CINXE.COM

Search results for: ventilated façade

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ventilated façade</title> <meta name="description" content="Search results for: ventilated façade"> <meta name="keywords" content="ventilated façade"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ventilated façade" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ventilated façade"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 177</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ventilated façade</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helena%20L%C3%B3pez-Moreno">Helena López-Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoni%20Rodr%C3%ADguez-S%C3%A1nchez"> Antoni Rodríguez-Sánchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Vi%C3%B1as-Arrebola"> Carmen Viñas-Arrebola</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Porras-Amores"> Cesar Porras-Amores</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 100% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades does not improve the thermal lag significantly (p > 0.05) when compared to the SLVF façade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ade" title="ventilated façade">ventilated façade</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behavior" title=" thermal behavior"> thermal behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/25054/thermal-behavior-of-a-ventilated-facade-using-perforated-ceramic-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> High-Rise Building with PV Facade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Hir%C5%A1">Jiří Hirš</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Mohelnikova"> Jitka Mohelnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A photovoltaic system integrated into a high-rise building façade was studied. The high-rise building is located in the Central Europe region with temperate climate and dominant partly cloudy and overcast sky conditions. The PV façade has been monitored since 2013. The three-year monitoring of the façade energy generation shows that the façade has an important impact on the building energy efficiency and sustainable operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20fa%C3%A7ade" title=" PV façade"> PV façade</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a> </p> <a href="https://publications.waset.org/abstracts/46858/high-rise-building-with-pv-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Thermal Effects of Disc Brake Rotor Design for Automotive Brake Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shahril">K. Shahril</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ridzuan"> M. Ridzuan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sabri"> M. Sabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The disc rotor is solid, ventilated or drilled. The ventilated type disc rotor consists of a wider disc with cooling fins cast through the middle to ensure good cooling. The disc brakes use pads that are pressed axially against a rotor or disc. Solid and ventilated disc design are same which it free with any form, unless inside the ventilated disc has several ventilation holes. Different with drilled disc has some construction on the surface which is has six lines of drill hole penetrate the disc and a little bit deep twelve curves. From the thermal analysis that was conducted by using ANSYS Software, temperature distribution and heat transfer rate on the disc were obtained on each design. Temperature occurred on the drilled disc was lowest than ventilated and solid disc, it is 66% better than ventilated while ventilated is 21% good than solid disc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disc%20brakes" title="disc brakes">disc brakes</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20disc" title=" drilled disc"> drilled disc</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20software" title=" ANSYS software"> ANSYS software</a> </p> <a href="https://publications.waset.org/abstracts/3338/thermal-effects-of-disc-brake-rotor-design-for-automotive-brake-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> The Acoustic Performance of Double-skin Wind Energy Facade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mota%20Carmo">Sara Mota Carmo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy applied in architecture has been largely abandoned due to the uncomfortable noise it causes. This study aims to investigate the acoustical performance in the urban environment and indoor environment of a double-skin wind energy facade. Measurements for sound transmission were recorded by using a hand-held sound meter device on a reduced-scale prototype of a wind energy façade. The applied wind intensities ranged between 2m/s and 8m/s, and the increase sound produced were proportional to the wind intensity.The study validates the acoustic performance of wind energy façade using a double skin façade system, showing that noise reduction indoor by approximately 30 to 35 dB. However, the results found that above 6m/s win intensity, in urban environment, the wind energy system applied to the façade exceeds the maximum 50dB recommended by world health organization and needs some adjustments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-skin%20wind%20energy%20facade" title="double-skin wind energy facade">double-skin wind energy facade</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20energy%20facade" title=" acoustic energy facade"> acoustic energy facade</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20in%20architecture" title=" wind energy in architecture"> wind energy in architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20prototype" title=" wind energy prototype"> wind energy prototype</a> </p> <a href="https://publications.waset.org/abstracts/171934/the-acoustic-performance-of-double-skin-wind-energy-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Dom%C3%ADnguez%20Torres">Carlos A. Domínguez Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Dom%C3%ADnguez%20Delgado"> Antonio Domínguez Delgado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title="passive cooling">passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ades" title=" ventilated façades"> ventilated façades</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-efficient%20building" title=" energy-efficient building"> energy-efficient building</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/2024/thermodynamic-analysis-of-ventilated-facades-under-operating-conditions-in-southern-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Numerical Investigation of Seismic Behaviour of Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinebeb%20Tefera%20Ashene">Tinebeb Tefera Ashene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass facade systems have gained popularity in recent times. During an