CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 563 results for author: <span class="mathjax">Wang, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Wang%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18781">arXiv:2411.18781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18781">pdf</a>, <a href="https://arxiv.org/format/2411.18781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> The Higgs-Amplitude mode in the optical conductivity in the presence of a supercurrent: Gauge invariant forumulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyack%2C+R">Rufus Boyack</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levin%2C+K">K. Levin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18781v1-abstract-short" style="display: inline;"> Observing the amplitude-Higgs mode in superconductors has been a central challenge in condensed matter physics. Unlike the phase mode in the electromagnetic (EM) response, the amplitude mode is not needed to satisfy gauge invariance. Indeed, it couples to linear EM response properties only in special superconductors that are associated with a pairing vector $\mathbf{Q} \neq 0$. In this paper we ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18781v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18781v1-abstract-full" style="display: none;"> Observing the amplitude-Higgs mode in superconductors has been a central challenge in condensed matter physics. Unlike the phase mode in the electromagnetic (EM) response, the amplitude mode is not needed to satisfy gauge invariance. Indeed, it couples to linear EM response properties only in special superconductors that are associated with a pairing vector $\mathbf{Q} \neq 0$. In this paper we characterize the amplitude-mode contribution within a gauge-invariant treatment of the linear optical conductivity for these non-uniform superconductors, noting that they are by their very nature particularly vulnerable to pair-breaking from non-magnetic impurities. This leads to inevitable damping of the Higgs mode. Our gauge-invariant formulation provides an in-depth understanding of two sets of $f$-sum rules which must be obeyed. We illustrate how difficult it is to disentangle the neutral amplitude mode contributions from those of the charged quasi-particles. These observations are presented in the context of an applied supercurrent, where we observe a new low-frequency feature that reflects the superfluid density and appears consistent with recent experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18781v1-abstract-full').style.display = 'none'; document.getElementById('2411.18781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13893">arXiv:2411.13893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13893">pdf</a>, <a href="https://arxiv.org/format/2411.13893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Simulating squirmers with smoothed particle dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinwei Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kuiliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gaojin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+X">Xin Bian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13893v1-abstract-short" style="display: inline;"> Microswimmers play an important role in shaping the world around us. The squirmer is a simple model for microswimmer whose cilia oscillations on its spherical surface induce an effective slip velocity to propel itself. The rapid development of computational fluid dynamics methods has markedly enhanced our capacity to study the behavior of squirmers in aqueous environments. Nevertheless, a unified&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13893v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13893v1-abstract-full" style="display: none;"> Microswimmers play an important role in shaping the world around us. The squirmer is a simple model for microswimmer whose cilia oscillations on its spherical surface induce an effective slip velocity to propel itself. The rapid development of computational fluid dynamics methods has markedly enhanced our capacity to study the behavior of squirmers in aqueous environments. Nevertheless, a unified methodology that can fully address the complexity of fluid-solid coupling at multiple scales and interface tracking for multiphase flows remains elusive, posing an outstanding challenge to the field. To this end, we investigate the potential of the smoothed particle dynamics (SPD) method as an alternative approach for simulating squirmers. The Lagrangian nature of the method allows it to effectively address the aforementioned difficulty. By introducing a novel treatment of the boundary condition and assigning appropriate slip velocities to the boundary particles, the SPD-squirmer model is able to accurately represent a range of microswimmer types including pushers, neutral swimmers, and pullers. We systematically validate the steady-state velocity of the squirmer, the resulting flow field, its hydrodynamic interactions with the surrounding environment, and the mutual collision of two squirmers. In the presence of Brownian motion, the model is also able to correctly calculate the velocity and angular velocity autocorrelation functions at the mesoscale. Finally, we simulate a squirmer within a multiphase flow by considering a droplet that encloses a squirmer and imposing a surface tension between the two flow phases. We find that the squirmer within the droplet exhibits different motion types. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13893v1-abstract-full').style.display = 'none'; document.getElementById('2411.13893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02693">arXiv:2411.02693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02693">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effects of Lanthanides on the Structure and Oxygen Permeability of Ti-doped Dual-phase Membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Zaichen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02693v1-abstract-short" style="display: inline;"> The trade-off effect of the oxygen permeability and stability of oxygen transport membranes (OTMs) still exists in working atmospheres containing CO2. Herein, we reported a new series of 60 wt%Ce0.9Ln0.1O2-未-40wt%Ln0.6Sr0.4Fe0.9Ti0.1O3-未 (CLnO-LnSFTO, Ln = La, Pr, Nd, Sm, Gd, Tb) dual-phase OTMs by selecting different Ln elements based on the reported highly stable Ti-doped CPrO-PrSFTO. The effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02693v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02693v1-abstract-full" style="display: none;"> The trade-off effect of the oxygen permeability and stability of oxygen transport membranes (OTMs) still exists in working atmospheres containing CO2. Herein, we reported a new series of 60 wt%Ce0.9Ln0.1O2-未-40wt%Ln0.6Sr0.4Fe0.9Ti0.1O3-未 (CLnO-LnSFTO, Ln = La, Pr, Nd, Sm, Gd, Tb) dual-phase OTMs by selecting different Ln elements based on the reported highly stable Ti-doped CPrO-PrSFTO. The effects of different Ln elements on the structure and oxygen permeability of Ti-doped dual-phase OTMs were systematically studied. Basically, as the atomic number of Ln elements increases, the unit cell parameters of both the fluorite phase and the perovskite phase become smaller. The unit cell volume and spatial symmetry of the perovskite phase are reduced, resulting in a reduction in oxygen permeability. The optimal CLaO-LaSFTO showed JO2 of 0.60 and 0.54 mL min-1 cm-2 with He and CO2 sweeping at 1000 oC, respectively. In addition, all CLnO-LnSFTO OTMs could work for more than 100 hours with no significant performance degradation in a CO2 atmosphere, maintaining excellent stability. This work explores candidate OTM materials for CO2 capture and oxygen separation, as well as provides some ideas for addressing the trade-off effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02693v1-abstract-full').style.display = 'none'; document.getElementById('2411.02693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Membrane Science,2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18681">arXiv:2410.18681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18681">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c09413">10.1021/acsnano.4c09413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lead-free Hybrid Perovskite: An Efficient Room Temperature Spin Generator via Large Interfacial Rashba effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Ying Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+S">Sheng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenxuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiaoyu Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+S">Shixuan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhou Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xiaolong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feng Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18681v1-abstract-short" style="display: inline;"> Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) demonstates great potential for developing flexible and wearable spintronic devices, by serving as spin sources via the bulk Rashba effect (BRE). However, the practical application of BRE in 2D HOIP faces huge challenges, particularly due to the toxicity of lead, which is crucial for achieving large spin-orbit coupling, and the restri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18681v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18681v1-abstract-full" style="display: none;"> Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) demonstates great potential for developing flexible and wearable spintronic devices, by serving as spin sources via the bulk Rashba effect (BRE). However, the practical application of BRE in 2D HOIP faces huge challenges, particularly due to the toxicity of lead, which is crucial for achieving large spin-orbit coupling, and the restrictions in 2D HOIP candidates to meet specific symmetry-breaking requirements. To overcome these obstacles, we design a strategy to exploit the interfacial Rashba effect (IRE) of lead-free 2D HOIP (C6H5CH2CH2NH3)2CuCl4 (PEA-CuCl), manifesting as an efficient spin generator at room temperature. IRE of PEA-CuCl originates from the large orbital hybridization at the interface between PEA-CuCl and adjacent ferromagnetic layers. Spin-torque ferromagnetic resonance measurements further quantify a large Rashba effective field of 14.04 Oe per 10^11 A m-2, surpassing those of lead-based HOIP and traditional all-inorganic heterojunctions with noble metals. Our lead-free 2D HOIP PEA-CuCl, which harnesses large IRE for spin generation, is efficient, nontoxic, and economic, offering huge promise for future flexible and wearable spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18681v1-abstract-full').style.display = 'none'; document.getElementById('2410.18681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18086">arXiv:2410.18086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18086">pdf</a>, <a href="https://arxiv.org/ps/2410.18086">ps</a>, <a href="https://arxiv.org/format/2410.18086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Directionally asymmetric nonlinear optics in planar chiral MnTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xinshu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbin%2C+T">Tyler Carbin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+K">Kai Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bingqing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kefeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Casey Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">Ni Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kogar%2C+A">Anshul Kogar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18086v1-abstract-short" style="display: inline;"> Planar chiral structures possess a two dimensional handedness that is associated with broken mirror symmetry. Such motifs span vast length scales; examples include certain pinwheel molecules, nautilus shells, cyclone wind patterns and spiral galaxies. Although pervasive in nature, it has only recently been found that condensed matter systems can exhibit a form of planar chirality through toroidal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18086v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18086v1-abstract-full" style="display: none;"> Planar chiral structures possess a two dimensional handedness that is associated with broken mirror symmetry. Such motifs span vast length scales; examples include certain pinwheel molecules, nautilus shells, cyclone wind patterns and spiral galaxies. Although pervasive in nature, it has only recently been found that condensed matter systems can exhibit a form of planar chirality through toroidal arrangements of electric dipoles, known as ferro-rotational (FR) order. A key characteristic of such order is that enantiomorph conversion occurs when the solid is flipped by 180 degrees about an in-plane axis. Consequently, ferro-rotationally ordered materials may exhibit directionally asymmetric response functions, even while preserving inversion and time-reversal symmetry. Such an effect, however, has yet to be observed. Using second harmonic interferometry, we show here that when circularly polarized light is incident on MnTiO$_3$, the generated nonlinear signal exhibits directional asymmetry. Depending on whether the incident light is parallel or anti-parallel to the FR axis, we observe a different conversion efficiency of two right (left) circularly polarized photons into a frequency-doubled left (right) circularly polarized photon. Our work uncovers a fundamentally new optical effect in ordered solids and opens up the possibility for developing novel nonlinear and directionally asymmetric optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18086v1-abstract-full').style.display = 'none'; document.getElementById('2410.18086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15099">arXiv:2410.15099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15099">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> A new approach to N-doped di-molybdenum carbide with enhanced superconductivity via Urea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Zaichen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yunwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15099v1-abstract-short" style="display: inline;"> Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature (Tc) of the parent superconducting materials. Herein, a new simple urea approach is developed to synthesize the N-doped alfa-Mo2C. Benefiting from the simple urea method, a broad superconducting dome is found in the Mo2C1-xNx compositions. XRD results show that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15099v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15099v1-abstract-full" style="display: none;"> Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature (Tc) of the parent superconducting materials. Herein, a new simple urea approach is developed to synthesize the N-doped alfa-Mo2C. Benefiting from the simple urea method, a broad superconducting dome is found in the Mo2C1-xNx compositions. XRD results show that the structure of alfa-Mo2C remains unchanged and that there is a variation of lattice parameters with nitrogen doping. Resistivity, magnetic susceptibility, and heat capacity measurement results confirm that the superconducting transition temperature (Tc) was strongly increased from 2.68 K (x = 0) to 7.05 K (x = 0.49). First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening, which enhances electron-phonon coupling. This results in an increase in Tc and a sharp rise in the upper critical field. Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15099v1-abstract-full').style.display = 'none'; document.getElementById('2410.15099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12390">arXiv:2410.12390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12390">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A Novel Energy-Efficient Salicide-Enhanced Tunnel Device Technology Based on 300mm Foundry Platform Towards AIoT Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qianqian Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yongqin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Ye Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+R">Renjie Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhixuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Libo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fangxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+K">Kexing Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiqing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Mengxuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+K">Kai Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+L">Le Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lining Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bu%2C+W">Weihai Bu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Ru Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12390v1-abstract-short" style="display: inline;"> This work demonstrates a novel energy-efficient tunnel FET (TFET)-CMOS hybrid foundry platform for ultralow-power AIoT applications. By utilizing the proposed monolithic integration process, the novel complementary n and p-type Si TFET technology with dopant segregated source junction and self-aligned drain underlap design is successfully integrated into a 300mm CMOS baseline process without CMOS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12390v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12390v1-abstract-full" style="display: none;"> This work demonstrates a novel energy-efficient tunnel FET (TFET)-CMOS hybrid foundry platform for ultralow-power AIoT applications. By utilizing the proposed monolithic integration process, the novel complementary n and p-type Si TFET technology with dopant segregated source junction and self-aligned drain underlap design is successfully integrated into a 300mm CMOS baseline process without CMOS performance penalty and any new materials, experimentally demonstrating the large Ion and record high Ion/Ioff ratio of 10^7 among TFETs by industry-manufacturers. The device performance and variability are also co-optimized for high-volume production. Further circuit-level implementations are presented based on the calibrated compact model. The proposed TFET-CMOS hybrid logic and SRAM topologies show significant energy efficiency improvement with comparable operation speed compared with standard CMOS circuits, indicating its great potential for power-constraint AIoT applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12390v1-abstract-full').style.display = 'none'; document.getElementById('2410.12390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08191">arXiv:2410.08191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08191">pdf</a>, <a href="https://arxiv.org/format/2410.08191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Photonic Non-Abelian Braid Monopole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kunkun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6nig%2C+J+L+K">J. Lukas K. K枚nig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+L">Lei Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+W">Wei Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergholtz%2C+E+J">Emil J. Bergholtz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+P">Peng Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08191v1-abstract-short" style="display: inline;"> Monopoles and braids are exotic but elusive aspects of fundamental theories of light and matter. In lattice systems, monopoles of band-structure degeneracies are subject to well-established no-go (doubling) theorems that appear to universally apply in closed Hermitian systems and open non-Hermitian systems alike. However, the non-Abelian braid topology of non-Hermitian multi-band systems provides&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08191v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08191v1-abstract-full" style="display: none;"> Monopoles and braids are exotic but elusive aspects of fundamental theories of light and matter. In lattice systems, monopoles of band-structure degeneracies are subject to well-established no-go (doubling) theorems that appear to universally apply in closed Hermitian systems and open non-Hermitian systems alike. However, the non-Abelian braid topology of non-Hermitian multi-band systems provides a remarkable loophole to these constraints. Here we make use of this loophole, and experimentally implement, for the first time, a monopole degeneracy in a non-Hermitian three-band system in the form of a single third-order exceptional point. We explicitly demonstrate the intricate braiding topology and the non-Abelian fusion rules underlying the monopole degeneracy. The experiment is carried out using a new design of single-photon interferometry, enabling eigenstate and spectral resolutions for non-Hermitian multi-band systems with widely tunable parameters. Thus, the union of state-of-the-art experiments, fundamental theory, and everyday concepts such as braids paves the way toward the highly exotic non-Abelian topology unique to non-Hermitian settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08191v1-abstract-full').style.display = 'none'; document.getElementById('2410.08191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02238">arXiv:2410.02238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02238">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching of perpendicular magnetization in light metal/ferrimagnet bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Teng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+A">Aihua Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yizhou Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Haifeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02238v1-abstract-short" style="display: inline;"> Orbital torque, associated with orbital current, enables light metals to efficiently manipulate magnetization with rich tunability. A clear demonstration of perpendicular magnetization switching using light metals alone is essential for understanding orbital physics and developing high-density orbitronic devices. Here, we report orbital torque switching of perpendicular magnetization in light meta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02238v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02238v1-abstract-full" style="display: none;"> Orbital torque, associated with orbital current, enables light metals to efficiently manipulate magnetization with rich tunability. A clear demonstration of perpendicular magnetization switching using light metals alone is essential for understanding orbital physics and developing high-density orbitronic devices. Here, we report orbital torque switching of perpendicular magnetization in light metal (Ti, V, Cr)/ferrimagnet (Fe1-xGdx) bilayers. Taking the Ti/ Fe1-xGdx sample as a model system, the torque efficiency increases four-fold by enhancing the spin-orbit coupling in Fe1-xGdx through modulating Gd composition, which is a characteristic feature of orbital torque. Our findings demonstrate that light metals in combination with rare earth-transition metal ferrimagnets can be employed for efficient orbitronic devices and serve as a model system for studying orbitronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02238v1-abstract-full').style.display = 'none'; document.getElementById('2410.02238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00119">arXiv:2410.00119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00119">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant and Tunable Bosonic Quantum Interference Induced by Two-Dimensional Metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kunyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maniyara%2C+R+A">Rinu Abraham Maniyara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuanxi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jain%2C+A">Arpit Jain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wetherington%2C+M+T">Maxwell T. Wetherington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mai%2C+T+T">Thuc T. Mai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chengye Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+T">Timothy Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotkin%2C+S+V">Slava V. Rotkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+A+R+H">Angela R. Hight Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crespi%2C+V+H">Vincent H. Crespi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+J">Joshua Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shengxi Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00119v1-abstract-short" style="display: inline;"> Harnessing quantum interference among bosons provides significant opportunities as bosons often carry longer coherence time than fermions. As an example of quantum interference, Fano resonance involving phonons or photons describes the coupling between discrete and continuous states, signified by an asymmetric spectral lineshape. Utilizing photon-based Fano resonance, molecule sensing with ultra-h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00119v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00119v1-abstract-full" style="display: none;"> Harnessing quantum interference among bosons provides significant opportunities as bosons often carry longer coherence time than fermions. As an example of quantum interference, Fano resonance involving phonons or photons describes the coupling between discrete and continuous states, signified by an asymmetric spectral lineshape. Utilizing photon-based Fano resonance, molecule sensing with ultra-high sensitivity and ultrafast optical switching has been realized. However, phonon-based Fano resonance, which would expand the application space to a vaster regime, has been less exploited because of the weak coupling between discrete phonons with continuous states such as electronic continuum. In this work, we report the discovery of giant phonon-based Fano resonance in a graphene/2D Ag/SiC heterostructure. The Fano asymmetry, being proportional to the coupling strength, exceeds prior reports by two orders of magnitude. This Fano asymmetry arises from simultaneous frequency and lifetime matching between discrete and continuous phonons of SiC. The introduction of 2D Ag layers restructures SiC at the interface and facilitates resonant scattering to further enhance the Fano asymmetry, which is not achievable with conventional Ag thin films. With these unique properties, we demonstrated that the phonon-based Fano resonance can be used for ultrasensitive molecule detection at the single-molecule level. Our work highlights strong Fano resonance in the phononic system, opening avenues for engineering quantum interference based on bosons. Further, our findings provide opportunities for advancing phonon-related applications, including biochemical sensing, quantum transduction, and superconductor-based quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00119v1-abstract-full').style.display = 'none'; document.getElementById('2410.00119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20461">arXiv:2409.20461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20461">pdf</a>, <a href="https://arxiv.org/format/2409.20461">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Helium atom micro-diffraction as a characterisation tool for 2D materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=von+Jeinsen%2C+N">Nick von Jeinsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radic%2C+A">Aleksandar Radic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chenyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+V">Vivian Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yiru Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chhowalla%2C+M">Manish Chhowalla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jardine%2C+A">Andrew Jardine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ward%2C+D">David Ward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambrick%2C+S">Sam Lambrick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20461v1-abstract-short" style="display: inline;"> We present helium atom micro-diffraction as an ideal technique for characterization of 2D materials due to its ultimate surface sensitivity combined with sub-micron spatial resolution. Thermal energy neutral helium scatters from the valence electron density, 2-3A above the ionic cores of a surface, making the technique ideal for studying 2D materials, where other approaches can struggle due to sma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20461v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20461v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20461v1-abstract-full" style="display: none;"> We present helium atom micro-diffraction as an ideal technique for characterization of 2D materials due to its ultimate surface sensitivity combined with sub-micron spatial resolution. Thermal energy neutral helium scatters from the valence electron density, 2-3A above the ionic cores of a surface, making the technique ideal for studying 2D materials, where other approaches can struggle due to small interaction cross-sections with few-layer samples. Sub-micron spatial resolution is key development in neutral atom scattering to allow measurements from device-scale samples. We present measurements of monolayer-substrate interactions, thermal expansion coefficients, the electron-phonon coupling constant and vacancy-type defect density on monolayer-MoS2. We also discuss extensions to the presented methods which can be immediately implemented on existing instruments to perform spatial mapping of these material properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20461v1-abstract-full').style.display = 'none'; document.getElementById('2409.20461v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Draft version, 11 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18637">arXiv:2409.18637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18637">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Defect density quantification in monolayer MoS2 using helium atom micro-diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Radic%2C+A">Aleksandar Radic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Jeinsen%2C+N">Nick von Jeinsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yiru Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sami%2C+I">Ismail Sami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+V">Vivian Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ward%2C+D">David Ward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jardine%2C+A">Andrew Jardine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chhowalla%2C+M">Manish Chhowalla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambrick%2C+S">Sam Lambrick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18637v2-abstract-short" style="display: inline;"> 2D materials continue to be pivotal in the advancement of modern devices. Their optoelectronic, mechanical and thermal properties can be finely modulated using a variety of methods, including strain, passivation, doping and defect density. Vacancy-type defect density, as found in the prototypical MoS2, in 2D materials is inherently difficult to measure due to their thickness. Here we show that