CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 96 results for author: <span class="mathjax">Liu, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Liu%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+C&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11533">arXiv:2411.11533</a> <span> [<a href="https://arxiv.org/pdf/2411.11533">pdf</a>, <a href="https://arxiv.org/ps/2411.11533">ps</a>, <a href="https://arxiv.org/format/2411.11533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the $畏_c畏_c$ and $J/蠄J/蠄$ s-wave scattering length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Tuo%2C+X">Xin-Yu Tuo</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Z">Zhaolong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11533v1-abstract-short" style="display: inline;"> We calculate the s-wave scattering length in the $0^+$ sector of $畏_c畏_c$ and the $2^+$ sector of $J/蠄J/蠄$ using three $N_f=2$ twisted mass gauge ensembles with the lattice spacing $a=0.0667,0.085,0.098$ fm, respectively. The scattering lengths are extracted using the conventional L{眉}scher finite size method. We observe sizable discretization effects and the results after a continuum extrapolatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11533v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11533v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11533v1-abstract-full" style="display: none;"> We calculate the s-wave scattering length in the $0^+$ sector of $畏_c畏_c$ and the $2^+$ sector of $J/蠄J/蠄$ using three $N_f=2$ twisted mass gauge ensembles with the lattice spacing $a=0.0667,0.085,0.098$ fm, respectively. The scattering lengths are extracted using the conventional L{眉}scher finite size method. We observe sizable discretization effects and the results after a continuum extrapolation are $a^{0^+}_{畏_c畏_c}=-0.104(09)$ fm and $a^{2^+}_{J/蠄J/蠄}=-0.165(16)$ fm. Our results indicate that the interaction between the two respective charmonia are repulsive in nature in both cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11533v1-abstract-full').style.display = 'none'; document.getElementById('2411.11533v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06349">arXiv:2411.06349</a> <span> [<a href="https://arxiv.org/pdf/2411.06349">pdf</a>, <a href="https://arxiv.org/format/2411.06349">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the $蟺^0$-pole contribution to the hadronic light-by-light scattering in the anomalous magnetic moment of the muon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+T">Tian Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Lu-Chang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Luo%2C+Q">Qi-Yuan Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06349v1-abstract-short" style="display: inline;"> We develop a method to compute the pion transition form factors directly at arbitrary photon momenta and use it to determine the $蟺^0$-pole contribution to the hadronic light-by-light scattering in the anomalous magnetic moment of the muon. The calculation is performed using eight gauge ensembles generated with 2+1 flavor domain wall fermions, incorporating multiple pion masses, lattice spacings,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06349v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06349v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06349v1-abstract-full" style="display: none;"> We develop a method to compute the pion transition form factors directly at arbitrary photon momenta and use it to determine the $蟺^0$-pole contribution to the hadronic light-by-light scattering in the anomalous magnetic moment of the muon. The calculation is performed using eight gauge ensembles generated with 2+1 flavor domain wall fermions, incorporating multiple pion masses, lattice spacings, and volumes. By introducing a pion structure function and performing a Gegenbauer expansion, we demonstrate that about 98% of the $蟺^0$-pole contribution can be extracted in a model-independent manner, thereby ensuring that systematic effects are well controlled. After applying finite-volume corrections, as well as performing chiral and continuum extrapolations, we obtain the final result for the $蟺^0$-pole contribution to the hadronic light-by-light scatterintg in the muon's anomalous magnetic moment, $a_渭^{蟺^0\mathrm{-pole}}=59.6(2.2)\times 10^{-11}$, and the $蟺^0$ decay width, $螕_{蟺^0\to 纬纬}=7.20(35)\mathrm{eV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06349v1-abstract-full').style.display = 'none'; document.getElementById('2411.06349v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04415">arXiv:2411.04415</a> <span> [<a href="https://arxiv.org/pdf/2411.04415">pdf</a>, <a href="https://arxiv.org/format/2411.04415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Lattice study on $J/蠄\rightarrow 纬畏_c$ using a method without momentum extrapolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Teng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04415v1-abstract-short" style="display: inline;"> We present a model-independent method to calculate the radiative transition without the momentum extrapolation for the off-shell transition factors. The on-shell transition factor is directly obtained from the lattice hadronic function. We apply the method to calculate the charmonium radiative transition $J/蠄\rightarrow 纬畏_c$. After a continuous extrapolation under three lattice spacings, we obtai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04415v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04415v1-abstract-full" style="display: none;"> We present a model-independent method to calculate the radiative transition without the momentum extrapolation for the off-shell transition factors. The on-shell transition factor is directly obtained from the lattice hadronic function. We apply the method to calculate the charmonium radiative transition $J/蠄\rightarrow 纬畏_c$. After a continuous extrapolation under three lattice spacings, we obtain the on-shell transition factor as $V(0)=1.90(4)$, where the error is the statistical error that already takes into account the $a^2$-error in the continuous extrapolation. Finally, we determine the branching fraction of $J/蠄\rightarrow 纬畏_c$ as $\operatorname{Br}(J/蠄\rightarrow 纬畏_c)=2.49(11)_{\textrm{lat}}(5)_{\textrm{exp}}$, where the second error comes from the uncertainty of $J/蠄$ total decay width $92.6(1.7)$ keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04415v1-abstract-full').style.display = 'none'; document.getElementById('2411.04415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03141">arXiv:2411.03141</a> <span> [<a href="https://arxiv.org/pdf/2411.03141">pdf</a>, <a href="https://arxiv.org/format/2411.03141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the subtraction function in forward Compton amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fu%2C+Y">Yang Fu</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Lu-Chang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wen%2C+S">Shi-Da Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03141v1-abstract-short" style="display: inline;"> The subtraction function plays a pivotal role in calculations involving the forward Compton amplitude, which is crucial for predicting the Lamb shift in muonic atom, as well as the proton-neutron mass difference. In this work, we present a lattice QCD calculation of the subtraction function using two domain wall fermion gauge ensembles at the physical pion mass. We utilize a recently proposed subt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03141v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03141v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03141v1-abstract-full" style="display: none;"> The subtraction function plays a pivotal role in calculations involving the forward Compton amplitude, which is crucial for predicting the Lamb shift in muonic atom, as well as the proton-neutron mass difference. In this work, we present a lattice QCD calculation of the subtraction function using two domain wall fermion gauge ensembles at the physical pion mass. We utilize a recently proposed subtraction point, demonstrating its advantage in mitigating statistical and systematic uncertainties by eliminating the need for ground-state subtraction. Our results reveal significant contributions from $N蟺$ intermediate states to the subtraction function. Incorporating these contributions, we compute the proton, neutron and nucleon isovector subtraction functions at photon momentum transfer $Q^2\in[0,2]$ GeV$^2$. For the proton subtraction function, we compare our lattice results with chiral perturbation theory prediction at low $Q^2$ and with the results from the perturbative operator-product expansion at high $Q^2$. Finally, using these subtraction functions as input, we determine their contribution to two-photon exchange effects in the Lamb shift and isovector nucleon electromagnetic self-energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03141v1-abstract-full').style.display = 'none'; document.getElementById('2411.03141v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5799 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span> [<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03548">arXiv:2408.03548</a> <span> [<a href="https://arxiv.org/pdf/2408.03548">pdf</a>, <a href="https://arxiv.org/format/2408.03548">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Charmed meson masses and decay constants in the continuum from the tadpole improved clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Du%2C+H">Hai-Yang Du</a>, <a href="/search/hep-lat?searchtype=author&query=Hu%2C+B">Bolun Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03548v2-abstract-short" style="display: inline;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03548v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03548v2-abstract-full" style="display: none;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through the stout smeared clover fermion action and Symanzik gauge actions with the tadpole improvement. Using QED-subtracted $D_s$ meson mass and non-perturbative renormalization, we predict the charm quark mass in the continuum with physical light and strange quark masses to be {$m_c(m_c)=1.289(17)$} GeV in $\overline{\textrm{MS}}$ scheme, with the systematic uncertainties from lattice spacing determination, renormalization constant, {and fit ansatz} included. Predictions of the open and close charm mesons using this charm quark mass agree with the experimental value at 0.3\% level uncertainty. We obtained {$D_{(s)}$ decay constants and also by far the most precise $D_{(s)}^*$ decay constants $f_{D^*}=0.2321(43)$ GeV and $f_{D^*_s}=0.2743(34)$ GeV}, with the charm quark improved vector current normalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'none'; document.getElementById('2408.03548v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13568">arXiv:2407.13568</a> <span> [<a href="https://arxiv.org/pdf/2407.13568">pdf</a>, <a href="https://arxiv.org/ps/2407.13568">ps</a>, <a href="https://arxiv.org/format/2407.13568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.074510">10.1103/PhysRevD.110.074510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First lattice QCD calculation of $J/蠄$ semileptonic decay containing $D$ and $D_s$ particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Dang%2C+J">Jin-Long Dang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Tuo%2C+X">Xin-Yu Tuo</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13568v3-abstract-short" style="display: inline;"> We perform the first lattice calculation on the semileptonic decay of $J/蠄$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. Three gauge ensembles with different lattice spacings, from 0.0519 fm to 0.1053 fm, and pion masses, $m_蟺\sim$ 300 MeV, are utilized. After a naive continuum extrapolation using three lattice spacings, we obtain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13568v3-abstract-full').style.display = 'inline'; document.getElementById('2407.13568v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13568v3-abstract-full" style="display: none;"> We perform the first lattice calculation on the semileptonic decay of $J/蠄$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. Three gauge ensembles with different lattice spacings, from 0.0519 fm to 0.1053 fm, and pion masses, $m_蟺\sim$ 300 MeV, are utilized. After a naive continuum extrapolation using three lattice spacings, we obtain $\operatorname{Br}(J/蠄\rightarrow D_s e谓_e)=1.90(6)(5)_{V_{cs}}\times 10^{-10}$ and $\operatorname{Br}(J/蠄\rightarrow D e谓_e)=1.21(6)(9)_{V_{cd}}\times 10^{-11}$, where the first errors are statistical, and the second come from the uncertainties of CKM matrix element $V_{cs(d)}$. The ratios of the branching fractions between lepton $渭$ and $e$ are also calculated as $R_{J/蠄}(D_s)=0.97002(8)$ and $R_{J/蠄}(D)=0.97423(15)$ after performing a continuum limit including only $a^2$ term. The ratios provide necessary theoretical support for the future experimental test of lepton flavor universality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13568v3-abstract-full').style.display = 'none'; document.getElementById('2407.13568v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures, published version with minor word