earthquake, building frames suffer large inter-story drifts, causing racking of building facade systems. A facade system is highly vulnerable and fails more frequently than a building with significant devastating effects. The usage of Metallic yield damper connections (Added Damping Stiffness) is proposed in this study to mitigate the aforementioned problems. Results showed as compared to control, usage of Metallic yield damper connections (Added-Damping-And-Stiffness) exhibited a reduction of connection deformation and axial force; differential displacement between frame and facade; and facade distortion by 44.35%, 43.33%, and 51.45% respectively. Also, employing proposed energy-absorbing connections reduced inter-story link joint drift by 71.11% and mitigated detrimental seismic effects on the entire building facade system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damper" title="damper">damper</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20yield" title=" metallic yield"> metallic yield</a>, <a href="https://publications.waset.org/abstracts/search?q=facades" title=" facades"> facades</a> </p> <a href="https://publications.waset.org/abstracts/183196/numerical-investigation-of-seismic-behaviour-of-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Using Tilted Façade to Reduce Thermal Discomfort in a UK Passivhaus Dwelling for a Warming Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Lavafpour">Yahya Lavafpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Sharples"> Steve Sharples</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the potential negative impacts of future UK climate change on dwellings. In particular, the risk of overheating was considered for a Passivhaus dwelling in London. The study used dynamic simulation modelling software to investigate the potential use of building geometry to control current and future overheating risks in the dwelling for London climate. Specifically, the focus was on the optimum inclination of a south façade to make use of the building’s shape to self-protect itself. A range of different inclined façades were examined to test their effectiveness in reducing the overheating risk. The research found that implementing a 115° tilted façade could completely eliminate the risk of overheating in current climate, but with some consequence for natural ventilation and daylighting. Future overheating was significantly reduced by the tilted façade. However, geometric considerations could not eradicate completely the risk of overheating particularly by the 2080s. The study also used CFD modelling and sensitivity analysis to investigate the effect of the façade geometry on the wind pressure distributions on and around the building surface. This was done to assess natural ventilation flows for alternative façade inclinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20fa%C3%A7ade" title=" tilt façade"> tilt façade</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=passivhaus" title=" passivhaus"> passivhaus</a>, <a href="https://publications.waset.org/abstracts/search?q=overheating" title=" overheating"> overheating</a> </p> <a href="https://publications.waset.org/abstracts/30232/using-tilted-facade-to-reduce-thermal-discomfort-in-a-uk-passivhaus-dwelling-for-a-warming-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">763</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Parametric Models of Facade Designs of High-Rise Residential Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Sharon%20Sung">Yuchen Sharon Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingjui%20Tseng"> Yingjui Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-rise residential buildings have become the most mainstream housing pattern in the world’s metropolises under the current trend of urbanization. The facades of high-rise buildings are essential elements of the urban landscape. The skins of these facades are important media between the interior and exterior of high- rise buildings. It not only connects between users and environments, but also plays an important functional and aesthetic role. This research involves a study of skins of high-rise residential buildings using the methodology of shape grammar to find out the rules which determine the combinations of the facade patterns and analyze the patterns’ parameters using software Grasshopper. We chose a number of facades of high-rise residential buildings as source to discover the underlying rules and concepts of the generation of facade skins. This research also provides the rules that influence the composition of facade skins. The items of the facade skins, such as windows, balconies, walls, sun visors and metal grilles are treated as elements in the system of facade skins. The compositions of these elements will be categorized and described by logical rules; and the types of high-rise building facade skins will be modelled by Grasshopper. Then a variety of analyzed patterns can also be applied on other facade skins through this parametric mechanism. Using these patterns established in the models, researchers can analyze each single item to do more detail tests and architects can apply each of these items to construct their facades for other buildings through various combinations and permutations. The goal of these models is to develop a mechanism to generate prototypes in order to facilitate generation of various facade skins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facade%20skin" title="facade skin">facade skin</a>, <a href="https://publications.waset.org/abstracts/search?q=grasshopper" title=" grasshopper"> grasshopper</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20residential%20building" title=" high-rise residential building"> high-rise residential building</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20grammar" title=" shape grammar"> shape grammar</a> </p> <a href="https://publications.waset.org/abstracts/22010/parametric-models-of-facade-designs-of-high-rise-residential-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> A Review of the Drawbacks of Current Fixed Connection Façade Systems, Non-Structural Standards, and Ways of Integrating Movable Façade Technology into Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Abtahi">P. Abtahi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Samali"> B. Samali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Façade panels of various shapes, weights, and connections usually act as a barrier between the indoor and outdoor environments. They also play a major role in enhancing the aesthetics of building structures. They are attached by different types of connections to the primary structure or inner panels in double skin façade skins. Structural buildings designed to withstand seismic shocks have been undergoing a critical appraisal in recent years, with the emphasis changing from ‘strength’ to ‘performance’. Performance based design and analysis have found their way into research, development, and practice of earthquake engineering, particularly after the 1994 Northridge and 1995 Kobe earthquakes. The design performance of facades as non-structural elements has now focused mainly on evaluating the damage sustained by façade frames with fixed connections, not movable ones. This paper will review current design standards for structural buildings, including the performance of structural and non-structural components during earthquake excitations in order to overview and evaluate the damage assessment and behaviour of various façade systems in building structures during seismic activities. The proposed solutions for each facade system will be discussed case by case to evaluate their potential for incorporation with newly designed connections. Finally, Double-Skin-Facade systems can potentially be combined with movable facade technology, although other glazing systems would require minor to major changes in their design before being integrated into the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20performance" title="building performance">building performance</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=glazing%20system" title=" glazing system"> glazing system</a>, <a href="https://publications.waset.org/abstracts/search?q=movable%20fa%C3%A7ade%20technology" title=" movable façade technology "> movable façade technology </a> </p> <a href="https://publications.waset.org/abstracts/22498/a-review-of-the-drawbacks-of-current-fixed-connection-facade-systems-non-structural-standards-and-ways-of-integrating-movable-facade-technology-into-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Comparative Analysis between Different Proposed Responsive Facade Designs for Reducing the Solar Radiation on the West Facade in the Hot Arid Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merna%20Ibrahim">Merna Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing buildings which are sustainable and can control and reduce the solar radiation penetrated from the building facades is such an architectural turn. One of the most important methods of saving energy in a building is carefully designing its facade. Building’s facade is one of the most significant contributors to the energy budget as well as the comfort parameters of a building. Responsive architecture adapts to the surrounding environment causing alteration in the envelope configuration to perform in a more effective way. One of the objectives of the responsive facades is to protect the building’s users from the external environment and to achieve a comfortable indoor environment. Solar radiation is one of the aspects that affects the comfortable indoor environment, as well as affects the energy consumption consumed by the HVAC systems for maintaining the indoor comfortable conditions. The aim of the paper is introducing and comparing between four different proposed responsive facade designs in terms of solar radiation reduction on the west facade of a building located in the hot arid region. In addition, the paper highlights the reducing amount of solar radiation for each proposed responsive facade on the west facade. At the end of the paper, a proposal is introduced which combines the four different axis of movements which reduces the solar radiation the most. Moreover, the paper highlights the definition and aim of the responsive architecture, as well as the focusing on the solar radiation aspect in the hot arid zones. Besides, the paper analyzes an international responsive façade building in Essen, Germany, focusing on the type of responsive facades, angle of rotation, mechanism of movement and the effect of the responsive facades on the building’s performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetic%20facades" title="kinetic facades">kinetic facades</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20of%20movement" title=" mechanism of movement"> mechanism of movement</a>, <a href="https://publications.waset.org/abstracts/search?q=responsive%20architecture" title=" responsive architecture"> responsive architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a> </p> <a href="https://publications.waset.org/abstracts/136536/comparative-analysis-between-different-proposed-responsive-facade-designs-for-reducing-the-solar-radiation-on-the-west-facade-in-the-hot-arid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Damage Assessment of Current Facades in Turkey throughout the Seismic Actions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C3%BC%C5%9Fra%20Elibol">Büşra Elibol</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0smail%20Sait%20Soyer"> İsmail Sait Soyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Farrokh%20Ghatte"> Hamid Farrokh Ghatte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuity of the structural and non-structural elements within the envelope of the buildings is one of the fundamental factors in buildings during seismic actions. This investigation aims to make a comparison between Van and İzmir earthquakes in terms of damage assessment of the various facades. A strong earthquake (magnitude 7.2) struck the city of Van in the east of Turkey on 23 October 2011, and similarly, another strong earthquake struck the city of İzmir (magnitude 6.9) in Turkey on 30 October 2020. This paper presents the damage assessment of the current facade systems from multi-story buildings in Van and İzmir, Turkey. This investigation covers the buildings greater than three stories in height, excluding most unreinforced masonry facades. Regarding a building that can have more than one facade system, any of the facade systems are considered individually. Observation of different kinds of damages in the facade is discussed and represented in terms of its performance level throughout the seismic actions. Furthermore, presenting the standard design guidelines (i.e., Turkish seismic design code) is required not only for designers but also for installers of facade systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=facade" title=" facade"> facade</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20element" title=" structural element"> structural element</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20action" title=" seismic action"> seismic action</a> </p> <a href="https://publications.waset.org/abstracts/151071/damage-assessment-of-current-facades-in-turkey-throughout-the-seismic-actions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> High Performance Nanomaterials for Sustainable and Modern Façade Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farrin%20Ghorbanalavi">Farrin Ghorbanalavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Ar%C4%B1o%C4%9Flu"> Nihal Arıoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of enhancing