hel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18637v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18637v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18637v2-abstract-full" style="display: none;"> 2D materials continue to be pivotal in the advancement of modern devices. Their optoelectronic, mechanical and thermal properties can be finely modulated using a variety of methods, including strain, passivation, doping and defect density. Vacancy-type defect density, as found in the prototypical MoS2, in 2D materials is inherently difficult to measure due to their thickness. Here we show that helium atom micro-diffraction using a 5 渭m beam size can be used to measure defect density in ~15x20 渭m monolayer MoS2 quickly and easily at low cost compared to standard methods. We find that diffracted helium intensity is inversely proportional to defect density and that the method can be used as a standalone measure of vacancy-type defect density in monolayer MoS2, with the ability to spatially map defect density. We compare our results to photoluminescence (PL) spectroscopy and stoichiometric beam-line XPS. Furthermore, we provide computational and theoretical evidence that the method is agnostic to sample chemistry and can therefore immediately be applied to the measurement of vacancy-type defect density on the surface of any crystalline material. Our results demonstrate helium atom micro-diffraction as a rapid, low cost and lab-based alternative to often prohibitively expensive and time-consuming beam-line techniques such as XPS, improving accessibility to 2D materials science and device fabrication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18637v2-abstract-full').style.display = 'none'; document.getElementById('2409.18637v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16088">arXiv:2409.16088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16088">pdf</a>, <a href="https://arxiv.org/format/2409.16088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Transverse voltage in anisotropic hydrodynamic conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaize Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holder%2C+T">Tobias Holder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16088v1-abstract-short" style="display: inline;"> Weak momentum dissipation in ultra-clean metals gives rise to novel non-Ohmic current flow, including ballistic and hydrodynamic regimes. Recently, hydrodynamic flow has attracted intense interest because it presents a valuable window into the electronic correlations and the longest lived collective modes of quantum materials. However, diagnosing viscous flow is difficult as the macroscopic observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16088v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16088v1-abstract-full" style="display: none;"> Weak momentum dissipation in ultra-clean metals gives rise to novel non-Ohmic current flow, including ballistic and hydrodynamic regimes. Recently, hydrodynamic flow has attracted intense interest because it presents a valuable window into the electronic correlations and the longest lived collective modes of quantum materials. However, diagnosing viscous flow is difficult as the macroscopic observables of ballistic and hydrodynamic transport such as the average current distribution can be deceptively similar, even if their respective microscopics deviate notably. Based on kinetic Boltzmann theory, here we propose to address this issue via the transverse channel voltage at zero magnetic field, which can efficiently detect hydrodynamic flow in a number of materials. To this end, we show that the transverse voltage is sensitive to the interplay between anisotropic fermiology and boundary scattering, resulting in a non-trivial behavior in narrow channels along crystalline low-symmetry directions. We discuss several materials where the channel-size dependent stress of the quantum fluid leads to a characteristic sign change of the transverse voltage as a new hallmark of the cross-over from the ballistic to the hydrodynamic regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16088v1-abstract-full').style.display = 'none'; document.getElementById('2409.16088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09698">arXiv:2409.09698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09698">pdf</a>, <a href="https://arxiv.org/format/2409.09698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust Coulomb Gap and Varied-temperature Study of Epitaxial 1T&#39;-WSe$_2$ Monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+J">Junyu Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xuedong Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Q">Qinghao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+F">Fan Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Q">Qichao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shaoen Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiaodong Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaili Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fang-Sen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09698v1-abstract-short" style="display: inline;"> The transition metal dichalcogenides (TMDCs) with a 1T&#39; structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T&#39;-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T&#39;-TMDCs, our researc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09698v1-abstract-full" style="display: none;"> The transition metal dichalcogenides (TMDCs) with a 1T&#39; structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T&#39;-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T&#39;-TMDCs, our research focuses on the electronic and crystal properties of the epitaxial 1T&#39;-WSe$_2$ monolayers grown on bilayer graphene (BLG) and SrTiO$_3$(100) substrates at various temperatures. For the 1T&#39;-WSe$_2$ grown on BLG, we observed a significant thermal expansion effect on its band structures with a thermal expansion coefficient of $\sim$60$\times$10$^{-6}$ K$^{-1}$. In contrast, the 1T&#39;-WSe$_2$ grown on SrTiO$_3$(100) exhibits minimal changes with varied temperatures due to the enhanced strain exerted by the substrate. Besides, A significant Coulomb gap (CG) was observed pinned at the Fermi level in the angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS). The CG was founded to decrease with increasing temperatures, and can persist up to 200 K for 1T&#39;-WSe$_2$/BLG, consistent with our Monte Carlo simulations. The robustness of the CG and the positive fundamental gap endow the epitaxial 1T&#39;-WSe$_2$ monolayers with huge potential for realizing the quantum spin Hall devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'none'; document.getElementById('2409.09698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12164">arXiv:2408.12164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12164">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Excellent and CO$_2$$_{0.85}$Nd$_{0.1}$Cu$_{0.05}$O$_{2-未}$-Nd$_x$Sr$_{1-x}$Fe$_{1-y}$Cu$_y$O$_{3-未}$ dual-phase oxygen transport membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaopeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yanhao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Zaichen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuefeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12164v1-abstract-short" style="display: inline;"> Oxygen transport membranes(OTMs)have provided great opportunities in the last decades but are suffering from the trade-off effect between stability and oxygen permeability. Here, we report a group of new planar dual-phase mixed ionic-electronic conducting (MIEC) OTMs consisting of CO$_2$$_{0.85}$Nd$_{0.1}$Cu$_{0.05}$O$_2$ (CNCO) and Nd$_x$Sr$_{1-x}$Fe$_{1-y}$Cu$_y$O$_3$(NSFCO; $x = 0.4, 0.6$;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12164v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12164v1-abstract-full" style="display: none;"> Oxygen transport membranes(OTMs)have provided great opportunities in the last decades but are suffering from the trade-off effect between stability and oxygen permeability. Here, we report a group of new planar dual-phase mixed ionic-electronic conducting (MIEC) OTMs consisting of CO$_2$$_{0.85}$Nd$_{0.1}$Cu$_{0.05}$O$_2$ (CNCO) and Nd$_x$Sr$_{1-x}$Fe$_{1-y}$Cu$_y$O$_3$(NSFCO; $x = 0.4, 0.6$; $y = 0.05, 0.1$) phases, showing excellent oxygen permeability while comparable CO$_2$-resistant stability. The substitution of Cu as a bifunctional additive decreases the sintering temperature and enhances bulk diffusion and oxygen permeability with the co-doping of Nd.The oxygen permeation fluxes reached 2.62 and 1.52 mL min$^{-1}$ cm$^{-2}$ at 1000$^\circ$C through the optimal 60wt%Ce0.85Nd0.1Cu0.05O2-40wt%Nd0.4Sr0.6Fe0.9Cu0.1O3 (CNCO-NSFCO41) composition with He and CO$_2$ sweeping, respectively, higher than all reported dense dual-phase OTMs. Such excellent CO$_2$-tolerant permeability meets the needs of potential industrial applications. Analysis with Zhu&#39;s oxygen permeation model shows lower bulk diffusion resistance of CNCO-NSFCO41 than that of reported 60wt%Ce0.85Pr0.1Cu0.05O2-40wt%Pr0.4Sr0.6Fe0.9Cu0.1O3(CPCO-PSFCO41)and more limitation by the interfacial exchange at high temperature. All the prepared OTMs also show good long-term stability over 100 hours in both atmospheres. Our results confirm the excellent oxygen permeability and stability under a high-concentration CO2 atmosphere, providing a material candidate for CO2 capture in oxyfuel combustion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12164v1-abstract-full').style.display = 'none'; document.getElementById('2408.12164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Membrane Science, 2024,696,122485 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12160">arXiv:2408.12160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12160">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Mapping Hydrogen Evolution Activity Trends of V-based A15 Superconducting Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+J">Jie Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaobing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Ying Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+K">Kai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12160v1-abstract-short" style="display: inline;"> Exploring high-efficiency and low-cost electrocatalysts is valuable for water-splitting technologies. Recently, Si-group compounds have attracted increasing attention in electrocatalysis, considering the abundant Si-group elements on Earth. However, Si-group compounds for HER electrocatalysis have not been systematically studied. In this study, we unveil the activity trends of non-noble metal cata&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12160v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12160v1-abstract-full" style="display: none;"> Exploring high-efficiency and low-cost electrocatalysts is valuable for water-splitting technologies. Recently, Si-group compounds have attracted increasing attention in electrocatalysis, considering the abundant Si-group elements on Earth. However, Si-group compounds for HER electrocatalysis have not been systematically studied. In this study, we unveil the activity trends of non-noble metal catalyst A15-type V3M (i.e., V3Si, V3Ge, and V3Sn) superconductors and show that V3Si is the most efficient HER catalyst because of the high electronic conductivity and suitable d-band center. Among them, the V3Si only requires 33.4 mV to reach 10 mA cm-2, and only 57.6 mV and 114.6 mV are required to attain a high current density of 100 mA cm-2 and 500 mA cm-2, respectively. These low overpotentials are close to the 34.3 mV at 10 mA cm-2 of state-of-art Pt/C (20 %) but superior to 168.5 mV of Pt/C (20 %) at 100 mA cm-2. Furthermore, the V3Si illustrates exceptional durability with no obvious decay in the 120 h at the different current densities (i.e., 10 - 250 mA cm-2). The excellent HER activity of V3Si alloy can be ascribed to the synergies of superior electronic conductivity and suitable d-band center. Moreover, DFT calculations reveal that the absolute hydrogen adsorption Gibbs free energy is decreased after introducing the V to Si. Beyond offering a stable and high-performance electrocatalyst in an acidic medium, this work inspires the rational design of desirable silicide electrocatalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12160v1-abstract-full').style.display = 'none'; document.getElementById('2408.12160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemical Engineering Journal,2024, 488, 150961 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11387">arXiv:2408.11387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11387">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Structural and Superconducting Properties in the Te-doped Spinel CuRh2Se4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Zaichen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11387v1-abstract-short" style="display: inline;"> In this paper, we discuss the impact of tellurium (Te) doping on the spinel superconductor CuRh2Se4. We conducted a comprehensive evaluation of the structural and superconducting properties of the system using various techniques, including X-ray diffraction (XRD), resistivity, magnetization, and specific heat measurements. Based on our XRD analysis, we found that the spinel superconductor CuRh2Se4&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11387v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11387v1-abstract-full" style="display: none;"> In this paper, we discuss the impact of tellurium (Te) doping on the spinel superconductor CuRh2Se4. We conducted a comprehensive evaluation of the structural and superconducting properties of the system using various techniques, including X-ray diffraction (XRD), resistivity, magnetization, and specific heat measurements. Based on our XRD analysis, we found that the spinel superconductor CuRh2Se4-xTex crystallizes in the space group Fd3m(227) with x in the region of 0 to 0.28, while the layered compound CuRh2Se4-xTex crystallizes in the space group P3m1 (164) with x in the region of 2.8 to 4.0. The upper critical magnetic field can be increased from 0.95(2) T for CuRh2Se4 to 3.44(1) T for CuRh2Se3.72Te0.28 by doping with elemental Te. However, the layered compound CuRh2Se4-xTex did not exhibit superconducting properties. Besides, the specific heat measurements of CuRh2Se4-xTex (x = 0, 0.1, 0.28) indicate that the Te element doping affects the electronic structure and interactions of the material and breaks the stability of the superconducting pairing, which leads to a decrease in the Tc. Finally, we show the electronic phase diagram of Tc with Te doping to summarise our findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11387v1-abstract-full').style.display = 'none'; document.getElementById('2408.11387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Alloys and Compounds, 2024, 995, 174756 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11373">arXiv:2408.11373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11373">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Revealing the nontrivial topological surface states of catalysts for effective photochemical carbon dioxide conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+N">Nannan Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Zaichen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huichao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+K">Kai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11373v1-abstract-short" style="display: inline;"> Topological semimetals with protected surface states mark a new paradigm of research beyond the early landmarks of band-structure engineering, allowing fabrication of efficient catalyst to harness the rich metallic surface