon correlation spectroscopy (XPCS). The key result of this work is the direct visualization of nanoscale spatial inhomogeneity of CDW relaxation dynamics by scanning micro X-ray diffraction (SmXRD) showing a nanoscale landscape of percolating short range dynamic CDW puddles competing with large quasi-static CDW puddles giving rise to a novel form of nanoscale phase separation of the incommensurate stripes order landscape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01518v1-abstract-full').style.display = 'none'; document.getElementById('2205.01518v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 12, 15964 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08562">arXiv:2202.08562</a> <span> [<a href="https://arxiv.org/pdf/2202.08562">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Angular X-ray Cross-Correlation Analysis Applied to the Scattering Data in 3D Reciprocal Space from a Single Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A">Anatoly Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Janne-Mieke Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R">Ruslan Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08562v1-abstract-short" style="display: inline;"> We propose an application of the Angular X-ray Cross-Correlation Analysis (AXCCA) to the scattered intensity distribution measured in three-dimensional (3D) reciprocal space from a single crystalline sample. Contrary to the conventional application of AXCCA, when averaging over many two-dimensional (2D) diffraction patterns collected from different randomly oriented samples is required, the propos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08562v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08562v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08562v1-abstract-full" style="display: none;"> We propose an application of the Angular X-ray Cross-Correlation Analysis (AXCCA) to the scattered intensity distribution measured in three-dimensional (3D) reciprocal space from a single crystalline sample. Contrary to the conventional application of AXCCA, when averaging over many two-dimensional (2D) diffraction patterns collected from different randomly oriented samples is required, the proposed approach gives an insight into the structure of a single specimen. This is particularly useful in studies of defect-reach samples that are unlikely to have the same structure. Here, we demonstrate an example of a qualitative structure determination of a colloidal crystal on the simulated as well as experimentally measured 3D scattered intensity distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08562v1-abstract-full').style.display = 'none'; document.getElementById('2202.08562v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14415">arXiv:2110.14415</a> <span> [<a href="https://arxiv.org/pdf/2110.14415">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> In-situ Characterization of Crystallization and Melting of Soft, Thermoresponsive Microgels by Small-Angle X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/cond-mat?searchtype=author&query=Dubinina%2C+S">Svetlana Dubinina</a>, <a href="/search/cond-mat?searchtype=author&query=Stellhorn%2C+J">Jens Stellhorn</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">Fabian Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Karg%2C+M">Matthias Karg</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Janne-Mieke Meijer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14415v2-abstract-short" style="display: inline;"> Depending on the volume fraction and interparticle interactions, colloidal suspensions can form different phases, ranging from fluids, crystals, and glasses to gels. For soft microgels that are made from thermoresponsive polymers, the volume fraction can be tuned by temperature, making them excellent systems to experimentally study phase transitions in dense colloidal suspensions. However, investi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14415v2-abstract-full').style.display = 'inline'; document.getElementById('2110.14415v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14415v2-abstract-full" style="display: none;"> Depending on the volume fraction and interparticle interactions, colloidal suspensions can form different phases, ranging from fluids, crystals, and glasses to gels. For soft microgels that are made from thermoresponsive polymers, the volume fraction can be tuned by temperature, making them excellent systems to experimentally study phase transitions in dense colloidal suspensions. However, investigations of phase transitions at high particle concentration and across the volume phase transition temperature in particular, are challenging due to the deformability and possibility for interpenetration between microgels. Here, we investigate the dense phases of composite core-shell microgels that have a small gold core and a thermoresponsive microgel shell. Employing Ultra Small Angle X-ray Scattering, we make use of the strong scattering signal from the gold cores with respect to the almost negligible signal from the shells. By changing the temperature we study the freezing and melting transitions of the system in-situ. Using Bragg peak analysis and the Williamson-Hall method, we characterize the phase transitions in detail. We show that the system crystallizes into an rhcp structure with different degrees of in-plane and out-of-plane stacking disorder that increase upon particle swelling. We further find that the melting process is distinctly different, where the system separates into two different crystal phases with different melting temperatures and interparticle interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14415v2-abstract-full').style.display = 'none'; document.getElementById('2110.14415v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11811">arXiv:2110.11811</a> <span> [<a href="https://arxiv.org/pdf/2110.11811">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Angular structure factor of the hexatic-B liquid crystals: bridging theory and experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Ostrovskii%2C+B+I">Boris I. Ostrovskii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11811v1-abstract-short" style="display: inline;"> We report results from X-ray scattering studies of the angular structure factor of liquid crystal hexatic-B films. According to the sixfold rotational symmetry of the hexatic-B phase, its characteristic scattering splits into six reflections. The shape of the radial and angular cross-sections of these reflections and their temperature evolution are analyzed. We find that over a wide temperature ra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11811v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11811v1-abstract-full" style="display: none;"> We report results from X-ray scattering studies of the angular structure factor of liquid crystal hexatic-B films. According to the sixfold rotational symmetry of the hexatic-B phase, its characteristic scattering splits into six reflections. The shape of the radial and angular cross-sections of these reflections and their temperature evolution are analyzed. We find that over a wide temperature range of the hexatic-B phase existence the angular profiles of the in-plane X-ray scattering are well fitted by the Voigt function, which is a convolution of the Gaussian and Lorentzian functions. This result is supported by the known theoretical considerations of the hexatic structure factor below the smectic-hexatic phase transition temperture. Similar predictions for the angular shape of the hexatic peak in the vicinity of the smectic-hexatic phase transition temperature follow from the multicritical scaling theory of the hexatic-B phase in three dimensions. We find that the specific shape of the hexatic structure factor can be explained by the interplay of two distinct contributions to the free energy of the system, a liquid-like density term and a coupling term between the bond-orientational order and short-range density fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11811v1-abstract-full').style.display = 'none'; document.getElementById('2110.11811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures, 41 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05502">arXiv:2109.05502</a> <span> [<a href="https://arxiv.org/pdf/2109.05502">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-28486-3">10.1038/s41467-022-28486-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Kirsch%2C+C">Christopher Kirsch</a>, <a href="/search/cond-mat?searchtype=author&query=Hiller%2C+J">Jonas Hiller</a>, <a href="/search/cond-mat?searchtype=author&query=Andrienko%2C+D">Denis Andrienko</a>, <a href="/search/cond-mat?searchtype=author&query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/cond-mat?searchtype=author&query=Braun%2C+K">Kai Braun</a>, <a href="/search/cond-mat?searchtype=author&query=Carnis%2C+J">Jerome Carnis</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Mandal%2C+M">Mukunda Mandal</a>, <a href="/search/cond-mat?searchtype=author&query=Maier%2C+A">Andre Maier</a>, <a href="/search/cond-mat?searchtype=author&query=Meixner%2C+A+J">Alfred J. Meixner</a>, <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Scheele%2C+M">Marcus Scheele</a>, <a href="/search/cond-mat?searchtype=author&query=Schreiber%2C+F">Frank Schreiber</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Wahl%2C+J">Jan Wahl</a>, <a href="/search/cond-mat?searchtype=author&query=Westendorf%2C+S">Sophia Westendorf</a>, <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05502v1-abstract-short" style="display: inline;"> We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled caesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modelling, we show that a loss in structural coherence, an increasing atomic misalignment between adjac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05502v1-abstract-full').style.display = 'inline'; document.getElementById('2109.05502v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05502v1-abstract-full" style="display: none;"> We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled caesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modelling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05502v1-abstract-full').style.display = 'none'; document.getElementById('2109.05502v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages, 34 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10173">arXiv:2108.10173</a> <span> [<a href="https://arxiv.org/pdf/2108.10173">pdf</a>, <a href="https://arxiv.org/format/2108.10173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Influence of Contacts and Applied Voltage on a Structure of a Single GaN Nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Zhaoxia%2C+B">Bi Zhaoxia</a>, <a href="/search/cond-mat?searchtype=author&query=Nowzari%2C+A">Ali Nowzari</a>, <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Khubbutdinov%2C+R">Ruslan Khubbutdinov</a>, <a href="/search/cond-mat?searchtype=author&query=Dzhigaev%2C+D">Dmitry Dzhigaev</a>, <a href="/search/cond-mat?searchtype=author&query=Jeromin%2C+A">Arno Jeromin</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+T">Thomas Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Mikkelsen%2C+A">Anders Mikkelsen</a>, <a href="/search/cond-mat?searchtype=author&query=Samuelson%2C+L">Lars Samuelson</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10173v1-abstract-short" style="display: inline;"> Semiconductor nanowires (NWs) have a broad range of applications for nano- and optoelectronics. The strain field of gallium nitride (GaN) NWs could be significantly changed when contacts are applied to them to form a final device, especially considering the piezoelectric properties of GaN. Investigation of influence of the metallic contacts on the structure of the NWs is of high importance for the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10173v1-abstract-full').style.display = 'inline'; document.getElementById('2108.10173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10173v1-abstract-full" style="display: none;"> Semiconductor nanowires (NWs) have a broad range of applications for nano- and optoelectronics. The strain field of gallium nitride (GaN) NWs could be significantly changed when contacts are applied to them to form a final device, especially considering the piezoelectric properties of GaN. Investigation of influence of the metallic contacts on the structure of the NWs is of high importance for their applications in real devices. We have studied a series of different type of contacts and influence of the applied voltage bias on the contacted GaN NWs with the length of about 3 to 4 micrometers and with two different diameters of 200 nm and 350 nm. It was demonstrated that the NWs with the diameter of 200 nm are bend already by the interaction with the substrate. For all GaN NWs, significant structural changes were revealed after the contacts deposition. The results of our research may contribute to the future optoelectronic applications of the GaN nanowires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10173v1-abstract-full').style.display = 'none'; document.getElementById('2108.10173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures, 14 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05026">arXiv:2107.05026</a> <span> [<a href="https://arxiv.org/pdf/2107.05026">pdf</a>, <a href="https://arxiv.org/format/2107.05026">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Gelation dynamics upon pressure-induced liquid-liquid phase separation in a water-lysozyme solution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Moron%2C+M">M. Moron</a>, <a href="/search/cond-mat?searchtype=author&query=Al-Masoodi%2C+A">A. Al-Masoodi</a>, <a href="/search/cond-mat?searchtype=author&query=Lovato%2C+C">C. Lovato</a>, <a href="/search/cond-mat?searchtype=author&query=Reiser%2C+M">M. Reiser</a>, <a href="/search/cond-mat?searchtype=author&query=Randolph%2C+L">L. Randolph</a>, <a href="/search/cond-mat?searchtype=author&query=Surmeier%2C+G">G. Surmeier</a>, <a href="/search/cond-mat?searchtype=author&query=Bolle%2C+J">J. Bolle</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">F. Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Winter%2C+R">R. Winter</a>, <a href="/search/cond-mat?searchtype=author&query=Paulus%2C+M">M. Paulus</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">C. Gutt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05026v1-abstract-short" style="display: inline;"> Employing X-ray photon correlation spectroscopy we measure the kinetics and dynamics of a pressure-induced liquid-liquid phase separation (LLPS) in a water-lysozyme solution. Scattering invariants and kinetic information provide evidence that the system reaches the phase boundary upon pressure-induced LLPS with no sign of arrest. The coarsening slows down with increasing quench depths. The $g_2$-f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05026v1-abstract-full').style.display = 'inline'; document.getElementById('2107.05026v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05026v1-abstract-full" style="display: none;"> Employing X-ray photon correlation spectroscopy we measure the kinetics and dynamics of a pressure-induced liquid-liquid phase separation (LLPS) in a water-lysozyme solution. Scattering invariants and kinetic information provide evidence that the system reaches the phase boundary upon pressure-induced LLPS with no sign of arrest. The coarsening slows down with increasing quench depths. The $g_2$-functions display a two-step decay with a gradually increasing non-ergodicity parameter typical for gelation. We observe fast superdiffusive ($纬\geq 3/2$) and slow subdiffusive ($纬< 0.6$) motion associated with fast viscoelastic fluctuations of the network and a slow viscous coarsening process, respectively. The dynamics age linear with time $蟿\propto t_\mathrm{w}$ and we observe the onset of viscoelastic relaxation for deeper quenches. Our results suggest that the protein solution gels upon reaching the phase boundary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05026v1-abstract-full').style.display = 'none'; document.getElementById('2107.05026v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.16179">arXiv:2106.16179</a> <span> [<a href="https://arxiv.org/pdf/2106.16179">pdf</a>, <a href="https://arxiv.org/format/2106.16179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A convolutional neural network for defect classification in Bragg coherent X-ray diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lim%2C+B">Bruce Lim</a>, <a href="/search/cond-mat?searchtype=author&query=Bellec%2C+E">Ewen Bellec</a>, <a href="/search/cond-mat?searchtype=author&query=Dupraz%2C+M">Maxime Dupraz</a>, <a href="/search/cond-mat?searchtype=author&query=Leake%2C+S">Steven Leake</a>, <a href="/search/cond-mat?searchtype=author&query=Resta%2C+A">Andrea Resta</a>, <a href="/search/cond-mat?searchtype=author&query=Coati%2C+A">Alessandro Coati</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Almog%2C+E">Ehud Almog</a>, <a href="/search/cond-mat?searchtype=author&query=Rabkin%2C+E">Eugen Rabkin</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BClli%2C+T">Tobias Sch眉lli</a>, <a href="/search/cond-mat?searchtype=author&query=Richard%2C+M">Marie-Ingrid Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.16179v1-abstract-short" style="display: inline;"> Coherent diffraction imaging enables the imaging of individual defects, such as dislocations or stacking faults, in materials.These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials. However, their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data mining. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16179v1-abstract-full').style.display = 'inline'; document.getElementById('2106.16179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.16179v1-abstract-full" style="display: none;"> Coherent diffraction imaging enables the imaging of individual defects, such as dislocations or stacking faults, in materials.These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials. However, their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data mining. The ability to identify defects from the diffraction pattern alone would be a significant advantage when targeting specific defect types and accelerates experiment design and execution. Here, we exploit a computational tool based on a three-dimensional (3D) parametric atomistic model and a convolutional neural network to predict dislocations in a crystal from its 3D coherent diffraction pattern. Simulated diffraction patterns from several thousands of relaxed atomistic configurations of nanocrystals are used to train the neural network and to predict the presence or absence of dislocations as well as their type(screw or edge). Our study paves the way for defect recognition in 3D coherent diffraction patterns for material science <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16179v1-abstract-full').style.display = 'none'; document.getElementById('2106.16179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 12 pages, 4 figures, 1 table Supplemental: 25 pages, 16 Figures, 8 tables Recently accepted in NPJ Computational Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14311">arXiv:2106.14311</a> <span> [<a href="https://arxiv.org/pdf/2106.14311">pdf</a>, <a href="https://arxiv.org/format/2106.14311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac2594">10.1088/1367-2630/ac2594 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using low dose X-ray Speckle Visibility Spectroscopy to study dynamics of soft matter samples </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+J">Johannes M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Reiser%2C+M">Mario Reiser</a>, <a href="/search/cond-mat?searchtype=author&query=Hallmann%2C+J">J枚rg Hallmann</a>, <a href="/search/cond-mat?searchtype=author&query=Boesenberg%2C+U">Ulrike Boesenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A">Alexey Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Rahmann%2C+H">Hendrik Rahmann</a>, <a href="/search/cond-mat?searchtype=author&query=Becker%2C+A">Anna-Lena Becker</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">Fabian Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Zinn%2C+T">Thomas Zinn</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Narayanan%2C+T">Theyencheri Narayanan</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">Christian Gutt</a>, <a href="/search/cond-mat?searchtype=author&query=Madsen%2C+A">Anders Madsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14311v1-abstract-short" style="display: inline;"> We demonstrate the successful application of X-ray Speckle Visibility Spectroscopy (XSVS) experiments to study the dynamics of radiation sensitive, biological samples with unprecedentedly small X-ray doses of 45 Gy and below. Using XSVS, we track the dynamics of casein micelles in native, concentrated, and acidified solution conditions, while substantially reducing the deposited dose as compared t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14311v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14311v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14311v1-abstract-full" style="display: none;"> We demonstrate the successful application of X-ray Speckle Visibility Spectroscopy (XSVS) experiments to study the dynamics of radiation sensitive, biological samples with unprecedentedly small X-ray doses of 45 Gy and below. Using XSVS, we track the dynamics of casein micelles in native, concentrated, and acidified solution conditions, while substantially reducing the deposited dose as compared to alternative techniques like sequential X-ray photon correlation spectroscopy (XPCS). The Brownian motion in a skim milk sample yields the hydrodynamic radius of the casein micelles while deviations from Brownian motion with a characteristic $q$-dependent diffusion coefficient $D(q)$ can be observed in more concentrated solution conditions. The low dose applied in our experiments allows the observation of static, frozen speckle patterns from gelled acidic milk. We show that the XSVS technique is especially suitable for tracking dynamics of radiation sensitive samples in combination with the improved coherent properties of new generation X-ray sources, emphasizing the great potential for further investigations of protein dynamics using fourth generation synchrotrons and free electron lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14311v1-abstract-full').style.display = 'none'; document.getElementById('2106.14311v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11787">arXiv:2106.11787</a> <span> [<a href="https://arxiv.org/pdf/2106.11787">pdf</a>, <a href="https://arxiv.org/ps/2106.11787">ps</a>, <a href="https://arxiv.org/format/2106.11787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Automated matching of two-time X-ray photon correlation maps from protein dynamics with Cahn-Hilliard type simulations using autoencoder networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Timmermann%2C+S">S. Timmermann</a>, <a href="/search/cond-mat?searchtype=author&query=Starostin%2C+V">V. Starostin</a>, <a href="/search/cond-mat?searchtype=author&query=Girelli%2C+A">A. Girelli</a>, <a href="/search/cond-mat?searchtype=author&query=Ragulskaya%2C+A">A. Ragulskaya</a>, <a href="/search/cond-mat?searchtype=author&query=Rahmann%2C+H">H. Rahmann</a>, <a href="/search/cond-mat?searchtype=author&query=Reiser%2C+M">M. Reiser</a>, <a href="/search/cond-mat?searchtype=author&query=Begam%2C+N">N. Begam</a>, <a href="/search/cond-mat?searchtype=author&query=Randolph%2C+L">L. Randolph</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">F. Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">F. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Schreiber%2C+F">F. Schreiber</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">C. Gutt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11787v1-abstract-short" style="display: inline;"> We use machine learning methods for an automated classification of experimental XPCS two-time correlation functions from an arrested liquid-liquid phase separation of a protein solution. We couple simulations based on the Cahn-Hilliard equation with a glass transition scenario and classify the measured correlation maps automatically according to quench depth and critical concentration at a glass/g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11787v1-abstract-full').style.display = 'inline'; document.getElementById('2106.11787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11787v1-abstract-full" style="display: none;"> We use machine learning methods for an automated classification of experimental XPCS two-time correlation functions from an arrested liquid-liquid phase separation of a protein solution. We couple simulations based on the Cahn-Hilliard equation with a glass transition scenario and classify the measured correlation maps automatically according to quench depth and critical concentration at a glass/gel transition. We introduce routines and methodologies using an autoencoder network and a differential evolution based algorithm for classification of the measured correlation functions. The here presented method is a first step towards handling large amounts of dynamic data measured at high brilliance synchrotron and X-ray free-electron laser sources facilitating fast comparison to phase field models of phase separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11787v1-abstract-full').style.display = 'none'; document.getElementById('2106.11787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05780">arXiv:2104.05780</a> <span> [<a href="https://arxiv.org/pdf/2104.05780">pdf</a>, <a href="https://arxiv.org/format/2104.05780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.1c01940">10.1021/acs.jpclett.1c01940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay between Kinetics and Dynamics of Liquid-Liquid Phase Separation in a Protein Solution Revealed by Coherent X-ray Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ragulskaya%2C+A">Anastasia Ragulskaya</a>, <a href="/search/cond-mat?searchtype=author&query=Begam%2C+N">Nafisa Begam</a>, <a href="/search/cond-mat?searchtype=author&query=Girelli%2C+A">Anita Girelli</a>, <a href="/search/cond-mat?searchtype=author&query=Rahmann%2C+H">Hendrik Rahmann</a>, <a href="/search/cond-mat?searchtype=author&query=Reiser%2C+M">Mario Reiser</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">Fabian Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fajun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">Christian Gutt</a>, <a href="/search/cond-mat?searchtype=author&query=Schreiber%2C+F">Frank Schreiber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05780v1-abstract-short" style="display: inline;"> Microscopic dynamics of complex fluids in the early stage of spinodal decomposition (SD) is strongly intertwined with the kinetics of structural evolution, which makes a quantitative characterization challenging. In this work, we use x-ray photon correlation spectroscopy to study the dynamics and kinetics of a protein solution undergoing liquid-liquid phase separation (LLPS). We demonstrate that i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05780v1-abstract-full').style.display = 'inline'; document.getElementById('2104.05780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05780v1-abstract-full" style="display: none;"> Microscopic dynamics of complex fluids in the early stage of spinodal decomposition (SD) is strongly intertwined with the kinetics of structural evolution, which makes a quantitative characterization challenging. In this work, we use x-ray photon correlation spectroscopy to study the dynamics and kinetics of a protein solution undergoing liquid-liquid phase separation (LLPS). We demonstrate that in the early stage of SD, the structural relaxation kinetics is up to 40 times slower than the dynamics and thus can be decoupled. The kinetic decay rate is inversely proportional to time in the early stage, followed by a nearly constant behavior during the coarsening stage. The microscopic dynamics can be well described by hyper-diffusive ballistic motions with a relaxation time exponentially growing with time in the early stage followed by a power-law increase with fluctuations. These experimental results are further supported by simulations based on the Cahn-Hilliard equation. The established framework is applicable to other condensed matter and biological systems undergoing phase transitions and may also inspire further theoretical work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05780v1-abstract-full').style.display = 'none'; document.getElementById('2104.05780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.01822">arXiv:2103.01822</a> <span> [<a href="https://arxiv.org/pdf/2103.01822">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Structural Study of a Self-Assembled Gold Mesocrystal Grain by Coherent X-ray Diffraction Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carnis%2C+J">J. Carnis</a>, <a href="/search/cond-mat?searchtype=author&query=Kirner%2C+F">F. Kirner</a>, <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">D. Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Sturm%2C+S">S. Sturm</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y+Y">Y. Y. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Baburin%2C+I+A">I. A. Baburin</a>, <a href="/search/cond-mat?searchtype=author&query=Khubbutdinov%2C+R">R. Khubbutdinov</a>, <a href="/search/cond-mat?searchtype=author&query=Ignatenko%2C+A">A. Ignatenko</a>, <a href="/search/cond-mat?searchtype=author&query=Iashina%2C+E">E. Iashina</a>, <a href="/search/cond-mat?searchtype=author&query=Mistonov%2C+A">A. Mistonov</a>, <a href="/search/cond-mat?searchtype=author&query=Steegemans%2C+T">T. Steegemans</a>, <a href="/search/cond-mat?searchtype=author&query=Wieck%2C+T">Th. Wieck</a>, <a href="/search/cond-mat?searchtype=author&query=Gemming%2C+T">Th. Gemming</a>, <a href="/search/cond-mat?searchtype=author&query=Lubk%2C+A">A. Lubk</a>, <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">S. Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Sturm%2C+E+V">E. V. Sturm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.01822v1-abstract-short" style="display: inline;"> Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray dif… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01822v1-abstract-full').style.display = 'inline'; document.getElementById('2103.01822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.01822v1-abstract-full" style="display: none;"> Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, multidomain structure of a mesocrystal are very close to each other, with a deviation less than 10 percent. These results will provide an important impact to understanding of the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01822v1-abstract-full').style.display = 'none'; document.getElementById('2103.01822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures, 50 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08267">arXiv:2010.08267</a> <span> [<a href="https://arxiv.org/pdf/2010.08267">pdf</a>, <a href="https://arxiv.org/format/2010.08267">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale Rigidity in Cross-Linked Micelle Networks Revealed by XPCS Nanorheology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Reiser%2C+M">M. Reiser</a>, <a href="/search/cond-mat?searchtype=author&query=Hallmann%2C+J">J. Hallmann</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+J">J. M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Kazarian%2C+K">K. Kazarian</a>, <a href="/search/cond-mat?searchtype=author&query=Orsi%2C+D">D. Orsi</a>, <a href="/search/cond-mat?searchtype=author&query=Randolph%2C+L">L. Randolph</a>, <a href="/search/cond-mat?searchtype=author&query=Rahmann%2C+H">H. Rahmann</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">F. Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Stellamanns%2C+E">E. Stellamanns</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Zontone%2C+F">F. Zontone</a>, <a href="/search/cond-mat?searchtype=author&query=Cristofolini%2C+L">L. Cristofolini</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">C. Gutt</a>, <a href="/search/cond-mat?searchtype=author&query=Madsen%2C+A">A. Madsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08267v1-abstract-short" style="display: inline;"> Solutions of wormlike micelles can form cross-linked networks on microscopic length scales. The unique mechanical properties of these complex fluids are driven by the interplay between the network structure and dynamics which are investigated by plate-plate rheometry and X-ray photon correlation spectroscopy~(XPCS) nanorheology. Intensity auto-correlation functions of tracer nanoparticles~(NPs) di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08267v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08267v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08267v1-abstract-full" style="display: none;"> Solutions of wormlike micelles can form cross-linked networks on microscopic length scales. The unique mechanical properties of these complex fluids are driven by the interplay between the network structure and dynamics which are investigated by plate-plate rheometry and X-ray photon correlation spectroscopy~(XPCS) nanorheology. Intensity auto-correlation functions of tracer nanoparticles~(NPs) dispersed in micelle solutions were recorded which captured both the slow structural network relaxation and the short-time dynamics of NPs trapped in the network. The results are indicative of a resonance-like dynamic behavior of the network on the nanoscale that develops as a consequence of the intrinsic short-range rigidity of individual micelle chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08267v1-abstract-full').style.display = 'none'; document.getElementById('2010.08267v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03266">arXiv:2003.03266</a> <span> [<a href="https://arxiv.org/pdf/2003.03266">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structure-transport correlation reveals anisotropic charge transport in coupled PbS nanocrystal superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Maier%2C+A">Andre Maier</a>, <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Frech%2C+P">Philipp Frech</a>, <a href="/search/cond-mat?searchtype=author&query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/cond-mat?searchtype=author&query=Ignatenko%2C+A">Alexandr Ignatenko</a>, <a href="/search/cond-mat?searchtype=author&query=Khubbutdinov%2C+R">Ruslan Khubbutdinov</a>, <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Laible%2C+F">Florian Laible</a>, <a href="/search/cond-mat?searchtype=author&query=Loeffler%2C+R">Ronny Loeffler</a>, <a href="/search/cond-mat?searchtype=author&query=Previdi%2C+N">Nicolas Previdi</a>, <a href="/search/cond-mat?searchtype=author&query=Guenkel%2C+T">Thomas Guenkel</a>, <a href="/search/cond-mat?searchtype=author&query=Fleischer%2C+M">Monika Fleischer</a>, <a href="/search/cond-mat?searchtype=author&query=Schreiber%2C+F">Frank Schreiber</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Scheele%2C+M">Marcus Scheele</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03266v1-abstract-short" style="display: inline;"> Semiconductive nanocrystals (NCs) can be self-assembled into ordered superlattices (SLs) to create artificial solids with emerging collective properties. Computational studies have predicted that properties such as electronic coupling or charge transport are determined not only by the individual NCs but also by the degree of their organization and structure. However, experimental proof for a corre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03266v1-abstract-full').style.display = 'inline'; document.getElementById('2003.03266v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03266v1-abstract-full" style="display: none;"> Semiconductive nanocrystals (NCs) can be self-assembled into ordered superlattices (SLs) to create artificial solids with emerging collective properties. Computational studies have predicted that properties such as electronic coupling or charge transport are determined not only by the individual NCs but also by the degree of their organization and structure. However, experimental proof for a correlation between structure and charge transport in NC SLs is still pending. Here, we perform X-ray nano-diffraction and apply Angular X-ray Cross-Correlation Analysis (AXCCA) to characterize the structures of coupled PbS NC SLs, which are directly correlated with the electronic properties of the same SL microdomains. We find strong evidence for the effect of SL crystallinity on charge transport and reveal anisotropic charge transport in highly ordered monocrystalline hexagonal close-packed PbS NC SLs, caused by the dominant effect of shortest interparticle distance. This implies that transport anisotropy should be a general feature of weakly coupled NC SLs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03266v1-abstract-full').style.display = 'none'; document.getElementById('2003.03266v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 20 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00438">arXiv:2002.00438</a> <span> [<a href="https://arxiv.org/pdf/2002.00438">pdf</a>, <a href="https://arxiv.org/format/2002.00438">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.020508">10.1103/PhysRevB.101.020508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intermittent dynamics of antiferromagnetic phase in inhomogeneous iron-based chalcogenide superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">A. Ricci</a>, <a href="/search/cond-mat?searchtype=author&query=Campi%2C+G">G. Campi</a>, <a href="/search/cond-mat?searchtype=author&query=Joseph%2C+B">B. Joseph</a>, <a href="/search/cond-mat?searchtype=author&query=Poccia%2C+N">N. Poccia</a>, <a href="/search/cond-mat?searchtype=author&query=Innocenti%2C+D">D. Innocenti</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">C. Gutt</a>, <a href="/search/cond-mat?searchtype=author&query=Tanaka%2C+M">M. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&query=Takeya%2C+H">H. Takeya</a>, <a href="/search/cond-mat?searchtype=author&query=Takano%2C+Y">Y. Takano</a>, <a href="/search/cond-mat?searchtype=author&query=Mizokawa%2C+T">T. Mizokawa</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Saini%2C+N+L">N. L. Saini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00438v1-abstract-short" style="display: inline;"> Coexistence of phases, characterized by different electronic degrees of freedom, commonly occurs in layered superconductors. Among them, alkaline intercalated chalcogenides are model systems showing microscale coexistence of paramagnetic (PAR) and antiferromagnetic (AFM) phases, however, temporal behavior of different phases is still unknown. Here, we report the first visualization of the atomic m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00438v1-abstract-full').style.display = 'inline'; document.getElementById('2002.00438v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00438v1-abstract-full" style="display: none;"> Coexistence of phases, characterized by different electronic degrees of freedom, commonly occurs in layered superconductors. Among them, alkaline intercalated chalcogenides are model systems showing microscale coexistence of paramagnetic (PAR) and antiferromagnetic (AFM) phases, however, temporal behavior of different phases is still unknown. Here, we report the first visualization of the atomic motion in the granular phase of K$_{x}$Fe$_{2-y}$Se$_2$ using X-ray photon correlation spectroscopy. Unlike the PAR phase, the AFM texture reveals an intermittent dynamics with avalanches as in martensites. When cooled down across the superconducting transition temperature T$_c$, the AFM phase goes through an anomalous slowing behavior suggesting a direct relationship between the atomic motions in the AFM phase and the superconductivity. In addition of providing a compelling evidence of avalanche-like dynamics in a layered superconductor, the results provide a basis for new theoretical models to describe quantum states in inhomogeneous solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00438v1-abstract-full').style.display = 'none'; document.getElementById('2002.00438v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 020508(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.10414">arXiv:1912.10414</a> <span> [<a href="https://arxiv.org/pdf/1912.10414">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.184203">10.1103/PhysRevB.101.184203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting spin state crossover in (MgFe)O by means of high resolution X-ray diffraction from a single crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Glazyrin%2C+K">Konstantin Glazyrin</a>, <a href="/search/cond-mat?searchtype=author&query=Khandarkhaeva%2C+S">Saiana Khandarkhaeva</a>, <a href="/search/cond-mat?searchtype=author&query=Dubrovinsky%2C+L">Leonid Dubrovinsky</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.10414v1-abstract-short" style="display: inline;"> (MgFe)O is a solid solution with ferrous iron undergoing the high to low spin state (HS-LS) crossover under high pressure. The exact state of the material in the region of the crossover is still a mystery, as domains with different spin states may coexist over a wide pressure range without changing the crystal structure neither from the symmetry nor from the atomic positions point of view. At the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10414v1-abstract-full').style.display = 'inline'; document.getElementById('1912.10414v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.10414v1-abstract-full" style="display: none;"> (MgFe)O is a solid solution with ferrous iron undergoing the high to low spin state (HS-LS) crossover under high pressure. The exact state of the material in the region of the crossover is still a mystery, as domains with different spin states may coexist over a wide pressure range without changing the crystal structure neither from the symmetry nor from the atomic positions point of view. At the conditions of the crossover, (MgFe)O is a special type of microscopic disorder system. We explore the influences of (a) stress-strain relations in a diamond anvil cell, (b) time relaxation processes, and (c) the