mechanical /thermal/physical properties of architectural materials is being practiced for over five decades. In comparison with other approaches, the current nanotechnology era equally attracted the structural scientists, engineers, and industries. It simply promises that using building blocks with dimensions in the nano size range makes it possible to design and develop new multi-functional materials. This research focuses on understanding the effects of nanotechnology on the building facade and new facade concepts based on the new possibilities of nanotechnology. Mentioned factors are very prosperous for the comfort as well as sustainability of the building itself. Furthermore, the study suggests that the potential for energy conservation and reduced waste, toxicity, non-renewable resource consumption, and carbon emissions through the architectural applications of nanotechnologies significant. More clearly, it provides us the information about what does the future hold for surface structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20materials" title=" nano materials"> nano materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fa%C3%A7ade" title=" façade"> façade</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency "> energy efficiency </a> </p> <a href="https://publications.waset.org/abstracts/27592/high-performance-nanomaterials-for-sustainable-and-modern-facade-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Effect of Foot Reflexology Treatment on Arterial Blood Gases among Mechanically Ventilated Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Salah%20Abdullah%20Ismail">Maha Salah Abdullah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20S.%20Ismail"> Manal S. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20M.%20Saleh"> Amir M. Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reflexology treatment is a method for enhancing body relaxation. It is a widely recognized as an alternative therapy, effective for many health conditions. This study aimed to evaluate the effect of reflexology treatment on arterial blood gases among mechanically ventilated patients. A quasi-experimental (pre and post-test) research design was used. Research hypothesis was mechanically ventilated patients who will receive the reflexology treatment will have improvement in their arterial blood gases than those who will not. The current study was carried out in different Intensive Care Units at the Cairo University Hospitals. A purposeful sample of 100 adults’ mechanically ventilated patients was recruited over a period of three months of data collection. The participants were divided into two equally matched groups; (1) The study group who has received the routine care, in addition, two reflexology sessions on the feet, (2) The control group who has received only the routine care. One tool was utilized to collect data pertinent to the study; mechanically ventilated patients' data sheet that consists of demographic and medical data. Result: Majority (58% of the study group and 82% of the control group) were males, with mean age of 50.9 years in both groups. Patients who received the reflexology treatment significantly increase in the oxygen saturation pre second session (t=5.15, p=.000), immediate post sessions (t=4.4, p=.000) and post two hours (t= 4.7, p= .000). The study group was more likely to have lower PaO2 (F=5.025, p=.015), PaCo2 (F=4.952, p=.025) and higher HCo3 (F=15.211, p=.000) than the control group. Conclusion: This study results support the positive effect of reflexology treatment in improving some arterial blood gases among mechanically ventilated patients’ with the conventional therapy as in the study group there was increase in the oxygen saturation. In differences between groups there decrease PaO2, PaCo2 and increase HCo3 in the study group. Recommendation: Nurses should be trained how to demonstrate the foot reflexology among mechanically ventilated patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20blood%20gases" title="arterial blood gases">arterial blood gases</a>, <a href="https://publications.waset.org/abstracts/search?q=foot" title=" foot"> foot</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20ventilated%20patient" title=" mechanical ventilated patient"> mechanical ventilated patient</a>, <a href="https://publications.waset.org/abstracts/search?q=reflexology" title=" reflexology"> reflexology</a> </p> <a href="https://publications.waset.org/abstracts/81864/effect-of-foot-reflexology-treatment-on-arterial-blood-gases-among-mechanically-ventilated-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies &amp; Dialux Daylighting Simulation Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaseri%20Dahlia%20Apritasari">Yaseri Dahlia Apritasari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20material" title="aluminium material">aluminium material</a>, <a href="https://publications.waset.org/abstracts/search?q=Facade" title=" Facade"> Facade</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20skin" title=" second skin"> second skin</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20comfort" title=" visual comfort "> visual comfort </a> </p> <a href="https://publications.waset.org/abstracts/93095/optimization-aluminium-design-for-the-facade-second-skin-toward-visual-comfort-case-studies-dialux-daylighting-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Idris">A. O. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Virgone"> J. Virgone</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ibrahim"> A. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20David"> D. David</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Vergnault"> E. Vergnault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20roof" title=" double skin roof"> double skin roof</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-fluid%20analysis" title=" thermo-fluid analysis"> thermo-fluid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/76124/cfd-modelling-and-thermal-performance-analysis-of-ventilated-double-skin-roof-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Effect of Double-Skin Facade Configuration on the Energy Performance of Office Building in Maritime Desert Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Umaru%20Mohammed">B. Umaru Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Al-Maziad"> Faris A. Al-Maziad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Y.