states to activate specific chemical processes. Herein, we demonstrate a facile solid-phase method for in-situ doping of Ir at the Os sites in the Os3Sn7, an alloy with topologi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11373v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11373v1-abstract-full" style="display: none;"> Topological semimetals with protected surface states mark a new paradigm of research beyond the early landmarks of band-structure engineering, allowing fabrication of efficient catalyst to harness the rich metallic surface states to activate specific chemical processes. Herein, we demonstrate a facile solid-phase method for in-situ doping of Ir at the Os sites in the Os3Sn7, an alloy with topological states, which significantly improves the photocatalytic performance for the reduction of CO2 to CO and CH4. Experimental evidence combined with theoretical calculations reveal that the nontrivial topological surface states greatly accelerate charge-separation/electron-enrichment and adsorption/activation of CO2 molecules, rendering highly efficient reaction channels to stimulate the formation of *COOH and *CO, as well CHO*. This work shows the promise of achieving high photocatalytic performances with synthesizing topological catalysts and provides hints on the design of novel topological catalysts with superior photoactivity towards the CO2 reduction reaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11373v1-abstract-full').style.display = 'none'; document.getElementById('2408.11373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 Pages, 6 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Catalysis B: Environment and Energy,2024,358,124428 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11369">arXiv:2408.11369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11369">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Non-trivial Topological Surface States Regulation of 1T-OsCoTe$_2$ Enables Selective C-C Coupling for Highly Efficient Photochemical CO$_2$ Reduction Toward C$_{2+}$ hydrocarbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mingjie Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garces%2C+H+F">Hector F. Garces</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Ying Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+K">Kai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11369v1-abstract-short" style="display: inline;"> Despite ongoing research, the rational design of nontrivial topological semimetal surface states for the selective photocatalytic CO$_2$ conversion into valuable products remains full of challenges. Herein, we present the synthesis of 1T-OsCoTe$_2$ for the photoreduction upgrading of CO$_2$ to tricarbon alkane C$_3$H$_8$,by the integration of experimental work and theory calculation. Experimental&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11369v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11369v1-abstract-full" style="display: none;"> Despite ongoing research, the rational design of nontrivial topological semimetal surface states for the selective photocatalytic CO$_2$ conversion into valuable products remains full of challenges. Herein, we present the synthesis of 1T-OsCoTe$_2$ for the photoreduction upgrading of CO$_2$ to tricarbon alkane C$_3$H$_8$,by the integration of experimental work and theory calculation. Experimental studies suggested a high electron based selectivity of 71.2% for C$_3$H$_8$ and an internal quantum efficiency of 54.6% at 380 nm. In-situ X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy demonstrated that Co and Os atoms coordinated with Te atoms enable an efficient Os-Te-Co electron transfer to activate the generation of *CH$_3$,*CHOCO and *CH$_2$OCOCO. Density functional theory calculations further confirmed Os-Te-Co electron bridging on the improved CO$_2$ conversion kinetics. To our knowledge, this is the first report suggesting the role of Os atoms in accelerating the photocatalytic CO$_2$ conversion activity of the topological semimetal 1T-OsCoTe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11369v1-abstract-full').style.display = 'none'; document.getElementById('2408.11369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Catalysis B: Environment and Energy,2024,352,124058 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08415">arXiv:2408.08415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08415">pdf</a>, <a href="https://arxiv.org/format/2408.08415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of the unitary Bose gas near a narrow Feshbach resonance: universal coherent atom-molecule oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhendong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagata%2C+S">Shu Nagata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levin%2C+K">K. Levin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08415v1-abstract-short" style="display: inline;"> Quench experiments on a unitary Bose gas around a broad Feshbach resonance have led to the discovery of universal dynamics. This universality is manifested in the measured atomic momentum distributions where, asymptotically, a quasi-equilibrated metastable state is found in which both the momentum distribution and the time scales are determined by the particle density. In this paper we present cou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08415v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08415v1-abstract-full" style="display: none;"> Quench experiments on a unitary Bose gas around a broad Feshbach resonance have led to the discovery of universal dynamics. This universality is manifested in the measured atomic momentum distributions where, asymptotically, a quasi-equilibrated metastable state is found in which both the momentum distribution and the time scales are determined by the particle density. In this paper we present counterpart studies but for the case of a very narrow Feshbach resonance of $^{133}$Cs atoms having a width of 8.3 mG. In dramatic contrast to the behavior reported earlier, a rapid quench of an atomic condensate to unitarity is observed to ultimately lead to coherent oscillations involving dynamically produced condensed and non-condensed molecules and atoms. The same characteristic frequency, determined by the Feshbach coupling, is observed in all types of particles. To understand these quench dynamics and how these different particle species are created, we develop a beyond Hartree-Fock-Bogoliubov dynamical framework including a new type of cross correlation between atoms and molecules. This leads to a quantitative consistency with the measured frequency. Our results, which can be applied to the general class of bosonic superfluids associated with narrow Feshbach resonances, establish a new paradigm for universal dynamics dominated by quantum many-body interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08415v1-abstract-full').style.display = 'none'; document.getElementById('2408.08415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05708">arXiv:2408.05708</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05708">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Tunable atomically enhanced moir茅 Berry curvatures in twisted triple bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Davydov%2C+K">Konstantin Davydov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Friedman%2C+N">Noah Friedman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gramowski%2C+E">Ethan Gramowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaotian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tavakley%2C+J">Jack Tavakley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luskin%2C+M">Mitchell Luskin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05708v1-abstract-short" style="display: inline;"> We report a twisted triple bilayer graphene platform consisting of three units of Bernal bilayer graphene (BLG) consecutively twisted at 1.49掳 and 1.68掳. We observe inter-moir茅 Hofstadter butterflies from two co-existing moir茅 superlattices and a Hofstadter butterfly from reconstructed moir茅-of-moir茅 lattice, and show that their Brown-Zak (BZ) oscillations quantitatively agree with each other, bot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05708v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05708v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05708v1-abstract-full" style="display: none;"> We report a twisted triple bilayer graphene platform consisting of three units of Bernal bilayer graphene (BLG) consecutively twisted at 1.49掳 and 1.68掳. We observe inter-moir茅 Hofstadter butterflies from two co-existing moir茅 superlattices and a Hofstadter butterfly from reconstructed moir茅-of-moir茅 lattice, and show that their Brown-Zak (BZ) oscillations quantitatively agree with each other, both evidencing strong atomic reconstruction with a lattice constant of 18.1 nm. We further demonstrate such atomic reconstruction strongly enhances the Berry curvature of each moir茅 and moir茅-of-moir茅 band-insulator state, characterized by measured strong non-local valley Hall effect (VHE) that sensitively depends on the inter-moir茅 competition strength, tunable by manipulating the out-of-the-plane carrier distribution which controls the magnitude of the valley currents. Our study sheds new light on the microscopic mechanism of atomic and electronic reconstruction in twisted-multilayer systems, by investigating novel emergent quantum phenomena of reconstructed quasi-crystalline moir茅-of-moir茅 superlattice, including a new type of moir茅-of-moir茅 band-insulator states and atomically enhanced moir茅 Berry curvature. We show that the reconstructed electronic band can be versatilely tuned by electrostatics, providing an approach towards engineering the band structure and its topology for a novel quantum material platform with designer electrical and optical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05708v1-abstract-full').style.display = 'none'; document.getElementById('2408.05708v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17650">arXiv:2407.17650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17650">pdf</a>, <a href="https://arxiv.org/format/2407.17650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A defect-chemistry-informed phase-field model of grain growth in oxide electroceramics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Souza%2C+R+A">Roger A. De Souza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xiang-Long Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merkle%2C+R">Rotraut Merkle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rheinheimer%2C+W">Wolfgang Rheinheimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albe%2C+K">Karsten Albe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bai-Xiang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17650v2-abstract-short" style="display: inline;"> Dopants can significantly affect the properties of oxide ceramics through their impact on the property-determined microstructure characteristics such as grain boundary segregation, space charge layer formation in the grain boundary vicinity, and the resultant microstructure features like bimodality due to abnormal grain growth. To support rational oxide ceramics design, we propose a multiphysics-b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17650v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17650v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17650v2-abstract-full" style="display: none;"> Dopants can significantly affect the properties of oxide ceramics through their impact on the property-determined microstructure characteristics such as grain boundary segregation, space charge layer formation in the grain boundary vicinity, and the resultant microstructure features like bimodality due to abnormal grain growth. To support rational oxide ceramics design, we propose a multiphysics-based and defect-chemistry-informed phase-field grain growth model to simulate the microstructure evolution of oxide ceramics. It fully respects the thermodynamics of charged point defects (oxygen vacancies and dopants) in both the grain interior and boundaries and considers the competing kinetics of defect diffusion and grain boundary movement. The proposed phase-field model is benchmarked against well-known simplified bicrystal models, including the Mott-Schottky and Gouy-Chapman models. Various simulation results are presented to reveal the impacts of defect formation energy differences between the grain interior and the grain boundary core on the key microstructural aspects. In particular, simulation results confirm that the solute drag effect alone can lead to bimodal grain size distribution, without any contribution from grain misorientation and other anisotropy. Interestingly, abnormal grain growth simulations demonstrate that grain boundary potentials can vary substantially: grain boundaries of larger grains tend to have lower potentials than those of smaller grains. Such heterogeneous grain boundary potential distribution may inspire a new material optimization strategy through microstructure design. This study provides a comprehensive framework for defect-chemistry-consistent investigations of microstructure evolution in polycrystalline oxide ceramics, offering fundamental insights into in-situ processes during critical manufacturing stages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17650v2-abstract-full').style.display = 'none'; document.getElementById('2407.17650v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03102">arXiv:2407.03102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03102">pdf</a>, <a href="https://arxiv.org/format/2407.03102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Droplets of Bosons at a Narrow Resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Preis%2C+T">Thimo Preis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+D+T">Dam Thanh Son</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03102v1-abstract-short" style="display: inline;"> We consider bosons interacting through a narrow $s$-wave resonance. Such a resonance is characterized by an infinite scattering length and a large and negative effective range $r_0$. We argue that any number $N\ge3$ of bosons can form a self-bound cluster with the binding energy per particle increasing as $N^2$ for $1\ll N\ll (-r_0/a_\text{bg})^{1/2}$, where $a_\text{bg}$ is the background scatter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03102v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03102v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03102v1-abstract-full" style="display: none;"> We consider bosons interacting through a narrow $s$-wave resonance. Such a resonance is characterized by an infinite scattering length and a large and negative effective range $r_0$. We argue that any number $N\ge3$ of bosons can form a self-bound cluster with the binding energy per particle increasing as $N^2$ for $1\ll N\ll (-r_0/a_\text{bg})^{1/2}$, where $a_\text{bg}$ is the background scattering length (between atoms and molecules). In the opposite limit $N\gg (-r_0/a_\text{bg})^{1/2}$, bosons form droplets with binding energy per particle saturating to a constant value independent of the particle number. The stability of clusters and droplets when the interaction is detuned from the resonance is also studied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03102v1-abstract-full').style.display = 'none'; document.getElementById('2407.03102v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02761">arXiv:2407.02761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02761">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ad550a">10.1088/1361-648X/ad550a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inducing superconductivity in quantum anomalous Hall regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Yu Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q+L">Qing Lin He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02761v1-abstract-short" style="display: inline;"> Interfacing the quantum anomalous Hall insulator with a conventional superconductor is known to be a promising manner for realizing a topological superconductor, which has been continuously pursued for years. Such a proximity route depends to a great extent on the control of the delicate interfacial coupling of the two constituents. However, a recent experiment reported the failure to reproduce su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02761v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02761v1-abstract-full" style="display: none;"> Interfacing the quantum anomalous Hall insulator with a conventional superconductor is known to be a promising manner for realizing a topological superconductor, which has been continuously pursued for years. Such a proximity route depends to a great extent on the control of the delicate interfacial coupling of the two constituents. However, a recent experiment reported the failure to reproduce such a topological superconductor, which is ascribed to the negligence of the electrical short by the superconductor in the theoretical proposal. Here, we reproduce this topological superconductor with attention to the interface control. The resulted conductance matrix under a wide magnetic field range agrees with the fingerprint of this topological superconductor. This allows us to develop a phase diagram that unveils three regions parameterized by various coupling limits, which not only supports the feasibility to fabricate the topological superconductor by proximity but also fully explains the origin of the previous debate. The present work provides a comprehensible guide on fabricating the topological superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02761v1-abstract-full').style.display = 'none'; document.getElementById('2407.02761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 J. Phys.: Condens. Matter 36 37LT01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01145">arXiv:2407.01145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning-Assisted 3D Printing of Thermoelectric Materials of Ultrahigh Performances at Room Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+K">Kaidong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Guoyue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanvir%2C+A+N+M">A. N. M. Tanvir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bappy%2C+M+O">Md Omarsany Bappy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haijian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+W">Wenjie Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Le Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dowling%2C+A">Alexander Dowling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+T">Tengei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yanliang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01145v1-abstract-short" style="display: inline;"> Thermoelectric energy conversion is an attractive technology for generating electricity from waste heat and using electricity for solid-state cooling. However, conventional manufacturing processes for thermoelectric devices are costly and limited to simple device geometries. This work reports an extrusion printing method to fabricate high-performance thermoelectric materials with complex 3D archit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01145v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01145v1-abstract-full" style="display: none;"> Thermoelectric energy conversion is an attractive technology for generating electricity from waste heat and using electricity for solid-state cooling. However, conventional manufacturing processes for thermoelectric devices are costly and limited to simple device geometries. This work reports an extrusion printing method to fabricate high-performance thermoelectric materials with complex 3D architectures. By integrating high-throughput experimentation and Bayesian optimization (BO), our approach significantly accelerates the simultaneous search for the optimal ink formulation and printing parameters that deliver high thermoelectric performances while maintaining desired shape fidelity. A Gaussian process regression (GPR)-based machine learning model is employed to expeditiously predict thermoelectric power factor as a function of ink formulation and printing parameters. The printed bismuth antimony telluride (BiSbTe)-based thermoelectric materials under the optimized conditions exhibit an ultrahigh room temperature zT of 1.3, which is by far the highest in the printed thermoelectric materials. The machine learning-guided ink-based printing strategy can be highly generalizable to a wide range of functional materials and devices for broad technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01145v1-abstract-full').style.display = 'none'; document.getElementById('2407.01145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18875">arXiv:2406.18875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18875">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Design of ANF/MXene/SSG sandwich structure with electromagnetic shielding performance and impact resistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+C">Chiyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+J">Jianbin Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18875v1-abstract-short" style="display: inline;"> Since entering the information era, electronic devices gradually play an important role in daily lives. However, the abuse of electronic devices leads to corresponding electromagnetic EM wave pollution. The complex external environment causes the potential for physical impact. In this work, an ANF MXene SSG flexible sandwich structure was fabricated according to methods of vacuum filtration, direc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18875v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18875v1-abstract-full" style="display: none;"> Since entering the information era, electronic devices gradually play an important role in daily lives. However, the abuse of electronic devices leads to corresponding electromagnetic EM wave pollution. The complex external environment causes the potential for physical impact. In this work, an ANF MXene SSG flexible sandwich structure was fabricated according to methods of vacuum filtration, directional freeze-casting solidification, and polyurethane encapsulation. Apart from its excellent protection function, the sandwich structure also acts as a human body movement sensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18875v1-abstract-full').style.display = 'none'; document.getElementById('2406.18875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18838">arXiv:2406.18838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18838">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electric-field control of the perpendicular magnetization switching in ferroelectric/ferrimagnet heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pengfei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Juncai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+T">Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+X">Xiukai Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Y">Yu Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chunyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+J">Jiajing Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18838v1-abstract-short" style="display: inline;"> Electric field control of the magnetic state in ferrimagnets holds great promise for developing spintronic devices due to low power consumption. Here, we demonstrate a non-volatile reversal of perpendicular net magnetization in a ferrimagnet by manipulating the electric-field driven polarization within the Pb (Zr0.2Ti0.8) O3 (PZT)/CoGd heterostructure. Electron energy loss spectra and X-ray absorp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18838v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18838v1-abstract-full" style="display: none;"> Electric field control of the magnetic state in ferrimagnets holds great promise for developing spintronic devices due to low power consumption. Here, we demonstrate a non-volatile reversal of perpendicular net magnetization in a ferrimagnet by manipulating the electric-field driven polarization within the Pb (Zr0.2Ti0.8) O3 (PZT)/CoGd heterostructure. Electron energy loss spectra and X-ray absorption spectrum directly verify that the oxygen ion migration at the PZT/CoGd interface associated with reversing the polarization causes the enhanced/reduced oxidation in CoGd. Ab initio calculations further substantiate that the migrated oxygen ions can modulate the relative magnetization of Co/Gd sublattices, facilitating perpendicular net magnetization switching. Our findings offer an approach to effectively control ferrimagnetic net magnetization, holding significant implications for ferrimagnetic spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18838v1-abstract-full').style.display = 'none'; document.getElementById('2406.18838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17773">arXiv:2406.17773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17773">pdf</a>, <a href="https://arxiv.org/format/2406.17773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spectrum and low-energy gap in triangular quantum spin liquid NaYbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kevin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laurell%2C+P">P. Laurell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D">D. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ajeesh%2C+M+O">M. O. Ajeesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Ao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zapf%2C+V+S">Vivien S. Zapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heyl%2C+M">M. Heyl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagotto%2C+E">E. Dagotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">J. E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. Alan Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17773v1-abstract-short" style="display: inline;"> We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measurements of triangular lattice NaYbSe$_2$. We observe a continuum of scattering, which is reproduced by matrix product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity simulations suggest the material is within the Heisenberg spin liquid phase. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17773v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17773v1-abstract-full" style="display: none;"> We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measurements of triangular lattice NaYbSe$_2$. We observe a continuum of scattering, which is reproduced by matrix product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity simulations suggest the material is within the Heisenberg spin liquid phase. AC Susceptibility shows a significant 23~mK downturn, indicating a gap in the magnetic spectrum. The combination of a gap with no detectable magnetic order, comparison to theoretical models, and comparison to other $A$YbSe$_2$ compounds all strongly indicate NaYbSe$_2$ is within the quantum spin liquid phase. The gap also allows us to rule out a gapless Dirac spin liquid, with a gapped $\mathbb{Z}_2$ liquid the most natural explanation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17773v1-abstract-full').style.display = 'none'; document.getElementById('2406.17773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; 7 pages and 13 figures supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09944">arXiv:2406.09944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09944">pdf</a>, <a href="https://arxiv.org/format/2406.09944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal scaling behavior of resistivity under two-dimensional superconducting phase fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zongsheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+H">Hai-Jun Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zi-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09944v1-abstract-short" style="display: inline;"> In superconductors with relatively low superfluid density, such as cuprate high-$T_c$ superconductors, the phase fluctuations of the superconducting order parameter are remarkable, presumably playing a nonnegligible role in shaping many distinctive physical properties. This work systematically investigates the electrical transport properties arising from thermal superconducting phase fluctuations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09944v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09944v1-abstract-full" style="display: none;"> In superconductors with relatively low superfluid density, such as cuprate high-$T_c$ superconductors, the phase fluctuations of the superconducting order parameter are remarkable, presumably playing a nonnegligible role in shaping many distinctive physical properties. This work systematically investigates the electrical transport properties arising from thermal superconducting phase fluctuations in two-dimensional superconductors. Employing the Monte Carlo procedure, we access the numerically exact properties of a microscopic model of superconductivity, in which the classical XY model governs the thermal phase fluctuations of the superconducting order parameter. For both $s$-wave and $d_{x^2-y^2}$-wave pairings, the electrical resistivity exhibits a universal scaling behavior in the temperature range above $T_c$. Our numerical results demonstrate that the scaling behavior of the quasiparticle lifetime is associated with the correlation length of the superconducting order parameter, yielding the universal scaling behavior of electrical resistivity determined by the Berezinskii-Kosterlitz-Thouless critical scaling of the correlation length. Furthermore, we discuss the dependence of the electrical resistivity coefficient on the pairing amplitude and the possible implication on recent transport experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09944v1-abstract-full').style.display = 'none'; document.getElementById('2406.09944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00321">arXiv:2406.00321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00321">pdf</a>, <a href="https://arxiv.org/format/2406.00321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian lattice gauge fields in the photonic synthetic frequency dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+D">Dali Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roques-Carmes%2C+C">Charles Roques-Carmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lustig%2C+E">Eran Lustig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+O+Y">Olivia Y. Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Heming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shanhui Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00321v1-abstract-short" style="display: inline;"> Non-Abelian gauge fields provide a conceptual framework for the description of particles having spins. The theoretical importance of non-Abelian gauge fields motivates their experimental synthesis and explorations. Here, we demonstrate non-Abelian lattice gauge fields for photons. In the study of gauge fields, lattice models are essential for the understanding of their implications in extended sys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00321v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00321v1-abstract-full" style="display: none;"> Non-Abelian gauge fields provide a conceptual framework for the description of particles having spins. The theoretical importance of non-Abelian gauge fields motivates their experimental synthesis and explorations. Here, we demonstrate non-Abelian lattice gauge fields for photons. In the study of gauge fields, lattice models are essential for the understanding of their implications in extended systems. We utilize the platform of synthetic frequency dimensions, which enables the study of lattice physics in a scalable and programmable way. We observe Dirac cones at time-reversal-invariant momenta as well as the direction reversal of eigenstate trajectories associated with such Dirac cones. Both of them are unique signatures of non-Abelian gauge fields in our lattice system. Our results highlight the implications of non-Abelian gauge field in the study of topological physics and suggest opportunities for the control of photon spins and pseudospins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00321v1-abstract-full').style.display = 'none'; document.getElementById('2406.00321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16831">arXiv:2405.16831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16831">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Giant anomalous Hall effect and band folding in a Kagome metal with mixed dimensionality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+E">Erjian Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaipu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+S">Simin Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T">Tianping Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Houke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koban%2C+R">Ralf Koban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnelle%2C+W">Walter Schnelle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasse%2C+V">Vicky Hasse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meixiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16831v1-abstract-short" style="display: inline;"> Magnetic metals with geometric frustration offer a fertile ground for studying novel states of matter with strong quantum fluctuations and unique electromagnetic responses from conduction electrons coupled to spin textures. Recently, TbTi$_3$Bi$_4$ has emerged as such an intriguing platform as it behaves as a quasi-one-dimension (quasi-1D) Ising magnet with antiferromagnetic orderings at 20.4 K an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16831v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16831v1-abstract-full" style="display: none;"> Magnetic metals with geometric frustration offer a fertile ground for studying novel states of matter with strong quantum fluctuations and unique electromagnetic responses from conduction electrons coupled to spin textures. Recently, TbTi$_3$Bi$_4$ has emerged as such an intriguing platform as it behaves as a quasi-one-dimension (quasi-1D) Ising magnet with antiferromagnetic orderings at 20.4 K and 3 K, respectively. Magnetic fields along the Tb zigzag-chain direction reveal plateaus at 1/3 and 2/3 of saturated magnetization, respectively. At metamagnetic transition boundaries, a record-high anomalous Hall conductivity of 6.2 $\times$ 10$^5$ $惟^{-1}$ cm$^{-1}$ is observed. Within the plateau, noncollinear magnetic texture is suggested. In addition to the characteristic Kagome 2D electronic structure, ARPES unequivocally demonstrates quasi-1D electronic structure from the Tb 5$d$ bands and a quasi-1D hybridization gap in the magnetic state due to band folding with $q$ = (1/3, 0, 0) possibly from the spin-density-wave order along the Tb chain. These findings emphasize the crucial role of mixed dimensionality and the strong coupling between magnetic texture and electronic band structure in regulating physical properties of materials, offering new strategies for designing materials for future spintronics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16831v1-abstract-full').style.display = 'none'; document.getElementById('2405.16831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12811">arXiv:2405.12811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12811">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53440-w">10.1038/s41467-024-53440-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineering band structures of two-dimensional materials with remote moire ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jing Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H">Hanxiao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wenqiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+N">Naitian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+X">Xinjie Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Linfeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuigang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12811v1-abstract-short" style="display: inline;"> The stacking order and twist angle provide abundant opportunities for engineering band structures of two-dimensional materials, including the formation of moire bands, flat bands, and topologically nontrivial bands. The inversion symmetry breaking in rhombohedral-stacked transitional metal dichalcogenides (TMDCs) endows them with an interfacial ferroelectricity associated with an out-of-plane elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12811v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12811v1-abstract-full" style="display: none;"> The stacking order and twist angle provide abundant opportunities for engineering band structures of two-dimensional materials, including the formation of moire bands, flat bands, and topologically nontrivial bands. The inversion symmetry breaking in rhombohedral-stacked transitional metal dichalcogenides (TMDCs) endows them with an interfacial ferroelectricity associated with an out-of-plane electric polarization. By utilizing twist angle as a knob to construct rhombohedral-stacked TMDCs, antiferroelectric domain networks with alternating out-of-plane polarization can be generated. Here, we demonstrate that such spatially periodic ferroelectric polarizations in parallel-stacked twisted WSe2 can imprint their moire potential onto a remote bilayer graphene. This remote moire potential gives rise to pronounced satellite resistance peaks besides the charge-neutrality point in graphene, which are tunable by the twist angle of WSe2. Our observations of ferroelectric hysteresis at finite displacement fields suggest the moire is delivered by a long-range electrostatic potential. The constructed superlattices by moire ferroelectricity represent a highly flexible approach, as they involve the separation of the moire construction layer from the electronic transport layer. This remote moire is identified as a weak potential and can coexist with conventional moire. Our results offer a comprehensive strategy for engineering band structures and properties of two-dimensional materials by utilizing moire ferroelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12811v1-abstract-full').style.display = 'none'; document.getElementById('2405.12811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 9087 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12278">arXiv:2405.12278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12278">pdf</a>, <a href="https://arxiv.org/format/2405.12278">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent Majorana metal from a chiral spin liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+P">Penghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shi Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trivedi%2C+N">Nandini Trivedi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12278v1-abstract-short" style="display: inline;"> We propose a novel mechanism to explain the emergence of an intermediate gapless spin liquid phase (IGP) in the antiferromagnetic Kitaev model in an externally applied magnetic field, sandwiched between the well-known gapped chiral spin liquid (CSL) and the gapped partially polarized (PP) phase. We propose in moderate fields $蟺$-fluxes nucleate in the ground state and can trap Majorana zero modes.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12278v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12278v1-abstract-full" style="display: none;"> We propose a novel mechanism to explain the emergence of an intermediate gapless spin liquid phase (IGP) in the antiferromagnetic Kitaev model in an externally applied magnetic field, sandwiched between the well-known gapped chiral spin liquid (CSL) and the gapped partially polarized (PP) phase. We propose in moderate fields $蟺$-fluxes nucleate in the ground state and can trap Majorana zero modes. As these fluxes proliferate with increasing field, the Majorana zero modes overlap creating an emergent Majorana metallic state with a `Fermi surface&#39; at zero energy. We further show that the Majorana spectral function captures the dynamical spin and dimer correlations obtained by the infinite Projected Entangled Pair States (iPEPS) ansatz. We discuss the implications of our results for candidate Kitaev materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12278v1-abstract-full').style.display = 'none'; document.getElementById('2405.12278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+13 pages, 4+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02128">arXiv:2405.02128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02128">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rampal%2C+N">Nakul Rampal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burigana%2C+M">Matthew Burigana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+L">Lingxiang Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Johani%2C+J">Juri Al-Johani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sackmann%2C+A">Anna Sackmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murayshid%2C+H+S">Hanan S. Murayshid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Sumari%2C+W+A">Walaa Abdullah Al-Sumari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Abdulkarim%2C+A+M">Arwa M. Al-Abdulkarim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Hazmi%2C+N+E">Nahla Eid Al-Hazmi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Awad%2C+M+O">Majed O. Al-Awad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borgs%2C+C">Christian Borgs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chayes%2C+J+T">Jennifer T. Chayes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaghi%2C+O+M">Omar M. Yaghi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02128v1-abstract-short" style="display: inline;"> The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce &#39;RetChemQA,&#39; a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02128v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02128v1-abstract-full" style="display: none;"> The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce &#39;RetChemQA,&#39; a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&amp;As for each type. The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group, among others. The dataset has been generated using OpenAI&#39;s GPT-4 Turbo, a cutting-edge model known for its exceptional language understanding and generation capabilities. In addition to the Q&amp;A dataset, we also release a dataset of synthesis conditions extracted from the corpus of literature used in this study. The aim of RetChemQA is to provide a robust platform for the development and evaluation of advanced machine learning algorithms, particularly for the reticular chemistry community. The dataset is structured to reflect the complexities and nuances of real-world scientific discourse, thereby enabling nuanced performance assessments across a variety of tasks. The dataset is available at the following link: https://github.com/nakulrampal/RetChemQA <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02128v1-abstract-full').style.display = 'none'; document.getElementById('2405.02128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01640">arXiv:2405.01640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01640">pdf</a>, <a href="https://arxiv.org/format/2405.01640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal non-Hermitian flow in one-dimensional PT-symmetric quantum criticalities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xin-Chi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01640v1-abstract-short" style="display: inline;"> The critical point of a topological phase transition is described by a conformal field theory (CFT), where the finite-size corrections to the ground state energy are uniquely related to its central charge. We study the finite-size scaling of the energy of non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry ($\mathcal{PT}$) symmetry. We find that under open boundar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01640v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01640v1-abstract-full" style="display: none;"> The critical point of a topological phase transition is described by a conformal field theory (CFT), where the finite-size corrections to the ground state energy are uniquely related to its central charge. We study the finite-size scaling of the energy of non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry ($\mathcal{PT}$) symmetry. We find that under open boundary condition (OBC), the energy scaling $E(L)\sim c/L$ reveals a negative central charge $c=-2$ at the non-Hermitian critical point, indicative of a non-unitary CFT. Furthermore, we discover a universal scaling function capturing the flow of a system from Dirac CFT with $c=1$ to a non-unitary CFT with $c=-2$. The scaling function demonstrates distinct behaviors at topologically non-trivial and trivial sides of critical points. Notably, within the realm of topological criticality, the scaling function exhibits an universal rise-dip-rise pattern, manifesting a characteristic singularity inherent in the non-Hermitian topological critical points. The analytic expression of the scaling function has been derived and is in good agreement with the numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01640v1-abstract-full').style.display = 'none'; document.getElementById('2405.01640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13405">arXiv:2404.13405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13405">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Field-free switching of perpendicular magnetization by cooperation of planar Hall and orbital Hall effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bekele%2C+Z+A">Zelalem Abebe Bekele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+K">Kun Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+X">Xiukai Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">Hui Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13405v1-abstract-short" style="display: inline;"> Spin-orbit torques (SOTs) generated through the conventional spin Hall effect and/or Rashba-Edelstein effect are promising for manipulating magnetization. However, this approach typically exhibits non-deterministic and inefficient behaviour when it comes to switching perpendicular ferromagnets. This limitation posed a challenge for write-in operations in high-density magnetic memory devices. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13405v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13405v1-abstract-full" style="display: none;"> Spin-orbit torques (SOTs) generated through the conventional spin Hall effect and/or Rashba-Edelstein effect are promising for manipulating magnetization. However, this approach typically exhibits non-deterministic and inefficient behaviour when it comes to switching perpendicular ferromagnets. This limitation posed a challenge for write-in operations in high-density magnetic memory devices. Here, we determine an effective solution to overcome this challenge by simultaneously leveraging both a planar Hall effect (PHE) and an orbital Hall effect (OHE). Using a representative Co/PtGd/Mo trilayer SOT device, we demonstrate that the PHE of Co is enhanced by the interfacial coupling of Co/PtGd, giving rise to a finite out-of-plane damping-like torque within the Co layer. Simultaneously, the OHE in Mo layer induces a strong out-of-plane orbital current, significantly amplifying the in-plane damping-like torque through orbital-to-spin conversion. While either the PHE or OHE alone proves insufficient for reversing the perpendicular magnetization of Co, their collaborative action enables high-efficiency field-free deterministic switching. Our work provides a straightforward strategy to realize high-speed and low-power spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13405v1-abstract-full').style.display = 'none'; document.getElementById('2404.13405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, submitted to Nat. Commun</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12859">arXiv:2404.12859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12859">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Circular Photocurrents in Centrosymmetric Semiconductors with Hidden Spin Polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kexin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Butian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+C">Chengyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12859v2-abstract-short" style="display: inline;"> Centrosymmetric materials with site inversion asymmetries possess hidden spin polarization, which remains challenging to be converted into spin currents because the global inversion symmetry is still conserved. This study demonstrates the spin-polarized DC circular photocurrents (CPC) in centrosymmetric transition metal dichalcogenides (TMDCs) at normal incidence without applying electric bias. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12859v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12859v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12859v2-abstract-full" style="display: none;"> Centrosymmetric materials with site inversion asymmetries possess hidden spin polarization, which remains challenging to be converted into spin currents because the global inversion symmetry is still conserved. This study demonstrates the spin-polarized DC circular photocurrents (CPC) in centrosymmetric transition metal dichalcogenides (TMDCs) at normal incidence without applying electric bias. The global inversion symmetry is broken by using a spatially-varying circularly polarized light beam, which could generate spin gradient owing to the hidden spin polarization. The dependences of the CPC on electrode configuration, illumination position, and beam spot size indicate an emergence of circulating electric current under spatially inhomogeneous light, which is associated with the deflection of spin-polarized current through the inverse spin Hall effect (ISHE). The CPC is subsequently utilized to probe the spin polarization and ISHE under different excitation wavelengths and temperatures. The results of this study demonstrate the feasibility of using centrosymmetric materials with hidden spin polarization and non-vanishing Berry curvature for spintronic device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12859v2-abstract-full').style.display = 'none'; document.getElementById('2404.12859v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08521">arXiv:2404.08521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08521">pdf</a>, <a href="https://arxiv.org/format/2404.08521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnetism measurements of two-dimensional van der Waals antiferromagnet CrPS4 using dynamic cantilever magnetometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhen%2C+W">Weili Zhen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Meng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+S">Senyang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+L">Lin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">Jiaqiang Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+L">Lvkuan Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhongming Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08521v2-abstract-short" style="display: inline;"> Recent experimental and theoretical work has focused on two-dimensional van der Waals (2D vdW) magnets due to their potential applications in sensing and spintronics devises. In measurements of these emerging materials, conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials, especially for antiferromagnets with nearly compensate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08521v2-abstract-full').style.display = 'inline'; document.getElementById('2404.08521v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08521v2-abstract-full" style="display: none;"> Recent experimental and theoretical work has focused on two-dimensional van der Waals (2D vdW) magnets due to their potential applications in sensing and spintronics devises. In measurements of these emerging materials, conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials, especially for antiferromagnets with nearly compensated magnetic moments. Here, we investigate the magnetism of 2D antiferromagnet CrPS4 with a thickness of 8nm by using dynamic cantilever magnetometry (DCM). Through a combination of DCM experiment and the calculation based on a Stoner--Wohlfarth-type model, we unravel the magnetization states in 2D CrPS4 antiferromagnet. In the case of H parallel with c, a two-stage phase transition is observed. For H perpendicular to c, a hump in the effective magnetic restoring force is noted, which implies the presence of spin reorientation as temperature increases. These results demonstrate the benefits of DCM for studying magnetism of 2D magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08521v2-abstract-full').style.display = 'none'; document.getElementById('2404.08521v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07874">arXiv:2404.07874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07874">pdf</a>, <a href="https://arxiv.org/format/2404.07874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Artificial Chemotaxis under Electrodiffusiophoresis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+A+S">Carlos A. Silvera Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blake%2C+H">Hannah Blake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nwosu-Madueke%2C+V">Vivian Nwosu-Madueke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marbach%2C+S">Sophie Marbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07874v1-abstract-short" style="display: inline;"> Diffusiophoretic motion induced by gradients of dissolved species has enabled the manipulation of colloids over large distances, spanning hundreds of microns. Nonetheless, studies have primarily focused on simple geometries that feature 1D gradients of solutes generated by reactions or selective dissolution. Thus, our understanding of 3D diffusiophoresis remains elusive despite its importance in w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07874v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07874v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07874v1-abstract-full" style="display: none;"> Diffusiophoretic motion induced by gradients of dissolved species has enabled the manipulation of colloids over large distances, spanning hundreds of microns. Nonetheless, studies have primarily focused on simple geometries that feature 1D gradients of solutes generated by reactions or selective dissolution. Thus, our understanding of 3D diffusiophoresis remains elusive despite its importance in wide-ranging scenarios, such as cellular transport and nanofluidics. Herein, we present a strategy to generate 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle&#39;s double layer far from equilibrium. As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Resulting interparticle interactions display a strong dependence on surface chemistry, and particle size. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large P茅clet numbers, we observed a chemotactic-like collapse. Remarkably, such collapse occurs without reactions at a particle&#39;s surface. By mixing particles with different sizes, we also demonstrate the emergence of non-reciprocal interactions through experiments and Brownian dynamics simulations. These findings suggest a wide array of possibilities for the dynamic assembly of materials and the design of responsive matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07874v1-abstract-full').style.display = 'none'; document.getElementById('2404.07874v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01969">arXiv:2404.01969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01969">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Analytical photoresponses of gated nanowire photoconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yinchu Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiajing He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dan%2C+Y">Yaping Dan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01969v1-abstract-short" style="display: inline;"> Low-dimensional photoconductors have extraordinarily high photoresponse and gain, which can be modulated by gate voltages as shown in literature. However, the physics of gate modulation remains elusive. In this work, we investigated the physics of gate modulation in silicon nanowire photoconductors with the analytical photoresponse equations. It was found that the impact of gate voltage varies vas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01969v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01969v1-abstract-full" style="display: none;"> Low-dimensional photoconductors have extraordinarily high photoresponse and gain, which can be modulated by gate voltages as shown in literature. However, the physics of gate modulation remains elusive. In this work, we investigated the physics of gate modulation in silicon nanowire photoconductors with the analytical photoresponse equations. It was found that the impact of gate voltage varies vastly for nanowires with different size. For the wide nanowires that cannot be pinched off by high gate voltage, we found that the photoresponses are enhanced by at least one order of magnitude due to the gate-induced electric passivation. For narrow nanowires that starts with a pinched-off channel, the gate voltage has no electric passivation effect but increases the potential barrier between source and drain, resulting in a decrease in dark and photo current. For the nanowires with an intermediate size, the channel is continuous but can be pinched off by a high gate voltage. The photoresponsivity and photodetectivity is maximized during the transition from the continuous channel to the pinched-off one. This work provides important insights on how to design high-performance photoconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01969v1-abstract-full').style.display = 'none'; document.getElementById('2404.01969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 18 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01027">arXiv:2404.01027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01027">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Easy-to-configure zero-dimensional valley-chiral modes in a graphene point junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Davydov%2C+K">Konstantin Davydov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coles%2C+M">Matthew Coles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kline%2C+L">Logan Kline</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zucker%2C+B">Bryan Zucker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01027v2-abstract-short" style="display: inline;"> The valley degree of freedom in 2D materials can be manipulated for low-dissipation quantum electronics called valleytronics. At the boundary between two regions of bilayer graphene with different atomic or electrostatic configuration, valley-polarized current has been realized. However, the demanding fabrication and operation requirements limit device reproducibility and scalability toward more a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01027v2-abstract-full').style.display = 'inline'; document.getElementById('2404.01027v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01027v2-abstract-full" style="display: none;"> The valley degree of freedom in 2D materials can be manipulated for low-dissipation quantum electronics called valleytronics. At the boundary between two regions of bilayer graphene with different atomic or electrostatic configuration, valley-polarized current has been realized. However, the demanding fabrication and operation requirements limit device reproducibility and scalability toward more advanced valleytronics circuits. We demonstrate a new device architecture of a point junction where a valley-chiral 0D PN junction is easily configured, switchable, and capable of carrying valley current with an estimated polarization of ~80%. This work provides a new building block in manipulating valley quantum numbers and scalable valleytronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01027v2-abstract-full').style.display = 'none'; document.getElementById('2404.01027v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00519">arXiv:2404.00519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00519">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electron Collimation in Twisted Bilayer Graphene via Gate-defined Moir茅 Barriers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+M">Moosa Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luskin%2C+M">Mitchell Luskin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00519v1-abstract-short" style="display: inline;"> Electron collimation via a graphene pn-junction allows electrostatic control of ballistic electron trajectories akin to that of an optical circuit. Similar manipulation of novel correlated electronic phases in twisted-bilayer graphene (tBLG) can provide additional probes to the underlying physics and device components towards advanced quantum electronics. In this work, we demonstrate collimation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00519v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00519v1-abstract-full" style="display: none;"> Electron collimation via a graphene pn-junction allows electrostatic control of ballistic electron trajectories akin to that of an optical circuit. Similar manipulation of novel correlated electronic phases in twisted-bilayer graphene (tBLG) can provide additional probes to the underlying physics and device components towards advanced quantum electronics. In this work, we demonstrate collimation of the electron flow via gate-defined moir茅 barriers in a tBLG device, utilizing the band-insulator gap of the moir茅 superlattice. A single junction can be tuned to host a chosen combination of conventional pseudo barrier and moir茅 tunnel barriers, from which we demonstrate improved collimation efficiency. By measuring transport through two consecutive moir茅 collimators separated by 1 um, we demonstrate evidence of electron collimation in tBLG in the presence of realistic twist-angle inhomogeneity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00519v1-abstract-full').style.display = 'none'; document.getElementById('2404.00519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17058">arXiv:2403.17058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17058">pdf</a>, <a href="https://arxiv.org/format/2403.17058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Origin of competing charge density waves in kagome metal ScV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Siyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sun-Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monserrat%2C+B">Bartomeu Monserrat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17058v3-abstract-short" style="display: inline;"> Understanding competing charge density wave (CDW) orders in the bilayer kagome metal ScV$_6$Sn$_6$ remains challenging. Experimentally, upon cooling, short-range order with wave vector $\mathbf{q}_{2}=(\frac{1}{3},\frac{1}{3},\frac{1}{2})$ forms, which is subsequently suppressed by the condensation of long-range $\mathbf{q}_{3}=(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ CDW order at lower temperature.