CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 101 results for author: <span class="mathjax">Liu, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Liu%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span> [<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03697">arXiv:2407.03697</a> <span> [<a href="https://arxiv.org/pdf/2407.03697">pdf</a>, <a href="https://arxiv.org/format/2407.03697">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charm physics with overlap fermions on 2+1-flavor domain wall fermion configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+D">Donghao Li</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Tingxiao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03697v3-abstract-short" style="display: inline;"> Decay constants of pseudoscalar mesons $D$, $D_s$, $畏_c$ and vector mesons $D^*$, $D_s^*$, $J/蠄$ are determined from $N_f=2+1$ lattice QCD at a lattice spacing $a\sim0.08$ fm. For vector mesons, the decay constants defined by tensor currents are given in the $\overline{\rm MS}$ scheme at $2$ GeV. The calculation is performed on domain wall fermion configurations generated by the RBC-UKQCD Collabor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03697v3-abstract-full').style.display = 'inline'; document.getElementById('2407.03697v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03697v3-abstract-full" style="display: none;"> Decay constants of pseudoscalar mesons $D$, $D_s$, $畏_c$ and vector mesons $D^*$, $D_s^*$, $J/蠄$ are determined from $N_f=2+1$ lattice QCD at a lattice spacing $a\sim0.08$ fm. For vector mesons, the decay constants defined by tensor currents are given in the $\overline{\rm MS}$ scheme at $2$ GeV. The calculation is performed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations and the overlap fermion action is used for the valence quarks. Comparing the current results with our previous ones at a coarser lattice spacing $a\sim0.11$ fm gives us a better understanding of the discretization error. We obtain $f_{D_s^*}^T(\overline{\rm MS},\text{2 GeV})/f_{D_s^*}=0.907(20)$ with a better precision than our previous result. Combining our $f_{D_s^*}=277(11)$ MeV with the total width of $D_s^*$ determined in a recent work gives a branching fraction $4.26(52)\times10^{-5}$ for $D_s^*$ leptonic decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03697v3-abstract-full').style.display = 'none'; document.getElementById('2407.03697v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17042">arXiv:2406.17042</a> <span> [<a href="https://arxiv.org/pdf/2406.17042">pdf</a>, <a href="https://arxiv.org/format/2406.17042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.125123">10.1103/PhysRevB.110.125123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical properties of metallic and deconfined quantum phase transitions in Dirac systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z+H">Zi Hong Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Vojta%2C+M">Matthias Vojta</a>, <a href="/search/hep-lat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/hep-lat?searchtype=author&query=Janssen%2C+L">Lukas Janssen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17042v3-abstract-short" style="display: inline;"> We characterize, by means of large-scale fermion quantum Monte Carlo simulations, metallic and deconfined quantum phase transitions in a bilayer honeycomb model in terms of their quantum critical and finite-temperature properties.The model features three different phases at zero temperature as function of interaction strength. At weak interaction, a fully symmetric Dirac semimetal state is realize… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17042v3-abstract-full').style.display = 'inline'; document.getElementById('2406.17042v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17042v3-abstract-full" style="display: none;"> We characterize, by means of large-scale fermion quantum Monte Carlo simulations, metallic and deconfined quantum phase transitions in a bilayer honeycomb model in terms of their quantum critical and finite-temperature properties.The model features three different phases at zero temperature as function of interaction strength. At weak interaction, a fully symmetric Dirac semimetal state is realized. At intermediate and strong interaction, respectively, two long-range-ordered phases that break different symmetries are stabilized. The ordered phases feature partial and full, respectively, gap openings in the fermion spectrum. The first transition between the disordered and long-range-ordered semimetallic phases has previously been argued to be described by the $(2+1)$-dimensional Gross-Neveu-SO(3) field theory. By performing simulations with an improved symmetric Trotter decomposition, we further substantiate this claim by computing the critical exponents $1/谓$, $畏_蠁$, and $畏_蠄$, which turn out to be consistent with the field-theoretical expectation within numerical and analytical uncertainties. The second transition between the two long-range-ordered phases has previously been proposed as a possible instance of a metallic deconfined quantum critical point. We further develop this scenario by analyzing the spectral functions in the single-particle, particle-hole, and particle-particle channels. Our results indicate gapless excitations with a unique velocity, supporting the emergence of Lorentz symmetry at criticality. We also compute the finite-temperature phase boundaries of the ordered states above the fully gapped state at large interaction. The phase boundaries vanishes smoothly in the vicinity of the putative metallic deconfined quantum critical point, in agreement with the expectation for a continuous or weakly-first-order transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17042v3-abstract-full').style.display = 'none'; document.getElementById('2406.17042v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 125123 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06399">arXiv:2404.06399</a> <span> [<a href="https://arxiv.org/pdf/2404.06399">pdf</a>, <a href="https://arxiv.org/format/2404.06399">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Three ways to decipher the nature of exotic hadrons: multiplets, three-body hadronic molecules, and correlation functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+M">Ming-Zhu Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Pan%2C+Y">Ya-Wen Pan</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhi-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+T">Tian-Wei Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Lu%2C+J">Jun-Xu Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Geng%2C+L">Li-Sheng Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06399v2-abstract-short" style="display: inline;"> In the past two decades, a plethora of hadronic states beyond the conventional quark model of $q\bar{q}$ mesons and $qqq$ baryons have been observed experimentally, which motivated extensive studies to understand their nature and the non-perturbative strong interaction. Since most of these exotic states are near the mass thresholds of a pair of conventional hadrons, the prevailing picture is that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06399v2-abstract-full').style.display = 'inline'; document.getElementById('2404.06399v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06399v2-abstract-full" style="display: none;"> In the past two decades, a plethora of hadronic states beyond the conventional quark model of $q\bar{q}$ mesons and $qqq$ baryons have been observed experimentally, which motivated extensive studies to understand their nature and the non-perturbative strong interaction. Since most of these exotic states are near the mass thresholds of a pair of conventional hadrons, the prevailing picture is that they are primarily hadronic molecules. In principle, one can verify the molecular nature of these states by thoroughly comparing their masses, decay widths, and production rates in a particular picture with experimental data. However, this is difficult or impossible. First, quantum mechanics allows for the mixing of configurations allowed by symmetries and quantum numbers. Second, data are relatively scarce because of their small production rates and the many difficulties in the experimental measurements. As a result, other alternatives need to be explored. This review summarizes three such approaches that can help disentangle the nature of the many exotic hadrons discovered. In the first approach, based on the molecular interpretations for some exotic states, we study the likely existence of multiplets of hadronic molecules related by various symmetries, such as isospin symmetry, SU(3)-flavor symmetry, heavy quark spin/flavor symmetry, and heavy antiquark diquark symmetry. In the second approach, starting from some hadronic molecular candidates, one can derive the underlying hadron-hadron interactions. With these interactions, one can study related three-body systems and check whether three-body bound states/resonances exist. In the third approach, one can turn to the femtoscopy technique to derive the hadron-hadron interactions, hence inaccessible. This technique provided an unprecedented opportunity to understand the interactions between unstable hadrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06399v2-abstract-full').style.display = 'none'; document.getElementById('2404.06399v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">171 pages, 43 figures; to appear in Physics Reports</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11842">arXiv:2403.11842</a> <span> [<a href="https://arxiv.org/pdf/2403.11842">pdf</a>, <a href="https://arxiv.org/format/2403.11842">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Form factor for Dalitz decays from $J/蠄$ to light pseudoscalars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11842v1-abstract-short" style="display: inline;"> We calculate the form factor $M(q^2)$ for the Dalitz decay $J/蠄\to 纬^*(q^2)畏_{(N_f=1)}$ with $畏_{(N_f)}$ being the SU($N_f$) flavor singlet pseudoscalar meson. The difference among the partial widths $螕(J/蠄\to 纬畏_{(N_f)})$ at different $N_f$ can be attributed in part to the $\mathbf{U}_A(1)$ anomaly that induces a $N_f$ scaling. $M(q^2)$'s in $N_f=1,2$ are both well described by the single pole mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11842v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11842v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11842v1-abstract-full" style="display: none;"> We calculate the form factor $M(q^2)$ for the Dalitz decay $J/蠄\to 纬^*(q^2)畏_{(N_f=1)}$ with $畏_{(N_f)}$ being the SU($N_f$) flavor singlet pseudoscalar meson. The difference among the partial widths $螕(J/蠄\to 纬畏_{(N_f)})$ at different $N_f$ can be attributed in part to the $\mathbf{U}_A(1)$ anomaly that induces a $N_f$ scaling. $M(q^2)$'s in $N_f=1,2$ are both well described by the single pole model $M(q^2)=M(0)/(1-q^2/螞^2)$. Combined with the known experimental results of the Dalitz decays $J/蠄\to Pe^+e^-$, the pseudoscalar mass $m_P$ dependence of the pole parameter $螞$ is approximated by $螞(m_P^2)=螞_1(1-m_P^2/螞_2^2)$ with $螞_1=2.64(4)~\mathrm{GeV}$ and $螞_2=2.97(33)~\mathrm{GeV}$. These results provide inputs for future theoretical and experimental studies on the Dalitz decays $J/蠄\to Pe^+e^-$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11842v1-abstract-full').style.display = 'none'; document.getElementById('2403.11842v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14541">arXiv:2402.14541</a> <span> [<a href="https://arxiv.org/pdf/2402.14541">pdf</a>, <a href="https://arxiv.org/format/2402.14541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> $X(3872)$ Relevant $D\bar{D}^*$ Scattering in $N_f=2$ Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+H">Haozheng Li</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Juzheng Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14541v2-abstract-short" style="display: inline;"> We study the $S$-wave $D\bar{D}^*(I=0)$ scattering at four different pion masses $m_蟺$ ranging from 250 MeV to 417 MeV from $N_f=2$ lattice QCD. Three energy levels $E_{2,3,4}$ are extracted at each $m_蟺$. The analysis of $E_{2,3}$ using the effective range expansion (ERE) comes out with a shallow bound state below the $D\bar{D}^*$ threshold, and the phase shifts at $E_{3,4}$ indicate the possible… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14541v2-abstract-full').style.display = 'inline'; document.getElementById('2402.14541v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14541v2-abstract-full" style="display: none;"> We study the $S$-wave $D\bar{D}^*(I=0)$ scattering at four different pion masses $m_蟺$ ranging from 250 MeV to 417 MeV from $N_f=2$ lattice QCD. Three energy levels $E_{2,3,4}$ are extracted at each $m_蟺$. The analysis of $E_{2,3}$ using the effective range expansion (ERE) comes out with a shallow bound state below the $D\bar{D}^*$ threshold, and the phase shifts at $E_{3,4}$ indicate the possible existence of a resonance near 4.0 GeV. We also perform a joint analysis to $E_{2,3,4}$ through the $K$-matrix parameterization of the scattering amplitude. In this way, we observe a $D\bar{D}^*$ bound state whose properties are almost the same as that from the ERE analysis. At each $m_蟺$, this joint analysis also results in a resonance pole with a mass slightly above 4.0 GeV and a width around 40-60 MeV, which are compatible with the properties of the newly observed $蠂_{c1}(4010)$ by LHCb. More scrutinized lattice QCD calculations are desired to check the existence of this resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14541v2-abstract-full').style.display = 'none'; document.getElementById('2402.14541v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures. Substantially revised. A section is added to address the joint analysis of the $E_{2,3,4}$ based on the $K$-matrix parameterization of scattering amplitude. A resonance pole is observed with a mass slightly $> 4.0$ GeV and width around 40-60 MeV, compatible with the