%20Numan"> Mohammad Y. Numan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors affecting the energy performance within a building is a carefully and efficiently designed facade. The primary aim of this research was to identify and present the potentiality of utilising Double-Skin Facade (DSF) construction and critically examine its effect on the energy consumption of an office building located within a maritime desert climate as to the conventional single-skin curtain wall system. A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilised. A computer dynamic modelling was utilised in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin façade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilized. A computer dynamic modelling was utilized in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin facade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20dynamics%20modelling" title="computer dynamics modelling">computer dynamics modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20computation" title=" energy computation"> energy computation</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20facade" title=" double skin facade"> double skin facade</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20skin%20curtain%20wall" title=" single skin curtain wall"> single skin curtain wall</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20desert%20climate" title=" maritime desert climate"> maritime desert climate</a> </p> <a href="https://publications.waset.org/abstracts/66975/effect-of-double-skin-facade-configuration-on-the-energy-performance-of-office-building-in-maritime-desert-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Gliniorz">Ralf Gliniorz</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolin%20Petzoldt"> Carolin Petzoldt</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Ehrlich"> Andreas Ehrlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Gelbrich"> Sandra Gelbrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Lothar%20Kroll"> Lothar Kroll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biobased%20facade" title="biobased facade">biobased facade</a>, <a href="https://publications.waset.org/abstracts/search?q=cardboard%20core" title=" cardboard core"> cardboard core</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibre%20skins" title=" natural fibre skins"> natural fibre skins</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20element" title=" sandwich element"> sandwich element</a> </p> <a href="https://publications.waset.org/abstracts/76879/biobased-facade-illuminated-natural-fibre-polymer-with-cardboard-core" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20J.%20Wong">A. W. J. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20H.%20Ibrahim"> I. H. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20Simulations" title=" CFD Simulations"> CFD Simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title=" natural ventilation"> natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20airflow" title=" urban airflow"> urban airflow</a> </p> <a href="https://publications.waset.org/abstracts/52173/utilizing-computational-fluid-dynamics-in-the-analysis-of-natural-ventilation-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Determination of Resistance to Freezing of Bonded Façade Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Ne%C4%8Dasov%C3%A1">B. Nečasová</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Li%C5%A1ka"> P. Liška</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%C5%A0lanhof"> J. Šlanhof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20system" title="adhesive system">adhesive system</a>, <a href="https://publications.waset.org/abstracts/search?q=bonded%20joints" title=" bonded joints"> bonded joints</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20lightweight%20fa%C3%A7ade" title=" wooden lightweight façade"> wooden lightweight façade</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20substructure" title=" timber substructure"> timber substructure</a> </p> <a href="https://publications.waset.org/abstracts/24206/determination-of-resistance-to-freezing-of-bonded-facade-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Role of Facade in Sustainability Enhancement of Contemporary Iranian Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nejadriahi">H. Nejadriahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing demand for sustainability makes sustainability as one of the significant debates of nowadays. Energy saving is one of the main criteria to be considered in the context of sustainability. Reducing energy use in buildings is one of the most important ways to reduce humans&rsquo; overall environmental impact. Taking this into consideration, study of different design strategies, which can assist in reducing energy use and subsequently improving the sustainability level of today&#39;s buildings would be an essential task. The sustainability level of a building is highly affected by the sustainability performance of its components. One of the main building components, which can have a great impact on energy saving and sustainability level of the building, is its facade. The aim of this study is to investigate on the role of facade in sustainability enhancement of the contemporary buildings of Iran. In this study, the concept of sustainability in architecture, the building facades, and their relationship to sustainability are explained briefly. Following that, a number of contemporary Iranian buildings are discussed and analyzed in terms of different design strategies used in their facades in accordance to the sustainability concepts. The methods used in this study are descriptive and analytic. The results of this paper would assist in generating a wider vision and a source of inspiration for the current designers to design and create environmental and sustainable buildings for the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20facade" title="building facade">building facade</a>, <a href="https://publications.waset.org/abstracts/search?q=contemporary%20buildings" title=" contemporary buildings"> contemporary buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/71885/role-of-facade-in-sustainability-enhancement-of-contemporary-iranian-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Micro-Oculi Facades as a Sustainable Urban Facade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ok-Kyun%20Im">Ok-Kyun Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Hee%20Kim"> Kyoung Hee Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20facades" title=" kinetic facades"> kinetic facades</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20facades" title=" urban facades"> urban facades</a> </p> <a href="https://publications.waset.org/abstracts/81778/micro-oculi-facades-as-a-sustainable-urban-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Mechanical Ventilation: Relationship between Body Mass Index and Selected Patients&#039; Outcomes at a University Hospital in Cairo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mamdouh%20Al-Banna">Mohamed Mamdouh Al-Banna</a>, <a href="https://publications.waset.org/abstracts/search?q=Warda%20Youssef%20Mohamed%20Morsy"> Warda Youssef Mohamed Morsy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Ali%20El-Feky"> Hanaa