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17058v3-abstract-full').style.display = 'inline'; document.getElementById('2403.17058v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17058v3-abstract-full" style="display: none;"> Understanding competing charge density wave (CDW) orders in the bilayer kagome metal ScV$_6$Sn$_6$ remains challenging. Experimentally, upon cooling, short-range order with wave vector $\mathbf{q}_{2}=(\frac{1}{3},\frac{1}{3},\frac{1}{2})$ forms, which is subsequently suppressed by the condensation of long-range $\mathbf{q}_{3}=(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ CDW order at lower temperature. Theoretically, however, the $\mathbf{q}_{2}$ CDW is predicted as the ground state, leaving the CDW mechanism elusive. Here, using anharmonic phonon-phonon calculations combined with density functional theory, we predict a temperature-driven structural phase transitions from the high-temperature pristine phase to the $\mathbf{q}_{2}$ CDW, followed by the low-temperature $\mathbf{q}_{3}$ CDW, explaining experimental observations. We demonstrate that semi-core electron states stabilize the $\mathbf{q}_{3}$ CDW over the $\mathbf{q}_{2}$ CDW. Furthermore, we find that the out-of-plane lattice parameter controls the competing CDWs, motivating us to propose compressive bi-axial strain as an experimental protocol to stabilize the $\mathbf{q}_{2}$ CDW. Finally, we suggest Ge or Pb doping at the Sn site as another potential avenue to control CDW instabilities. Our work provides a full theory of CDWs in ScV$_6$Sn$_6$, rationalizing experimental observations and resolving earlier discrepancies between theory and experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17058v3-abstract-full').style.display = 'none'; document.getElementById('2403.17058v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12141">arXiv:2403.12141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12141">pdf</a>, <a href="https://arxiv.org/format/2403.12141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Fractionalization Signatures in the Dynamics of Quantum Spin Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+S">Shi Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+P">Penghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+R">Runze Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+H">Hai-Jun Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trivedi%2C+N">Nandini Trivedi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12141v2-abstract-short" style="display: inline;"> We investigate the signatures of fractionalization in quantum spin liquids by studying different phases of the Kitaev honeycomb model in the presence of an out-of-plane magnetic field through which the model becomes non-integrable. Using the infinite Projected Entangled Pair States (iPEPS) ansatz, along with analytical calculations and exact diagonalization, we calculate dynamical signatures of fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12141v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12141v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12141v2-abstract-full" style="display: none;"> We investigate the signatures of fractionalization in quantum spin liquids by studying different phases of the Kitaev honeycomb model in the presence of an out-of-plane magnetic field through which the model becomes non-integrable. Using the infinite Projected Entangled Pair States (iPEPS) ansatz, along with analytical calculations and exact diagonalization, we calculate dynamical signatures of fractionalized particles through spin-spin and dimer-dimer correlations. Our analysis demonstrates the ability of these correlations to discern distinct fractionalized quantum sectors, namely Majorana fermions and the emergent $Z_2$ fluxes, in both the chiral spin liquid (CSL) phase under weak field and the emergent intermediate gapless phase (IGP) under moderate field. Importantly, our calculation reveals the nature of IGP observed at moderate fields, a region of ongoing debate, indicating that this phase is a Majorana metal induced by strong flux fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12141v2-abstract-full').style.display = 'none'; document.getElementById('2403.12141v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+8 pages, 4+9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07864">arXiv:2403.07864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07864">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the nature of quasi van der Waals Epitaxy of magnetic topological insulators Cr: (BixSb1-x)2Te3 on a GaAs (111) substrate through coherently strained interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yuxing Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+L">Lixuan Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+K">Kaicheng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yueyun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregory%2C+B+Z">Benjamin Z. Gregory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J+H">Jin Ho Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jackson%2C+M">Malcolm Jackson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+M">Michael Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yifei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bodzin%2C+N">Noah Bodzin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+K">Kin Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarker%2C+S">Suchismita Sarker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regan%2C+B+C">B. C. Regan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+C">Chee-Wei Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goorsky%2C+M">Mark Goorsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07864v1-abstract-short" style="display: inline;"> Quasi van der Waals Epitaxy (qvdWE) has been realized for decades at the interfaces between 3D and 2D materials or van der Waals materials. The growth of magnetic topological insulators (MTI) Cr: (BixSb1-x)2Te3 (CBST) on GaAs (111) substrates for Quantum Anomalous Hall Effect (QAH) is actually one of the examples of qvdWE, which is not well noticed despite the fact that its advantages have been us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07864v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07864v1-abstract-full" style="display: none;"> Quasi van der Waals Epitaxy (qvdWE) has been realized for decades at the interfaces between 3D and 2D materials or van der Waals materials. The growth of magnetic topological insulators (MTI) Cr: (BixSb1-x)2Te3 (CBST) on GaAs (111) substrates for Quantum Anomalous Hall Effect (QAH) is actually one of the examples of qvdWE, which is not well noticed despite the fact that its advantages have been used in growth of various MTI materials. This is distinguished from the growth of MTIs on other substrates. Although the qvdWE mode has been used in many 2D growth on III-V substrates, the specific features and mechanisms are not well demonstrated and summarized yet. Here in this work, we have for the first time shown the features of both coherent interfaces and the existence of strain originating from qvdWE at the same time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07864v1-abstract-full').style.display = 'none'; document.getElementById('2403.07864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 1 table. Already shown in APS March Meeting 2023 and 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05444">arXiv:2403.05444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05444">pdf</a>, <a href="https://arxiv.org/format/2403.05444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Chlorine and zinc co-doping effects on the electronic structure and optical properties of 纬-CuI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Meicong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhuli Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Qiang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+N">Naixin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kailei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+X">Xiaoping Ouyang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05444v1-abstract-short" style="display: inline;"> The effects of chlorine (Cl) and zinc (Zn) co-doping on the electronic structure and optical properties of the zinc blende (纬) phase of copper iodide (纬-CuI) scintillator material are investigated by using first-principles density functional theory calculations. The band structure, density of states, dielectric function, absorption coefficients, and reflectivity were analyzed before and after dopi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05444v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05444v1-abstract-full" style="display: none;"> The effects of chlorine (Cl) and zinc (Zn) co-doping on the electronic structure and optical properties of the zinc blende (纬) phase of copper iodide (纬-CuI) scintillator material are investigated by using first-principles density functional theory calculations. The band structure, density of states, dielectric function, absorption coefficients, and reflectivity were analyzed before and after doping. Results show co-doping significantly modifies the band structure, reduces the band gap, and generates impurity energy levels. Cl doping enhances absorption in the high energy region while reducing visible light absorption. Zn doping induces a redshift in absorption and n-type conductivity at high concentrations. With suitable co-doping ratios, the absorption coefficient and reflectivity of 纬-CuI can be optimized in the visible range to improve scintillation light yield. The calculations provide guidance for co-doping 纬-CuI scintillators to achieve superior detection performance. The n-type conductivity also makes doped 纬-CuI promising for optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05444v1-abstract-full').style.display = 'none'; document.getElementById('2403.05444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05115">arXiv:2403.05115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05115">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity of the New Medium-Entropy Alloy V4Ti2W with a Body-Centered Cubic Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Weijie Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+R">Ruixin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">Shu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05115v1-abstract-short" style="display: inline;"> Medium- and high-entropy alloy (MEA and HEA) superconductors have attracted considerable interest since their discovery. This paper reports the superconducting properties of ternary tungsten-containing MEA V4Ti2W for the first time. V4Ti2W is a type II superconductor with a body-centered cubic (BCC) structure. Experimental results of resistivity, magnetization, and heat capacity indicate that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05115v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05115v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05115v1-abstract-full" style="display: none;"> Medium- and high-entropy alloy (MEA and HEA) superconductors have attracted considerable interest since their discovery. This paper reports the superconducting properties of ternary tungsten-containing MEA V4Ti2W for the first time. V4Ti2W is a type II superconductor with a body-centered cubic (BCC) structure. Experimental results of resistivity, magnetization, and heat capacity indicate that the superconducting transition temperature of the MEA V4Ti2W is roughly 5.0 K. The critical magnetic fields at the upper and lower ends are 9.93(2) T and 40.7(3) mT, respectively. Interestingly, few BCC MEA superconductors with VEC greater than 4.8 have been found. The addition of tungsten leads to a VEC of 4.83 e/a for V4Ti2W, which is rarely higher than the 4.8 value. Adding tungsten element expands the variety of MEA alloys, which may improve the microstructure and mechanical properties of materials and even superconducting properties. This material could potentially offer a new platform for the investigation of innovative MEA and HEA superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05115v1-abstract-full').style.display = 'none'; document.getElementById('2403.05115v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Communications, 2024, 38, 108444 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18735">arXiv:2402.18735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18735">pdf</a>, <a href="https://arxiv.org/format/2402.18735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-breaking normal state response and surface superconductivity in topological semimetal YPtBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyunsoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metz%2C+T">Tristin Metz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hodovanets%2C+H">Halyna Hodovanets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kraft%2C+D">Daniel Kraft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kefeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eo%2C+Y+S">Yun Suk Eo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">Johnpierre Paglione</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18735v1-abstract-short" style="display: inline;"> Most of the half-Heusler RPtBi compounds (R=rare earth) host various surface states due to spin-orbit coupling driven topological band structure. While recent ARPES measurements ubiquitously reported the existence of surface states in RPtBi, their evidence by other experimental techniques remains elusive. Here we report the angle-dependent magnetic field response of electrical transport properties&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18735v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18735v1-abstract-full" style="display: none;"> Most of the half-Heusler RPtBi compounds (R=rare earth) host various surface states due to spin-orbit coupling driven topological band structure. While recent ARPES measurements ubiquitously reported the existence of surface states in RPtBi, their evidence by other experimental techniques remains elusive. Here we report the angle-dependent magnetic field response of electrical transport properties of YPtBi in both the normal and superconducting states. The angle dependence of both magnetoresistance and the superconducting upper critical field breaks the rotational symmetry of the cubic crystal structure, and the angle between the applied magnetic field and the measurement plane of a plate-like sample prevails. Furthermore, the measured upper critical field is notably higher than the bulk response for an in-plane magnetic field configuration, suggesting the presence of quasi-2D superconductivity. Our work suggests the transport properties cannot be explained solely by the bulk carrier response, requiring robust normal and superconducting surface states to flourish in YPtBi. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18735v1-abstract-full').style.display = 'none'; document.getElementById('2402.18735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+K&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10