CINXE.COM
Search results for: ancient human microbiome
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ancient human microbiome</title> <meta name="description" content="Search results for: ancient human microbiome"> <meta name="keywords" content="ancient human microbiome"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ancient human microbiome" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ancient human microbiome"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8811</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ancient human microbiome</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8811</span> Metagenomics, Urinary Microbiome, and Chronic Prostatitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Davasaz%20Tabrizi">Elmira Davasaz Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushteba%20Sevil"> Mushteba Sevil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Arican"> Ercan Arican</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directly or indirectly, the human microbiome, or the population of bacteria and other microorganisms living in the human body, has been linked with human health. Various research has examined the connection with both illness status and the composition of the human microbiome, even though current studies indicate that the gut microbiome influences the mucosa and immune system. A significant amount of effort is being put into understanding the human microbiome's natural history in terms of health outcomes while also expanding our comprehension of the molecular connections between the microbiome and the host. To maintain health and avoid disease, these efforts ultimately seek to find efficient methods for recovering human microbial communities. This review article describes how the human microbiome leads to chronic diseases and discusses evidence for an important significant disorder that is related to the microbiome and linked to prostate cancer: chronic prostatitis (CP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urobiome" title="urobiome">urobiome</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20prostatitis" title=" chronic prostatitis"> chronic prostatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomic" title=" metagenomic"> metagenomic</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20microbiome" title=" urinary microbiome"> urinary microbiome</a> </p> <a href="https://publications.waset.org/abstracts/159463/metagenomics-urinary-microbiome-and-chronic-prostatitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8810</span> Insights into Archaeological Human Sample Microbiome Using 16S rRNA Gene Sequencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alisa%20Kazarina">Alisa Kazarina</a>, <a href="https://publications.waset.org/abstracts/search?q=Guntis%20Gerhards"> Guntis Gerhards</a>, <a href="https://publications.waset.org/abstracts/search?q=Elina%20Petersone-Gordina"> Elina Petersone-Gordina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilva%20Pole"> Ilva Pole</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktorija%20Igumnova"> Viktorija Igumnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Janis%20Kimsis"> Janis Kimsis</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Capligina"> Valentina Capligina</a>, <a href="https://publications.waset.org/abstracts/search?q=Renate%20Ranka"> Renate Ranka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human body is inhabited by a vast number of microorganisms, collectively known as the human microbiome, and there is a tremendous interest in evolutionary changes in human microbial ecology, diversity and function. The field of paleomicrobiology, study of ancient human microbiome, is powered by modern techniques of Next Generation Sequencing (NGS), which allows extracting microbial genomic data directly from archaeological sample of interest. One of the major techniques is 16S rRNA gene sequencing, by which certain 16S rRNA gene hypervariable regions are being amplified and sequenced. However, some limitations of this method exist including the taxonomic precision and efficacy of different regions used. The aim of this study was to evaluate the phylogenetic sensitivity of different 16S rRNA gene hypervariable regions for microbiome studies in the archaeological samples. Towards this aim, archaeological bone samples and corresponding soil samples from each burial environment were collected in Medieval cemeteries in Latvia. The Ion 16S™ Metagenomics Kit targeting different 16S rRNA gene hypervariable regions was used for library construction (Ion Torrent technologies). Sequenced data were analysed by using appropriate bioinformatic techniques; alignment and taxonomic representation was done using Mothur program. Sequences of most abundant genus were further aligned to E. coli 16S rRNA gene reference sequence using MEGA7 in order to identify the hypervariable region of the segment of interest. Our results showed that different hypervariable regions had different discriminatory power depending on the groups of microbes, as well as the nature of samples. On the basis of our results, we suggest that wider range of primers used can provide more accurate recapitulation of microbial communities in archaeological samples. Acknowledgements. This work was supported by the ERAF grant Nr. 1.1.1.1/16/A/101. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20gene" title="16S rRNA gene">16S rRNA gene</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome" title=" ancient human microbiome"> ancient human microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeology" title=" archaeology"> archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=genomics" title=" genomics"> genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20sequencing" title=" next-generation sequencing"> next-generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/78646/insights-into-archaeological-human-sample-microbiome-using-16s-rrna-gene-sequencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8809</span> A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Grace%20Theva%20Neethi%20Dhas">Preethi Grace Theva Neethi Dhas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecal%20sludge%20management" title="fecal sludge management">fecal sludge management</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20cycle" title=" nutrient cycle"> nutrient cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a> </p> <a href="https://publications.waset.org/abstracts/175735/a-study-of-fecal-sludge-management-in-auroville-and-its-surrounding-villages-in-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8808</span> The Comparison Study of Human Microbiome in Chronic Rhinosinusitis between Adults and Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Il%20Ho%20Park">Il Ho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joong%20Seob%20Lee"> Joong Seob Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hun%20Kang"> Sung Hun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Min%20Shin"> Jae-Min Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Seok%20Park"> Il Seok Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Min%20Hong"> Seok Min Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Jin%20Hong"> Seok Jin Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The human microbiota is the aggregate of microorganisms, and the bacterial microbiome of the human digestive tract contributes to both health and disease. In health, bacteria are key components in the development of mucosal barrier function and in innate and adaptive immune responses, and they also work to suppress the establishment of pathogens. In human upper airway, the sinonasal microbiota might play an important role in chronic rhinosinusitis (CRS). The purpose of this study is to investigate the human upper airway microbiome in CRS patients and to compare the sinonasal microbiome of adults with children. Materials and methods: A total of 19 samples from 19 patients (Group1; 9 CRS in children, aged 5 to 14 years versus Group 2; 10 CRS in adults aged 21 to 59 years) were examined. Swabs were collected from the middle meatus and/or anterior ethmoid region under general anesthesia during endoscopic sinus surgery or tonsillectomy. After DNA extraction from swab samples, we analysed bacterial microbiome consortia using 16s rRNA gene sequencing approach (the Illumina MiSeq platform). Results: In this study, relatively abundance of the six bacterial phyla and tremendous genus and species found in substantial amounts in the individual sinus swab samples, include Corynebacterium, Hemophilus, Moraxella, and Streptococcus species. Anaerobes like Fusobacterium and Bacteroides were abundantly present in the children group, Bacteroides and Propionibacterium were present in adults group. In genus, Haemophilus was the most common CRS microbiome in children and Corynebacterium was the most common CRS microbiome in adults. Conclusions: Our results show the diversity of human upper airway microbiome, and the findings will suggest that CRS is a polymicrobial infection. The Corynebacterium and Hemophilus may live as commensals on mucosal surfaces of sinus in the upper respiratory tract. The further study will be needed for analysis of microbiome-human interactions in upper airway and CRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiome" title="microbiome">microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20airway" title=" upper airway"> upper airway</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20rhinosinusitis" title=" chronic rhinosinusitis"> chronic rhinosinusitis</a>, <a href="https://publications.waset.org/abstracts/search?q=adult%20and%20children" title=" adult and children"> adult and children</a> </p> <a href="https://publications.waset.org/abstracts/101447/the-comparison-study-of-human-microbiome-in-chronic-rhinosinusitis-between-adults-and-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8807</span> Microbiome Role in Tumor Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chro%20Kavian">Chro Kavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies conducted show that cancer is a disease caused by populations of microbes, a notion gaining traction as the interaction between the human microbiome and the tumor microenvironment (TME) increasingly shows how environment and microbes dictate the progress and treatment of neoplastic diseases. A person’s human microbiome is defined as a collection of bacteria, fungi, viruses, and other microorganisms whose structure and composition influence biological processes like immune system modulation and nutrient metabolism, which, in turn, affect how susceptible a person is to neoplastic diseases, and response to different therapies. Recent reports demonstrated the influence specific microbiome bacterial populations have on the TME, thereby altering tumoral behaviors and the TME’s contributing factors that impact patients' lives. In addition, gut microbes and their SCFA products are important determinants of the inflammatory landscape of tumors and augment anti-tumor immunity, which can influence immunotherapy outcomes. Studies have also found that dysbiosis, or microbial imbalance, correlates with biological processes such as cancer progression, metastasis, and therapy resistance, leading scientists to explore the use of microbiome deficiencies as adjunctive approaches to chemotherapy and other, more traditional treatments. Nonetheless, mental health practitioners struggling to comprehend the existent gap between cancer patients with pronounced resolutive capabilities and the profound clinical impact Microbiome-targeted cancer therapy has been proven to possess. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiome" title="microbiome">microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a> </p> <a href="https://publications.waset.org/abstracts/193827/microbiome-role-in-tumor-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8806</span> Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Ozkan">Eyup Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozkan%20U.