Ali El-Feky</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Hussein%20Abdelmohsen"> Ashraf Hussein Abdelmohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The mechanically ventilated patients need a special nursing care with continuous closed observation. The patients’ body mass index may affect their prognosis or outcomes. Aim of the study: to investigate the relationship between BMI and selected outcomes of critically ill mechanically ventilated patients. Research Design: A descriptive correlational research design was utilized Research questions: a) what is the BMI profile of mechanically ventilated patients admitted to critical care units over a period of six months? b) What is the relationship between body mass index and frequency of organ dysfunction, length of ICU stay, weaning from mechanical ventilation, and the mortality rate among adult critically ill mechanically ventilated patients? Setting: different intensive care units of Cairo University Hospitals. Sample: A convenience sample of 30 mechanically ventilated patients for at least 72 hours. Tools of data collection: Three tools were utilized to collect data pertinent to the current study: tool 1: patients’ sociodemographic and medical data sheet, tool 2: BURNS Wean Assessment Program (BWAP) checklist, tool 3: Sequential organ failure assessment (SOFA score) sheet. Results: The majority of the studied sample (77%) was males, and (26.7 %) of the studied sample were in the age group of 18-28 years old, and (26.7 %) were in the age group of 40-50 years old. Moreover, two thirds (66.7%) of the studied sample were within normal BMI. No significant statistical relationship between BMI category and ICU length of stay or the mortality rate among the studied sample, (X² = 11.31, P value = 0.79), (X² = 0.15, P value = 0.928) respectively. No significant statistical relationship between BMI category and the weaning trials from mechanical ventilation among the studied sample, (X² = 0.15, P value = 0.928). No significant statistical relationship was found between BMI category and the occurrence of organ dysfunction among the studied sample, (X² = 2.54, P value = 0.637). Conclusion: No relationship between the BMI categories and the selected patients’ outcomes (weaning from MV, length of ICU stay, occurrence of organ dysfunction, mortality rate). Recommendations: Replication of this study on a larger sample from different geographical locations in Arab Republic of Egypt, conducting farther studies to assess the effect of the quality of nursing care on the mechanically ventilated patients’ outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20ventilation" title="mechanical ventilation">mechanical ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=outcomes%20of%20mechanically%20ventilated%20patient" title=" outcomes of mechanically ventilated patient"> outcomes of mechanically ventilated patient</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20failure" title=" organ failure"> organ failure</a> </p> <a href="https://publications.waset.org/abstracts/45702/mechanical-ventilation-relationship-between-body-mass-index-and-selected-patients-outcomes-at-a-university-hospital-in-cairo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chang%20Yu">Ying-Chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20facade" title="multi-layer facade">multi-layer facade</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=facade%20performance" title=" facade performance"> facade performance</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20and%20distributed%20resistance" title=" turbulence and distributed resistance"> turbulence and distributed resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/80270/wind-load-reduction-effect-of-exterior-porous-skin-on-facade-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Printing Thermal Performance: An Experimental Exploration of 3DP Polymers for Facade Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Piccioni">Valeria Piccioni</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Leschok"> Matthias Leschok</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Cheibas"> Ina Cheibas</a>, <a href="https://publications.waset.org/abstracts/search?q=Illias%20Hischier"> Illias Hischier</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Dillenburger"> Benjamin Dillenburger</a>, <a href="https://publications.waset.org/abstracts/search?q=Arno%20Schlueter"> Arno Schlueter</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Kohler"> Matthias Kohler</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Gramazio"> Fabio Gramazio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decarbonisation of the building sector requires the development of building components that provide energy efficiency while producing minimal environmental impact. Recent advancements in large-scale 3D printing have shown that it is possible to fabricate components with embedded performances that can be tuned for their specific application. We investigate the potential of polymer 3D printing for the fabrication of translucent facade components. In this study, we explore the effect of geometry on thermal insulation of printed cavity structures following a Hot Box test method. The experimental results are used to calibrate a finite-element simulation model which can support the informed design of 3D printed insulation structures. We show that it is possible to fabricate components providing thermal insulation ranging from 1.7 to 0.95 W/m2K only by changing the internal cavity distribution and size. Moreover, we identify design guidelines that can be used to fabricate components for different climatic conditions and thermal insulation requirements. The research conducted provides the first insights into the thermal behaviour of polymer 3DP facades on a large scale. These can be used as design guidelines for further research toward performant and low-embodied energy 3D printed facade components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=facade%20components" title=" facade components"> facade components</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-box%20method" title=" hot-box method"> hot-box method</a> </p> <a href="https://publications.waset.org/abstracts/152216/printing-thermal-performance-an-experimental-exploration-of-3dp-polymers-for-facade-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Investigation of Light Transmission Characteristics and CO2 Capture Potential of Microalgae Panel Bioreactors for Building Façade Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Umdu">E. S. Umdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kahraman"> Ilker Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurdan%20Yildirim"> Nurdan Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Levent%20Bilir"> Levent Bilir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algae-culture