crossover itself on the characteristic features of a single crystal (111) Bragg spot before, during and after the transformation. Using high resolution X-ray diffraction as a novel method for studies of unconventional processes at the conditions of suppressed diffusion, we detect and discuss subtle changes of the (111) Bragg spot projections which we measure and analyze as a function of pressure. We report changes of the spot shape which can be correlated with the HS-LS relative abundance. In addition, we report the formation of structural defects as an intrinsic material response. These static defects are accumulated during transformation of the material from HS to LS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10414v1-abstract-full').style.display = 'none'; document.getElementById('1912.10414v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 184203 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07306">arXiv:1912.07306</a> <span> [<a href="https://arxiv.org/pdf/1912.07306">pdf</a>, <a href="https://arxiv.org/format/1912.07306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.057001">10.1103/PhysRevLett.127.057001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of spin dynamics in a layered nickelate using x-ray photon correlation spectroscopy: Evidence for intrinsic destabilization of incommensurate stripes at low temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">Alessandro Ricci</a>, <a href="/search/cond-mat?searchtype=author&query=Poccia%2C+N">Nicola Poccia</a>, <a href="/search/cond-mat?searchtype=author&query=Campi%2C+G">Gaetano Campi</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S">Shrawan Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%BCller%2C+L">Leonard M眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=Joseph%2C+B">Boby Joseph</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+B">Bo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A">Alexey Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Buchholz%2C+M">Marcel Buchholz</a>, <a href="/search/cond-mat?searchtype=author&query=Trabant%2C+C">Christoph Trabant</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+C+T">James C. T. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Viefhaus%2C+J">Jens Viefhaus</a>, <a href="/search/cond-mat?searchtype=author&query=Goedkoop%2C+J+B">Jeroen B. Goedkoop</a>, <a href="/search/cond-mat?searchtype=author&query=Nugroho%2C+A+A">Agustinus Agung Nugroho</a>, <a href="/search/cond-mat?searchtype=author&query=Braden%2C+M">Markus Braden</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07306v2-abstract-short" style="display: inline;"> We study the temporal stability of stripe-type spin order in a layered nickelate with X-ray photon correlation spectroscopy and observe fluctuations on time scales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up both upon heating and cooling. This behavior appears to be directly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07306v2-abstract-full').style.display = 'inline'; document.getElementById('1912.07306v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07306v2-abstract-full" style="display: none;"> We study the temporal stability of stripe-type spin order in a layered nickelate with X-ray photon correlation spectroscopy and observe fluctuations on time scales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up both upon heating and cooling. This behavior appears to be directly connected with spatial correlations: stripes fluctuate slowly when stripe correlation lengths are large and become faster when spatial correlations decrease. A low-temperature decay of nickelate stripe correlations, reminiscent of what occurs in cuprates due to a competition between stripes and superconductivity, hence occurs via loss of both spatial and temporal correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07306v2-abstract-full').style.display = 'none'; document.getElementById('1912.07306v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 057001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01943">arXiv:1912.01943</a> <span> [<a href="https://arxiv.org/pdf/1912.01943">pdf</a>, <a href="https://arxiv.org/format/1912.01943">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5488/CMP.22.43606">10.5488/CMP.22.43606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-rays induced atomic dynamics in a lithium-borate glass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dallari%2C+F">F. Dallari</a>, <a href="/search/cond-mat?searchtype=author&query=Pintori%2C+G">G. Pintori</a>, <a href="/search/cond-mat?searchtype=author&query=Baldi%2C+G">G. Baldi</a>, <a href="/search/cond-mat?searchtype=author&query=Martinelli%2C+A">A. Martinelli</a>, <a href="/search/cond-mat?searchtype=author&query=Ruta%2C+B">B. Ruta</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Monaco%2C+G">G. Monaco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01943v1-abstract-short" style="display: inline;"> The continuous development of synchrotron-based experimental techniques in the X-ray range provides new possibilities to probe the structure and the dynamics of bulk materials down to inter-atomic distances. However, the interaction of intense X-ray beams with matter can also induce changes in the structure and dynamics of materials. A reversible and non-destructive beam induced dynamics has recen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01943v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01943v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01943v1-abstract-full" style="display: none;"> The continuous development of synchrotron-based experimental techniques in the X-ray range provides new possibilities to probe the structure and the dynamics of bulk materials down to inter-atomic distances. However, the interaction of intense X-ray beams with matter can also induce changes in the structure and dynamics of materials. A reversible and non-destructive beam induced dynamics has recently been observed in X-ray photon correlation spectroscopy experiments in some oxide glasses at sufficiently low absorbed doses, and is here investigated in a (Li$_2$O)$_{0.5}$(B$_2$O$_3$)$_{0.5}$ glass. The characteristic time of this induced dynamics is inversely proportional to the intensity of the X-ray beam, with a coefficient that depends on the chemical composition and local structure of the probed glass, making it a potentially new tool to investigate fundamental properties of a large class of disordered systems. While the exact mechanisms behind this phenomenon are yet to be elucidated, we report here on the measurement of the exchanged wave-vector (and thus length-scale) dependence of the characteristic time of this induced dynamics, and show that it follows the same power-law observed in vitreous silica. This supports the idea that a unique explanation for this effect in different oxide glasses should be looked for. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01943v1-abstract-full').style.display = 'none'; document.getElementById('1912.01943v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Condens. Matter Phys., 2019, vol. 22, No. 4, 43606 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09102">arXiv:1906.09102</a> <span> [<a href="https://arxiv.org/pdf/1906.09102">pdf</a>, <a href="https://arxiv.org/format/1906.09102">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S2052252519008273">10.1107/S2052252519008273 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray photon correlation spectroscopy of protein dynamics at nearly diffraction limited storage rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=M%C3%B6ller%2C+J">Johannes M枚ller</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Madsen%2C+A">Anders Madsen</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">Christian Gutt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09102v1-abstract-short" style="display: inline;"> This study explores the possibility to measure dynamics of proteins in solution using X-ray photon correlation spectroscopy (XPCS) at nearly diffraction limited storage rings (DLSR). We calculate the signal to noise ratio (SNR) of XPCS experiments from a concentrated lysozyme solution at the length scale of the hydrodynamic radius of the protein molecule. We take limitations given by the critical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09102v1-abstract-full').style.display = 'inline'; document.getElementById('1906.09102v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09102v1-abstract-full" style="display: none;"> This study explores the possibility to measure dynamics of proteins in solution using X-ray photon correlation spectroscopy (XPCS) at nearly diffraction limited storage rings (DLSR). We calculate the signal to noise ratio (SNR) of XPCS experiments from a concentrated lysozyme solution at the length scale of the hydrodynamic radius of the protein molecule. We take limitations given by the critical X-ray dose into account and find expressions for the SNR as a function of beam size, sample-detector distance and photon energy. Specifically, we show that the combined increase in coherent flux and coherence lengths at the DLSR PETRA IV will yield an increase in SNR of more than one order of magnitude. The resulting SNR values indicate that XPCS experiments of biological macromolecules on nm length scales will become feasible with the advent of a new generation of synchrotron sources. Our findings provide valuable input for the design and construction of future XPCS beamlines at DLSRs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09102v1-abstract-full').style.display = 'none'; document.getElementById('1906.09102v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IUCrJ 6, 794-803 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02124">arXiv:1905.02124</a> <span> [<a href="https://arxiv.org/pdf/1905.02124">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/condmat4030077">10.3390/condmat4030077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Visualization of Spatial inhomogeneity of Spin Stripes Order in La1.72Sr0.28NiO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Campi%2C+G">Gaetano Campi</a>, <a href="/search/cond-mat?searchtype=author&query=Poccia%2C+N">Nicola Poccia</a>, <a href="/search/cond-mat?searchtype=author&query=Joseph%2C+B">Boby Joseph</a>, <a href="/search/cond-mat?searchtype=author&query=Bianconi%2C+A">Antonio Bianconi</a>, <a href="/search/cond-mat?searchtype=author&query=Mishra%2C+S">Shrawan Mishra</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">James Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Nugroho%2C+A+A">Agustinus Agung Nugroho</a>, <a href="/search/cond-mat?searchtype=author&query=Buchholz%2C+M">Marcel Buchholz</a>, <a href="/search/cond-mat?searchtype=author&query=Braden%2C+M">Markus Braden</a>, <a href="/search/cond-mat?searchtype=author&query=Trabant%2C+C">Christoph Trabant</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A">Alexey Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Muller%2C+L">Leonard Muller</a>, <a href="/search/cond-mat?searchtype=author&query=Viefhaus%2C+J">Jens Viefhaus</a>, <a href="/search/cond-mat?searchtype=author&query=Schussler-Langeheine%2C+C">Christian Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">Alessandro Ricci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02124v2-abstract-short" style="display: inline;"> In several strongly correlated electron systems, defects, charge and local lattice distortions are found to show complex inhomogeneous spatial distributions. There is growing evidence that such inhomogeneity plays a fundamental role in unique functionality of quantum complex materials. La1.72Sr0.28NiO4 is a prototypical strongly correlated material showing spin striped order associated with lattic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02124v2-abstract-full').style.display = 'inline'; document.getElementById('1905.02124v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02124v2-abstract-full" style="display: none;"> In several strongly correlated electron systems, defects, charge and local lattice distortions are found to show complex inhomogeneous spatial distributions. There is growing evidence that such inhomogeneity plays a fundamental role in unique functionality of quantum complex materials. La1.72Sr0.28NiO4 is a prototypical strongly correlated material showing spin striped order associated with lattice and charge modulations. In this work we present the spatial distribution of the spin organization by applying micro X-ray diffraction to La1.72Sr0.28NiO4, mapping the spin-density-wave order below the 120K onset temperature. We find that the spin-density-wave order shows the formation of nanoscale puddles with large spatial fluctuations. The nano-puddle density changes on the microscopic scale forming a multiscale phase separation extending from nanoscale to micron scale with scale-free distribution. Indeed spin-density-wave striped puddles are disconnected by spatial regions with different stripe orientation or negligible spin-density-wave order. The present work highlights the complex nanoscale phase separation of spin stripes in nickelate perovskites and opens the question of the energetics at domain interfaces <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02124v2-abstract-full').style.display = 'none'; document.getElementById('1905.02124v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Condens. Matter 2019, 4(3), 77 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02408">arXiv:1904.02408</a> <span> [<a href="https://arxiv.org/pdf/1904.02408">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Andr%C3%A9%2C+A">Alexander Andr茅</a>, <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y+Y">Young Y. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Schreiber%2C+F">Frank Schreiber</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Scheele%2C+M">Marcus Scheele</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02408v1-abstract-short" style="display: inline;"> X-ray nanodiffraction is applied to study the formation and correlation of domain boundaries in mesocrystalline superlattices of PbS nanocrystals with face-centered cubic structure. Each domain of the superlattice can be described with one of two mesocrystalline polymorphs with different orientational order. Close to a grain boundary, the lattice constant decreases and the superlattice undergoes a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02408v1-abstract-full').style.display = 'inline'; document.getElementById('1904.02408v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02408v1-abstract-full" style="display: none;"> X-ray nanodiffraction is applied to study the formation and correlation of domain boundaries in mesocrystalline superlattices of PbS nanocrystals with face-centered cubic structure. Each domain of the superlattice can be described with one of two mesocrystalline polymorphs with different orientational order. Close to a grain boundary, the lattice constant decreases and the superlattice undergoes an out-of-plane rotation, while the orientation of the nanocrystals with respect to the superlattice remains unchanged. These findings are explained with the release of stress on the expense of specific nanocrystal-substrate interactions. The fact that correlations between adjacent nanocrystals are found to survive the structural changes at most grain boundaries implies that the key to nanocrystal superlattices with macroscopic domain sizes are strengthened interactions with the substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02408v1-abstract-full').style.display = 'none'; document.getElementById('1904.02408v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 18 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07408">arXiv:1808.07408</a> <span> [<a href="https://arxiv.org/pdf/1808.07408">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Interfacial Entropic Interactions Tunes Fragility and Dynamic Heterogeneity of Glassy Athermal Polymer Nanocomposite films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Begam%2C+N">Nafisa Begam</a>, <a href="/search/cond-mat?searchtype=author&query=A%2C+N+D">Nimmi Das A</a>, <a href="/search/cond-mat?searchtype=author&query=Chandran%2C+S">Sivasurender Chandran</a>, <a href="/search/cond-mat?searchtype=author&query=Ibrahim%2C+M">Mohd Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&query=Padmanabhan%2C+V">Venkat Padmanabhan</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Basu%2C+J+K">J. K. Basu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07408v1-abstract-short" style="display: inline;"> Enthalpic interactions at the interface between nanoparticles and matrix polymers is known to influence various properties of the resultant polymer nanocomposites (PNC). For athermal PNCs, consisting of grafted nanoparticles embedded in chemically identical polymers, the role and extent of the interface layer (IL) interactions in determining the properties of the nanocomposites is not very clear.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07408v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07408v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07408v1-abstract-full" style="display: none;"> Enthalpic interactions at the interface between nanoparticles and matrix polymers is known to influence various properties of the resultant polymer nanocomposites (PNC). For athermal PNCs, consisting of grafted nanoparticles embedded in chemically identical polymers, the role and extent of the interface layer (IL) interactions in determining the properties of the nanocomposites is not very clear. Here, we demonstrate the influence of the interfacial layer dynamics on the fragility and dynamical heterogeneity (DH) of athermal and glassy PNCs. The IL properties are altered by changing the grafted to matrix polymer size ratio, f, which in turn changes the extent of matrix chain penetration into the grafted layer. The fragility of PNCs is found to increase monotonically with increasing entropic compatibility, characterized by increasing penetration depth. Contrary to observations in most polymers and glass formers, we observe an anti-correlation between the dependence on IL dynamics of fragility and DH, quantified by the experimentally estimated Kohlrausch-Watts-Williams parameter and the non-Gaussian parameter obtained from simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07408v1-abstract-full').style.display = 'none'; document.getElementById('1808.07408v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages (main manuscript-11 and supplementary-17), 26 figures (main manuscript-7 and supplementary-19)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00932">arXiv:1807.00932</a> <span> [<a href="https://arxiv.org/pdf/1807.00932">pdf</a>, <a href="https://arxiv.org/format/1807.00932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Unravelling structural rearrangement of polymer colloidal crystals under dry sintering conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">Alexey V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Janne-Mieke Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A">Anatoly Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00932v1-abstract-short" style="display: inline;"> Structural rearrangement of polystyrene colloidal crystals under dry sintering conditions has been revealed by in situ grazing incidence X-ray scattering. Measured diffraction patterns were analysed using distorted wave Born approximation (DWBA) theory and the structural parameters of as-grown colloidal crystals of three different particle sizes were determined for in-plane and out-of-plane direct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00932v1-abstract-full').style.display = 'inline'; document.getElementById('1807.00932v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00932v1-abstract-full" style="display: none;"> Structural rearrangement of polystyrene colloidal crystals under dry sintering conditions has been revealed by in situ grazing incidence X-ray scattering. Measured diffraction patterns were analysed using distorted wave Born approximation (DWBA) theory and the structural parameters of as-grown colloidal crystals of three different particle sizes were determined for in-plane and out-of-plane directions in a film. By analysing the temperature evolution of diffraction peak positions, integrated intensities, and widths the detailed scenario of structural rearrangement of crystalline domains at a nanoscale has been revealed, including thermal expansion, particle shape transformation and crystal amorphisation. Based on DWBA analysis we demonstrate that in the process of dry sintering the shape of colloidal particles in a crystal transforms from a sphere to a polyhedron. Our results deepen the understanding of thermal annealing of polymer colloidal crystals as an efficient route to the design of new nano-materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00932v1-abstract-full').style.display = 'none'; document.getElementById('1807.00932v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00668">arXiv:1806.00668</a> <span> [<a href="https://arxiv.org/pdf/1806.00668">pdf</a>, <a href="https://arxiv.org/format/1806.00668">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.98.052703">10.1103/PhysRevE.98.052703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of a first-order smectic -- hexatic transition and its proximity to tricritical point in smectic films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Khubbutdinov%2C+R+M">Ruslan M. Khubbutdinov</a>, <a href="/search/cond-mat?searchtype=author&query=Dzhigaev%2C+D">Dmitry Dzhigaev</a>, <a href="/search/cond-mat?searchtype=author&query=Lebedev%2C+V+V">Vladimir V. Lebedev</a>, <a href="/search/cond-mat?searchtype=author&query=Pikina%2C+E+S">Elena S. Pikina</a>, <a href="/search/cond-mat?searchtype=author&query=Kats%2C+E+I">Efim I. Kats</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+N+A">Noel A. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Ostrovskii%2C+B+I">Boris I. Ostrovskii</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00668v1-abstract-short" style="display: inline;"> Experimental and theoretical studies of a smectic-hexatic transition in freely suspended films of 54COOBC compound are presented. X-ray investigations revealed a discontinuous first-order transition into the hexatic phase. Moreover, the temperature region of two phase coexistence near the phase transition point diminishes with film thickness. The coexistence width dependence on film thickness was… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00668v1-abstract-full').style.display = 'inline'; document.getElementById('1806.00668v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00668v1-abstract-full" style="display: none;"> Experimental and theoretical studies of a smectic-hexatic transition in freely suspended films of 54COOBC compound are presented. X-ray investigations revealed a discontinuous first-order transition into the hexatic phase. Moreover, the temperature region of two phase coexistence near the phase transition point diminishes with film thickness. The coexistence width dependence on film thickness was derived on the basis of the Landau mean-field theory in the vicinity of the tricritical point (TCP). Close to TCP the surface hexatic ordering penetrates anomalously deep into the film interior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00668v1-abstract-full').style.display = 'none'; document.getElementById('1806.00668v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 49 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 98, 052703 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01015">arXiv:1710.01015</a> <span> [<a href="https://arxiv.org/pdf/1710.01015">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.168001">10.1103/PhysRevLett.120.168001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low dose X-ray speckle visibility spectroscopy reveals nanoscale dynamics in radiation sensitive ionic liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Verwohlt%2C+J">Jan Verwohlt</a>, <a href="/search/cond-mat?searchtype=author&query=Reiser%2C+M">Mario Reiser</a>, <a href="/search/cond-mat?searchtype=author&query=Randolph%2C+L">Lisa Randolph</a>, <a href="/search/cond-mat?searchtype=author&query=Matic%2C+A">Aleksandar Matic</a>, <a href="/search/cond-mat?searchtype=author&query=Medina%2C+L+A">Luis Aguilera Medina</a>, <a href="/search/cond-mat?searchtype=author&query=Madsen%2C+A">Anders Madsen</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A">Alexey Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Gutt%2C+C">Christian Gutt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01015v2-abstract-short" style="display: inline;"> X-ray radiation damage provides a serious bottle neck for investigating 渭s to s dynamics on nanometer length scales employing X-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only X-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose X-ray spe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01015v2-abstract-full').style.display = 'inline'; document.getElementById('1710.01015v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01015v2-abstract-full" style="display: none;"> X-ray radiation damage provides a serious bottle neck for investigating 渭s to s dynamics on nanometer length scales employing X-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only X-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose X-ray speckle visibility spectroscopy. Employing X-ray doses of 22 kGy to 438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7x10-3 per pixel we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the pre-peak of nanoscale order in the IL we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of milli-second local relaxations existing well below TG. We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01015v2-abstract-full').style.display = 'none'; document.getElementById('1710.01015v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 168001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.03031">arXiv:1706.03031</a> <span> [<a href="https://arxiv.org/pdf/1706.03031">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41560-018-0184-2">10.1038/s41560-018-0184-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleation of dislocations and their dynamics in layered oxides cathode materials during battery charging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&query=Hy%2C+S">S. Hy</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cela%2C+D">D. Cela</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+C">C. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+B">B. Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Y">Y. Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ulvestad%2C+A">A. Ulvestad</a>, <a href="/search/cond-mat?searchtype=author&query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Wingert%2C+J">J. Wingert</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Maxey%2C+E">E. Maxey</a>, <a href="/search/cond-mat?searchtype=author&query=Harder%2C+R">R. Harder</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Y+S">Y. S. Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Shpyrko%2C+O+G">O. G. Shpyrko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.03031v1-abstract-short" style="display: inline;"> Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides have emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03031v1-abstract-full').style.display = 'inline'; document.getElementById('1706.03031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.03031v1-abstract-full" style="display: none;"> Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides have emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used compounds. Oxygen-redox reactions are believed to be responsible for the excess capacity, however, voltage fading has prevented commercialization of these new materials. Despite extensive research the understanding of the mechanisms underpinning oxygen-redox reactions and voltage fade remain incomplete. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe nucleation of a mobile dislocation network in nanoparticles of lithium-rich layered oxide material. Surprisingly, we find that dislocations form more readily in the lithium-rich layered oxide material as compared with a conventional layered oxide material, suggesting a link between the defects and the anomalously high capacity in lithium-rich layered oxides. The formation of a network of partial dislocations dramatically alters the local lithium environment and contributes to the voltage fade. Based on our findings we design and demonstrate a method to recover the original high voltage functionality. Our findings reveal that the voltage fade in lithium-rich layered oxides is reversible and call for new paradigms for improved design of oxygen-redox active materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03031v1-abstract-full').style.display = 'none'; document.getElementById('1706.03031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.01198">arXiv:1703.01198</a> <span> [<a href="https://arxiv.org/pdf/1703.01198">pdf</a>, <a href="https://arxiv.org/format/1703.01198">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Structural studies of the bond-orientational order and hexatic-smectic transition in liquid crystals of various compositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">I. A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Sulyanova%2C+E+A">E. A. Sulyanova</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">O. Yu. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A+G">A. G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Menushenkov%2C+A+P">A. P. Menushenkov</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Krowczynski%2C+A">A. Krowczynski</a>, <a href="/search/cond-mat?searchtype=author&query=Gorecka%2C+E">E. Gorecka</a>, <a href="/search/cond-mat?searchtype=author&query=Ostrovskii%2C+B+I">B. I. Ostrovskii</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.01198v1-abstract-short" style="display: inline;"> We report on X-ray studies of freely suspended hexatic films of three different liquid crystal compounds. By applying angular X-ray cross-correlation analysis (XCCA) to the measured diffraction patterns the parameters of the bond-orientational (BO) order in the hexatic phase were directly determined. The temperature evolution of the BO order parameters was analyzed on the basis of the multicritica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01198v1-abstract-full').style.display = 'inline'; document.getElementById('1703.01198v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.01198v1-abstract-full" style="display: none;"> We report on X-ray studies of freely suspended hexatic films of three different liquid crystal compounds. By applying angular X-ray cross-correlation analysis (XCCA) to the measured diffraction patterns the parameters of the bond-orientational (BO) order in the hexatic phase were directly determined. The temperature evolution of the BO order parameters was analyzed on the basis of the multicritical scaling theory (MCST). Our results confirmed the validity of the MCST in the whole temperature range of existence of the hexatic phase for all three compounds. The temperature dependence of the BO order parameters in the vicinity of the hexatic-smectic transition was fitted by a conventional power law with a critical exponent $尾\approx0.1$ of extremely small value. We found that the temperature dependence of higher order harmonics of the BO order scales as the powers of the first harmonic, with exponent equal to harmonic number. This indicates a nonlinear coupling of the BO order parameters of different order. It is shown that compounds of various composition, possessing different phase sequences, display the same thermodynamic behavior in the hexatic phase and in the vicinity of the smectic-hexatic phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01198v1-abstract-full').style.display = 'none'; document.getElementById('1703.01198v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05742">arXiv:1702.05742</a> <span> [<a href="https://arxiv.org/pdf/1702.05742">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b00584">10.1021/acs.nanolett.7b00584 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying Angular Correlations between the Atomic Lattice and Superlattice of Nanocrystals Assembled with Directional Linking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan. A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Andre%2C+A">Alexander Andre</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">Oleg Y. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Rose%2C+M">Max Rose</a>, <a href="/search/cond-mat?searchtype=author&query=Skopintsev%2C+P">Petr Skopintsev</a>, <a href="/search/cond-mat?searchtype=author&query=Besedin%2C+I">Ilya Besedin</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">Alexey V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Schreiber%2C+F">Frank Schreiber</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Scheele%2C+M">Marcus Scheele</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05742v1-abstract-short" style="display: inline;"> We show that the combination of X-ray scattering with a nanofocused beam and X-ray cross correlation analysis is an efficient means for the full structural characterization of mesocrystalline nanoparticle assemblies with a single experiment. We analyze several hundred diffraction patterns of individual sample locations, i.e. individual grains, to obtain a meaningful statistical distribution of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05742v1-abstract-full').style.display = 'inline'; document.getElementById('1702.05742v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05742v1-abstract-full" style="display: none;"> We show that the combination of X-ray scattering with a nanofocused beam and X-ray cross correlation analysis is an efficient means for the full structural characterization of mesocrystalline nanoparticle assemblies with a single experiment. We analyze several hundred diffraction patterns of individual sample locations, i.e. individual grains, to obtain a meaningful statistical distribution of the superlattice and atomic lattice ordering. Simultaneous small- and wide-angle X-ray scattering of the same sample location allows us to determine the structure and orientation of the superlattice as well as the angular correlation of the first two Bragg peaks of the atomic lattices, their orientation with respect to the superlattice, and the average orientational misfit due to local structural disorder. This experiment is particularly advantageous for synthetic mesocrystals made by the simultaneous self-assembly of colloidal nanocrystals and surface-functionalization with conductive ligands. While the structural characterization of such materials has been challenging so far, the present method now allows correlating mesocrystalline structure with optoelectronic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05742v1-abstract-full').style.display = 'none'; document.getElementById('1702.05742v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 page, 5 figures, 11 pages supplemental information containing 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.09031">arXiv:1605.09031</a> <span> [<a href="https://arxiv.org/pdf/1605.09031">pdf</a>, <a href="https://arxiv.org/format/1605.09031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.138002">10.1103/PhysRevLett.117.138002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing three-dimensional structure of individual colloidal crystal grain by coherent x-ray diffractive imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A+G">A. G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J+-">J. -M. Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Dronyak%2C+R">R. Dronyak</a>, <a href="/search/cond-mat?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/cond-mat?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">O. Y. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/cond-mat?searchtype=author&query=Kalbfleisch%2C+S">S. Kalbfleisch</a>, <a href="/search/cond-mat?searchtype=author&query=Gulden%2C+J">J. Gulden</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">A. V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.09031v1-abstract-short" style="display: inline;"> We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09031v1-abstract-full').style.display = 'inline'; document.getElementById('1605.09031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.09031v1-abstract-full" style="display: none;"> We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. As a result, an exact stacking sequence of hexagonal close-packed layers including planar and linear defects were identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09031v1-abstract-full').style.display = 'none'; document.getElementById('1605.09031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 138002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.01795">arXiv:1601.01795</a> <span> [<a href="https://arxiv.org/pdf/1601.01795">pdf</a>, <a href="https://arxiv.org/format/1601.01795">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electronic and magnetic nano phase separation in cobaltates La$_{2-x}$Sr$_{x}$CoO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Drees%2C+Y">Y. Drees</a>, <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">A. Ricci</a>, <a href="/search/cond-mat?searchtype=author&query=Lamago%2C+D">D. Lamago</a>, <a href="/search/cond-mat?searchtype=author&query=Piovano%2C+A">A. Piovano</a>, <a href="/search/cond-mat?searchtype=author&query=Rotter%2C+M">M. Rotter</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+W">W. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Sobolev%2C+O">O. Sobolev</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCtt%2C+U">U. R眉tt</a>, <a href="/search/cond-mat?searchtype=author&query=Gutowski%2C+O">O. Gutowski</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Castellan%2C+J+P">J. P. Castellan</a>, <a href="/search/cond-mat?searchtype=author&query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/cond-mat?searchtype=author&query=Komarek%2C+A+C">A. C. Komarek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.01795v1-abstract-short" style="display: inline;"> The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01795v1-abstract-full').style.display = 'inline'; document.getElementById('1601.01795v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.01795v1-abstract-full" style="display: none;"> The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the appearance of the hour-glass shaped spin excitation spectra. We also point out the difference between nano phase separation and conventional phase separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01795v1-abstract-full').style.display = 'none'; document.getElementById('1601.01795v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">* plenary talk SUPERSTRIPES conference 2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.05002">arXiv:1509.05002</a> <span> [<a href="https://arxiv.org/pdf/1509.05002">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature14987">10.1038/nature14987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inhomogeneity of charge density wave order and quenched disorder in a high Tc superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Campi%2C+G">G. Campi</a>, <a href="/search/cond-mat?searchtype=author&query=Bianconi%2C+A">A. Bianconi</a>, <a href="/search/cond-mat?searchtype=author&query=Poccia%2C+N">N. Poccia</a>, <a href="/search/cond-mat?searchtype=author&query=Bianconi%2C+G">G. Bianconi</a>, <a href="/search/cond-mat?searchtype=author&query=Barba%2C+L">L. Barba</a>, <a href="/search/cond-mat?searchtype=author&query=Arrighetti%2C+G">G. Arrighetti</a>, <a href="/search/cond-mat?searchtype=author&query=Innocenti%2C+D">D. Innocenti</a>, <a href="/search/cond-mat?searchtype=author&query=Karpinski%2C+J">J. Karpinski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhigadlo%2C+N+D">N. D. Zhigadlo</a>, <a href="/search/cond-mat?searchtype=author&query=Kazakov%2C+S+M">S. M. Kazakov</a>, <a href="/search/cond-mat?searchtype=author&query=Burghammer%2C+M">M. Burghammer</a>, <a href="/search/cond-mat?searchtype=author&query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">A. Ricci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.05002v1-abstract-short" style="display: inline;"> It has recently been established that the high temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05002v1-abstract-full').style.display = 'inline'; document.getElementById('1509.05002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.05002v1-abstract-full" style="display: none;"> It has recently been established that the high temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mescoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both the charge-density-wave puddles (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4+y, the single layer cuprate with the highest Tc, 95 kelvin. We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usual assumed random, uncorrelated distribution. The interstitials-oxygen-rich domains are spatially anti-correlated with the charge-density-wave domains, leading to a complex emergent geometry of the spatial landscape for superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05002v1-abstract-full').style.display = 'none'; document.getElementById('1509.05002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 525, 359-362 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.01783">arXiv:1507.01783</a> <span> [<a href="https://arxiv.org/pdf/1507.01783">pdf</a>, <a href="https://arxiv.org/ps/1507.01783">ps</a>, <a href="https://arxiv.org/format/1507.01783">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms6731">10.1038/ncomms6731 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La$_{2-x}$Sr$_x$CoO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Drees%2C+Y">Y. Drees</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">A. Ricci</a>, <a href="/search/cond-mat?searchtype=author&query=Rotter%2C+M">M. Rotter</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+W">W. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Lamago%2C+D">D. Lamago</a>, <a href="/search/cond-mat?searchtype=author&query=Sobolev%2C+O">O. Sobolev</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCtt%2C+U">U. R眉tt</a>, <a href="/search/cond-mat?searchtype=author&query=Gutowski%2C+O">O. Gutowski</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Piovano%2C+A">A. Piovano</a>, <a href="/search/cond-mat?searchtype=author&query=Castellan%2C+J+P">J. P. Castellan</a>, <a href="/search/cond-mat?searchtype=author&query=Komarek%2C+A+C">A. C. Komarek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.01783v1-abstract-short" style="display: inline;"> The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01783v1-abstract-full').style.display = 'inline'; document.getElementById('1507.01783v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.01783v1-abstract-full" style="display: none;"> The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01783v1-abstract-full').style.display = 'none'; document.getElementById('1507.01783v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Communications 5, 5731 (2014)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 5, 5731 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.00561">arXiv:1506.00561</a> <span> [<a href="https://arxiv.org/pdf/1506.00561">pdf</a>, <a href="https://arxiv.org/ps/1506.00561">ps</a>, <a href="https://arxiv.org/format/1506.00561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Versatile AFM setup combined with micro-focused X-ray beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Slobodskyy%2C+T">T. Slobodskyy</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Tholapi%2C+R">R. Tholapi</a>, <a href="/search/cond-mat?searchtype=author&query=Liefeith%2C+L">L. Liefeith</a>, <a href="/search/cond-mat?searchtype=author&query=Fester%2C+M">M. Fester</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Hansen%2C+W">W. Hansen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.00561v2-abstract-short" style="display: inline;"> Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope set… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.00561v2-abstract-full').style.display = 'inline'; document.getElementById('1506.00561v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.00561v2-abstract-full" style="display: none;"> Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope setup into a hard X-ray synchrotron beamline. Details of design, sample alignment procedure and performance of the setup are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.00561v2-abstract-full').style.display = 'none'; document.getElementById('1506.00561v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted to Review of Scientific Instruments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.06745">arXiv:1501.06745</a> <span> [<a href="https://arxiv.org/pdf/1501.06745">pdf</a>, <a href="https://arxiv.org/format/1501.06745">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.020503">10.1103/PhysRevB.91.020503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of nanoscale interface phase in the superconducting chalcogenide K$_{x}$Fe$_{2-y}$Se$_2$ with intrinsic phase separation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">A. Ricci</a>, <a href="/search/cond-mat?searchtype=author&query=Poccia%2C+N">N. Poccia</a>, <a href="/search/cond-mat?searchtype=author&query=Joseph%2C+B">B. Joseph</a>, <a href="/search/cond-mat?searchtype=author&query=Innocenti%2C+D">D. Innocenti</a>, <a href="/search/cond-mat?searchtype=author&query=Campi%2C+G">G. Campi</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A">A. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Westermeier%2C+F">F. Westermeier</a>, <a href="/search/cond-mat?searchtype=author&query=Schavkan%2C+A">A. Schavkan</a>, <a href="/search/cond-mat?searchtype=author&query=Coneri%2C+F">F. Coneri</a>, <a href="/search/cond-mat?searchtype=author&query=Bianconi%2C+A">A. Bianconi</a>, <a href="/search/cond-mat?searchtype=author&query=Takeya%2C+H">H. Takeya</a>, <a href="/search/cond-mat?searchtype=author&query=Mizuguchi%2C+Y">Y. Mizuguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Takano%2C+Y">Y. Takano</a>, <a href="/search/cond-mat?searchtype=author&query=Mizokawa%2C+T">T. Mizokawa</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Saini%2C+N+L">N. L. Saini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.06745v1-abstract-short" style="display: inline;"> We have used scanning micro x-ray diffraction to characterize different phases in superconducting K$_{x}$Fe$_{2-y}$Se$_2$ as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (T$_c\sim$32 K), phase separation temperature (T$_{ps}\sim$520 K) and iron-vacancy order temperature (T$_{vo}\sim$580 K). In addition to the iron-vacancy ordered tetr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06745v1-abstract-full').style.display = 'inline'; document.getElementById('1501.06745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.06745v1-abstract-full" style="display: none;"> We have used scanning micro x-ray diffraction to characterize different phases in superconducting K$_{x}$Fe$_{2-y}$Se$_2$ as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (T$_c\sim$32 K), phase separation temperature (T$_{ps}\sim$520 K) and iron-vacancy order temperature (T$_{vo}\sim$580 K). In addition to the iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic minority filamentary phase, we have found a clear evidence of the interface phase with tetragonal symmetry. The metallic phase is surrounded by this interface phase below $\sim$300 K, and is embedded in the insulating texture. The spatial distribution of coexisting phases as a function of temperature provides a clear evidence of the formation of protected metallic percolative paths in the majority texture with large magnetic moment, required for the electronic coherence for the superconductivity. Furthermore, a clear reorganization of iron-vacancy order around the T$_{ps}$ and T$_c$ is found with the interface phase being mostly associated with a different iron-vacancy configuration, that may be important for protecting the percolative superconductivity in K$_{x}$Fe$_{2-y}$Se$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06745v1-abstract-full').style.display = 'none'; document.getElementById('1501.06745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 020503(R) (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.3553">arXiv:1412.3553</a> <span> [<a href="https://arxiv.org/pdf/1412.3553">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4311">10.1038/nmat4311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in-situ X-ray nanodiffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Bartels%2C+M">Matthias Bartels</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Osterhoff%2C+M">Markus Osterhoff</a>, <a href="/search/cond-mat?searchtype=author&query=Kalbfleisch%2C+S">Sebastian Kalbfleisch</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Suzuki%2C+A">Akihiro Suzuki</a>, <a href="/search/cond-mat?searchtype=author&query=Takahashi%2C+Y">Yukio Takahashi</a>, <a href="/search/cond-mat?searchtype=author&query=Blanton%2C+T+N">Thomas N. Blanton</a>, <a href="/search/cond-mat?searchtype=author&query=Salditt%2C+T">Tim Salditt</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+J">Jianwei Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.3553v1-abstract-short" style="display: inline;"> In-situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reaction and crystal growth to grain boundary dynamics. A major limitation of in-situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in-situ X-r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3553v1-abstract-full').style.display = 'inline'; document.getElementById('1412.3553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.3553v1-abstract-full" style="display: none;"> In-situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reaction and crystal growth to grain boundary dynamics. A major limitation of in-situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in-situ X-ray nanodiffraction to measure atomic-resolution diffraction patterns from single grains with up to 5 millisecond temporal resolution, and make the first real-time observation of grain rotation and lattice deformation during photoinduced chemical reactions. The grain rotation and lattice deformation associated with the chemical reactions are quantified to be as fast as 3.25 rad./sec. and as large as 0.5 Angstroms, respectively. The ability to measure atomic-resolution diffraction patterns from individual grains with several millisecond temporal resolution is expected to find broad applications in materials science, physics, chemistry, and nanoscience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3553v1-abstract-full').style.display = 'none'; document.getElementById('1412.3553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 14 (2015) 691-695 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.6991">arXiv:1411.6991</a> <span> [<a href="https://arxiv.org/pdf/1411.6991">pdf</a>, <a href="https://arxiv.org/ps/1411.6991">ps</a>, <a href="https://arxiv.org/format/1411.6991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.91.042506">10.1103/PhysRevE.91.042506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially resolved x-ray studies of liquid crystals with strongly developed bond-orientational order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">I. A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Sulyanova%2C+E+A">E. A. Sulyanova</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">O. Y. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A+G">A. G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Menushenkov%2C+A+P">A. P. Menushenkov</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Ostrovskii%2C+B+I">B. I. Ostrovskii</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.6991v2-abstract-short" style="display: inline;"> We present an x-ray study of freely suspended hexatic films of the liquid crystal 3(10)OBC. Our results reveal spatial inhomogeneities of the bond-orientational (BO) order in the vicinity of the hexatic-smectic phase transition and the formation of large scale hexatic domains at lower temperatures. Deep in the hexatic phase up to 25 successive sixfold BO order parameters have been directly determi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6991v2-abstract-full').style.display = 'inline'; document.getElementById('1411.6991v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.6991v2-abstract-full" style="display: none;"> We present an x-ray study of freely suspended hexatic films of the liquid crystal 3(10)OBC. Our results reveal spatial inhomogeneities of the bond-orientational (BO) order in the vicinity of the hexatic-smectic phase transition and the formation of large scale hexatic domains at lower temperatures. Deep in the hexatic phase up to 25 successive sixfold BO order parameters have been directly determined by means of angular x-ray cross-correlation analysis (XCCA). Such strongly developed hexatic order allowed us to determine higher order correction terms in the scaling relation predicted by the multicritical scaling theory over a full temperature range of the hexatic phase existence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6991v2-abstract-full').style.display = 'none'; document.getElementById('1411.6991v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 91, 042506 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.1133">arXiv:1411.1133</a> <span> [<a href="https://arxiv.org/pdf/1411.1133">pdf</a>, <a href="https://arxiv.org/ps/1411.1133">ps</a>, <a href="https://arxiv.org/format/1411.1133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/c5cp00426h">10.1039/c5cp00426h <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local structure of semicrystalline P3HT films probed by nanofocused coherent x-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Grodd%2C+L">Linda Grodd</a>, <a href="/search/cond-mat?searchtype=author&query=Mikayelyan%2C+E">Eduard Mikayelyan</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">Oleg Y. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Fratoddi%2C+I">Ilaria Fratoddi</a>, <a href="/search/cond-mat?searchtype=author&query=Venditti%2C+I">Iole Venditti</a>, <a href="/search/cond-mat?searchtype=author&query=Russo%2C+M+V">Maria Vittoria Russo</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&query=Grigorian%2C+S">S. Grigorian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.1133v1-abstract-short" style="display: inline;"> We present results of an x-ray study of structural properties of semicrystalline polymer films using nanofocused x-ray beam. We applied the x-ray cross-correlation analysis (XCCA) to scattering data from blends of poly(3-hexylthiophene) (P3HT) embedded with gold nanoparticles (AuNPs). Spatially resolved maps of orientational distribution of crystalline domains allow us to distinguish sample region… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1133v1-abstract-full').style.display = 'inline'; document.getElementById('1411.1133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.1133v1-abstract-full" style="display: none;"> We present results of an x-ray study of structural properties of semicrystalline polymer films using nanofocused x-ray beam. We applied the x-ray cross-correlation analysis (XCCA) to scattering data from blends of poly(3-hexylthiophene) (P3HT) embedded with gold nanoparticles (AuNPs). Spatially resolved maps of orientational distribution of crystalline domains allow us to distinguish sample regions of predominant face-on morphology,with a continuous transition to edge-on morphology. The average size of crystalline domains was determined to be of the order of 10 nm. As compared to pristine P3HT film, the P3HT/AuNPs blend is characterized by substantial ordering of crystalline domains, which can be induced by Au nanoparticles. The inhomogeneous structure of the polymer film is clearly visualized on the spatially resolved nanoscale 2D maps obtained using XCCA. Our results suggest that the observed changes of the polymer matrix within crystalline regions can be attributed to nanoconfinement in the presence of gold nanoparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1133v1-abstract-full').style.display = 