editing</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRD110,074510(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13479">arXiv:2404.13479</a> <span> [<a href="https://arxiv.org/pdf/2404.13479">pdf</a>, <a href="https://arxiv.org/format/2404.13479">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion mass dependence in $D蟺$ scattering and the $D_0^*(2300)$ resonance from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xing%2C+H">Hanyang Xing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13479v2-abstract-short" style="display: inline;"> Lattice QCD results for isospin $I=\frac{1}{2}$ $D蟺$ scattering are presented. Utilizing a series of $N_{\text{f}}=2+1$ Wilson-Clover ensembles with pion masses of $m_蟺\approx 132, 208, 305$ and $317$ MeV, various two-particle operators are constructed and the corresponding finite-volume spectra are determined. The $S$ and $P$-wave scattering phase shifts are then extracted using the L眉scher appro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13479v2-abstract-full').style.display = 'inline'; document.getElementById('2404.13479v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13479v2-abstract-full" style="display: none;"> Lattice QCD results for isospin $I=\frac{1}{2}$ $D蟺$ scattering are presented. Utilizing a series of $N_{\text{f}}=2+1$ Wilson-Clover ensembles with pion masses of $m_蟺\approx 132, 208, 305$ and $317$ MeV, various two-particle operators are constructed and the corresponding finite-volume spectra are determined. The $S$ and $P$-wave scattering phase shifts are then extracted using the L眉scher approach. A clear trend for the motion of the $D_0^*(2300)$ pole is identified. With the physical pion mass configurations also included, this calculation constitutes the first lattice calculation in which the pion mass dependence of the $D_0^*(2300)$ pole is investigated and the scattering lengths are extrapolated/interpolated to the physical pion mass in $D蟺$ scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13479v2-abstract-full').style.display = 'none'; document.getElementById('2404.13479v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures, 9 tables. v2: add a new calculation using a Fermilab charm action; correct a typo in Tab. 2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13475">arXiv:2401.13475</a> <span> [<a href="https://arxiv.org/pdf/2401.13475">pdf</a>, <a href="https://arxiv.org/format/2401.13475">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the $D_s^{*}$ radiative decay with (2+1)-flavor Wilson-clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Dang%2C+J">Jin-Long Dang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shen%2C+T">Tinghong Shen</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13475v2-abstract-short" style="display: inline;"> We perform a lattice calculation on the radiative decay of $D_s^*$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. A method allowing us to calculate the form factor with zero transfer momentum is proposed and applied to the radiative transition $D_s^*\rightarrow D_s纬$ and the Dalitz decay $D_s^*\rightarrow D_s e^+e^-$. After a continuum extrapolation using th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13475v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13475v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13475v2-abstract-full" style="display: none;"> We perform a lattice calculation on the radiative decay of $D_s^*$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. A method allowing us to calculate the form factor with zero transfer momentum is proposed and applied to the radiative transition $D_s^*\rightarrow D_s纬$ and the Dalitz decay $D_s^*\rightarrow D_s e^+e^-$. After a continuum extrapolation using three lattice spacings, we obtain $螕(D_s^*\rightarrow D_s 纬)=0.0549(54)$ keV, where the error is purely statistical. The result is consistent with previous lattice calculations but with a error reduced to only a fifth of the before. The Dalitz decay rate is also calculated for the first time and the ratio with the radiative transition is found to be $R_{ee}=0.624(3)\%$. A total decay width of $D_s^*$ can then be determined as 0.0587(54) keV taking into account the experimental branching fraction. Combining with the most recent experimental measurement on the branching fraction of the purely leptonic decay $D_s^{+,*}\rightarrow e^+谓_e$, we obtain the quantity $f_{D_s^*}|V_{cs}|=(190.5^{+55.1}_{-41.7_{\textrm{stat.}}}\pm 12.6_{\textrm{syst.}})$ MeV, where the stat. is only the statistical error from the experiment, and syst. results from the experimental systematic uncertainty and the lattice statistical error. Our result leads to an improved systematic uncertainty compared to $42.7_{\textrm{syst.}}$ obtained using previous lattice prediction of total decay width $0.070(28)$ keV as the input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13475v2-abstract-full').style.display = 'none'; document.getElementById('2401.13475v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 109,074511(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01078">arXiv:2312.01078</a> <span> [<a href="https://arxiv.org/pdf/2312.01078">pdf</a>, <a href="https://arxiv.org/format/2312.01078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Isospin-$\frac{1}{2}$ $D蟺$ scattering and the $D_0^*$ resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xing%2C+H">Hanyang Xing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01078v1-abstract-short" style="display: inline;"> Preliminary lattice QCD results for $D蟺$ scattering in isospin $I=\frac{1}{2}$ channel are presented. Utilizing the $N_f=2+1$ Wilson-Clover configuration at two volumes ($L^3 \times T=32^3 \times 96$ and $48^3 \times 96$) with the same lattice spacing ($a=0.07746(18)$ fm) and pion mass ($m_蟺\approx 303$ MeV), various two-particle operators in both the COM and the moving frames are constructed and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01078v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01078v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01078v1-abstract-full" style="display: none;"> Preliminary lattice QCD results for $D蟺$ scattering in isospin $I=\frac{1}{2}$ channel are presented. Utilizing the $N_f=2+1$ Wilson-Clover configuration at two volumes ($L^3 \times T=32^3 \times 96$ and $48^3 \times 96$) with the same lattice spacing ($a=0.07746(18)$ fm) and pion mass ($m_蟺\approx 303$ MeV), various two-particle operators in both the COM and the moving frames are constructed and the corresponding finite-volume spectra are determined from their correlation functions. The $S$ and $P$-wave scattering phase shifts are then extracted using the L眉scher approach, assuming negligible contributions from higher partial waves. A virtual state associated with the $D_0^*$ is also identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01078v1-abstract-full').style.display = 'none'; document.getElementById('2312.01078v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, 1 table. Talk presented at the 40th International Symposium on Lattice Field Theory (Lattice2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01168">arXiv:2310.01168</a> <span> [<a href="https://arxiv.org/pdf/2310.01168">pdf</a>, <a href="https://arxiv.org/format/2310.01168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Nucleon electric polarizabilities and nucleon-pion scattering at physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+X">Xuan-He Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Z">Zhao-Long Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Cao%2C+X">Xiong-Hui Cao</a>, <a href="/search/hep-lat?searchtype=author&query=Fan%2C+C">Cong-Ling Fan</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Gao%2C+Y">Yu-Sheng Gao</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Lu-Chang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01168v3-abstract-short" style="display: inline;"> We present a lattice QCD calculation of the nucleon electric polarizabilities at the physical pion mass. Our findings reveal the substantial contributions of the $N蟺$ states to these polarizabilities. Without considering these contributions, the lattice results fall significantly below the experimental values, consistent with previous lattice studies. This observation has motivated us to compute b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01168v3-abstract-full').style.display = 'inline'; document.getElementById('2310.01168v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01168v3-abstract-full" style="display: none;"> We present a lattice QCD calculation of the nucleon electric polarizabilities at the physical pion mass. Our findings reveal the substantial contributions of the $N蟺$ states to these polarizabilities. Without considering these contributions, the lattice results fall significantly below the experimental values, consistent with previous lattice studies. This observation has motivated us to compute both the parity-negative $N蟺$ scattering up to a nucleon momentum of $\sim0.5$ GeV in the center-of-mass frame and corresponding $N纬^*\to N蟺$ matrix elements using lattice QCD. Our results confirm that incorporating dynamic $N蟺$ contributions is crucial for a reliable determination of the polarizabilities from lattice QCD. This methodology lays the groundwork for future lattice QCD investigations into various other polarizabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01168v3-abstract-full').style.display = 'none'; document.getElementById('2310.01168v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures; version accepted by PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11824">arXiv:2305.11824</a> <span> [<a href="https://arxiv.org/pdf/2305.11824">pdf</a>, <a href="https://arxiv.org/format/2305.11824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.114503">10.1103/PhysRevD.108.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative renormalization of asymmetric staple-shaped operators in twisted mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchio%2C+S">Simone Bacchio</a>, <a href="/search/hep-lat?searchtype=author&query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sen%2C+A">Aniket Sen</a>, <a href="/search/hep-lat?searchtype=author&query=Spanoudes%2C+G">Gregoris Spanoudes</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Tarello%2C+J">Jacopo Tarello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11824v2-abstract-short" style="display: inline;"> Staple-shaped Wilson line operators are necessary for the study of transverse momentum-dependent parton distribution functions (TMDPDFs) in lattice QCD and beyond. In this work, we study the renormalization of such operators in the general case of an asymmetric staple. We analyze the mixing pattern of these operators using their symmetry properties, where we find that the possible mixing is restri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11824v2-abstract-full').style.display = 'inline'; document.getElementById('2305.11824v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11824v2-abstract-full" style="display: none;"> Staple-shaped Wilson line operators are necessary for the study of transverse momentum-dependent parton distribution functions (TMDPDFs) in lattice QCD and beyond. In this work, we study the renormalization of such operators in the general case of an asymmetric staple. We analyze the mixing pattern of these operators using their symmetry properties, where we find that the possible mixing is restricted within groups of four operators. We then present numerical results using the regularization independent momentum subtraction (RI/MOM) scheme to study the importance of mixing using one operator in particular, the $纬_0$ operator. Based on these results, we consider the short distance ratio (SDR) scheme, which is desirable in the absence of mixing. Finally, we investigate a variant of the RI/MOM scheme, where the renormalization factors are computed at short distances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11824v2-abstract-full').style.display = 'none'; document.getElementById('2305.11824v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span> [<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08103">arXiv:2203.08103</a> <span> [<a href="https://arxiv.org/pdf/2203.08103">pdf</a>, <a href="https://arxiv.org/format/2203.08103">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Electric dipole moments and the search for new physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alarcon%2C+R">Ricardo Alarcon</a>, <a href="/search/hep-lat?searchtype=author&query=Alexander%2C+J">Jim Alexander</a>, <a href="/search/hep-lat?searchtype=author&query=Anastassopoulos%2C+V">Vassilis Anastassopoulos</a>, <a href="/search/hep-lat?searchtype=author&query=Aoki%2C+T">Takatoshi Aoki</a>, <a href="/search/hep-lat?searchtype=author&query=Baartman%2C+R">Rick Baartman</a>, <a href="/search/hep-lat?searchtype=author&query=Bae%C3%9Fler%2C+S">Stefan Bae脽ler</a>, <a href="/search/hep-lat?searchtype=author&query=Bartoszek%2C+L">Larry Bartoszek</a>, <a href="/search/hep-lat?searchtype=author&query=Beck%2C+D+H">Douglas H. Beck</a>, <a href="/search/hep-lat?searchtype=author&query=Bedeschi%2C+F">Franco Bedeschi</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+R">Robert Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berz%2C+M">Martin Berz</a>, <a