%20Nalbantoglu"> Ozkan U. Nalbantoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aycan%20Gundogdu"> Aycan Gundogdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Hora"> Mehmet Hora</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Emre%20Onuk"> A. Emre Onuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery%20disease" title="coronary artery disease">coronary artery disease</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20microbiome" title=" blood microbiome"> blood microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=angiography" title=" angiography"> angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20sequencing" title=" next-generation sequencing"> next-generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/144219/liquid-biopsy-based-microbial-biomarker-in-coronary-artery-disease-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8805</span> Research on the Protection and Development of Ancient Town Cultural Landscape Based on “Four State” Elements: Illustrated by the Example of Qikou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bian%20ChengXiang">Bian ChengXiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Qian"> Wang Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the deepening of the research on the connotation of cultural heritage and human geography, the cultural landscape takes landscape as a cultural product, integrates and blends cultural and natural heritage to explore the cultural value behind its material landscape. Qikou ancient town is a typical traditional settlement with a homomorphism of mountain and water veins. Its cultural accumulation and natural landscape play an important role in its development. Therefore, this paper will combine the material and cultural elements of Qikou ancient town to analyze the composition of the cultural landscape of the ancient town and explore the protection and utilization of the cultural landscape of Qikou ancient town from the four aspects of ecology, form, cultural form, and business form, so as to provide effective strategies for the development of the ancient town. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four%20state" title="four state">four state</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20landscape" title=" cultural landscape"> cultural landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient%20town" title=" ancient town"> ancient town</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/158266/research-on-the-protection-and-development-of-ancient-town-cultural-landscape-based-on-four-state-elements-illustrated-by-the-example-of-qikou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8804</span> Ancient Iran Water Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Khodavirdizadeh">Akbar Khodavirdizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nemati%20Babaylou"> Ali Nemati Babaylou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Moomivand"> Hassan Moomivand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20water%20technologies" title="ancient water technologies">ancient water technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwaters" title=" groundwaters"> groundwaters</a>, <a href="https://publications.waset.org/abstracts/search?q=qanat" title=" qanat"> qanat</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20history" title=" human history"> human history</a>, <a href="https://publications.waset.org/abstracts/search?q=Ancient%20Iran" title=" Ancient Iran"> Ancient Iran</a> </p> <a href="https://publications.waset.org/abstracts/136620/ancient-iran-water-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8803</span> Habitat-Specific Divergences in the Gene Repertoire among the Reference Prevotella Genomes of the Human Microbiome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Gupta">Vinod Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendrakumar%20M.%20Chaudhari"> Narendrakumar M. Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchismitha%20Iskepalli"> Suchismitha Iskepalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Chitra%20Dutta"> Chitra Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background-The community composition of the human microbiome is known to vary at distinct anatomical niches. But little is known about the nature of variations if any, at the genome/sub-genome levels of a specific microbial community across different niches. The present report aims to explore, as a case study, the variations in gene repertoire of 28 Prevotella reference draft genomes derived from different body-sites of human, as reported earlier by the Human Microbiome Consortium. Results-The analysis reveals the exclusive presence of 11798, 3673, 3348 and 934 gene families and exclusive absence of 17, 221, 115 and 645 gene families in Prevotella genomes derived from the human oral cavity, gastro-intestinal tracts (GIT), urogenital tract (UGT) and skin, respectively. The pan-genome for Prevotella remains “open”. Distribution of various functional COG categories differs appreciably among the habitat-specific genes, within Prevotella pan-genome and between the GIT-derived Bacteroides and Prevotella. The skin and GIT isolates of Prevotella are enriched in singletons involved in Signal transduction mechanisms, while the UGT and oral isolates show higher representation of the Defense mechanisms category. No niche-specific variations could be observed in the distribution of KEGG pathways. Conclusion-Prevotella may have developed distinct genetic strategies for adaptation to different anatomical habitats through selective, niche-specific acquisition and elimination of suitable gene-families. In addition, individual microorganisms tend to develop their own distinctive adaptive stratagems through large repertoires