newly observed $蠂_{c1}(4010)$ by LHCb. The conclusion on the existence of a bound state does not change</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13475">arXiv:2401.13475</a> <span> [<a href="https://arxiv.org/pdf/2401.13475">pdf</a>, <a href="https://arxiv.org/format/2401.13475">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the $D_s^{*}$ radiative decay with (2+1)-flavor Wilson-clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Dang%2C+J">Jin-Long Dang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shen%2C+T">Tinghong Shen</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13475v2-abstract-short" style="display: inline;"> We perform a lattice calculation on the radiative decay of $D_s^*$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. A method allowing us to calculate the form factor with zero transfer momentum is proposed and applied to the radiative transition $D_s^*\rightarrow D_s纬$ and the Dalitz decay $D_s^*\rightarrow D_s e^+e^-$. After a continuum extrapolation using th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13475v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13475v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13475v2-abstract-full" style="display: none;"> We perform a lattice calculation on the radiative decay of $D_s^*$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. A method allowing us to calculate the form factor with zero transfer momentum is proposed and applied to the radiative transition $D_s^*\rightarrow D_s纬$ and the Dalitz decay $D_s^*\rightarrow D_s e^+e^-$. After a continuum extrapolation using three lattice spacings, we obtain $螕(D_s^*\rightarrow D_s 纬)=0.0549(54)$ keV, where the error is purely statistical. The result is consistent with previous lattice calculations but with a error reduced to only a fifth of the before. The Dalitz decay rate is also calculated for the first time and the ratio with the radiative transition is found to be $R_{ee}=0.624(3)\%$. A total decay width of $D_s^*$ can then be determined as 0.0587(54) keV taking into account the experimental branching fraction. Combining with the most recent experimental measurement on the branching fraction of the purely leptonic decay $D_s^{+,*}\rightarrow e^+谓_e$, we obtain the quantity $f_{D_s^*}|V_{cs}|=(190.5^{+55.1}_{-41.7_{\textrm{stat.}}}\pm 12.6_{\textrm{syst.}})$ MeV, where the stat. is only the statistical error from the experiment, and syst. results from the experimental systematic uncertainty and the lattice statistical error. Our result leads to an improved systematic uncertainty compared to $42.7_{\textrm{syst.}}$ obtained using previous lattice prediction of total decay width $0.070(28)$ keV as the input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13475v2-abstract-full').style.display = 'none'; document.getElementById('2401.13475v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 109,074511(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04901">arXiv:2401.04901</a> <span> [<a href="https://arxiv.org/pdf/2401.04901">pdf</a>, <a href="https://arxiv.org/format/2401.04901">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Understanding the nature of baryon resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Abell%2C+C+D">Curtis D. Abell</a>, <a href="/search/hep-lat?searchtype=author&query=Hockley%2C+L+C">Liam C. Hockley</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F+M">Finn M. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A+W">Anthony W. Thomas</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-Jun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04901v1-abstract-short" style="display: inline;"> This presentation opens with a brief review of lattice QCD calculations showing the $2s$ radial excitation of the nucleon sits at approximately 2 GeV, well above the Roper resonance position. We then proceed to reconcile this observation with experimental scattering data. While the idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for dec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04901v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04901v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04901v1-abstract-full" style="display: none;"> This presentation opens with a brief review of lattice QCD calculations showing the $2s$ radial excitation of the nucleon sits at approximately 2 GeV, well above the Roper resonance position. We then proceed to reconcile this observation with experimental scattering data. While the idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades, it's now possible to bring these descriptions to the finite-volume of lattice QCD for confrontation with lattice-QCD calculations. This combination of lattice QCD and experiment demands that we reconsider our preconceived notions about the quark-model and its excitation spectrum. We close with a discussion of an unanticipated resolution to the missing baryon resonances problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04901v1-abstract-full').style.display = 'none'; document.getElementById('2401.04901v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures. To appear as a plenary contribution to the proceedings of HADRON 2023, the 20th International Conference on Hadron Spectroscopy and Structure, 5th-9th June 2023, Genova, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-24-01/T1240 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13072">arXiv:2312.13072</a> <span> [<a href="https://arxiv.org/pdf/2312.13072">pdf</a>, <a href="https://arxiv.org/format/2312.13072">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.054025">10.1103/PhysRevD.109.054025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure of the $\mathbf{螞(1670)}$ resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+J">Jiong-Jiong Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+K">Kan Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Guo%2C+D">Dan Guo</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+X">Xiang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A+W">Anthony W. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13072v2-abstract-short" style="display: inline;"> We examine the internal structure of the $螞(1670)$ through an analysis of lattice QCD simulations and experimental data within Hamiltonian effective field theory. Two scenarios are presented. The first describes the $螞(1670)$ as a bare three-quark basis state, which mixes with the $蟺危$, $\bar{K}N$, $畏螞$ and $K螢$ meson-baryon channels. In the second scenario, the $螞(1670)$ is dynamically generated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13072v2-abstract-full').style.display = 'inline'; document.getElementById('2312.13072v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13072v2-abstract-full" style="display: none;"> We examine the internal structure of the $螞(1670)$ through an analysis of lattice QCD simulations and experimental data within Hamiltonian effective field theory. Two scenarios are presented. The first describes the $螞(1670)$ as a bare three-quark basis state, which mixes with the $蟺危$, $\bar{K}N$, $畏螞$ and $K螢$ meson-baryon channels. In the second scenario, the $螞(1670)$ is dynamically generated from these isospin-0 coupled channels. The $K^-p$ scattering data and the pole structures of the $螞(1405)$ and the $螞(1670)$ can be simultaneously described well in both scenarios. However, a comparison of the finite-volume spectra to lattice QCD calculations reveals significant differences between these scenarios, with a clear preference for the first case. Thus the lattice QCD results play a crucial role in allowing us to distinguish between these two scenarios for the internal structure of the $螞(1670)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13072v2-abstract-full').style.display = 'none'; document.getElementById('2312.13072v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures, 1 table; accepted by Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-23-29/T1238 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 054025 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12884">arXiv:2306.12884</a> <span> [<a href="https://arxiv.org/pdf/2306.12884">pdf</a>, <a href="https://arxiv.org/format/2306.12884">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Decays of $1^{-+}$ Charmoniumlike Hybrid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12884v2-abstract-short" style="display: inline;"> By extracting the transition amplitudes, we give the first lattice QCD prediction of the two-body decay partial widths of the $1^{-+}$ charmoniumlike hybrid $畏_{c1}$. Given the calculated mass value $m_{畏_{c1}}=4.329(36)$ GeV, the $畏_{c1}$ decay is dominated by the open charm modes $D_1\bar{D}$, $D^*\bar{D}$ and $D^*\bar{D}^*$ with partial widths of $258(133)$ MeV, $88(18)$ MeV and $150(118)$ MeV,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12884v2-abstract-full').style.display = 'inline'; document.getElementById('2306.12884v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12884v2-abstract-full" style="display: none;"> By extracting the transition amplitudes, we give the first lattice QCD prediction of the two-body decay partial widths of the $1^{-+}$ charmoniumlike hybrid $畏_{c1}$. Given the calculated mass value $m_{畏_{c1}}=4.329(36)$ GeV, the $畏_{c1}$ decay is dominated by the open charm modes $D_1\bar{D}$, $D^*\bar{D}$ and $D^*\bar{D}^*$ with partial widths of $258(133)$ MeV, $88(18)$ MeV and $150(118)$ MeV, respectively. The coupling of $畏_{c1}$ to $蠂_{c1}$ plus a flavor singlet pseudoscalar is not small, but $蠂_{c1}畏$ decay is suppressed by the small $畏-畏'$ mixing angle. The partial width of $畏_{c1}\to 畏_c畏'$ is estimated to be around 1 MeV. We suggest experiments to search for $畏_{c1}$ in the $P$-wave $D^*\bar{D}$ and $D^*\bar{D}^*$ systems. Especially, the polarization of $D^*\bar{D}^*$ can be used to distinguish the $1^{-+}$ product (total spin $S=1$) from $1^{--}$ products ($S=0$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12884v2-abstract-full').style.display = 'none'; document.getElementById('2306.12884v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures. Revised to article format</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00337">arXiv:2306.00337</a> <span> [<a href="https://arxiv.org/pdf/2306.00337">pdf</a>, <a href="https://arxiv.org/format/2306.00337">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Low-lying odd-parity nucleon resonances as quark-model like states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Abell%2C+C+D">Curtis D. Abell</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A+W">Anthony W. Thomas</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-Jun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00337v1-abstract-short" style="display: inline;"> Recent lattice QCD results for the low-lying odd-parity excitations of the nucleon near the $N^{*}(1535)$ and $N^{*}(1650)$ resonance positions have revealed that the lattice QCD states have magnetic moments consistent with predictions from a constituent-quark-model. Using Hamiltonian Effective Field Theory (HEFT) to describe pion-nucleon scattering in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00337v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00337v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00337v1-abstract-full" style="display: none;"> Recent lattice QCD results for the low-lying odd-parity excitations of the nucleon near the $N^{*}(1535)$ and $N^{*}(1650)$ resonance positions have revealed that the lattice QCD states have magnetic moments consistent with predictions from a constituent-quark-model. Using Hamiltonian Effective Field Theory (HEFT) to describe pion-nucleon scattering in the $I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{-})$ channel, we represent these two quark-model like states as two single-particle bare basis states, dressed and mixed by meson-baryon scattering channels. By constraining the free parameters of the Hamiltonian with $S_{11}$ pion-nucleon scattering data, we perform the first calculation of the finite-volume spectrum using two bare-baryon basis states. By comparing this spectrum to contemporary lattice QCD results at three lattice volumes, we analyse the eigenvectors of the Hamiltonian to gain insight into the structure and composition of these two low-lying resonances. We find that an interpretation of the two low-lying nucleon resonances as quark-model like states dressed by meson-baryon interactions is consistent with both the $S_{11}$ scattering data and lattice QCD. We introduce a novel HEFT formalism for estimating scattering-state contaminations in lattice QCD correlation functions constructed with standard three-quark operators. Not only are historical lattice QCD results described with excellent accuracy, but correlation functions with large scattering-state contaminations are identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00337v1-abstract-full').style.display = 'none'; document.getElementById('2306.00337v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-23-17-T1226 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01659">arXiv:2302.01659</a> <span> [<a href="https://arxiv.org/pdf/2302.01659">pdf</a>, <a href="https://arxiv.org/format/2302.01659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054506">10.1103/PhysRevD.108.054506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RI/(S)MOM renormalizations of overlap quark bilinears with different levels of hypercubic smearing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yujiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01659v2-abstract-short" style="display: inline;"> On configurations with 2+1-flavor dynamical domain-wall fermions, we calculate the RI/(S)MOM renormalization constants (RC) of overlap quark bilinears. Hypercubic (HYP) smearing is used to construct the overlap Dirac operator. We investigate the possible effects of the smearing on discretization errors in the RCs by varying the level of smearing from 0 to 1 and 2. The lattice is of size… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01659v2-abstract-full').style.display = 'inline'; document.getElementById('2302.01659v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01659v2-abstract-full" style="display: none;"> On configurations with 2+1-flavor dynamical domain-wall fermions, we calculate the RI/(S)MOM renormalization constants (RC) of overlap quark bilinears. Hypercubic (HYP) smearing is used to construct the overlap Dirac operator. We investigate the possible effects of the smearing on discretization errors in the RCs by varying the level of smearing from 0 to 1 and 2. The lattice is of size $32^3\times64$ and with lattice spacing $1/a=2.383(9)$ GeV. The RCs in the $\overline{\rm MS}$ scheme at 2 GeV are given at the end, with the uncertainty of $Z_T$ reaching $\le1$% for the tensor current. Results of the renormalized quark masses and hadron matrix elements show that the renormalization procedure suppresses the $\sim$ 30% difference of the bare quantities with or without HYP smearing into the 3%-5% level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01659v2-abstract-full').style.display = 'none'; document.getElementById('2302.01659v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 14 figures. Statistics increased for computing $Z_A$. Two graphs added for illustration. Main results not changed. References and acknowledgements added. Match the version published on Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 5, 054506 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11084">arXiv:2211.11084</a> <span> [<a href="https://arxiv.org/pdf/2211.11084">pdf</a>, <a href="https://arxiv.org/format/2211.11084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Future of US Particle Physics -- The Snowmass 2021 Energy Frontier Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Narain%2C+M">Meenakshi Narain</a>, <a href="/search/hep-lat?searchtype=author&query=Reina%2C+L">Laura Reina</a>, <a href="/search/hep-lat?searchtype=author&query=Tricoli%2C+A">Alessandro Tricoli</a>, <a href="/search/hep-lat?searchtype=author&query=Begel%2C+M">Michael Begel</a>, <a href="/search/hep-lat?searchtype=author&query=Belloni%2C+A">Alberto Belloni</a>, <a href="/search/hep-lat?searchtype=author&query=Bose%2C+T">Tulika Bose</a>, <a href="/search/hep-lat?searchtype=author&query=Boveia%2C+A">Antonio Boveia</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+S">Sally Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Doglioni%2C+C">Caterina Doglioni</a>, <a href="/search/hep-lat?searchtype=author&query=Freitas%2C+A">Ayres Freitas</a>, <a href="/search/hep-lat?searchtype=author&query=Hirschauer%2C+J">James Hirschauer</a>, <a href="/search/hep-lat?searchtype=author&query=Hoeche%2C+S">Stefan Hoeche</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+Y">Yen-Jie Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lipeles%2C+E">Elliot Lipeles</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meade%2C+P">Patrick Meade</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Nadolsky%2C+P">Pavel Nadolsky</a>, <a href="/search/hep-lat?searchtype=author&query=Ojalvo%2C+I">Isobel Ojalvo</a>, <a href="/search/hep-lat?searchtype=author&query=Griso%2C+S+P">Simone Pagan Griso</a>, <a href="/search/hep-lat?searchtype=author&query=Royon%2C+C">Christophe Royon</a>, <a href="/search/hep-lat?searchtype=author&query=Schmitt%2C+M">Michael Schmitt</a>, <a href="/search/hep-lat?searchtype=author&query=Schwienhorst%2C+R">Reinhard Schwienhorst</a>, <a href="/search/hep-lat?searchtype=author&query=Shah%2C+N">Nausheen Shah</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11084v3-abstract-short" style="display: inline;"> This report, as part of the 2021 Snowmass Process, summarizes the current status of collider physics at the Energy Frontier, the broad and exciting future prospects identified for the Energy Frontier, the challenges and needs of future experiments, and indicates high priority research areas. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11084v3-abstract-full" style="display: none;"> This report, as part of the 2021 Snowmass Process, summarizes the current status of collider physics at the Energy Frontier, the broad and exciting future prospects identified for the Energy Frontier, the challenges and needs of future experiments, and indicates high priority research areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11084v3-abstract-full').style.display = 'none'; document.getElementById('2211.11084v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">128 pages, 41 figures, 17 tables, contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span> [<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04694">arXiv:2207.04694</a> <span> [<a href="https://arxiv.org/pdf/2207.04694">pdf</a>, <a href="https://arxiv.org/format/2207.04694">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054511">10.1103/PhysRevD.107.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $1^{-+}$ Hybrid in $J/蠄$ Radiative Decays from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04694v3-abstract-short" style="display: inline;"> We present the first theoretical prediction of the production rate of $1^{-+}$ light hybrid meson $畏_1$ in $J/蠄$ radiative decays. In the $N_f=2$ lattice QCD formalism with the pion mass $m_蟺\approx 350$ MeV, the related electromagnetic multipole form factors are extracted from the three-point functions that involve necessarily quark annihilation diagrams, which are calculated through the distilla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04694v3-abstract-full').style.display = 'inline'; document.getElementById('2207.04694v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04694v3-abstract-full" style="display: none;"> We present the first theoretical prediction of the production rate of $1^{-+}$ light hybrid meson $畏_1$ in $J/蠄$ radiative decays. In the $N_f=2$ lattice QCD formalism with the pion mass $m_蟺\approx 350$ MeV, the related electromagnetic multipole form factors are extracted from the three-point functions that involve necessarily quark annihilation diagrams, which are calculated through the distillation method. The partial width of $J/蠄\to 纬畏_1$ is determined to be $2.29(77)~\mathrm{eV}$ at the $畏_1$ mass $m_{畏_1}=2.23(4)$ GeV. If $畏_1$ corresponds to the recently observed $畏_1(1855)$ in the process $J/蠄\to 纬畏_1(1855)\to 纬畏畏'$ by BESIII, then the branching fraction $\mathrm{Br}(J/蠄\to 纬畏_1(1855))$ is estimated to be $6.2(2.2)\times 10^{-5}$, which implies $\mathrm{Br}(畏_1(1855)\to 畏畏')\sim 4.3\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04694v3-abstract-full').style.display = 'none'; document.getElementById('2207.04694v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Published in prd</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06185">arXiv:2206.06185</a> <span> [<a href="https://arxiv.org/pdf/2206.06185">pdf</a>, <a href="https://arxiv.org/format/2206.06185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137391">10.1016/j.physletb.2022.137391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $T_{cc}^{+}(3875)$ relevant $DD^*$ scattering from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+S">Siyang Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06185v3-abstract-short" style="display: inline;"> The $S$-wave $DD^*$ scattering in the isospin $I=0,1$ channels is studied in $N_f=2$ lattice QCD at $m_蟺\approx 350$ MeV. It is observed that the $DD^*$ interaction is repulsive in the $I=1$ channel when the $DD^*$ energy is near the $DD^*$ threshold. In contrast, the $DD^*$ interaction in the $I=0$ channel is definitely attractive in a wide range of the $DD^*$ energy. This is consistent with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06185v3-abstract-full').style.display = 'inline'; document.getElementById('2206.06185v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06185v3-abstract-full" style="display: none;"> The $S$-wave $DD^*$ scattering in the isospin $I=0,1$ channels is studied in $N_f=2$ lattice QCD at $m_蟺\approx 350$ MeV. It is observed that the $DD^*$ interaction is repulsive in the $I=1$ channel when the $DD^*$ energy is near the $DD^*$ threshold. In contrast, the $DD^*$ interaction in the $I=0$ channel is definitely attractive in a wide range of the $DD^*$ energy. This is consistent with the isospin assignment $I=0$ for $T_{cc}^+(3875)$. By analyzing the components of the $DD^*$ correlation functions, it turns out that the quark diagram responsible for the different properties of $I=0,1$ $DD^*$ interactions can be understood as the charged $蟻$ meson exchange effect. This observation provides direct information on the internal dynamics of $T_{cc}^+(3875)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06185v3-abstract-full').style.display = 'none'; document.getElementById('2206.06185v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures, version to appear in Physics Letters B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02724">arXiv:2206.02724</a> <span> [<a href="https://arxiv.org/pdf/2206.02724">pdf</a>, <a href="https://arxiv.org/format/2206.02724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.061901">10.1103/PhysRevLett.130.061901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative Decay Width of $J/蠄\to 纬畏_{(2)}$ from $N_f=2$ Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02724v2-abstract-short" style="display: inline;"> The large radiative production rate for pseudoscalar mesons in the $J/蠄$ radiative decay remains elusive. We present the first lattice QCD calculation of partial decay width of $J/蠄$ radiatively decaying into $畏_{(2)}$, the $\mathrm{SU(2)}$ flavor singlet pseudoscalar meson, which confirms QCD $\mathrm{U_A(1)}$ anomaly enhancement to the coupling of gluons with flavor singlet pseudoscalar mesons.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02724v2-abstract-full').style.display = 'inline'; document.getElementById('2206.02724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02724v2-abstract-full" style="display: none;"> The large radiative production rate for pseudoscalar mesons in the $J/蠄$ radiative decay remains elusive. We present the first lattice QCD calculation of partial decay width of $J/蠄$ radiatively decaying into $畏_{(2)}$, the $\mathrm{SU(2)}$ flavor singlet pseudoscalar meson, which confirms QCD $\mathrm{U_A(1)}$ anomaly enhancement to the coupling of gluons with flavor singlet pseudoscalar mesons. The lattice simulation is carried out using $N_f=2$ lattice QCD gauge configurations at the pion mass $m_蟺 \approx 350$ MeV. In particular, the distillation method has been utilized to calculate light quark loops. The results are reported here with the mass $m_{畏_{(2)}}= 718(8)$ MeV and the decay width $螕(J/蠄\to纬畏_{(2)})=0.385(45)$ keV. By assuming the dominance of $\mathrm{U_A(1)}$ anomaly and flavor singlet-octet mixing angle $胃=-24.5^\circ$, the production rates for the physical $畏$ and $畏'$ in $J/蠄$ radiative decay are predicted to be $1.15(14)\times 10^{-3}$ and $4.49(53)\times 10^{-3}$, respectively, which agree well with the experimental measurement data. Our study manifests the potential of lattice QCD studies on the light hadron production in $J/蠄$ radiative decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02724v2-abstract-full').style.display = 'none'; document.getElementById('2206.02724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 061901 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12541">arXiv:2205.12541</a> <span> [<a href="https://arxiv.org/pdf/2205.12541">pdf</a>, <a href="https://arxiv.org/format/2205.12541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094510">10.1103/PhysRevD.107.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $畏$-glueball mixing from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12541v2-abstract-short" style="display: inline;"> We perform the first lattice study on the mixing of the isoscalar pseudoscalar meson $畏$ and the pseudoscalar glueball $G$ in the $N_f=2$ QCD at the pion mass $m_蟺\approx 350$ MeV. The $畏$ mass is determined to be $m_畏=714(6)(16)$ MeV. Through the Witten-Veneziano relation, this value can be matched to a mass value of $\sim 981$ MeV for the $\mathrm{SU(3)}$ counterpart of $畏$. Based on a large gau… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12541v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12541v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12541v2-abstract-full" style="display: none;"> We perform the first lattice study on the mixing of the isoscalar pseudoscalar meson $畏$ and the pseudoscalar glueball $G$ in the $N_f=2$ QCD at the pion mass $m_蟺\approx 350$ MeV. The $畏$ mass is determined to be $m_畏=714(6)(16)$ MeV. Through the Witten-Veneziano relation, this value can be matched to a mass value of $\sim 981$ MeV for the $\mathrm{SU(3)}$ counterpart of $畏$. Based on a large gauge ensemble, the $畏-G$ mixing energy and the mixing angle are determined to be $|x|=107(15)(2)$ MeV and $|胃|=3.46(46)^\circ$ from the $畏-G$ correlators that are calculated using the distillation method. We conclude that the $畏-G$ mixing is tiny and the topology induced interaction contributes most of $畏$ mass owing to the QCD $\mathrm{U_A(1)}$ anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12541v2-abstract-full').style.display = 'none'; document.getElementById('2205.12541v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 094510 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09246">arXiv:2204.09246</a> <span> [<a href="https://arxiv.org/pdf/2204.09246">pdf</a>, <a href="https://arxiv.org/format/2204.09246">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.114506">10.1103/PhysRevD.106.114506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RI/MOM and RI/SMOM renormalization of quark bilinear operators using overlap fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yu-Jiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09246v3-abstract-short" style="display: inline;"> We present the vector, scalar and tensor renormalization constants (RCs) using overlap fermions with either regularization independent momentum subtraction (RI/MOM) or symmetric