href="/search/hep-lat?searchtype=author&query=Bethlem%2C+H+L">Hendrick L. Bethlem</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blaskiewicz%2C+M">Michael Blaskiewicz</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Bowcock%2C+T">Themis Bowcock</a>, <a href="/search/hep-lat?searchtype=author&query=Borschevsky%2C+A">Anastasia Borschevsky</a>, <a href="/search/hep-lat?searchtype=author&query=Brown%2C+K">Kevin Brown</a>, <a href="/search/hep-lat?searchtype=author&query=Budker%2C+D">Dmitry Budker</a>, <a href="/search/hep-lat?searchtype=author&query=Burdin%2C+S">Sergey Burdin</a>, <a href="/search/hep-lat?searchtype=author&query=Casey%2C+B+C">Brendan C. Casey</a>, <a href="/search/hep-lat?searchtype=author&query=Casse%2C+G">Gianluigi Casse</a>, <a href="/search/hep-lat?searchtype=author&query=Cantatore%2C+G">Giovanni Cantatore</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+L">Lan Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Chupp%2C+T">Timothy Chupp</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08103v2-abstract-short" style="display: inline;"> Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08103v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08103v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08103v2-abstract-full" style="display: none;"> Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08103v2-abstract-full').style.display = 'none'; document.getElementById('2203.08103v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021; updated with community edits and endorsements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00768">arXiv:2111.00768</a> <span> [<a href="https://arxiv.org/pdf/2111.00768">pdf</a>, <a href="https://arxiv.org/format/2111.00768">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac4bcc">10.1088/1674-1137/ac4bcc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of $蠂_{c0} \rightarrow 2纬$ decay width </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zou%2C+Z">Zuoheng Zou</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00768v3-abstract-short" style="display: inline;"> We perform a lattice QCD calculation of the $蠂_{c0} \rightarrow 2纬$ decay width using a model-independent method which does not require a momentum extrapolation of the corresponding off-shell form factors. The simulation is performed on ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations with three different lattice spacings. After a continuum extrapolation, the decay width is obtai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00768v3-abstract-full').style.display = 'inline'; document.getElementById('2111.00768v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00768v3-abstract-full" style="display: none;"> We perform a lattice QCD calculation of the $蠂_{c0} \rightarrow 2纬$ decay width using a model-independent method which does not require a momentum extrapolation of the corresponding off-shell form factors. The simulation is performed on ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations with three different lattice spacings. After a continuum extrapolation, the decay width is obtained to be $螕_{纬纬}(蠂_{c0})=3.65(83)_{\mathrm{stat}}(21)_{\mathrm{lat.syst}}(66)_{\mathrm{syst}}\, \textrm{keV}$. Albeit this large statistical error, our result is compatible with the experimental results within 1.3$蟽$. Potential improvements of the lattice calculation in the future are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00768v3-abstract-full').style.display = 'none'; document.getElementById('2111.00768v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09381">arXiv:2109.09381</a> <span> [<a href="https://arxiv.org/pdf/2109.09381">pdf</a>, <a href="https://arxiv.org/format/2109.09381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2023.07.041">10.1016/j.scib.2023.07.041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principle calculation of $畏_c\rightarrow 2纬$ decay width from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Teng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zou%2C+Z">Zuoheng Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09381v3-abstract-short" style="display: inline;"> We perform a lattice QCD calculation of the $畏_c\to2纬$ decay width using a model-independent method that requires no momentum extrapolation of the off-shell form factors. This method also provides a straightforward and simple way to examine the finite-volume effects. The calculation is accomplished using $N_f=2$ twisted mass fermion ensembles. The statistically significant excited-state effects ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09381v3-abstract-full').style.display = 'inline'; document.getElementById('2109.09381v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09381v3-abstract-full" style="display: none;"> We perform a lattice QCD calculation of the $畏_c\to2纬$ decay width using a model-independent method that requires no momentum extrapolation of the off-shell form factors. This method also provides a straightforward and simple way to examine the finite-volume effects. The calculation is accomplished using $N_f=2$ twisted mass fermion ensembles. The statistically significant excited-state effects are observed and eliminated using a multi-state fit.The impact of fine-tuning the charm quark mass is also examined and confirmed to be well-controlled. Finally, using three lattice spacings for the continuum extrapolation, we obtain the decay width $螕_{畏_c纬纬}=6.67(16)_{\mathrm{stat}}(6)_{\mathrm{syst}}$ keV, which differs significantly from the Particle Data Group's reported value of $螕_{畏_c纬纬}=5.4(4)$ keV (2.9~$蟽$ tension). We provide insight into the comparison between our findings, previous theoretical predictions, and experimental measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09381v3-abstract-full').style.display = 'none'; document.getElementById('2109.09381v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages + 2 page supplemental material, 5 figures,4 tables. Published version by Science Bulletin</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin 68 (2023) 1880-1885 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13027">arXiv:2106.13027</a> <span> [<a href="https://arxiv.org/pdf/2106.13027">pdf</a>, <a href="https://arxiv.org/format/2106.13027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.062002">10.1103/PhysRevLett.128.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Study of Transverse-Momentum Dependent Soft Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Xia%2C+S">Shi-Cheng Xia</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Scapellato%2C+A">Aurora Scapellato</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a>, <a href="/search/hep-lat?searchtype=author&query=Tarello%2C+J">Jacopo Tarello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13027v2-abstract-short" style="display: inline;"> In this work, we perform a lattice QCD study of the intrinsic, rapidity-independent soft function within the framework of large momentum effective theory. The computation is carried out using a gauge ensemble of $N_f=2+1+1$ clover-improved twisted mass fermion. After applying an appropriate renormalization procedure and the removal of significant higher-twist contamination, we obtain the intrinsic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13027v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13027v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13027v2-abstract-full" style="display: none;"> In this work, we perform a lattice QCD study of the intrinsic, rapidity-independent soft function within the framework of large momentum effective theory. The computation is carried out using a gauge ensemble of $N_f=2+1+1$ clover-improved twisted mass fermion. After applying an appropriate renormalization procedure and the removal of significant higher-twist contamination, we obtain the intrinsic soft function that is comparable to the one-loop perturbative result at large external momentum. The determination of the nonperturbative soft function from first principles is crucial to sharpen our understanding of the processes with small transverse momentum such as the Drell-Yan production and the semi-inclusive deep inelastic scattering. Additionally, we calculate the Collins-Soper evolution kernel using the quasi-transverse-momentum-dependent wave function as input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13027v2-abstract-full').style.display = 'none'; document.getElementById('2106.13027v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span> [<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01029">arXiv:2009.01029</a> <span> [<a href="https://arxiv.org/pdf/2009.01029">pdf</a>, <a href="https://arxiv.org/format/2009.01029">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014514">10.1103/PhysRevD.103.014514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field sparsening for the construction of the correlation functions in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Xia%2C+S">Shi-Cheng Xia</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Lu-Chang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01029v1-abstract-short" style="display: inline;"> Two field-sparsening methods, namely the sparse-grid method and the random field selection method, are used in this paper for the construction of the 2-point and 3-point correlation functions in lattice QCD. We argue that, due to the high correlation among the lattice correlators at different field points associated with source, current, and sink locations, one can save a lot of computational time… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01029v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01029v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01029v1-abstract-full" style="display: none;"> Two field-sparsening methods, namely the sparse-grid method and the random field selection method, are used in this paper for the construction of the 2-point and 3-point correlation functions in lattice QCD. We argue that, due to the high correlation among the lattice correlators at different field points associated with source, current, and sink locations, one can save a lot of computational time by performing the summation over a subset of the lattice sites. Furthermore, with this strategy, one only needs to store a small fraction of the full quark propagators. It is found that the number of field points can be reduced by a factor of $\sim$100 for the point-source operator and a factor of $\sim$1000 for the Gaussian-smeared operator, while the uncertainties of the correlators only increase by $\sim$15\%. Therefore, with a modest cost of the computational resources, one can approach the precision of the all-to-all correlators using the field-sparsening methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01029v1-abstract-full').style.display = 'none'; document.getElementById('2009.01029v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014514 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03907">arXiv:2004.03907</a> <span> [<a href="https://arxiv.org/pdf/2004.03907">pdf</a>, <a href="https://arxiv.org/format/2004.03907">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.034502">10.1103/PhysRevD.102.034502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ward Identity of the Vector Current and the Decay Rate of $畏_c\rightarrow纬纬$ in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03907v3-abstract-short" style="display: inline;"> Using a recently proposed method arXiv:1910.11597 (Yu Meng et al.), we study the two-photon decay rate of $畏_c$ using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $0.067$fm and $0.085$fm. The results obtained from these two ensembles can be extrapolated in a naive fashion to the continuum limit, yielding a result that is consistent with the experimental one within two standard de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03907v3-abstract-full').style.display = 'inline'; document.getElementById('2004.03907v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03907v3-abstract-full" style="display: none;"> Using a recently proposed method arXiv:1910.11597 (Yu Meng et al.), we study the two-photon decay rate of $畏_c$ using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $0.067$fm and $0.085$fm. The results obtained from these two ensembles can be extrapolated in a naive fashion to the continuum limit, yielding a result that is consistent with the experimental one within two standard deviations. To be specific, we obtain the results for two-photon decay of $畏_c$ as $\mathcal{B}(畏_c\rightarrow 2纬)= 1.29(3)(18)\times 10^{-4}$ where the first error is statistical and the second is our estimate for the systematic error caused by the finite lattice spacing. It turns out that Ward identity for the vector current is of vital importance within this new method. We find that the Ward identity is violated for local current with a finite lattice spacing, however it will be restored after the continuum limit is taken. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03907v3-abstract-full').style.display = 'none'; document.getElementById('2004.03907v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 034502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09817">arXiv:2003.09817</a> <span> [<a href="https://arxiv.org/pdf/2003.09817">pdf</a>, <a href="https://arxiv.org/format/2003.09817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/44/8/083108">10.1088/1674-1137/44/8/083108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lattice Study of the Two-photon Decay Widths for Scalar and Pseudo-scalar Charmonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+C">Chao Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09817v2-abstract-short" style="display: inline;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay wid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'inline'; document.getElementById('2003.09817v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09817v2-abstract-full" style="display: none;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay widths for the two charmonia are obtained which are in the right ballpark however smaller than the experimental ones. Possible reasons for these discrepancies are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'none'; document.getElementById('2003.09817v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted by Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.12044">arXiv:2002.12044</a> <span> [<a href="https://arxiv.org/pdf/2002.12044">pdf</a>, <a href="https://arxiv.org/format/2002.12044">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.014508">10.1103/PhysRevD.102.014508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton distribution functions of $螖^+$ on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chai%2C+Y">Yahui Chai</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Xia%2C+S">Shicheng Xia</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Scapellato%2C+A">Aurora Scapellato</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.12044v2-abstract-short" style="display: inline;"> We perform a first calculation for the unpolarized parton distribution function of the $螖^+$ baryon using lattice QCD simulations within the framework of Large Momentum Effective Theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions are utilized with a pion mass of 270 MeV and 360 MeV, respectively. The baryon, which is treated as a stable single-particle state, is boosted with momentum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12044v2-abstract-full').style.display = 'inline'; document.getElementById('2002.12044v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.12044v2-abstract-full" style="display: none;"> We perform a first calculation for the unpolarized parton distribution function of the $螖^+$ baryon using lattice QCD simulations within the framework of Large Momentum Effective Theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions are utilized with a pion mass of 270 MeV and 360 MeV, respectively. The baryon, which is treated as a stable single-particle state, is boosted with momentum $P_3$ with values $\{0.42,0.83,1.25\}$ GeV, and we utilize momentum smearing to improve the signal. The unpolarized parton distribution function of $螖^+$ is obtained using a non-perturbative renormalization and a one-loop formula for the matching, with encouraging precision. In particular, we compute the $\overline{d}(x)-\overline{u}(x)$ asymmetry and compare it with the same quantity in the nucleon, in a first attempt towards resolving the physical mechanism responsible for generating such asymmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12044v2-abstract-full').style.display = 'none'; document.getElementById('2002.12044v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 014508 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.08560">arXiv:1911.08560</a> <span> [<a href="https://arxiv.org/pdf/1911.08560">pdf</a>, <a href="https://arxiv.org/ps/1911.08560">ps</a>, <a href="https://arxiv.org/format/1911.08560">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.054502">10.1103/PhysRevD.101.054502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards the understanding of $Z_c(3900)$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.08560v1-abstract-short" style="display: inline;"> Within the framework of three-channel Ross-Shaw effective range theory, we derive the constraints among different parameters of the theory in the case of a narrow resonance close to the threshold of the third channel, which is relevant for the resonance-like structure $Z_c(3900)$. The usage of these constraint relations, together with the multi-channel L眉scher formula in lattice QCD calculations a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08560v1-abstract-full').style.display = 'inline'; document.getElementById('1911.08560v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.08560v1-abstract-full" style="display: none;"> Within the framework of three-channel Ross-Shaw effective range theory, we derive the constraints among different parameters of the theory in the case of a narrow resonance close to the threshold of the third channel, which is relevant for the resonance-like structure $Z_c(3900)$. The usage of these constraint relations, together with the multi-channel L眉scher formula in lattice QCD calculations are also discussed and the strategies are outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08560v1-abstract-full').style.display = 'none'; document.getElementById('1911.08560v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, no figures. arXiv admin note: text overlap with arXiv:1907.03371</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 054502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11597">arXiv:1910.11597</a> <span> [<a href="https://arxiv.org/pdf/1910.11597">pdf</a>, <a href="https://arxiv.org/format/1910.11597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054506">10.1103/PhysRevD.102.054506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three Photon Decay of $J/蠄$ from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11597v3-abstract-short" style="display: inline;"> Three photon decay rate of $J/蠄$ is studied using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $a\simeq 0.085$ fm (I) and $0.067$ fm(II). Using a new method, only the correlation functions directly related to the physical decay width are computed with all polarizations of the initial and final states summed over. Our results for such rare decay on the two ensembles are:… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11597v3-abstract-full').style.display = 'inline'; document.getElementById('1910.11597v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11597v3-abstract-full" style="display: none;"> Three photon decay rate of $J/蠄$ is studied using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $a\simeq 0.085$ fm (I) and $0.067$ fm(II). Using a new method, only the correlation functions directly related to the physical decay width are computed with all polarizations of the initial and final states summed over. Our results for such rare decay on the two ensembles are: $\mathcal{B}_{I,II}(J/蠄\rightarrow 3纬)=(1.614 \pm 0.016 \pm 0.261)\times 10^{-5},(1.809 \pm 0.051 \pm 0.295)\times 10^{-5}$ where the first errors are statistical and the second are estimates from systematics. We also propose a method to analyze the Dalitz plot of the corresponding process based on the lattice data which can provide direct information for the experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11597v3-abstract-full').style.display = 'none'; document.getElementById('1910.11597v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages 5 figures. Updated version compared with older version that has been withdrawn. Two ensembles are studied so that the size of finite lattice spacing errors can be estimated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054506 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09827">arXiv:1907.09827</a> <span> [<a href="https://arxiv.org/pdf/1907.09827">pdf</a>, <a href="https://arxiv.org/format/1907.09827">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Parton distribution functions of $螖^+$ on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chai%2C+Y">Yahui Chai</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Xia%2C+S">Shicheng Xia</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Cichy%2C+K">Krzysztof Cichy</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Hadjiyiannakou%2C+K">Kyriakos Hadjiyiannakou</a>, <a href="/search/hep-lat?searchtype=author&query=Jansen%2C+K">Karl Jansen</a>, <a href="/search/hep-lat?searchtype=author&query=Koutsou%2C+G">Giannis Koutsou</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Scapellato%2C+A">Aurora Scapellato</a>, <a href="/search/hep-lat?searchtype=author&query=Steffens%2C+F">Fernanda Steffens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09827v1-abstract-short" style="display: inline;"> We present results for renormalized matrix elements related to the unpolarized quasi-distribution function of the $螖^+$ baryon making use of the large momentum effective theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions with a clover term and pion masses of 250 MeV and 330 MeV are analyzed. We employ momentum smearing to improve the overlap with the boosted $螖$ state significantly reducin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09827v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09827v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09827v1-abstract-full" style="display: none;"> We present results for renormalized matrix elements related to the unpolarized quasi-distribution function of the $螖^+$ baryon making use of the large momentum effective theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions with a clover term and pion masses of 250 MeV and 330 MeV are analyzed. We employ momentum smearing to improve the overlap with the boosted $螖$ state significantly reducing in this way the statistical error of both two- and three-point functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09827v1-abstract-full').style.display = 'none'; document.getElementById('1907.09827v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03371">arXiv:1907.03371</a> <span> [<a href="https://arxiv.org/pdf/1907.03371">pdf</a>, <a href="https://arxiv.org/format/1907.03371">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/43/10/103103">10.1088/1674-1137/43/10/103103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A coupled-channel lattice study on the resonance-like structure $Z_c(3900)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+T">Ting Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03371v2-abstract-short" style="display: inline;"> In this exploratory study, near-threshold scattering of $D$ and $\bar{D}^*$ meson is investigated using lattice QCD with $N_f=2+1+1$ twisted mass fermion configurations. The calculation is performed within the coupled-channel L眉scher's finite-size formalism. The study focuses on the channel with $I^G(J^{PC})=1^+(1^{+-})$ where the resonance-like structure $Z_c(3900)$ was discovered. We first ident… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03371v2-abstract-full').style.display = 'inline'; document.getElementById('1907.03371v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03371v2-abstract-full" style="display: none;"> In this exploratory study, near-threshold scattering of $D$ and $\bar{D}^*$ meson is investigated using lattice QCD with $N_f=2+1+1$ twisted mass fermion configurations. The calculation is performed within the coupled-channel L眉scher's finite-size formalism. The study focuses on the channel with $I^G(J^{PC})=1^+(1^{+-})$ where the resonance-like structure $Z_c(3900)$ was discovered. We first identify the most relevant two channels of the problem and the lattice study is performed within the two-channel scattering model. Combined with a two-channel Ross-Shaw theory, scattering parameters are extracted from the energy levels by solving the generalized eigenvalue problem. Our results on the scattering length parameters suggest that, at the particular lattice parameters that we studied, the best fitted parameters do not correspond to a peak behavior in the elastic scattering cross section near the threshold. Furthermore, within the zero-range Ross-Shaw theory, the scenario of a narrow resonance close to the threshold is disfavored beyond $3蟽$ level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03371v2-abstract-full').style.display = 'none'; document.getElementById('1907.03371v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, minor changes. Version accepted by Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin.Phys. C43 (2019) no.10, 103103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01237">arXiv:1907.01237</a> <span> [<a href="https://arxiv.org/pdf/1907.01237">pdf</a>, <a href="https://arxiv.org/format/1907.01237">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-020-00057-4">10.1140/epja/s10050-020-00057-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadron-Hadron Interactions from $N_f=2+1+1$ Lattice QCD: The $蟻$-resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">Martin Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">Christopher Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">Christian Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">Bastian Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Kostrzewa%2C+B">Bartosz Kostrzewa</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Metsch%2C+B">Bernard Metsch</a>, <a href="/search/hep-lat?searchtype=author&query=Petschlies%2C+M">Marcus