'none'; document.getElementById('1411.1133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, 53 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys. (PCCP) 17, 7404-7410 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.4103">arXiv:1405.4103</a> <span> [<a href="https://arxiv.org/pdf/1405.4103">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/16/5/053030">10.1088/1367-2630/16/5/053030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5+y controlled by thermal manipulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ricci%2C+A">Alessandro Ricci</a>, <a href="/search/cond-mat?searchtype=author&query=Poccia%2C+N">Nicola Poccia</a>, <a href="/search/cond-mat?searchtype=author&query=Campi%2C+G">Gaetano Campi</a>, <a href="/search/cond-mat?searchtype=author&query=Coneri%2C+F">Francesco Coneri</a>, <a href="/search/cond-mat?searchtype=author&query=Barba%2C+L">Luisa Barba</a>, <a href="/search/cond-mat?searchtype=author&query=Arrighetti%2C+G">Gianmichele Arrighetti</a>, <a href="/search/cond-mat?searchtype=author&query=Polentarutti%2C+M">Maurizio Polentarutti</a>, <a href="/search/cond-mat?searchtype=author&query=Burghammer%2C+M">Manfred Burghammer</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Zimmermann%2C+M+v">Martin v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&query=Bianconi%2C+A">Antonio Bianconi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.4103v1-abstract-short" style="display: inline;"> While it is known that the nature and the arrangement of defects in complex oxides have an impact on the material functionalities little is known on control of superconductivity by oxygen interstitial organization in cuprates. Here we report direct compelling evidence for the control of Tc, by manipulation of the superconducting granular networks of nanoscale puddles, made of ordered oxygen stripe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4103v1-abstract-full').style.display = 'inline'; document.getElementById('1405.4103v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.4103v1-abstract-full" style="display: none;"> While it is known that the nature and the arrangement of defects in complex oxides have an impact on the material functionalities little is known on control of superconductivity by oxygen interstitial organization in cuprates. Here we report direct compelling evidence for the control of Tc, by manipulation of the superconducting granular networks of nanoscale puddles, made of ordered oxygen stripes, in a single crystal of YBa2Cu3O6.5+y with average formal hole doping p close to 1/8. Upon thermal treatments we were able to switch from a first network of oxygen defects striped puddles with OVIII modulation (qOVIII(a*)=(h+3/8,k,0) and qOVIII(a*)=(h+5/8,k,0)), to second network characterized by OXVI modulation (qOXVI(a*)=(h+7/16,k,0) and qOXVI(a*)=(h+9/16,k,0)), and finally to a third network with puddles of OV periodicity (qOV(a*)=(4/10,1,0) and qOV(a*)=(6/10,1,0)). We map the microscopic spatial evolution of the out of plane OVIII, OXVI and OV puddles nano-size distribution via scanning micro-diffraction measurements. In particular, we calculated the number of oxygen chains (n) and the charge density (holes concentration p) inside each puddle, analyzing areas of 160x80 渭m2, and recording 12800 diffraction patterns to reconstruct each spatial map. The high spatial inhomogeneity shown by all the reconstructed spatial maps reflects the intrinsic granular structure that characterizes cuprates and iron-chalcogenides, disclosing the presence of several complex networks of coexisting superconducting domains with different lattice modulations, charge density and different gaps like in the proposed multi-gaps scenario called superstripes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4103v1-abstract-full').style.display = 'none'; document.getElementById('1405.4103v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A. Ricci et al. New Journal of Physics 16 053030 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.1486">arXiv:1311.1486</a> <span> [<a href="https://arxiv.org/pdf/1311.1486">pdf</a>, <a href="https://arxiv.org/ps/1311.1486">ps</a>, <a href="https://arxiv.org/format/1311.1486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/499/1/012021">10.1088/1742-6596/499/1/012021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatial properties of $蟺-蟺$ conjugated network in semicrystalline polymer thin films studied by intensity x-ray cross-correlation functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Grodd%2C+L">L. Grodd</a>, <a href="/search/cond-mat?searchtype=author&query=Mikayelyan%2C+E">E. Mikayelyan</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">O. Y. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Fratoddi%2C+I">I. Fratoddi</a>, <a href="/search/cond-mat?searchtype=author&query=Venditti%2C+I">I. Venditti</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Grigorian%2C+S">S. Grigorian</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.1486v1-abstract-short" style="display: inline;"> We present results of x-ray study of spatial properties of $蟺-蟺$ conjugated networks in polymer thin films. We applied the x-ray cross-correlation analysis to x-ray scattering data from blends of poly(3-hexylthiophene) (P3HT) and gold nanoparticles. The Fourier spectra of the intensity cross-correlation functions for different films contain non-zero components of orders $n=2,4$ and $6$ measuring t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.1486v1-abstract-full').style.display = 'inline'; document.getElementById('1311.1486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.1486v1-abstract-full" style="display: none;"> We present results of x-ray study of spatial properties of $蟺-蟺$ conjugated networks in polymer thin films. We applied the x-ray cross-correlation analysis to x-ray scattering data from blends of poly(3-hexylthiophene) (P3HT) and gold nanoparticles. The Fourier spectra of the intensity cross-correlation functions for different films contain non-zero components of orders $n=2,4$ and $6$ measuring the degree of structural order in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.1486v1-abstract-full').style.display = 'none'; document.getElementById('1311.1486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, Proceedings ICXOM22 Conference, 2-6 September 2013, Hamburg, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Conf. Series 499 012021 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.3170">arXiv:1308.3170</a> <span> [<a href="https://arxiv.org/pdf/1308.3170">pdf</a>, <a href="https://arxiv.org/ps/1308.3170">ps</a>, <a href="https://arxiv.org/format/1308.3170">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.88.044501">10.1103/PhysRevE.88.044501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray cross-correlation analysis of liquid crystal membranes in the vicinity of hexatic-smectic phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Ostrovskii%2C+B+I">B. I. Ostrovskii</a>, <a href="/search/cond-mat?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">O. Y. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/cond-mat?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.3170v1-abstract-short" style="display: inline;"> We present an x-ray study of liquid crystal membranes in the vicinity of hexatic-smectic phase transition by means of angular x-ray cross-correlation analysis (XCCA). By applying two-point angular intensity cross-correlation functions to the measured series of diffraction patterns the parameters of bond-orientational (BO) order in hexatic phase were directly determined. The temperature dependence… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3170v1-abstract-full').style.display = 'inline'; document.getElementById('1308.3170v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.3170v1-abstract-full" style="display: none;"> We present an x-ray study of liquid crystal membranes in the vicinity of hexatic-smectic phase transition by means of angular x-ray cross-correlation analysis (XCCA). By applying two-point angular intensity cross-correlation functions to the measured series of diffraction patterns the parameters of bond-orientational (BO) order in hexatic phase were directly determined. The temperature dependence of the positional correlation lengths was analyzed as well. The obtained correlation lengths show larger values for the higher-order Fourier components of BO order. These findings indicate a strong coupling between BO and positional order that has not been studied in detail up to now. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.3170v1-abstract-full').style.display = 'none'; document.getElementById('1308.3170v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, 25 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E Brief Reports v. 88, 044501 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.1342">arXiv:1107.1342</a> <span> [<a href="https://arxiv.org/pdf/1107.1342">pdf</a>, <a href="https://arxiv.org/format/1107.1342">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.20.004039">10.1364/OE.20.004039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional structure of a single colloidal crystal grain studied by coherent x-ray diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gulden%2C+J">J. Gulden</a>, <a href="/search/cond-mat?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/cond-mat?searchtype=author&query=Mancuso%2C+A+P">A. P. Mancuso</a>, <a href="/search/cond-mat?searchtype=author&query=Dronyak%2C+R">R. Dronyak</a>, <a href="/search/cond-mat?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&query=Bern%C3%A1tov%C3%A1%2C+V">V. Bern谩tov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Burkhardt%2C+A">A. Burkhardt</a>, <a href="/search/cond-mat?searchtype=author&query=Polozhentsev%2C+O">O. Polozhentsev</a>, <a href="/search/cond-mat?searchtype=author&query=Soldatov%2C+A">A. Soldatov</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.1342v1-abstract-short" style="display: inline;"> A coherent x-ray diffraction experiment was performed on an isolated colloidal crystal grain at the coherence beamline P10 at PETRA III. Using azimuthal rotation scans the three-dimensional (3D) scattered intensity in reciprocal space from the sample was measured. It includes several Bragg peaks as well as the coherent interference around these peaks. The analysis of the scattered intensity reveal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.1342v1-abstract-full').style.display = 'inline'; document.getElementById('1107.1342v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.1342v1-abstract-full" style="display: none;"> A coherent x-ray diffraction experiment was performed on an isolated colloidal crystal grain at the coherence beamline P10 at PETRA III. Using azimuthal rotation scans the three-dimensional (3D) scattered intensity in reciprocal space from the sample was measured. It includes several Bragg peaks as well as the coherent interference around these peaks. The analysis of the scattered intensity reveals the presence of a plane defect in a single grain of the colloidal sample. We confirm these findings by model simulations. In these simulations we also analyze the experimental conditions to phase 3D diffraction pattern from a single colloidal grain. This approach has the potential to produce a high resolution image of the sample revealing its inner structure, with possible structural defects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.1342v1-abstract-full').style.display = 'none'; document.getElementById('1107.1342v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express, Vol. 20, No. 4, 4039-4049 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.3115">arXiv:1102.3115</a> <span> [<a href="https://arxiv.org/pdf/1102.3115">pdf</a>, <a href="https://arxiv.org/ps/1102.3115">ps</a>, <a href="https://arxiv.org/format/1102.3115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> X-ray Near Field Speckle: Implementation and Critical Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xinhui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Mochrie%2C+S+G">Simon GJ Mochrie</a>, <a href="/search/cond-mat?searchtype=author&query=Narayanan%2C+S">S. Narayanan</a>, <a href="/search/cond-mat?searchtype=author&query=Sandy%2C+A+R">A. R. Sandy</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.3115v1-abstract-short" style="display: inline;"> We have implemented the newly-introduced, coherence-based technique of x-ray near-field speckle (XNFS) at 8-ID-I at the Advanced Photon Source. In the near field regime of high-brilliance synchrotron x-rays scattered from a sample of interest, it turns out, that, when the scattered radiation and the main beam both impinge upon an x-ray area detector, the measured intensity shows low-contrast speck… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.3115v1-abstract-full').style.display = 'inline'; document.getElementById('1102.3115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.3115v1-abstract-full" style="display: none;"> We have implemented the newly-introduced, coherence-based technique of x-ray near-field speckle (XNFS) at 8-ID-I at the Advanced Photon Source. In the near field regime of high-brilliance synchrotron x-rays scattered from a sample of interest, it turns out, that, when the scattered radiation and the main beam both impinge upon an x-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrate its capability for studying static structures and dynamics at longer length scales than traditional far field x-ray scattering techniques. Specifically, we characterized the structure and dynamics of dilute silica and polystyrene colloidal samples. Our study reveals certain limitations of the XNFS technique, which we discuss. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.3115v1-abstract-full').style.display = 'none'; document.getElementById('1102.3115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 16 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sprung%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sprung%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sprung%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>