momentum subtraction (RI/SMOM) as the intermediate scheme on the lattice with lattice spacings $a$ from 0.04 fm to 0.12 fm. Our gauge field configurations from the MILC and RBC/UKQCD collaborations include sea quarks using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09246v3-abstract-full').style.display = 'inline'; document.getElementById('2204.09246v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09246v3-abstract-full" style="display: none;"> We present the vector, scalar and tensor renormalization constants (RCs) using overlap fermions with either regularization independent momentum subtraction (RI/MOM) or symmetric momentum subtraction (RI/SMOM) as the intermediate scheme on the lattice with lattice spacings $a$ from 0.04 fm to 0.12 fm. Our gauge field configurations from the MILC and RBC/UKQCD collaborations include sea quarks using either the domain wall or the HISQ action, respectively. The results show that RI/MOM and RI/SMOM can provide consistent renormalization constants to the $\overline{\textrm{MS}}$ scheme, after proper $a^2p^2$ extrapolations. But at $p\sim 2$\,GeV, both RI/MOM and RI/SMOM suffer from nonperturbative effects which cannot be removed by the perturbative matching. The comparison between the results with different sea actions also suggests that the renormalization constant is discernibly sensitive to the lattice spacing but not to the bare gauge coupling in the gauge action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09246v3-abstract-full').style.display = 'none'; document.getElementById('2204.09246v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures; Version accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04997">arXiv:2201.04997</a> <span> [<a href="https://arxiv.org/pdf/2201.04997">pdf</a>, <a href="https://arxiv.org/format/2201.04997">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac988a">10.1088/1674-1137/ac988a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strangeness $S = -2$ baryon-baryon interactions and femtoscopic correlation functions in covariant chiral effective field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhi-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+K">Kai-Wen Li</a>, <a href="/search/hep-lat?searchtype=author&query=Geng%2C+L">Li-Sheng Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04997v3-abstract-short" style="display: inline;"> We study the baryon-baryon interactions with strangeness $S = -2$ and corresponding momentum correlation functions in leading order covariant chiral effective field theory. The relevant low energy constants are determined by fitting to the latest HAL QCD simulations, taking into account all the coupled channels. Extrapolating the so-obtained strong interactions to the physical point and considerin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04997v3-abstract-full').style.display = 'inline'; document.getElementById('2201.04997v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04997v3-abstract-full" style="display: none;"> We study the baryon-baryon interactions with strangeness $S = -2$ and corresponding momentum correlation functions in leading order covariant chiral effective field theory. The relevant low energy constants are determined by fitting to the latest HAL QCD simulations, taking into account all the coupled channels. Extrapolating the so-obtained strong interactions to the physical point and considering both quantum statistical effects and the Coulomb interaction, we calculate the $螞螞$ and $螢^-p$ correlation functions with a spherical Gaussian source and compare them with the recent experimental data. We find remarkable agreement between our predictions and the experimental measurements by using the source radius determined in proton-proton correlations, which demonstrates the consistency between theory, experiment, and lattice QCD simulations. Moreover, we predict the $危^+危^+$, $危^+螞$, and $危^+危^-$ interactions and corresponding momentum correlation functions. We further investigate the influence of the source shape and size of the hadron pair on the correlation functions studied and show that the current data are not very sensitive to the source shape. Future experimental measurement of the predicted momentum correlation functions will provide a non-trivial test of not only SU(3) flavor symmetry and its breaking but also the baryon-baryon interactions derived in covariant chiral effective field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04997v3-abstract-full').style.display = 'none'; document.getElementById('2201.04997v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures; version accepted for publication in Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01755">arXiv:2110.01755</a> <span> [<a href="https://arxiv.org/pdf/2110.01755">pdf</a>, <a href="https://arxiv.org/format/2110.01755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac3d8c">10.1088/1674-1137/ac3d8c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Annihilation diagram contribution to charmonium masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01755v2-abstract-short" style="display: inline;"> In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01755v2-abstract-full').style.display = 'inline'; document.getElementById('2110.01755v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01755v2-abstract-full" style="display: none;"> In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark annihilation effect almost does not change the $J/蠄$ mass, but lifts the $畏_c$ mass by approximately 3-4 MeV. For $1P$ charmonia, this effect results in positive mass shifts of approximately 1 MeV for $蠂_{c1}$ and $h_c$, but decreases the $蠂_{c2}$ mass by approximately 3 MeV. We have not obtain a reliable result for the mass shift of $蠂_{c0}$. In addition, it is observed that the spin averaged mass of the spin-triplet $1P$ charmonia is in a good agreement with the $h_c$, as expected by the non-relativistic quark model and measured by experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01755v2-abstract-full').style.display = 'none'; document.getElementById('2110.01755v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. C 46(2022) 043102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06346">arXiv:2108.06346</a> <span> [<a href="https://arxiv.org/pdf/2108.06346">pdf</a>, <a href="https://arxiv.org/format/2108.06346">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.087201">10.1103/PhysRevLett.128.087201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metallic and Deconfined Quantum Criticality in Dirac Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z+H">Zi Hong Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Vojta%2C+M">Matthias Vojta</a>, <a href="/search/hep-lat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/hep-lat?searchtype=author&query=Janssen%2C+L">Lukas Janssen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06346v2-abstract-short" style="display: inline;"> Motivated by the physics of spin-orbital liquids, we study a model of interacting Dirac fermions on a bilayer honeycomb lattice at half filling, featuring an explicit global SO(3)$\times$U(1) symmetry. Using large-scale auxiliary-field quantum Monte Carlo (QMC) simulations, we locate two zero-temperature phase transitions as function of increasing interaction strength. First, we observe a continuo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06346v2-abstract-full').style.display = 'inline'; document.getElementById('2108.06346v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06346v2-abstract-full" style="display: none;"> Motivated by the physics of spin-orbital liquids, we study a model of interacting Dirac fermions on a bilayer honeycomb lattice at half filling, featuring an explicit global SO(3)$\times$U(1) symmetry. Using large-scale auxiliary-field quantum Monte Carlo (QMC) simulations, we locate two zero-temperature phase transitions as function of increasing interaction strength. First, we observe a continuous transition from the weakly-interacting semimetal to a different semimetallic phase in which the SO(3) symmetry is spontaneously broken and where two out of three Dirac cones acquire a mass gap. The associated quantum critical point can be understood in terms of a Gross-Neveu-SO(3) theory. Second, we subsequently observe a transition towards an insulating phase in which the SO(3) symmetry is restored and the U(1) symmetry is spontaneously broken. While strongly first order at the mean-field level, the QMC data is consistent with a direct and continuous transition. It is thus a candidate for a new type of deconfined quantum critical point that features gapless fermionic degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06346v2-abstract-full').style.display = 'none'; document.getElementById('2108.06346v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 087201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12749">arXiv:2107.12749</a> <span> [<a href="https://arxiv.org/pdf/2107.12749">pdf</a>, <a href="https://arxiv.org/format/2107.12749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.136960">10.1016/j.physletb.2022.136960 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Glueball content of $畏_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12749v2-abstract-short" style="display: inline;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'inline'; document.getElementById('2107.12749v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12749v2-abstract-full" style="display: none;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar glueball, the mixing angle is determined to be approximately $4.6(6)^\circ$, which results in a $+3.9(9)$ MeV mass shift of the ground state pseudoscalar charmonium. In the mean time, the mixing can raise the total width of the pseudoscalar charmonium by 7.2(8) MeV, which explains to some extent the relative large total width of the $畏_c$ meson. As a result, the branching fraction of $畏_c\to 纬纬$ can be understood in this $c\bar{c}$-glueball mixing framework. On the other hand, the possible discrepancy of the theoretical predictions and the experimental results of the partial width of $J/蠄\to纬畏_c$ cannot be alleviated by the $c\bar{c}$-glueball mixing picture yet, which demands future precise experimental measurements of this partial width. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'none'; document.getElementById('2107.12749v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures;v2: accepted by Physics Letter B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81T25 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B, 827(2022)136960 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04742">arXiv:2107.04742</a> <span> [<a href="https://arxiv.org/pdf/2107.04742">pdf</a>, <a href="https://arxiv.org/ps/2107.04742">ps</a>, <a href="https://arxiv.org/format/2107.04742">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.105.035203">10.1103/PhysRevC.105.035203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Test of the hyperon-nucleon interaction within leading order covariant chiral effective field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Song%2C+J">Jing Song</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhi-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+K">Kai-Wen Li</a>, <a href="/search/hep-lat?searchtype=author&query=Geng%2C+L">Li-Sheng Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04742v2-abstract-short" style="display: inline;"> Motivated by the recent experimental measurements of differential cross sections of the $危^{-}p$ elastic scattering in the momentum range of $470$ to $850$ MeV$/c$ by the J-PARC E$40$ experiment, we extend our previous studies of $S=-1$ hyperon-nucleon interactions to relatively higher energies up to $900$ MeV$/c$ for both the coupled-channel $螞p\rightarrow(螞p, 危^{+}n, 危^{0}p)$,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04742v2-abstract-full').style.display = 'inline'; document.getElementById('2107.04742v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04742v2-abstract-full" style="display: none;"> Motivated by the recent experimental measurements of differential cross sections of the $危^{-}p$ elastic scattering in the momentum range of $470$ to $850$ MeV$/c$ by the J-PARC E$40$ experiment, we extend our previous studies of $S=-1$ hyperon-nucleon interactions to relatively higher energies up to $900$ MeV$/c$ for both the coupled-channel $螞p\rightarrow(螞p, 危^{+}n, 危^{0}p)$, $危^{-}p\rightarrow(螞n, 危^{0}n, 危^{-}p)$ and single-channel $危^{+}p\rightarrow危^{+}p$ reactions. We show that although the leading order covariant chiral effective field theory is only constrained by the low energy data, it can describe the high energy data reasonably well, in particular, the J-PARC E40 differential cross sections. The predicted cusp structure close to the $危N$ threshold in the $螞p\to 螞p$ reaction agrees with the latest ALICE observation as well as with the results of the next-to-leading order heavy baryon chiral effective theory. On the other hand, the comparison with the latest CLAS data on the $螞p$ cross sections between 0.9 and 2.0 GeV$/c$ clearly indicates the need of higher order chiral potentials for such high momenta. This is also the case for the latest J-PARC data on the $危p \rightarrow 螞n$ differential cross sections. Nevertheless, even for these cases, the predictions are in qualitative agreement with the data, albeit with large uncertainties, implying that the predicted total and differential cross sections are of relevance for ongoing and planned experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04742v2-abstract-full').style.display = 'none'; document.getElementById('2107.04742v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, comparison with the latest J-PARC and CLAS data made, uncertainty estimates updated, to appear in Physical Review C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span> [<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02380">arXiv:2104.02380</a> <span> [<a href="https://arxiv.org/pdf/2104.02380">pdf</a>, <a href="https://arxiv.org/format/2104.02380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $^3S_1-{}^3D_1$ coupled channel $螞_c N$ interactions: chiral effective field theory vs. lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Song%2C+J">Jing Song</a>, <a href="/search/hep-lat?searchtype=author&query=Xiao%2C+Y">Yang Xiao</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhi-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+K">Kai-Wen Li</a>, <a href="/search/hep-lat?searchtype=author&query=Geng%2C+L">Li-Sheng Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02380v2-abstract-short" style="display: inline;"> We study the lattice QCD $螞_c N$ phase shifts for the $^3S_1-{}^3D_1$ coupled channel using both the leading order covariant chiral effective theory and the next-to-leading order non-relativistic chiral effective field theory. We show that although it is possible to describe simultaneously the $^3S_1$ and $^3D_1$ phase shifts and the inelasticity $畏_1$, the fitted energy range is pretty small, onl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02380v2-abstract-full').style.display = 'inline'; document.getElementById('2104.02380v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02380v2-abstract-full" style="display: none;"> We study the lattice QCD $螞_c N$ phase shifts for the $^3S_1-{}^3D_1$ coupled channel using both the leading order covariant chiral effective theory and the next-to-leading order non-relativistic chiral effective field theory. We show that although it is possible to describe simultaneously the $^3S_1$ and $^3D_1$ phase shifts and the inelasticity $畏_1$, the fitted energy range is pretty small, only up to $E_\mathrm{c.m.