offers new applications in sustainable architecture with its continuous productive cycle, and a potential for high carbon dioxide capture. Microalgae itself has multiple functions such as carbon dioxide fixation, biomass production, oxygen generation and waste water treatment. Incorporating microalgae cultivation processes and systems to building design to utilize this potential is promising. Microalgae cultivation systems, especially closed photo bioreactors can be implemented as components in buildings. And these systems be accommodated in the façade of a building, or in other urban infrastructure in the future. Application microalgae bio-reactors of on building’s façade has the added benefit of acting as an effective insulation system, keeping out the heat of the summer and the chill of the winter. Furthermore, microalgae can give a dynamic appearance with a liquid façade that also works as an adaptive sunshade. Recently, potential of microalgae to use as a building component to reduce net energy demand in buildings becomes a popular topic and innovative design proposals and a handful of pilot applications appeared. Yet there is only a handful of examples in application and even less information on how these systems affect building energy behavior. Further studies on microalgae mostly focused on single application approach targeting either carbon dioxide utilization through biomass production or biofuel production. The main objective of this study is to investigate effects of design parameters of microalgae panel bio-reactors on light transmission characteristics and CO2 capture potential during growth of Nannochloropsis occulata sp. A maximum reduction of 18 ppm in CO2 levels of input air during the experiments with a % light transmission of 14.10, was achieved in 6 day growth cycles. Heat transfer behavior during these cycles was also inspected for possible façade applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20fa%C3%A7ade" title="building façade">building façade</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20transmittance" title=" light transmittance"> light transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/79139/investigation-of-light-transmission-characteristics-and-co2-capture-potential-of-microalgae-panel-bioreactors-for-building-facade-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Factors in a Sustainability Assessment of New Types of Closed Cavity Facades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Ver%C5%A1i%C4%87">Zoran Veršić</a>, <a href="https://publications.waset.org/abstracts/search?q=Josip%20Gali%C4%87"> Josip Galić</a>, <a href="https://publications.waset.org/abstracts/search?q=Marin%20Bini%C4%8Dki"> Marin Binički</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucija%20Stepinac"> Lucija Stepinac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20cavity%20fa%C3%A7ade" title=" closed cavity façade"> closed cavity façade</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle" title=" life cycle"> life cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/141946/factors-in-a-sustainability-assessment-of-new-types-of-closed-cavity-facades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Flammability and Smoke Toxicity of Rainscreen Façades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabrielle%20Peck">Gabrielle Peck</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Hayes"> Ryan Hayes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four façade systems were tested using a reduced height BS 8414-2 (5 m) test rig. An L-shaped masonry test wall was clad with three types of insulation and an aluminum composite panel with a non-combustible filling (meeting Euroclass A2). A large (3 MW) wooden crib was ignited in a recess at the base of the L, and the fire was allowed to burn for 30 minutes. Air velocity measurements and gas samples were taken from the main ventilation duct and also a small additional ventilation duct, like those in an apartment bathroom or kitchen. This provided a direct route of travel for smoke from the building façade to a theoretical room using a similar design to many high-rise buildings where the vent is connected to (approximately) 30 m³ rooms. The times to incapacitation and lethality of the effluent were calculated for both the main exhaust vent and for a vent connected to a theoretical 30 m³ room. The rainscreen façade systems tested were the common combinations seen in many tower blocks across the UK. Three tests using ACM A2 with Stonewool, Phenolic foam, and Polyisocyanurate (PIR) foam. A fourth test was conducted with PIR and ACM-PE (polyethylene core). Measurements in the main exhaust duct were representative of the effluent from the burning wood crib. FEDs showed incapacitation could occur up to 30 times quicker with combustible insulation than non-combustible insulation, with lethal gas concentrations accumulating up to 2.7 times faster than other combinations. The PE-cored ACM/PIR combination produced a ferocious fire, resulting in the termination of the test after 13.5 minutes for safety reasons. Occupants of the theoretical room in the PIR/ACM A2 test reached a FED of 1 after 22 minutes; for PF/ACM A2, this took 25 minutes, and for stone wool, a lethal dose measurement of 0.6 was reached at the end of the 30-minute test. In conclusion, when measuring smoke toxicity in the exhaust duct, there is little difference between smoke toxicity measurements between façade systems. Toxicity measured in the main exhaust is largely a result of the wood crib used to ignite the façade system. The addition of a vent allowed smoke toxicity to be quantified in the cavity of the façade, providing a realistic way of measuring the toxicity of smoke that could enter an apartment from a façade fire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoke%20toxicity" title="smoke toxicity">smoke toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20testing" title=" large-scale testing"> large-scale testing</a>, <a href="https://publications.waset.org/abstracts/search?q=BS8414" title=" BS8414"> BS8414</a>, <a href="https://publications.waset.org/abstracts/search?q=FED" title=" FED"> FED</a> </p> <a href="https://publications.waset.org/abstracts/174370/flammability-and-smoke-toxicity-of-rainscreen-facades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Prediction of Sound Transmission Through Framed Façade Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangliang%20Chen">Fangliang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yihe%20Huang"> Yihe Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejav%20Deganyar"> Tejav Deganyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anselm%20Boehm"> Anselm Boehm</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Batoul"> Hamid Batoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With growing