Petschlies</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">Carsten Urbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01237v2-abstract-short" style="display: inline;"> We present an investigation of the Rho-meson from Nf=2+1+1 flavour lattice QCD. The calculation is performed based on gauge configuration ensembles produced by the ETM collaboration with three lattice spacing values and pion masses ranging from 230 MeV to 500 MeV. Applying the L眉scher method phase shift curves are determined for all ensembles separately. Assuming a Breit-Wigner form, the Rho-meson… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01237v2-abstract-full').style.display = 'inline'; document.getElementById('1907.01237v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01237v2-abstract-full" style="display: none;"> We present an investigation of the Rho-meson from Nf=2+1+1 flavour lattice QCD. The calculation is performed based on gauge configuration ensembles produced by the ETM collaboration with three lattice spacing values and pion masses ranging from 230 MeV to 500 MeV. Applying the L眉scher method phase shift curves are determined for all ensembles separately. Assuming a Breit-Wigner form, the Rho-meson mass and width are determined by a fit to these phase shift curves. Mass and width combined are then extrapolated to the chiral limit, while lattice artefacts are not detectable within our statistical uncertainties. For the Rho-meson mass extrapolated to the physical point we find good agreement with experiment. The corresponding decay width differs by about two standard deviations from the experimental value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01237v2-abstract-full').style.display = 'none'; document.getElementById('1907.01237v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, matching published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.A 56 (2020) 2, 61 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06496">arXiv:1809.06496</a> <span> [<a href="https://arxiv.org/pdf/1809.06496">pdf</a>, <a href="https://arxiv.org/ps/1809.06496">ps</a>, <a href="https://arxiv.org/format/1809.06496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.062001">10.1103/PhysRevLett.122.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of $D^+ \to f_0(500) e^+谓_e$ and Improved Measurements of $D \to蟻e^+谓_e$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Alekseev%2C+M">M. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Calcaterra%2C+A">A. Calcaterra</a> , et al. (438 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06496v2-abstract-short" style="display: inline;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'inline'; document.getElementById('1809.06496v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06496v2-abstract-full" style="display: none;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a statistical significance greater than 10$蟽$, besides the dominant $P$-wave contribution. This is the first observation of the $S$-wave contribution. We measure the branching fractions $\mathcal{B}(D^{0} \to 蟻^- e^+ 谓_e) = (1.445\pm 0.058 \pm 0.039) \times10^{-3}$, $\mathcal{B}(D^{+} \to 蟻^0 e^+ 谓_e) = (1.860\pm 0.070 \pm 0.061) \times10^{-3}$, and $\mathcal{B}(D^{+} \to f_0(500) e^+ 谓_e, f_0(500)\to蟺^+蟺^-) = (6.30\pm 0.43 \pm 0.32) \times10^{-4}$. An upper limit of $\mathcal{B}(D^{+} \to f_0(980) e^+ 谓_e, f_0(980)\to蟺^+蟺^-) < 2.8 \times10^{-5}$ is set at the 90% confidence level. We also obtain the hadronic form factor ratios of $D\to 蟻e^+谓_e$ at $q^{2}=0$ assuming the single-pole dominance parameterization: $r_{V}=\frac{V(0)}{A_{1}(0)}=1.695\pm0.083\pm0.051$, $r_{2}=\frac{A_{2}(0)}{A_{1}(0)}=0.845\pm0.056\pm0.039$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'none'; document.getElementById('1809.06496v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 062001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08464">arXiv:1712.08464</a> <span> [<a href="https://arxiv.org/pdf/1712.08464">pdf</a>, <a href="https://arxiv.org/ps/1712.08464">ps</a>, <a href="https://arxiv.org/format/1712.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014508">10.1103/PhysRevD.98.014508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-particle bound states in a finite volume: unequal masses and higher partial waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&query=Rusetsky%2C+A">A. Rusetsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08464v2-abstract-short" style="display: inline;"> An explicit expression for the finite-volume energy shift of shallow three-body bound states for non-identical particles is obtained in the unitary limit. The inclusion of the higher partial waves is considered. To this end, the method of arXiv:1412.4969 (Mei脽ner et al.) is generalized for the case of unequal masses and arbitrary angular momenta. It is shown that in the S-wave and in the equal mas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08464v2-abstract-full').style.display = 'inline'; document.getElementById('1712.08464v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08464v2-abstract-full" style="display: none;"> An explicit expression for the finite-volume energy shift of shallow three-body bound states for non-identical particles is obtained in the unitary limit. The inclusion of the higher partial waves is considered. To this end, the method of arXiv:1412.4969 (Mei脽ner et al.) is generalized for the case of unequal masses and arbitrary angular momenta. It is shown that in the S-wave and in the equal mass limit, the result from arXiv:1412.4969 is reproduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08464v2-abstract-full').style.display = 'none'; document.getElementById('1712.08464v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07969">arXiv:1703.07969</a> <span> [<a href="https://arxiv.org/pdf/1703.07969">pdf</a>, <a href="https://arxiv.org/format/1703.07969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/41/10/103104">10.1088/1674-1137/41/10/103104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating the topological structure of quenched lattice QCD with overlap fermions by using multi-probing approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zou%2C+Y">You-Hao Zou</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+G">Guang-Yi Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07969v3-abstract-short" style="display: inline;"> The topological charge density and topological susceptibility are determined by multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density, the results are consistent. Random permuted topological charge density is used to check whether… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07969v3-abstract-full').style.display = 'inline'; document.getElementById('1703.07969v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07969v3-abstract-full" style="display: none;"> The topological charge density and topological susceptibility are determined by multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density, the results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. Pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study $3$ ensembles of different lattice spacing $a$ with the same lattice volume $16^{3}\times32$, the results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than that by eigenmode expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07969v3-abstract-full').style.display = 'none'; document.getElementById('1703.07969v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,34 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C, No. 10 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.08174">arXiv:1702.08174</a> <span> [<a href="https://arxiv.org/pdf/1702.08174">pdf</a>, <a href="https://arxiv.org/format/1702.08174">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/42/9/093103">10.1088/1674-1137/42/9/093103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueball spectrum from $N_f=2$ lattice QCD study on anisotropic lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.08174v2-abstract-short" style="display: inline;"> The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_蟺\sim 938$ MeV and $650$ MeV. The quark mass dependence of the glueball masses have not been investigated in the present study. Only the gluonic operators built from Wilson l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08174v2-abstract-full').style.display = 'inline'; document.getElementById('1702.08174v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.08174v2-abstract-full" style="display: none;"> The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_蟺\sim 938$ MeV and $650$ MeV. The quark mass dependence of the glueball masses have not been investigated in the present study. Only the gluonic operators built from Wilson loops are utilized in calculating the corresponding correlation functions. In the tensor channel, we obtain the ground state mass to be 2.363(39) GeV and 2.384(67) GeV at $m_蟺\sim 938$ MeV and $650$ MeV, respectively. In the pseudoscalar channel, when using the gluonic operator whose continuum limit has the form of $蔚_{ijk}TrB_iD_jB_k$, we obtain the ground state mass to be 2.573(55) GeV and 2.585(65) GeV at the two pion masses. These results are compatible with the corresponding results in the quenched approximation. In contrast, if we use the topological charge density as field operators for the pseudoscalar, the masses of the lowest state are much lighter (around 1GeV) and compatible with the expected masses of the flavor singlet $q\bar{q}$ meson. This indicates that the operator $蔚_{ijk}TrB_iD_jB_k$ and the topological charge density couple rather differently to the glueball states and $q\bar{q}$ mesons. The observation of the light flavor singlet pseudoscalar meson can be viewed as the manifestation of effects of dynamical quarks. In the scalar channel, the ground state masses extracted from the correlation functions of gluonic operators are determined to be around 1.4-1.5 GeV, which is close to the ground state masses from the correlation functions of the quark bilinear operators. In all cases, the mixing between glueballs and conventional mesons remains to be further clarified in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.08174v2-abstract-full').style.display = 'none'; document.getElementById('1702.08174v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, 9 tables; typos fixed, minor modifications, match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin.Phys. C42 (2018) no.9, 093103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.00103">arXiv:1612.00103</a> <span> [<a href="https://arxiv.org/pdf/1612.00103">pdf</a>, <a href="https://arxiv.org/format/1612.00103">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Review on Hadron Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.00103v1-abstract-short" style="display: inline;"> I review some of the lattice results on spectroscopy and resonances in the past years. For the conventional hadron spectrum computations, focus has been put on the isospin breaking effects, QED effects, and simulations near the physical pion mass point. I then go through several single-channel scattering studies within L眉scher formalism, a method that has matured over the past few years. The topic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00103v1-abstract-full').style.display = 'inline'; document.getElementById('1612.00103v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.00103v1-abstract-full" style="display: none;"> I review some of the lattice results on spectroscopy and resonances in the past years. For the conventional hadron spectrum computations, focus has been put on the isospin breaking effects, QED effects, and simulations near the physical pion mass point. I then go through several single-channel scattering studies within L眉scher formalism, a method that has matured over the past few years. The topics cover light mesons and also the charmed mesons, with the latter case intimately related to the recently discovered exotic $XYZ$ particles. Other possible related formalisms that are available on the market are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00103v1-abstract-full').style.display = 'none'; document.getElementById('1612.00103v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures. Plenary review talk on 34th International Symposium on Lattice Field Theory (Lattice 2016), 24-30 July 2016</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.00200">arXiv:1602.00200</a> <span> [<a href="https://arxiv.org/pdf/1602.00200">pdf</a>, <a href="https://arxiv.org/format/1602.00200">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.114501">10.1103/PhysRevD.93.114501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lattice Study of $(\bar{D}_1 D^{*})^\pm$ Near-threshold Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+T">Ting Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Lei%2C+Y">Yu-Hong Lei</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhao-Feng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Z">Zhan-Lin Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.00200v2-abstract-short" style="display: inline;"> In this exploratory lattice study, low-energy near threshold scattering of the $(\bar{D}_1 D^{*})^\pm$ meson system is analyzed using lattice QCD with $N_f=2$ twisted mass fermion configurations. Both s-wave ($J^P=0^-$) and