}=5$ MeV. This raises concerns regarding the consistency between leading/next-to-leading order chiral effective field theory and the lattice QCD simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02380v2-abstract-full').style.display = 'none'; document.getElementById('2104.02380v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, to appear in Communications in Theoretical Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11914">arXiv:2012.11914</a> <span> [<a href="https://arxiv.org/pdf/2012.11914">pdf</a>, <a href="https://arxiv.org/format/2012.11914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhysCodeb.1">10.21468/SciPostPhysCodeb.1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The ALF (Algorithms for Lattice Fermions) project release 2.4. Documentation for the auxiliary-field quantum Monte Carlo code </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=ALF+Collaboration"> ALF Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Assaad%2C+F+F">F. F. Assaad</a>, <a href="/search/hep-lat?searchtype=author&query=Bercx%2C+M">M. Bercx</a>, <a href="/search/hep-lat?searchtype=author&query=Goth%2C+F">F. Goth</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%B6tz%2C+A">A. G枚tz</a>, <a href="/search/hep-lat?searchtype=author&query=Hofmann%2C+J+S">J. S. Hofmann</a>, <a href="/search/hep-lat?searchtype=author&query=Huffman%2C+E">E. Huffman</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Z. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Toldin%2C+F+P">F. Parisen Toldin</a>, <a href="/search/hep-lat?searchtype=author&query=Portela%2C+J+S+E">J. S. E. Portela</a>, <a href="/search/hep-lat?searchtype=author&query=Schwab%2C+J">J. Schwab</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11914v7-abstract-short" style="display: inline;"> The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to a bosonic field with given dynamics. The package in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11914v7-abstract-full').style.display = 'inline'; document.getElementById('2012.11914v7-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11914v7-abstract-full" style="display: none;"> The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to a bosonic field with given dynamics. The package includes five pre-defined model classes: SU(N) Kondo, SU(N) Hubbard, SU(N) t-V and SU(N) models with long range Coulomb repulsion on honeycomb, square and N-leg lattices, as well as $Z_2$ unconstrained lattice gauge theories coupled to fermionic and $Z_2$ matter. An implementation of the stochastic Maximum Entropy method is also provided. One can download the code from our Git instance at https://git.physik.uni-wuerzburg.de/ALF/ALF/-/tree/ALF-2.4 and sign in to file issues. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11914v7-abstract-full').style.display = 'none'; document.getElementById('2012.11914v7-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">126 pages, 12 figures. v7: update do ALF 2.4. Submission to SciPost. This article supersedes arXiv:1704.00131</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Physics Codebases 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05208">arXiv:2008.05208</a> <span> [<a href="https://arxiv.org/pdf/2008.05208">pdf</a>, <a href="https://arxiv.org/format/2008.05208">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abcd8f">10.1088/1674-1137/abcd8f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmed and $蠁$ meson decay constants from 2+1-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+W">Wei-Feng Chiu</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yunheng Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05208v3-abstract-short" style="display: inline;"> On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $蠁$. The lattice size is $48^3\times96$, which corresponds to a spatial extension of $\sim5.5$ fm with the lattice spacing $a\approx 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05208v3-abstract-full').style.display = 'inline'; document.getElementById('2008.05208v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05208v3-abstract-full" style="display: none;"> On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $蠁$. The lattice size is $48^3\times96$, which corresponds to a spatial extension of $\sim5.5$ fm with the lattice spacing $a\approx 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are $f_D=213(5)$ MeV, $f_{D_s}=249(7)$ MeV, $f_{D^*}=234(6)$ MeV, $f_{D_s^*}=274(7)$ MeV, and $f_蠁=241(9)$ MeV. The couplings of $D^*$ and $D_s^*$ to the tensor current ($f_V^T$) can be derived, respectively, from the ratios $f_{D^*}^T/f_{D^*}=0.91(4)$ and $f_{D_s^*}^T/f_{D_s^*}=0.92(4)$, which are the first lattice QCD results. We also obtain the ratios $f_{D^*}/f_D=1.10(3)$ and $f_{D_s^*}/f_{D_s}=1.10(4)$, which reflect the size of heavy quark symmetry breaking in charmed mesons. The ratios $f_{D_s}/f_{D}=1.16(3)$ and $f_{D_s^*}/f_{D^*}=1.17(3)$ can be taken as a measure of SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05208v3-abstract-full').style.display = 'none'; document.getElementById('2008.05208v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 10 tables; references and acknowledgements added; minor changes, version to be published in Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C45, No. 2 (2021) 023109 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14893">arXiv:2007.14893</a> <span> [<a href="https://arxiv.org/pdf/2007.14893">pdf</a>, <a href="https://arxiv.org/format/2007.14893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abc241">10.1088/1674-1137/abc241 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strangeonium-like hybrids on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yunheng Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14893v1-abstract-short" style="display: inline;"> The strangeonium-like $s\bar{s}g$ hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for $1^{--}$ and $(0,1,2)^{-+}$ states with the color octet $s\bar{s}$ component being separated from the chromomagnetic field strength by spatial distances $r$, whose matrix elements between the vacuum and the corresponding s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14893v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14893v1-abstract-full" style="display: none;"> The strangeonium-like $s\bar{s}g$ hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for $1^{--}$ and $(0,1,2)^{-+}$ states with the color octet $s\bar{s}$ component being separated from the chromomagnetic field strength by spatial distances $r$, whose matrix elements between the vacuum and the corresponding states are interpreted as Bethe-Salpeter (BS) wave functions. In each of the $(1,2)^{-+}$ channels, the masses and the BS wave functions are reliably derived. The $1^{-+}$ ground state mass is around 2.1-2.2 GeV, and that of $2^{-+}$ is around 2.3-2.4 GeV, while the masses of the first excited states are roughly 1.4 GeV higher. This mass splitting is much larger than the expectation of the phenomenological flux-tube model or constituent gluon model for hybrids, which is usually a few hundred MeV. The BS wave functions with respect to $r$ show clear radial nodal structures of non-relativistic two-body system, which imply that $r$ is a meaningful dynamical variable for these hybrids and motivate a color halo picture of hybrids that the color octet $s\bar{s}$ is surrounded by gluonic degrees of freedom. In the $1^{--}$ channel, the properties of the lowest two states comply with those of $蠁(1020)$ and $蠁(1680)$. We have not obtained convincing information relevant to $蠁(2170)$ yet, however, we argue that whether $蠁(2170)$ is a conventional $s\bar{s}$ meson or a $s\bar{s}g$ hybrid within the color halo scenario, the ratio of partial decay widths $螕(蠁畏)$ and $螕(蠁畏')$ observed by BESIII can be understood by the mechanism of hadronic transition of a strangeonium-like meson along with the $畏-畏'$ mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14893v1-abstract-full').style.display = 'none'; document.getElementById('2007.14893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, to be submitted to Chin. Phys. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12914">arXiv:2003.12914</a> <span> [<a href="https://arxiv.org/pdf/2003.12914">pdf</a>, <a href="https://arxiv.org/format/2003.12914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Trace anomaly and dynamical quark mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12914v1-abstract-short" style="display: inline;"> We investigated the origin of the RI'/MOM quark mass under the Landau gauge at the non-perturbative scale, using the chiral fermion with different quark masses and lattice spacings. Our result confirms that such a mass is non-vanishing based on the linear extrapolation to the chiral and continuum limit, and shows that such a mass comes from the spontaneous chiral symmetry breaking induced by the n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12914v1-abstract-full').style.display = 'inline'; document.getElementById('2003.12914v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12914v1-abstract-full" style="display: none;"> We investigated the origin of the RI'/MOM quark mass under the Landau gauge at the non-perturbative scale, using the chiral fermion with different quark masses and lattice spacings. Our result confirms that such a mass is non-vanishing based on the linear extrapolation to the chiral and continuum limit, and shows that such a mass comes from the spontaneous chiral symmetry breaking induced by the near zero modes with the eigenvalue $位<{\cal O}(5m_q)$, and is proportional to the quark matrix element of the trace anomaly at least down to $\sim $1.3 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12914v1-abstract-full').style.display = 'none'; document.getElementById('2003.12914v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures; for the 37th International Symposium on Lattice Field Theory (Lattice2019), 16-22 June 2019, Wuhan, China</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09817">arXiv:2003.09817</a> <span> [<a href="https://arxiv.org/pdf/2003.09817">pdf</a>, <a href="https://arxiv.org/format/2003.09817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/44/8/083108">10.1088/1674-1137/44/8/083108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lattice Study of the Two-photon Decay Widths for Scalar and Pseudo-scalar Charmonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+C">Chao Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09817v2-abstract-short" style="display: inline;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay wid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'inline'; document.getElementById('2003.09817v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09817v2-abstract-full" style="display: none;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay widths for the two charmonia are obtained which are in the right ballpark however smaller than the experimental ones. Possible reasons for these discrepancies are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'none'; document.getElementById('2003.09817v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted by Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.06699">arXiv:2002.06699</a> <span> [<a href="https://arxiv.org/pdf/2002.06699">pdf</a>, <a href="https://arxiv.org/format/2002.06699">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.094501">10.1103/PhysRevD.101.094501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The nucleon isovector tensor charge from lattice QCD using chiral fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Horkel%2C+D">Derek Horkel</a>, <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yujiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.06699v1-abstract-short" style="display: inline;"> In this work we present the isovector flavor combination for the nucleon tensor charge extracted from lattice QCD simulations using overlap fermions on $N_f=2+1$ domain-wall configurations. The pion mass dependence is studied using six valence quark masses, each reproducing a value for the pion mass in the valence sector between 147 and 330 MeV. We investigate and eliminate systematic uncertaintie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06699v1-abstract-full').style.display = 'inline'; document.getElementById('2002.06699v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.06699v1-abstract-full" style="display: none;"> In this work we present the isovector flavor combination for the nucleon tensor charge extracted from lattice QCD simulations using overlap fermions on $N_f=2+1$ domain-wall configurations. The pion mass dependence is studied using six valence quark masses, each reproducing a value for the pion mass in the valence sector between 147 and 330 MeV. We investigate and eliminate systematic uncertainties due to contamination by excited states, by employing several values for the source-sink separation that span from 1 fm to 1.6 fm. We apply a chiral extrapolation in the valence sector using a quadratic and a logarithmic term to fit the pion mass dependence, which describes well the lattice data. The lattice matrix element is renormalized non-perturbatively, and the final result is $g_T=1.096(30)$ in the $\overline{\rm MS}$ scheme at a renormalization scale of 2 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06699v1-abstract-full').style.display = 'none'; document.getElementById('2002.06699v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 094501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09819">arXiv:1910.09819</a> <span> [<a href="https://arxiv.org/pdf/1910.09819">pdf</a>, <a href="https://arxiv.org/format/1910.09819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac0ee2">10.1088/1674-1137/ac0ee2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color halo scenario of charmonium-like hybrids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yunheng Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09819v2-abstract-short" style="display: inline;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09819v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09819v2-abstract-full" style="display: none;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between a localized $\bar{c}c$ component and the chromomagnetic strength tensor. These wave functions exhibit some similarities for states with the aforementioned different quantum numbers, and their $r$-behaviors (no node for the ground states and one node for the first excited states) imply that $r$ can be a meaningful dynamical variable for these states. Additionally, the mass splittings of the ground states and first excited states of charmonium-like hybrids in these channels are obtained for the first time to be approximately 1.2-1.4 GeV. These results do not support the flux-tube description of heavy-quarkonium-like hybrids in the Born-Oppenheimer approximation. In contrast, a charmonium-like hybrid can be viewed as a "color halo" charmonium for which a relatively localized color octet $\bar{c}c$ is surrounded by gluonic degrees of freedom, which can readily decay into a charmonium state along with one or more light hadrons. The color halo picture is compatible with the decay properties of $Y(4260)$ and suggests LHCb and BelleII to search for $(0,1,2)^{-+}$ charmonium-like hybrids in $蠂_{c0,1,2}畏$ and $J/蠄蠅(蠁)$ final states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'none'; document.getElementById('1910.09819v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures. The contents are considerably enriched, more references are added. Match the publication version in Chin. Phys. C (in press)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 45, No. 9 (2021) 093111 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03371">arXiv:1907.03371</a> <span> [<a href="https://arxiv.org/pdf/1907.03371">pdf</a>, <a href="https://arxiv.org/format/1907.03371">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/43/10/103103">10.1088/1674-1137/43/10/103103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A coupled-channel lattice study on the resonance-like structure $Z_c(3900)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+T">Ting Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03371v2-abstract-short" style="display: inline;"> In this exploratory study, near-threshold scattering of $D$ and $\bar{D}^*$ meson is investigated using lattice QCD with $N_f=2+1+1$ twisted mass fermion configurations. The calculation is performed within the coupled-channel L眉scher's finite-size formalism. The study focuses on the channel with $I^G(J^{PC})=1^+(1^{+-})$ where the resonance-like structure $Z_c(3900)$ was discovered. We first ident… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03371v2-abstract-full').style.display = 'inline'; document.getElementById('1907.03371v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03371v2-abstract-full" style="display: none;"> In this exploratory study, near-threshold scattering of $D$ and $\bar{D}^*$ meson is investigated using lattice QCD with $N_f=2+1+1$ twisted mass fermion configurations. The calculation is performed within the coupled-channel L眉scher's finite-size formalism. The study focuses on the channel with $I^G(J^{PC})=1^+(1^{+-})$ where the resonance-like structure $Z_c(3900)$ was discovered. We first identify the most relevant two channels of the problem and the lattice study is performed within the two-channel scattering model. Combined with a two-channel Ross-Shaw theory, scattering parameters are extracted from the energy levels by solving the generalized eigenvalue problem. Our results on the scattering length parameters suggest that, at the particular lattice parameters that we studied, the best fitted parameters do not correspond to a peak behavior in the elastic scattering cross section near the threshold. Furthermore, within the zero-range Ross-Shaw theory, the scenario of a narrow resonance close to the threshold is disfavored beyond $3蟽$ level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03371v2-abstract-full').style.display = 'none'; document.getElementById('1907.03371v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, minor changes. Version accepted by Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin.Phys. C43 (2019) no.10, 103103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06496">arXiv:1809.06496</a> <span> [<a href="https://arxiv.org/pdf/1809.06496">pdf</a>, <a href="https://arxiv.org/ps/1809.06496">ps</a>, <a href="https://arxiv.org/format/1809.06496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.062001">10.1103/PhysRevLett.122.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of $D^+ \to f_0(500) e^+谓_e$ and Improved Measurements of $D \to蟻e^+谓_e$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Alekseev%2C+M">M. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Calcaterra%2C+A">A. Calcaterra</a> , et al. (438 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06496v2-abstract-short" style="display: inline;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'inline'; document.getElementById('1809.06496v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06496v2-abstract-full" style="display: none;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a statistical significance greater than 10$蟽$, besides the dominant $P$-wave contribution. This is the first observation of the $S$-wave contribution. We measure the branching fractions $\mathcal{B}(D^{0} \to 蟻^- e^+ 谓_e) = (1.445\pm 0.058 \pm 0.039) \times10^{-3}$, $\mathcal{B}(D^{+} \to 蟻^0 e^+ 谓_e) = (1.860\pm 0.070 \pm 0.061) \times10^{-3}$, and $\mathcal{B}(D^{+} \to f_0(500) e^+ 谓_e, f_0(500)\to蟺^+蟺^-) = (6.30\pm 0.43 \pm 0.32) \times10^{-4}$. An upper limit of $\mathcal{B}(D^{+} \to f_0(980) e^+ 谓_e, f_0(980)\to蟺^+蟺^-) < 2.8 \times10^{-5}$ is set at the 90% confidence level. We also obtain the hadronic form factor ratios of $D\to 蟻e^+谓_e$ at $q^{2}=0$ assuming the single-pole dominance parameterization: $r_{V}=\frac{V(0)}{A_{1}(0)}=1.695\pm0.083\pm0.051$, $r_{2}=\frac{A_{2}(0)}{A_{1}(0)}=0.845\pm0.056\pm0.039$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'none'; document.getElementById('1809.06496v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 062001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08677">arXiv:1808.08677</a> <span> [<a href="https://arxiv.org/pdf/1808.08677">pdf</a>, <a href="https://arxiv.org/format/1808.08677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.212001">10.1103/PhysRevLett.121.212001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton Mass Decomposition from the QCD Energy Momentum Tensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yu-Jiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08677v2-abstract-short" style="display: inline;"> We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volumes, and several pion masses including the physical pion mass. With fully non-perturbative renormalization (and universal normalization on both quark… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08677v2-abstract-full').style.display = 'inline'; document.getElementById('1808.08677v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08677v2-abstract-full" style="display: none;"> We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volumes, and several pion masses including the physical pion mass. With fully non-perturbative renormalization (and universal normalization on both quark and gluon), we find that the quark energy and glue field energy contribute 33(4)(4)\% and 37(5)(4)\% respectively in the $\overline{MS}$ scheme at $渭= 2$ GeV. A quarter of the trace anomaly gives a 23(1)(1)\% contribution to the proton mass based on the sum rule, given 9(2)(1)\% contribution from the $u, d,$ and $s$ quark scalar condensates. The $u,d,s$ and glue momentum fractions in the $\overline{MS}$ scheme are in good agreement with global analyses at $渭= 2$ GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08677v2-abstract-full').style.display = 'none'; document.getElementById('1808.08677v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 212001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.09580">arXiv:1805.09580</a> <span> [<a href="https://arxiv.org/pdf/1805.09580">pdf</a>, <a href="https://arxiv.org/ps/1805.09580">ps</a>, <a href="https://arxiv.org/format/1805.09580">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.094013">10.1103/PhysRevD.98.094013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic moments of the spin-${3\over 2}$ singly heavy baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Guang-Juan Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Leng%2C+C">Chang-Zhi Leng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.09580v2-abstract-short" style="display: inline;"> We calculate the magnetic moments of spin-$3\over 2$ singly charmed baryons in the heavy baryon chiral perturbation theory (HBChPT). The analytical expressions are given up to $\mathcal{O}(p^3)$. The heavy quark symmetry is used to reduce the number of low energy constants (LECs). With the lattice QCD simulation data as the magnetic moments of the charmed baryons, the numerical results are given u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09580v2-abstract-full').style.display = 'inline'; document.getElementById('1805.09580v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.09580v2-abstract-full" style="display: none;"> We calculate the magnetic moments of spin-$3\over 2$ singly charmed baryons in the heavy baryon chiral perturbation theory (HBChPT). The analytical expressions are given up to $\mathcal{O}(p^3)$. The heavy quark symmetry is used to reduce the number of low energy constants (LECs). With the lattice QCD simulation data as the magnetic moments of the charmed baryons, the numerical results are given up to $\mathcal{O}(p^3)$ in three scenarios. In the first scenario, we use the results in the quark model as the leading order input. In the second scenario, we use the heavy quark symmetry and neglect the contribution of heavy quark. In the third scenario, the heavy quark contribution is considered on the basis of the scenario II and the magnetic moments of singly bottom baryons are given as a by-product. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09580v2-abstract-full').style.display = 'none'; document.getElementById('1805.09580v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 094013 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05066">arXiv:1805.05066</a> <span> [<a href="https://arxiv.org/pdf/1805.05066">pdf</a>, <a href="https://arxiv.org/format/1805.05066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Excited States from Lattice QCD and Hamiltonian Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-jun Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Hall%2C+J+M+M">Jonathan M. M. Hall</a>, <a href="/search/hep-lat?searchtype=author&query=Kamano%2C+H">H. Kamano</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+T+-+H">T. -S. H. Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F+M">Finn M. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A+W">Anthony W. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05066v1-abstract-short" style="display: inline;"> An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of the lattice, the eigenstates of the Hamiltonian model can be related to the energy eigenstates observed in Lattice simulations. By taking the infinite… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05066v1-abstract-full').style.display = 'inline'; document.getElementById('1805.05066v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05066v1-abstract-full" style="display: none;"> An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of the lattice, the eigenstates of the Hamiltonian model can be related to the energy eigenstates observed in Lattice simulations. By taking the infinite-volume limit of HEFT, information from the lattice is linked to experiment. The approach opens a new window for the study of experimentally-observed resonances from the first principles of lattice QCD calculations. With the Hamiltonian approach, one not only describes the spectra of lattice-QCD eigenstates through the eigenvalues of the finite-volume Hamiltonian matrix, but one also learns the composition of the lattice-QCD eigenstates via the eigenvectors of the Hamiltonian matrix. One learns the composition of the states in terms of the meson-baryon basis states considered in formulating the effective field theory. One also learns the composition of the resonances observed in Nature. In this paper, we will focus on recent breakthroughs in our understanding of the structure of the $N^*(1535)$, $N^*(1440)$ and $螞^*(1405)$ resonances using this method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05066v1-abstract-full').style.display = 'none'; document.getElementById('1805.05066v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures, Proceedings of The 11th International Workshop on the Physics of Excited Nucleons, August 20 - 23, 2017, at the University of South Carolina, Columbia, SC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.00229">arXiv:1803.00229</a> <span> [<a href="https://arxiv.org/pdf/1803.00229">pdf</a>, <a href="https://arxiv.org/ps/1803.00229">ps</a>, <a href="https://arxiv.org/format/1803.00229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.054026">10.1103/PhysRevD.98.054026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic moments of the spin-$1\over 2$ singly charmed baryons in chiral perturbation theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Guang-Juan Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+H">Hao-Song Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.00229v2-abstract-short" style="display: inline;"> We systematically derive the analytical expressions of the magnetic moments of the spin-$1\over 2$ singly charmed baryons to the next-to-next-to-leading order in the heavy baryon chiral perturbation theory (HBChPT). We discuss the analytical relations between the magnetic moments. We estimate the-low energy constants (LECs) in two scenarios. In the first scenario, we use the quark model and Lattic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00229v2-abstract-full').style.display = 'inline'; document.getElementById('1803.00229v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.00229v2-abstract-full" style="display: none;"> We systematically derive the analytical expressions of the magnetic moments of the spin-$1\over 2$ singly charmed baryons to the next-to-next-to-leading order in the heavy baryon chiral perturbation theory (HBChPT). We discuss the analytical relations between the magnetic moments. We estimate the-low energy constants (LECs) in two scenarios. In the first scenario, we use the quark model and Lattice QCD simulation results as input. In the second scenario, the heavy quark symmetry is adopted to reduce the number of the independent LECs, which are then fitted using the data from the Lattice QCD simulations. We give the numerical results to the next-to-leading order for the antitriplet charmed baryons and to the next-to-next-to-leading order for the sextet states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00229v2-abstract-full').style.display = 'none'; document.getElementById('1803.00229v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 054026 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.00127">arXiv:1801.00127</a> <span> [<a href="https://arxiv.org/pdf/1801.00127">pdf</a>, <a href="https://arxiv.org/format/1801.00127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.085114">10.1103/PhysRevB.99.085114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EMUS-QMC: Elective Momentum Ultra-Size Quantum Monte Carlo Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z+H">Zi Hong Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Qi%2C+Y">Yang Qi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.00127v2-abstract-short" style="display: inline;"> One bottleneck of quantum Monte Carlo (QMC) simulation of strongly correlated electron systems lies at the scaling relation of computational complexity with respect to the system sizes. For generic lattice models of interacting fermions, the best methodology at hand still scales with $尾N^3$ where $尾$ is the inverse temperature and $N$ is the system size. Such scaling behavior has greatly hampered… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00127v2-abstract-full').style.display = 'inline'; document.getElementById('1801.00127v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.00127v2-abstract-full" style="display: none;"> One bottleneck of quantum Monte Carlo (QMC) simulation of strongly correlated electron systems lies at the scaling relation of computational complexity with respect to the system sizes. For generic lattice models of interacting fermions, the best methodology at hand still scales with $尾N^3$ where $尾$ is the inverse temperature and $N$ is the system size. Such scaling behavior has greatly hampered the accessibility of the universal infrared (IR) physics of many interesting correlated electron models at (2+1)D, let alone (3+1)D. To reduce the computational complexity, we develop a new QMC method with inhomogeneous momentum-space mesh, dubbed elective momentum ultra-size quantum Monte Carlo (EQMC) method. Instead of treating all fermionic excitations on an equal footing as in conventional QMC methods, by converting the fermion determinant into the momentum space, our method focuses on fermion modes that are directly associated with low-energy (IR) physics in the vicinity of the so-called hot-spots, while other fermion modes irrelevant for universal properties are ignored. As shown in the manuscript, for any cutoff-independent quantities, e.g. scaling exponents, this method can achieve the same level of accuracy with orders of magnitude increase in computational efficiency. We demonstrate this method with a model of antiferromagnetic itinerant quantum critical point, realized via coupling itinerant fermions with a frustrated transverse-field Ising model on a triangle lattice. The system size of $48 \times 48 \times 32$ ($L\times L\times尾$, almost 3 times of previous investigations) are comfortably accessed with EQMC. With much larger system sizes, the scaling exponents are unveiled with unprecedentedly high accuracy, and this result sheds new light on the open debate about the nature and the universality class of itinerant quantum critical points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00127v2-abstract-full').style.display = 'none'; document.getElementById('1801.00127v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 085114 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05413">arXiv:1711.05413</a> <span> [<a href="https://arxiv.org/pdf/1711.05413">pdf</a>, <a href="https://arxiv.org/format/1711.05413">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506019">10.1051/epjconf/201817506019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure of the Nucleon and its Excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D">Derek Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F">Finn Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A">Anthony Thomas</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+S">Samuel Thomas</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-jun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05413v1-abstract-short" style="display: inline;"> The structure of the ground state nucleon and its finite-volume excitations are examined from three different perspectives. Using new techniques to extract the relativistic components of the nucleon wave function, the node structure of both the upper and lower components of the nucleon wave function are illustrated. A non-trivial role for gluonic components is manifest. In the second approach, the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05413v1-abstract-full').style.display = 'inline'; document.getElementById('1711.05413v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05413v1-abstract-full" style="display: none;"> The structure of the ground state nucleon and its finite-volume excitations are examined from three different perspectives. Using new techniques to extract the relativistic components of the nucleon wave function, the node structure of both the upper and lower components of the nucleon wave function are illustrated. A non-trivial role for gluonic components is manifest. In the second approach, the parity-expanded variational analysis (PEVA) technique is utilised to isolate states at finite momenta, enabling a novel examination of the electric and magnetic form factors of nucleon excitations. Here the magnetic form factors of low-lying odd-parity nucleons are particularly interesting. Finally, the structure of the nucleon spectrum is examined in a Hamiltonian effective field theory analysis incorporating recent lattice-QCD determinations of low-lying two-particle scattering-state energies in the finite volume. The Roper resonance of Nature is observed to originate from multi-particle coupled-channel interactions while the first radial excitation of the nucleon sits much higher at approximately 1.9 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05413v1-abstract-full').style.display = 'none'; document.getElementById('1711.05413v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017), 18 - 24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-17-38/T1044 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00711">arXiv:1711.00711</a> <span> [<a href="https://arxiv.org/pdf/1711.00711">pdf</a>, <a href="https://arxiv.org/format/1711.00711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505016">10.1051/epjconf/201817505016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueball relevant study on isoscalars from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00711v1-abstract-short" style="display: inline;"> We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When $q\bar{q}$ operator is included, we find the mass of this state does not change, and the $q\bar{q}$ operator couples very weakly to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00711v1-abstract-full').style.display = 'inline'; document.getElementById('1711.00711v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00711v1-abstract-full" style="display: none;"> We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When $q\bar{q}$ operator is included, we find the mass of this state does not change, and the $q\bar{q}$ operator couples very weakly to this state. So this state is most likely a glueball state. For pseudoscalars, along with the exiting lattice results, our study implies that both the conventional $q\bar{q}$ state $畏_2$ (or $畏'$ in flavor $SU(3)$) and a heavier glueball-like state with a mass of roughly 2.6 GeV exist in the spectrum of lattice QCD with dynamical quarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00711v1-abstract-full').style.display = 'none'; document.getElementById('1711.00711v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 3 tables, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web of Conferences 175, 05016 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08678">arXiv:1710.08678</a> <span> [<a href="https://arxiv.org/pdf/1710.08678">pdf</a>, <a href="https://arxiv.org/format/1710.08678">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.094501">10.1103/PhysRevD.97.094501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yujiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">Hao Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08678v2-abstract-short" style="display: inline;"> Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar and pseudoscalar operators are calculated in both the RI/MOM and RI/SMO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08678v2-abstract-full').style.display = 'inline'; document.getElementById('1710.08678v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08678v2-abstract-full" style="display: none;"> Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the $\overline{\rm MS}$ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is $48^3\times96$ and the inverse spacing $1/a = 1.730(4) {\rm~GeV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08678v2-abstract-full').style.display = 'none'; document.getElementById('1710.08678v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor changes and updates of Figure 10 and 15 to be more clear</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-17-019 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 094501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08283">arXiv:1710.08283</a> <span> [<a href="https://arxiv.org/pdf/1710.08283">pdf</a>, <a href="https://arxiv.org/ps/1710.08283">ps</a>, <a href="https://arxiv.org/format/1710.08283">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5447-8">10.1140/epjc/s10052-017-5447-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic moments of the spin-${3\over 2}$ doubly heavy baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+H">Hao-Song Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08283v3-abstract-short" style="display: inline;"> In this work, we investigate the chiral corrections to the magnetic moments of the spin-$3\over 2$ doubly charmed baryons systematically up to next-to-next-to-leading order with the heavy baryon chiral perturbation theory. The numerical results are given up to next-to-leading order: $渭_{螢^{*++}_{cc}}=1.72渭_{N}$, $渭_{螢^{*+}_{cc}}=-0.09渭_{N}$, $渭_{惟^{*+}_{cc}}=0.99渭_{N}$. As a by-product, we have al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08283v3-abstract-full').style.display = 'inline'; document.getElementById('1710.08283v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08283v3-abstract-full" style="display: none;"> In this work, we investigate the chiral corrections to the magnetic moments of the spin-$3\over 2$ doubly charmed baryons systematically up to next-to-next-to-leading order with the heavy baryon chiral perturbation theory. The numerical results are given up to next-to-leading order: $渭_{螢^{*++}_{cc}}=1.72渭_{N}$, $渭_{螢^{*+}_{cc}}=-0.09渭_{N}$, $渭_{惟^{*+}_{cc}}=0.99渭_{N}$. As a by-product, we have also calculated the magnetic moments of the spin-$3\over 2$ doubly bottom baryons and charmed bottom baryons: $渭_{螢^{*0}_{bb}}=0.63渭_{N}$, $渭_{螢^{*-}_{bb}}=-0.79渭_{N}$, $渭_{惟^{*-}_{bb}}=0.12渭_{N}$, $渭_{螢^{*+}_{bc}}=1.12渭_{N}$, $渭_{螢^{*0}_{bc}}=-0.40渭_{N}$, $渭_{惟^{*0}_{bc}}=0.56渭_{N}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08283v3-abstract-full').style.display = 'none'; document.getElementById('1710.08283v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,2 figures. arXiv admin note: text overlap with arXiv:1707.02765. Replace the published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.06918">arXiv:1708.06918</a> <span> [<a href="https://arxiv.org/pdf/1708.06918">pdf</a>, <a href="https://arxiv.org/ps/1708.06918">ps</a>, <a href="https://arxiv.org/format/1708.06918">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014027">10.1103/PhysRevD.99.014027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $D D^{*}$ potentials in chiral perturbation theory and possible molecular states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Xu%2C+H">Hao Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+B">Bo Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+X">Xiang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.06918v3-abstract-short" style="display: inline;"> The $DD^{*}$ potentials are studied within the framework of heavy meson chiral effective field theory. We obtain the effective potentials of the $DD^{*}$ system up to $O(蔚^2)$ at the one-loop level. In addition to the one-pion exchange contribution, the contact and two-pion exchange interactions are also investigated in detail. Furthermore, we search for the possible molecular states by solving th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06918v3-abstract-full').style.display = 'inline'; document.getElementById('1708.06918v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.06918v3-abstract-full" style="display: none;"> The $DD^{*}$ potentials are studied within the framework of heavy meson chiral effective field theory. We obtain the effective potentials of the $DD^{*}$ system up to $O(蔚^2)$ at the one-loop level. In addition to the one-pion exchange contribution, the contact and two-pion exchange interactions are also investigated in detail. Furthermore, we search for the possible molecular states by solving the Schr枚dinger equation with the potentials. We notice that the contact and two-pion exchange potentials are numerically non-negligible and important for the existence of a bound state. In our results, no bound state is found in the $I=1$ channel within a wide range of cutoff parameter, while there exists a bound state in the $I=0$ channel as the cutoff is near $m_蟻$ in our approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06918v3-abstract-full').style.display = 'none'; document.getElementById('1708.06918v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures. Published in Phys. Rev. D. We correct three typos in which $I=1$ and $I=0$ were mistaken for each other</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014027 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03620">arXiv:1708.03620</a> <span> [<a href="https://arxiv.org/pdf/1708.03620">pdf</a>, <a href="https://arxiv.org/ps/1708.03620">ps</a>, <a href="https://arxiv.org/format/1708.03620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2017.12.031">10.1016/j.physletb.2017.12.031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative decays of the doubly charmed baryons in chiral perturbation theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+H">Hao-Song Li</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03620v2-abstract-short" style="display: inline;"> We have systematically investigated the spin-$\frac{3}{2}$ to spin-$\frac{1}{2}$ doubly charmed baryon transition magnetic moments to the next-to-next-to-leading order in the heavy baryon chiral perturbation theory (HBChPT). Numerical results of transition magnetic moments and decay widths are presented to the next-to-leading order: $渭_{螢_{cc}^{*++}\rightarrow螢_{cc}^{++}}=-2.35渭_{N}$,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03620v2-abstract-full').style.display = 'inline'; document.getElementById('1708.03620v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03620v2-abstract-full" style="display: none;"> We have systematically investigated the spin-$\frac{3}{2}$ to spin-$\frac{1}{2}$ doubly charmed baryon transition magnetic moments to the next-to-next-to-leading order in the heavy baryon chiral perturbation theory (HBChPT). Numerical results of transition magnetic moments and decay widths are presented to the next-to-leading order: $渭_{螢_{cc}^{*++}\rightarrow螢_{cc}^{++}}=-2.35渭_{N}$, $渭_{螢_{cc}^{*+}\rightarrow螢_{cc}^{+}}=1.55渭_{N}$, $渭_{惟_{cc}^{*+}\rightarrow惟_{cc}^{+}}=1.54渭_{N}$, $螕_{螢_{cc}^{*++}\rightarrow螢_{cc}^{++}}=22.0$ keV, $螕_{螢_{cc}^{*+}\rightarrow螢_{cc}^{+}}=9.57$ keV, $螕_{惟_{cc}^{*+}\rightarrow惟_{cc}^{+}}=9.45$ keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03620v2-abstract-full').style.display = 'none'; document.getElementById('1708.03620v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1707.02765, arXiv:1706.06458</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02765">arXiv:1707.02765</a> <span> [<a href="https://arxiv.org/pdf/1707.02765">pdf</a>, <a href="https://arxiv.org/ps/1707.02765">ps</a>, <a href="https://arxiv.org/format/1707.02765">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.076011">10.1103/PhysRevD.96.076011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic moments of the doubly charmed and bottomed baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+H">Hao-Song Li</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02765v1-abstract-short" style="display: inline;"> The chiral corrections to the magnetic moments of the spin-$\frac{1}{2}$ doubly charmed baryons are systematically investigated up to next-to-next-to-leading order with heavy baryon chiral perturbation theory (HBChPT). The numerical results are calculated up to next-to-leading order: $渭_{螢^{++}_{cc}}=-0.25渭_{N}$, $渭_{螢^{+}_{cc}}=0.85渭_{N}$, $渭_{惟^{+}_{cc}}=0.78渭_{N}$. We also calculate the magneti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02765v1-abstract-full').style.display = 'inline'; document.getElementById('1707.02765v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02765v1-abstract-full" style="display: none;"> The chiral corrections to the magnetic moments of the spin-$\frac{1}{2}$ doubly charmed baryons are systematically investigated up to next-to-next-to-leading order with heavy baryon chiral perturbation theory (HBChPT). The numerical results are calculated up to next-to-leading order: $渭_{螢^{++}_{cc}}=-0.25渭_{N}$, $渭_{螢^{+}_{cc}}=0.85渭_{N}$, $渭_{惟^{+}_{cc}}=0.78渭_{N}$. We also calculate the magnetic moments of the other doubly heavy baryons, including the doubly bottomed baryons (bbq) and the doubly heavy baryons containing a light quark, a charm quark and a bottom quark ($\{bc\}q$ and $[bc]q$): $渭_{螢^{0}_{bb}}=-0.84渭_{N}$, $渭_{螢^{-}_{bb}}=0.26渭_{N}$, $渭_{惟^{-}_{bb}}=0.19渭_{N}$, $渭_{螢^{+}_{\{bc\}q}}=-0.54渭_{N}$, $渭_{螢^{0}_{\{bc\}q}}=0.56渭_{N}$, $渭_{惟^{0}_{\{bc\}q}}=0.49渭_{N}$, $渭_{螢^{+}_{[bc]q}}=0.69渭_{N}$, $渭_{螢^{0}_{[bc]q}}=-0.59渭_{N}$, $渭_{惟^{0}_{[bc]q}}=0.24渭_{N}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02765v1-abstract-full').style.display = 'none'; document.getElementById('1707.02765v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 076011 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.06458">arXiv:1706.06458</a> <span> [<a href="https://arxiv.org/pdf/1706.06458">pdf</a>, <a href="https://arxiv.org/ps/1706.06458">ps</a>, <a href="https://arxiv.org/format/1706.06458">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Decuplet to octet baryon transitions in chiral perturbation theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+H">Hao-Song Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+X">Xiao-Lin Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Deng%2C+W">Wei-Zhen Deng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.06458v1-abstract-short" style="display: inline;"> We have systematically investigated the decuplet (T) to octet (B) baryon ($T\rightarrow B纬$) transition magnetic moments to the next-to-next-to-leading order and electric quadruple moments to the next-to-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06458v1-abstract-full').style.display = 'inline'; document.getElementById('1706.06458v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.06458v1-abstract-full" style="display: none;"> We have systematically investigated the decuplet (T) to octet (B) baryon ($T\rightarrow B纬$) transition magnetic moments to the next-to-next-to-leading order and electric quadruple moments to the next-to-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. Our results show reasonably good convergence of the chiral expansion and agreement with the experimental data. The analytical expressions may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06458v1-abstract-full').style.display = 'none'; document.getElementById('1706.06458v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:1608.04617</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08816">arXiv:1704.08816</a> <span> [<a href="https://arxiv.org/pdf/1704.08816">pdf</a>, <a href="https://arxiv.org/format/1704.08816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy with Local Multi-hadron Interpolators in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kiratidis%2C+A+L">Adrian L. Kiratidis</a>, <a href="/search/hep-lat?searchtype=author&query=Kamleh%2C+W">Waseem Kamleh</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-Wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Stokes%2C+F+M">Finn M. Stokes</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A+W">Anthony W. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08816v1-abstract-short" style="display: inline;"> The positive-parity nucleon spectrum is studied in 2 + 1 flavour lattice QCD in an attempt to discover novel low-lying energy eigenstates in the region of the Roper resonance. In this work, we employ standard three-quark interpolating fields and introduce new local five-quark meson-baryon operators that hold the possibility of revealing new states that have been missed in previous studies. Motivat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08816v1-abstract-full').style.display = 'inline'; document.getElementById('1704.08816v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08816v1-abstract-full" style="display: none;"> The positive-parity nucleon spectrum is studied in 2 + 1 flavour lattice QCD in an attempt to discover novel low-lying energy eigenstates in the region of the Roper resonance. In this work, we employ standard three-quark interpolating fields and introduce new local five-quark meson-baryon operators that hold the possibility of revealing new states that have been missed in previous studies. Motivated by phenomenological arguments, five-quark interpolators based on the $蟽{N}$, $蟺{N}$ and $a_0{N}$ channels are constructed. Despite the introduction of qualitatively different operators, no novel energy levels are extracted near the regime of the Roper resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08816v1-abstract-full').style.display = 'none'; document.getElementById('1704.08816v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">INPC 2016 Conference proceedings; 7 pages, 2 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-17-15/T1021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.10715">arXiv:1703.10715</a> <span> [<a href="https://arxiv.org/pdf/1703.10715">pdf</a>, <a href="https://arxiv.org/format/1703.10715">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.094509">10.1103/PhysRevD.97.094509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure of the Roper Resonance from Lattice QCD Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-jun Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Leinweber%2C+D+B">Derek B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhan-wei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Thomas%2C+A+W">Anthony W. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.10715v2-abstract-short" style="display: inline;"> Two different descriptions of the existing pion-nucleon scattering data in the region of the Roper resonance are constructed. Both descriptions fit the experimental data very well. In one scenario the resonance is the result of strong rescattering between coupled meson-baryon channels, while in the other scenario, the resonance has a large bare-baryon (or quark-model like) component. The predictio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.10715v2-abstract-full').style.display = 'inline'; document.getElementById('1703.10715v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.10715v2-abstract-full" style="display: none;"> Two different descriptions of the existing pion-nucleon scattering data in the region of the Roper resonance are constructed. Both descriptions fit the experimental data very well. In one scenario the resonance is the result of strong rescattering between coupled meson-baryon channels, while in the other scenario, the resonance has a large bare-baryon (or quark-model like) component. The predictions of these two scenarios are compared with the latest lattice QCD simulation results in this channel. Consideration of the finite volume spectra, the manner in which the states are excited from the vacuum in lattice QCD and the composition of the states in Hamiltonian effective field theory enable a discrimination of these two different descriptions. We find the second scenario is not consistent with lattice QCD results whereas the first agrees with the lattice QCD constraints. In this scenario, the mass of the quark-model like state is approximately 2 GeV and in the finite volume of the lattice is dressed to place the first radial excitation of the nucleon at 1.9 GeV. Within this description, the infinite-volume Roper resonance is best described as a resonance generated dynamically through strongly coupled meson-baryon channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.10715v2-abstract-full').style.display = 'none'; document.getElementById('1703.10715v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-17-13/T1019 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 094509 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>