population density and further urbanization, the average noise level in cities is increasing. Excessive noise is not only annoying but also leads to a negative impact on human health. To deal with the increasing city noise, environmental regulations bring up higher standards on acoustic comfort in buildings by mitigating the noise transmission from building envelope exterior to interior. Framed window, door and façade systems are the leading choice for modern fenestration construction, which provides demonstrated quality of weathering reliability, environmental efficiency, and installation ease. The overall sound insulation of such systems depends both on glasses and frames, where glass usually covers the majority of the exposed surfaces, thus it is the main source of sound energy transmission. While frames in modern façade systems become slimmer for aesthetic appearance, which contribute to a minimal percentage of exposed surfaces. Nevertheless, frames might provide substantial transmission paths for sound travels through because of much less mass crossing the path, thus becoming more critical in limiting the acoustic performance of the whole system. There are various methodologies and numerical programs that can accurately predict the acoustic performance of either glasses or frames. However, due to the vast variance of size and dimension between frame and glass in the same system, there is no satisfactory theoretical approach or affordable simulation tool in current practice to access the over acoustic performance of a whole façade system. For this reason, laboratory test turns out to be the only reliable source. However, laboratory test is very time consuming and high costly, moreover different lab might provide slightly different test results because of varieties of test chambers, sample mounting, and test operations, which significantly constrains the early phase design of framed façade systems. To address this dilemma, this study provides an effective analytical methodology to predict the acoustic performance of framed façade systems, based on vast amount of acoustic test results on glass, frame and the whole façade system consist of both. Further test results validate the current model is able to accurately predict the overall sound transmission loss of a framed system as long as the acoustic behavior of the frame is available. Though the presented methodology is mainly developed from façade systems with aluminum frames, it can be easily extended to systems with frames of other materials such as steel, PVC or wood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20noise" title="city noise">city noise</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20facades" title=" building facades"> building facades</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20mitigation" title=" sound mitigation"> sound mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20transmission%20loss" title=" sound transmission loss"> sound transmission loss</a>, <a href="https://publications.waset.org/abstracts/search?q=framed%20fa%C3%A7ade%20system" title=" framed façade system"> framed façade system</a> </p> <a href="https://publications.waset.org/abstracts/184125/prediction-of-sound-transmission-through-framed-facade-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Analysis of Adaptive Facade Systems and Evaluation of Their Applicability in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selin%20%C3%96zt%C3%BCrk%20Demirkiran">Selin Öztürk Demirkiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approaches towards sustainability and energy efficiency are significant topics of our era. These approaches need to be addressed across various fields and are relevant to multiple disciplines. Building facades, as the first surface encountering external weather conditions, should be considered and analyzed within this context. Current seasonal changes due to global warming and the influence on climates have highlighted the necessity for building systems to adapt to these changes, emphasizing the need for long-lasting solutions. Therefore, this study aims to examine adaptive system applications using examples from similar climatic regions and buildings of different functions, classifying them according to adaptive system criteria. It also aims to explore and evaluate the current stage of such systems in Turkey and the potential for their implementation. In this study, six building examples with different functions, including two examples for each adaptive type, were analyzed from regions with climates similar to those in Turkey, with detailed examination sheets prepared. The purpose of this study is to contribute to ongoing developments by presenting findings on current concepts and analyses and proposing a distinct approach for the characterization of these elements at the scale of Turkey. From this perspective, there is a considerable amount of literature on adaptive facade designs, and while application examples exist, adaptive approaches have been developed and partially implemented. It is expected that innovative solutions in this field will find a place in Turkey in the near future, following the increasing number of examples globally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20facade" title="adaptive facade">adaptive facade</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20building%20facades" title=" smart building facades"> smart building facades</a>, <a href="https://publications.waset.org/abstracts/search?q=facade%20innovation" title=" facade innovation"> facade innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability." title=" sustainability."> sustainability.</a> </p> <a href="https://publications.waset.org/abstracts/192190/analysis-of-adaptive-facade-systems-and-evaluation-of-their-applicability-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Numerical Study of Fire Propagation in Confined and Open Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Miloua">Hadj Miloua</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbes%20Azzi"> Abbes Azzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire" title="fire">fire</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20tunnel" title=" road tunnel"> road tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=wildland" title=" wildland"> wildland</a> </p> <a href="https://publications.waset.org/abstracts/18967/numerical-study-of-fire-propagation-in-confined-and-open-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ade&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ade&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ade&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ade&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ade&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ventilated%20fa%C3%A7ade&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10