p-wave ($J^P=1^+$) channels are investigated. It is found that the interaction between the two charmed mesons is attractive near the threshold in both channels. This calculatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.00200v2-abstract-full').style.display = 'inline'; document.getElementById('1602.00200v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.00200v2-abstract-full" style="display: none;"> In this exploratory lattice study, low-energy near threshold scattering of the $(\bar{D}_1 D^{*})^\pm$ meson system is analyzed using lattice QCD with $N_f=2$ twisted mass fermion configurations. Both s-wave ($J^P=0^-$) and p-wave ($J^P=1^+$) channels are investigated. It is found that the interaction between the two charmed mesons is attractive near the threshold in both channels. This calculation provides some hints in the searching of resonances or bound states around the threshold of $(\bar{D}_1 D^{*})^\pm$ system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.00200v2-abstract-full').style.display = 'none'; document.getElementById('1602.00200v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 15 figures, matches the version on PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 114501 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.00076">arXiv:1602.00076</a> <span> [<a href="https://arxiv.org/pdf/1602.00076">pdf</a>, <a href="https://arxiv.org/format/1602.00076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-016-4212-8">10.1140/epjc/s10052-016-4212-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Photon Decays of $畏_c$ from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+T">Ting Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Lei%2C+Y">Yu-Hong Lei</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Qiu%2C+W">Wei-Feng Qiu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Z">Zhan-Lin Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.00076v4-abstract-short" style="display: inline;"> We present an exploratory lattice study for the two-photon decay of $畏_c$ using $N_f=2$ twisted mass lattice QCD gauge configurations generated by the European Twisted Mass Collaboration. Two different lattice spacings of $a=0.067$fm and $a=0.085$fm are used in the study, both of which are of physical size of 2$fm$. The decay widths are found to be $1.025(5)$KeV for the coarser lattice and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.00076v4-abstract-full').style.display = 'inline'; document.getElementById('1602.00076v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.00076v4-abstract-full" style="display: none;"> We present an exploratory lattice study for the two-photon decay of $畏_c$ using $N_f=2$ twisted mass lattice QCD gauge configurations generated by the European Twisted Mass Collaboration. Two different lattice spacings of $a=0.067$fm and $a=0.085$fm are used in the study, both of which are of physical size of 2$fm$. The decay widths are found to be $1.025(5)$KeV for the coarser lattice and $1.062(5)$KeV for the finer lattice respectively where the errors are purely statistical. A naive extrapolation towards the continuum limit yields $螕\simeq 1.122(14)$KeV which is smaller than the previous quenched result and most of the current experimental results. Possible reasons are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.00076v4-abstract-full').style.display = 'none'; document.getElementById('1602.00076v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures; matches the published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04294">arXiv:1511.04294</a> <span> [<a href="https://arxiv.org/pdf/1511.04294">pdf</a>, <a href="https://arxiv.org/ps/1511.04294">ps</a>, <a href="https://arxiv.org/format/1511.04294">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/40/4/041001">10.1088/1674-1137/40/4/041001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrum and Bethe-Salpeter amplitudes of $惟$ baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+W">Wei-Feng Chiu</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04294v2-abstract-short" style="display: inline;"> The $惟$ baryons with $J^P=3/2^\pm, 1/2^\pm$ are studied on the lattice in the quenched approximation. Their mass levels are ordered as $M_{3/2^+}<M_{3/2^-}\approx M_{1/2^-}<M_{1/2^+}$, as is expected from the constituent quark model. The mass values are also close to those of the four $惟$ states observed in experiments, respectively. We calculate the Bethe-Salpeter amplitudes of $惟(3/2^+)$ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04294v2-abstract-full').style.display = 'inline'; document.getElementById('1511.04294v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04294v2-abstract-full" style="display: none;"> The $惟$ baryons with $J^P=3/2^\pm, 1/2^\pm$ are studied on the lattice in the quenched approximation. Their mass levels are ordered as $M_{3/2^+}<M_{3/2^-}\approx M_{1/2^-}<M_{1/2^+}$, as is expected from the constituent quark model. The mass values are also close to those of the four $惟$ states observed in experiments, respectively. We calculate the Bethe-Salpeter amplitudes of $惟(3/2^+)$ and $惟(1/2^+)$ and find there is a radial node for the $惟(1/2^+)$ Bethe-Salpeter amplitude, which may imply that $惟(1/2^+)$ is an orbital excitation of $惟$ baryons as a member of the $(D,L_N^P)=(70,0_2^+)$ supermultiplet in the $SU(6)\bigotimes O(3)$ quark model description. Our results are helpful for identifying the quantum number of experimentally observed $惟$ states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04294v2-abstract-full').style.display = 'none'; document.getElementById('1511.04294v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, submitted to Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 40 (2016) 041001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.07704">arXiv:1508.07704</a> <span> [<a href="https://arxiv.org/pdf/1508.07704">pdf</a>, <a href="https://arxiv.org/format/1508.07704">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2015.10.085">10.1016/j.physletb.2015.10.085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological susceptibility near $T_{c}$ in SU(3) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+G">Guang-Yi Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.07704v2-abstract-short" style="display: inline;"> Topological charge susceptibility $蠂_{t}$ for pure gauge SU(3) theory at finite temperature is studied using anisotropic lattices. The over-improved stout-link smoothing method is utilized to calculate the topological charge. Near the phase transition point we find a rapid declining behavior for $蠂_{t}$ with values decreasing from $(188(1)\mathrm{MeV})^{4}$ to $(67(3)\mathrm{MeV})^{4}$ as the temp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07704v2-abstract-full').style.display = 'inline'; document.getElementById('1508.07704v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.07704v2-abstract-full" style="display: none;"> Topological charge susceptibility $蠂_{t}$ for pure gauge SU(3) theory at finite temperature is studied using anisotropic lattices. The over-improved stout-link smoothing method is utilized to calculate the topological charge. Near the phase transition point we find a rapid declining behavior for $蠂_{t}$ with values decreasing from $(188(1)\mathrm{MeV})^{4}$ to $(67(3)\mathrm{MeV})^{4}$ as the temperature increased from zero temperature to $1.9T_{c}$ which demonstrates the existence of topological excitations far above $T_{c}$. The 4th order cumulant $c_4$ of topological charge, as well as the ratio $c_4/蠂_t$ are also investigated. Results of $c_4$ show step-like behavior near $T_c$ while the ratio at high temperature agrees with the value as predicted by the diluted instanton gas model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07704v2-abstract-full').style.display = 'none'; document.getElementById('1508.07704v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures;version accepted by PLB one reference added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.00408">arXiv:1506.00408</a> <span> [<a href="https://arxiv.org/pdf/1506.00408">pdf</a>, <a href="https://arxiv.org/format/1506.00408">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2015)109">10.1007/JHEP09(2015)109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadron-Hadron Interactions from $N_f=2+1+1$ Lattice QCD: isospin-2 $蟺蟺$ scattering length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Helmes%2C+C">C. Helmes</a>, <a href="/search/hep-lat?searchtype=author&query=Jost%2C+C">C. Jost</a>, <a href="/search/hep-lat?searchtype=author&query=Knippschild%2C+B">B. Knippschild</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">C. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">L. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Urbach%2C+C">C. Urbach</a>, <a href="/search/hep-lat?searchtype=author&query=Ueding%2C+M">M. Ueding</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">M. Werner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.00408v2-abstract-short" style="display: inline;"> We present results for the $I=2$ $蟺蟺$ scattering length using $N_f=2+1+1$ twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are reduced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.00408v2-abstract-full').style.display = 'inline'; document.getElementById('1506.00408v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.00408v2-abstract-full" style="display: none;"> We present results for the $I=2$ $蟺蟺$ scattering length using $N_f=2+1+1$ twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are reduced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution of excited and thermal states is performed. After extrapolation to the physical point using chiral perturbation theory at NLO we obtain $M_蟺a_0=-0.0442(2)_\mathrm{stat}(^{+4}_{-0})_\mathrm{sys}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.00408v2-abstract-full').style.display = 'none'; document.getElementById('1506.00408v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Edited for typos, overhauled figures, more detailed comparison to existing lattice results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.02159">arXiv:1504.02159</a> <span> [<a href="https://arxiv.org/pdf/1504.02159">pdf</a>, <a href="https://arxiv.org/format/1504.02159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/39/6/063103">10.1088/1674-1137/39/6/063103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase transition in finite density and temperature lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhao-Feng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+X">Xiang-Fei Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.02159v1-abstract-short" style="display: inline;"> We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of $尾$ and $ma$ at the lattice size $24\times12^{2}\times6$. The calculation was done in the Taylar expansion formalism. We are able to calculate the first and second order derivatives of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02159v1-abstract-full').style.display = 'inline'; document.getElementById('1504.02159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.02159v1-abstract-full" style="display: none;"> We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of $尾$ and $ma$ at the lattice size $24\times12^{2}\times6$. The calculation was done in the Taylar expansion formalism. We are able to calculate the first and second order derivatives of $\langle\bar蠄蠄\rangle$ in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and the magnitude of $\bar蠄蠄$ decreases under the influence of finite chemical potential in both channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02159v1-abstract-full').style.display = 'none'; document.getElementById('1504.02159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, to be submitted to Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.02371">arXiv:1503.02371</a> <span> [<a href="https://arxiv.org/pdf/1503.02371">pdf</a>, <a href="https://arxiv.org/format/1503.02371">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.054507">10.1103/PhysRevD.92.054507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Scattering of $(D^{*}\bar{D}^{*})^\pm$ System and the Resonance-like Structure $Z_c(4025)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Lei%2C+Y">Yu-Hong Lei</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+J">Jin-Long Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yong-Fu Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Z">Zhan-Lin Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.02371v1-abstract-short" style="display: inline;"> In this paper, low-energy scattering of the $(D^{*}\bar{D}^{*})^\pm$ meson system is studied within L眉scher's finite-size formalism using $N_{f}=2$ twisted mass gauge field configurations. With three different pion mass values, the $s$-wave threshold scattering parameters, namely the scattering length $a_0$ and the effective range $r_0$, are extracted in $J^P=1^+$ channel. Our results indicate tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02371v1-abstract-full').style.display = 'inline'; document.getElementById('1503.02371v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.02371v1-abstract-full" style="display: none;"> In this paper, low-energy scattering of the $(D^{*}\bar{D}^{*})^\pm$ meson system is studied within L眉scher's finite-size formalism using $N_{f}=2$ twisted mass gauge field configurations. With three different pion mass values, the $s$-wave threshold scattering parameters, namely the scattering length $a_0$ and the effective range $r_0$, are extracted in $J^P=1^+$ channel. Our results indicate that, in this particular channel, the interaction between the two vector charmed mesons is weakly repulsive in nature hence do not support the possibility of a shallow bound state for the two mesons, at least for the pion mass values being studied. This study provides some useful information on the nature of the newly discovered resonance-like structure $Z_c(4025)$ observed in various experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02371v1-abstract-full').style.display = 'none'; document.getElementById('1503.02371v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:1403.1318</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 054507 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.1645">arXiv:1403.1645</a> <span> [<a href="https://arxiv.org/pdf/1403.1645">pdf</a>, <a href="https://arxiv.org/format/1403.1645">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S2010194514602828">10.1142/S2010194514602828 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent results from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.1645v1-abstract-short" style="display: inline;"> Recent Lattice QCD results are reviewed with an emphasis on spectroscopic results concerning the charm quark. It is demonstrated that, with accurate computations from lattice QCD in recent years that can be compared with the existing or upcoming experiments, stringent test of the Standard Model can be performed which will greatly sharpen our knowledge on the strong interaction. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.1645v1-abstract-full" style="display: none;"> Recent Lattice QCD results are reviewed with an emphasis on spectroscopic results concerning the charm quark. It is demonstrated that, with accurate computations from lattice QCD in recent years that can be compared with the existing or upcoming experiments, stringent test of the Standard Model can be performed which will greatly sharpen our knowledge on the strong interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.1645v1-abstract-full').style.display = 'none'; document.getElementById('1403.1645v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures. Plenary talk presented at The XXXIII international symposium on Physics in Collision (PIC2013), Institute of High Energy Physics, Beijing, P. R. China, 03 - 07 September 2013</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.1318">arXiv:1403.1318</a> <span> [<a href="https://arxiv.org/pdf/1403.1318">pdf</a>, <a href="https://arxiv.org/format/1403.1318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094506">10.1103/PhysRevD.89.094506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Scattering of $(D\bar{D}^{*})^\pm$ System And the Resonance-like Structure $Z_c(3900)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Lei%2C+Y">Yu-Hong Lei</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">Hang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+J">Jin-Long Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yong-Fu Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Z">Zhan-Lin Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.1318v3-abstract-short" style="display: inline;"> In this exploratory lattice study, low-energy scattering of the $(D\bar{D}^{*})^\pm$ meson system is analyzed using lattice QCD with $N_f=2$ twisted mass fermion configurations with three pion mass values. The calculation is performed within single-channel L眉scher's finite-size formalism. The threshold scattering parameters, namely the scattering length $a_0$ and the effective range $r_0$, for the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.1318v3-abstract-full').style.display = 'inline'; document.getElementById('1403.1318v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.1318v3-abstract-full" style="display: none;"> In this exploratory lattice study, low-energy scattering of the $(D\bar{D}^{*})^\pm$ meson system is analyzed using lattice QCD with $N_f=2$ twisted mass fermion configurations with three pion mass values. The calculation is performed within single-channel L眉scher's finite-size formalism. The threshold scattering parameters, namely the scattering length $a_0$ and the effective range $r_0$, for the $s$-wave scattering in $J^P=1^+$ channel are extracted. For the cases in our study, the interaction between the two charmed mesons is weakly repulsive. Our lattice results therefore do not support the possibility of a shallow bound state for the two mesons for the pion mass values we studied. This calculation provides some useful information on the nature of the newly discovered resonance-like structure $Z_c(3900)$ by various experimental groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.1318v3-abstract-full').style.display = 'none'; document.getElementById('1403.1318v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures. Version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 094506 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.3923">arXiv:1402.3923</a> <span> [<a href="https://arxiv.org/pdf/1402.3923">pdf</a>, <a href="https://arxiv.org/ps/1402.3923">ps</a>, <a href="https://arxiv.org/format/1402.3923">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Glueballs in charmonia radiative decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.3923v1-abstract-short" style="display: inline;"> Scalar \cite{scalar_paper} and tensor \cite{tensor_paper} glueballs created in $J/蠄$ radiative decays are studied in quenched lattice QCD. Using two anisotropic lattices to approach the continuum limit, we compute the relevant form factors responsible for the decay rates for $J/蠄\rightarrow纬G_{0^{++}}$ and $J/蠄\rightarrow纬G_{2^{++}}$. Comparing with the existing experimental data, it is argued t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3923v1-abstract-full').style.display = 'inline'; document.getElementById('1402.3923v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.3923v1-abstract-full" style="display: none;"> Scalar \cite{scalar_paper} and tensor \cite{tensor_paper} glueballs created in $J/蠄$ radiative decays are studied in quenched lattice QCD. Using two anisotropic lattices to approach the continuum limit, we compute the relevant form factors responsible for the decay rates for $J/蠄\rightarrow纬G_{0^{++}}$ and $J/蠄\rightarrow纬G_{2^{++}}$. Comparing with the existing experimental data, it is argued that $f_0(1710)$ is a favorable candidate for scalar glueball. The decay rate for $J/蠄\rightarrow纬G_{2^{++}}$ is found to be quite substantial. A comprehensive search in the tensor channel on BESIII is therefore suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3923v1-abstract-full').style.display = 'none'; document.getElementById('1402.3923v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany, 7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE 2013)435 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.5569">arXiv:1401.5569</a> <span> [<a href="https://arxiv.org/pdf/1401.5569">pdf</a>, <a href="https://arxiv.org/ps/1401.5569">ps</a>, <a href="https://arxiv.org/format/1401.5569">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.034509">10.1103/PhysRevD.90.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized L眉scher's Formula in Multichannel Baryon-Baryon Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">Song-Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.5569v2-abstract-short" style="display: inline;"> In this paper, L眉scher's formula is generalized to the case of two spin-$\frac{1}{2}$ particles in two-channel scattering based on Ref. \cite{Li:2012bi}. This is first done in a non-relativistic quantum mechanics model and then generalized to quantum field theory. We show that L眉scher's formula obtained from these two different methods are equivalent up to terms that are exponentially suppressed i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.5569v2-abstract-full').style.display = 'inline'; document.getElementById('1401.5569v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.5569v2-abstract-full" style="display: none;"> In this paper, L眉scher's formula is generalized to the case of two spin-$\frac{1}{2}$ particles in two-channel scattering based on Ref. \cite{Li:2012bi}. This is first done in a non-relativistic quantum mechanics model and then generalized to quantum field theory. We show that L眉scher's formula obtained from these two different methods are equivalent up to terms that are exponentially suppressed in the box size. This formalism can be readily applied to future lattice QCD calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.5569v2-abstract-full').style.display = 'none'; document.getElementById('1401.5569v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Introduction expanded and references added. 10 pages, no figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 034509 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.2760">arXiv:1308.2760</a> <span> [<a href="https://arxiv.org/pdf/1308.2760">pdf</a>, <a href="https://arxiv.org/ps/1308.2760">ps</a>, <a href="https://arxiv.org/format/1308.2760">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.132001">10.1103/PhysRevLett.112.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a charged charmoniumlike structure in $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at $\sqrt{s}=4.26$GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+collaboration"> BESIII collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Albayrak%2C+O">O. Albayrak</a>, <a href="/search/hep-lat?searchtype=author&query=Ambrose%2C+D+J">D. J. Ambrose</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+J+Z">J. Z. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+J">J. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bian%2C+J+M">J. M. Bian</a>, <a href="/search/hep-lat?searchtype=author&query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&query=Bondarenko%2C+O">O. Bondarenko</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Braun%2C+S">S. Braun</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&query=Bytev%2C+V">V. Bytev</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cakir%2C+O">O. Cakir</a>, <a href="/search/hep-lat?searchtype=author&query=Calcaterra%2C+A">A. Calcaterra</a>, <a href="/search/hep-lat?searchtype=author&query=Cao%2C+G+F">G. F. Cao</a> , et al. (336 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.2760v2-abstract-short" style="display: inline;"> We study the process $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at a center-of-mass energy of 4.26GeV using a 827pb$^{-1}$ data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be $(137\pm9\pm15)$pb. We observe a structure near the $(D^{*} \bar{D}^{*})^{\pm}$ threshold in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2760v2-abstract-full').style.display = 'inline'; document.getElementById('1308.2760v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.2760v2-abstract-full" style="display: none;"> We study the process $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at a center-of-mass energy of 4.26GeV using a 827pb$^{-1}$ data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be $(137\pm9\pm15)$pb. We observe a structure near the $(D^{*} \bar{D}^{*})^{\pm}$ threshold in the $蟺^\mp$ recoil mass spectrum, which we denote as the $Z^{\pm}_c(4025)$. The measured mass and width of the structure are $(4026.3\pm2.6\pm3.7)$MeV/c$^2$ and $(24.8\pm5.6\pm7.7)$MeV, respectively. Its production ratio $\frac{蟽(e^+e^-\to Z^{\pm}_c(4025)蟺^\mp \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp)}{蟽(e^+e^-\to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp)}$ is determined to be $0.65\pm0.09\pm0.06$. The first uncertainties are statistical and the second are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2760v2-abstract-full').style.display = 'none'; document.getElementById('1308.2760v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 1 table; version accepted to be published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 132001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.5009">arXiv:1306.5009</a> <span> [<a href="https://arxiv.org/pdf/1306.5009">pdf</a>, <a href="https://arxiv.org/format/1306.5009">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Project X: Physics Opportunities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Tschirhart%2C+R+S">Robert S. Tschirhart</a>, <a href="/search/hep-lat?searchtype=author&query=Al-Binni%2C+U">Usama Al-Binni</a>, <a href="/search/hep-lat?searchtype=author&query=Altmannshofer%2C+W">Wolfgang Altmannshofer</a>, <a href="/search/hep-lat?searchtype=author&query=Ankenbrandt%2C+C">Charles Ankenbrandt</a>, <a href="/search/hep-lat?searchtype=author&query=Babu%2C+K">Kaladi Babu</a>, <a href="/search/hep-lat?searchtype=author&query=Banerjee%2C+S">Sunanda Banerjee</a>, <a href="/search/hep-lat?searchtype=author&query=Bass%2C+M">Matthew Bass</a>, <a href="/search/hep-lat?searchtype=author&query=Batell%2C+B">Brian Batell</a>, <a href="/search/hep-lat?searchtype=author&query=Baxter%2C+D+V">David V. Baxter</a>, <a href="/search/hep-lat?searchtype=author&query=Berezhiani%2C+Z">Zurab Berezhiani</a>, <a href="/search/hep-lat?searchtype=author&query=Bergevin%2C+M">Marc Bergevin</a>, <a href="/search/hep-lat?searchtype=author&query=Bernstein%2C+R">Robert Bernstein</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+S">Sudeb Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Bishai%2C+M">Mary Bishai</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Bogacz%2C+S+A">S. Alex Bogacz</a>, <a href="/search/hep-lat?searchtype=author&query=Brice%2C+S+J">Stephen J. Brice</a>, <a href="/search/hep-lat?searchtype=author&query=Brod%2C+J">Joachim Brod</a>, <a href="/search/hep-lat?searchtype=author&query=Bross%2C+A">Alan Bross</a>, <a href="/search/hep-lat?searchtype=author&query=Buchoff%2C+M">Michael Buchoff</a>, <a href="/search/hep-lat?searchtype=author&query=Burgess%2C+T+W">Thomas W. Burgess</a>, <a href="/search/hep-lat?searchtype=author&query=Carena%2C+M">Marcela Carena</a>, <a href="/search/hep-lat?searchtype=author&query=Castellanos%2C+L+A">Luis A. Castellanos</a>, <a href="/search/hep-lat?searchtype=author&query=Chattopadhyay%2C+S">Subhasis Chattopadhyay</a> , et al. (111 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.5009v3-abstract-short" style="display: inline;"> Part 2 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physics. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, had… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.5009v3-abstract-full').style.display = 'inline'; document.getElementById('1306.5009v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.5009v3-abstract-full" style="display: none;"> Part 2 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physics. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, hadron structure, hadron spectroscopy, and lattice-QCD calculations. Part 1 is available as arXiv:1306.5022 [physics.acc-ph] and Part 3 is available as arXiv:1306.5024 [physics.acc-ph]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.5009v3-abstract-full').style.display = 'none'; document.getElementById('1306.5009v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">209 pp. with many figures; prepared in part for the DPF Community Summer Study; v2 corrects typos (including one author surname), adds an author, and conforms with the version being printed; v3 includes two more chapter authors in full list at the top</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2557; ANL/PHY-13/2; BNL-101116-2013-BC/81834; JLAB-ACP-13-1725; LBNL-6334E; PNNL-22523; UASLP-IF-13-001; SLAC-R-1029 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.3807">arXiv:1304.3807</a> <span> [<a href="https://arxiv.org/pdf/1304.3807">pdf</a>, <a href="https://arxiv.org/ps/1304.3807">ps</a>, <a href="https://arxiv.org/format/1304.3807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.091601">10.1103/PhysRevLett.111.091601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Study of Radiative $J/蠄$ Decay to a Tensor Glueball </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.3807v2-abstract-short" style="display: inline;"> The radiative decay of $J/蠄$ into a pure gauge tensor glueball is studied in the quenched lattice QCD formalism. With two anisotropic lattices, the mutlipole amplitudes E_1(0), M_2(0) and E_3(0) are obtained to be 0.114(12)(6)GeV, -0.011(5)(1)GeV, and 0.023(8)(1)GeV, respectively. The first error comes from the statistics, the Q^2 interpolation, and the continuum extrapolation, while the second is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.3807v2-abstract-full').style.display = 'inline'; document.getElementById('1304.3807v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.3807v2-abstract-full" style="display: none;"> The radiative decay of $J/蠄$ into a pure gauge tensor glueball is studied in the quenched lattice QCD formalism. With two anisotropic lattices, the mutlipole amplitudes E_1(0), M_2(0) and E_3(0) are obtained to be 0.114(12)(6)GeV, -0.011(5)(1)GeV, and 0.023(8)(1)GeV, respectively. The first error comes from the statistics, the Q^2 interpolation, and the continuum extrapolation, while the second is due to the uncertainty of the scale parameter r_0^{-1}=410(20) MeV. Thus the partial decay width $螕(J/蠄\rightarrow 纬G_{2^{++}})$ is estimated to be 1.01(22)(10) keV which corresponds to a large branch ratio 1.1(2)(1)x10^{-2}. The phenomenological implication of this result is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.3807v2-abstract-full').style.display = 'none'; document.getElementById('1304.3807v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures. Title modified, references added, and typos corrected. The systematic errors owing to the uncertainty of the scale parameter r_0 is considered. Published version in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 111, 091601 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.2201">arXiv:1209.2201</a> <span> [<a href="https://arxiv.org/pdf/1209.2201">pdf</a>, <a href="https://arxiv.org/ps/1209.2201">ps</a>, <a href="https://arxiv.org/format/1209.2201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.014502">10.1103/PhysRevD.87.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized L眉scher Formula in Multi-channel Baryon-Meson Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.2201v3-abstract-short" style="display: inline;"> L眉scher's formula relates the elastic scattering phase shifts to the two-particle energy levels in a finite cubic box. The original formula was obtained for elastic scattering of two massive spinless particles in the center of mass frame. In this paper, we consider the case for the scattering of a spin 1/2 particle with a spinless particle in multi-channel scattering. A generalized relation betwee… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.2201v3-abstract-full').style.display = 'inline'; document.getElementById('1209.2201v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.2201v3-abstract-full" style="display: none;"> L眉scher's formula relates the elastic scattering phase shifts to the two-particle energy levels in a finite cubic box. The original formula was obtained for elastic scattering of two massive spinless particles in the center of mass frame. In this paper, we consider the case for the scattering of a spin 1/2 particle with a spinless particle in multi-channel scattering. A generalized relation between the energy of two particle system and the scattering matrix elements is established. We first obtain this relation using quantum-mechanics in both center-of-mass frame and in a general moving frame. The result is then generalized to quantum field theory using methods outlined in Ref. \cite{Hansen:2012tf}. We verify that the results obtained using both methods are equivalent up to terms that are exponentially suppressed in the box size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.2201v3-abstract-full').style.display = 'none'; document.getElementById('1209.2201v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">One reference added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.2086">arXiv:1206.2086</a> <span> [<a href="https://arxiv.org/pdf/1206.2086">pdf</a>, <a href="https://arxiv.org/ps/1206.2086">ps</a>, <a href="https://arxiv.org/format/1206.2086">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.014501">10.1103/PhysRevD.87.014501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice study on $畏_{c2}$ and X(3872) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.2086v2-abstract-short" style="display: inline;"> Properties of $2^{-+}$ charmonium $畏_{c2}$ are investigated in quenched lattice QCD. The mass of $畏_{c2}$ is determined to be 3.80(3) GeV, which is close to the mass of $D$-wave charmonium $蠄(3770)$ and in agreement with quark model predictions. The transition width of $畏_{c2}\to 纬J/蠄$ is also obtained with a value $螕=3.8(9)$ keV. Since the possible $2^{-+}$ assignment to X(3872) has not been rule… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2086v2-abstract-full').style.display = 'inline'; document.getElementById('1206.2086v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.2086v2-abstract-full" style="display: none;"> Properties of $2^{-+}$ charmonium $畏_{c2}$ are investigated in quenched lattice QCD. The mass of $畏_{c2}$ is determined to be 3.80(3) GeV, which is close to the mass of $D$-wave charmonium $蠄(3770)$ and in agreement with quark model predictions. The transition width of $畏_{c2}\to 纬J/蠄$ is also obtained with a value $螕=3.8(9)$ keV. Since the possible $2^{-+}$ assignment to X(3872) has not been ruled out by experiments, our results help to clarify the nature of X(3872). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2086v2-abstract-full').style.display = 'none'; document.getElementById('1206.2086v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures. typos, grammatical errors and some references corrected, redundant discussions deleted, conclusion does not change. published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. ReV. D 87, 014501 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.0125">arXiv:1206.0125</a> <span> [<a href="https://arxiv.org/pdf/1206.0125">pdf</a>, <a href="https://arxiv.org/ps/1206.0125">ps</a>, <a href="https://arxiv.org/format/1206.0125">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.021601">10.1103/PhysRevLett.110.021601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalar Glueball in Radiative $J/蠄$ Decay on Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.0125v2-abstract-short" style="display: inline;"> The form factors in the radiative decay of $J/蠄$ to a scalar glueball are studied within quenched lattice QCD on anisotropic lattices. The continuum extrapolation is carried out by using two different lattice spacings. With the results of these form factors, the partial width of $J/蠄$ radiatively decaying into the pure gauge scalar glueball is predicted to be 0.35(8) keV, which corresponds to a br… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0125v2-abstract-full').style.display = 'inline'; document.getElementById('1206.0125v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.0125v2-abstract-full" style="display: none;"> The form factors in the radiative decay of $J/蠄$ to a scalar glueball are studied within quenched lattice QCD on anisotropic lattices. The continuum extrapolation is carried out by using two different lattice spacings. With the results of these form factors, the partial width of $J/蠄$ radiatively decaying into the pure gauge scalar glueball is predicted to be 0.35(8) keV, which corresponds to a branching ratio of 3.8(9)x10^{-3}. By comparing with the experiments, out results indicate that f_0(1710) has a larger overlap with the pure gauge glueball than other related scalar mesons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0125v2-abstract-full').style.display = 'none'; document.getElementById('1206.0125v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, typos corrected, references corrected and added, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 021601 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2655">arXiv:1104.2655</a> <span> [<a href="https://arxiv.org/pdf/1104.2655">pdf</a>, <a href="https://arxiv.org/ps/1104.2655">ps</a>, <a href="https://arxiv.org/format/1104.2655">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.034503">10.1103/PhysRevD.84.034503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative transitions in charmonium from $N_f=2$ twisted mass lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Du%2C+D">De-Chuan Du</a>, <a href="/search/hep-lat?searchtype=author&query=Guo%2C+B">Bao-Zhong Guo</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">Hang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+X">Xiang-Fei Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Niu%2C+Z">Zhi-Yuan Niu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2655v1-abstract-short" style="display: inline;"> We present a study for charmonium radiative transitions: $J/蠄\rightarrow畏_c纬$, $蠂_{c0}\rightarrow J/唯纬$ and $h_c\rightarrow畏_c纬$ using $N_f=2$ twisted mass lattice QCD gauge configurations. The single-quark vector form factors for $畏_c$ and $蠂_{c0}$ are also determined. The simulation is performed at a lattice spacing of $a= 0.06666$ fm and the lattice size is $32^3\times 64$. After extrapolation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2655v1-abstract-full').style.display = 'inline'; document.getElementById('1104.2655v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2655v1-abstract-full" style="display: none;"> We present a study for charmonium radiative transitions: $J/蠄\rightarrow畏_c纬$, $蠂_{c0}\rightarrow J/唯纬$ and $h_c\rightarrow畏_c纬$ using $N_f=2$ twisted mass lattice QCD gauge configurations. The single-quark vector form factors for $畏_c$ and $蠂_{c0}$ are also determined. The simulation is performed at a lattice spacing of $a= 0.06666$ fm and the lattice size is $32^3\times 64$. After extrapolation of lattice data at nonzero $Q^2$ to 0, we compare our results with previous quenched lattice results and the available experimental values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2655v1-abstract-full').style.display = 'none'; document.getElementById('1104.2655v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">typeset with revtex, 15 pages, 11 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84:034503,2011 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>