of singletons. Such in situ, habitat-driven refurbishment of the genetic makeup can impart substantial intra-lineage genome diversity within the microbes without perturbing their general taxonomic heritage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20niche%20adaptation" title="body niche adaptation">body niche adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20microbiome" title=" human microbiome"> human microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=pangenome" title=" pangenome"> pangenome</a>, <a href="https://publications.waset.org/abstracts/search?q=Prevotella" title=" Prevotella"> Prevotella</a> </p> <a href="https://publications.waset.org/abstracts/43428/habitat-specific-divergences-in-the-gene-repertoire-among-the-reference-prevotella-genomes-of-the-human-microbiome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8802</span> Evaluation of the Spatial Performance of Ancient Cities in the Context of Landscape Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvan%20Ender%20Altay">Elvan Ender Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Pirselimoglu%20Batman"> Zeynep Pirselimoglu Batman</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Zencirkiran"> Murat Zencirkiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ancient cities are, according to United Nations Educational, Scientific and Cultural Organization (UNESCO), landscape areas designed and created by people, at the same time naturally developing and constantly changing sustainable cultural landscapes. Ancient cities are the urban settlements where we can see the reflection of public lifestyle existed thousands of years ago. The conceptual and spatial traces in ancient cities, are crucial for examining the city history and its preservation. This study is intended to demonstrate the impacts of human life and physical environment on the cultural landscape. This research aims to protect and maintain cultural continuity of the ancient cities in Bursa which contain archeological and historical elements and could not majorly reach to the day because of not being protected and to show importance of landscape architecture to ensure this protection. In this context, ancient cities in Bursa were researched and a total of 7 ancient cities were identified. These ancient cities are; Apollonia, Lopadion, Nicaea, Myrleia, Cius, Daskyleion and Basilinopolis. In the next stage, the spatial performances of ancient cities were assessed by weighted criteria method. The highest score is the Nicaea Ancient City. Considering current situation of the ancient cities in Bursa, it is seen that most of them could not survive until our day due to lack of interest in these areas. As a result, according to the findings, it is a priority to create a protective band with green areas around the archaeological sites, thus adapting to nearby areas and emphasizing culture. In addition, proposals have been made to provide a transportation network that does not harm the ancient cities and the cultural landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20cities" title="ancient cities">ancient cities</a>, <a href="https://publications.waset.org/abstracts/search?q=Bursa" title=" Bursa"> Bursa</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape" title=" landscape"> landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20performance" title=" spatial performance"> spatial performance</a> </p> <a href="https://publications.waset.org/abstracts/97875/evaluation-of-the-spatial-performance-of-ancient-cities-in-the-context-of-landscape-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8801</span> A Recognition Method of Ancient Yi Script Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanxiong%20Chen">Shanxiong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Han"> Xu Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Wang"> Xiaolong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Ma"> Hui Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recognition" title="recognition">recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20character" title=" Yi character"> Yi character</a>, <a href="https://publications.waset.org/abstracts/search?q=divergence" title=" divergence "> divergence </a> </p> <a href="https://publications.waset.org/abstracts/103578/a-recognition-method-of-ancient-yi-script-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8800</span> The Metaproteomic Analysis of HIV Uninfected Exposed Infants’ Gut Microbiome to Help Understand Their Poor Health Statuses in An African Cohort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tara%20Miller">Tara Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ganief"> Tariq Ganief</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Blackburn"> Jonathan Blackburn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Millions of babies are still born to HIV-infected mothers each year despite the ramped-up HAART use. However, these infants are HIV uninfected but exposed, which is now a growing population that has weakened immune systems and poorer outcomes. Due to HIV exposure and possible ARV exposure during pregnancy and breastfeeding, these infants are believed to have altered immune responses and microbiomes when compared to their healthy counterparts. The gut microbiome roles an important role in infant development, specifically in the immune system. Research has shown these HIV-exposed, uninfected infants have weaker immune responses to their neonate vaccines, and in developing countries, this leaves them vulnerable to opportunistic disease. By gaining a deeper understanding of the gut microbiome and the products of the microbes via metaproteomic analysis, we can hopefully understand and improve the immune system and health of these infants. To investigate the metaproteome of the infants’ guts, mass spectrometry will be used, followed by data analysis using DIA-NN. The hypothesized results are that the HIV-exposed, uninfected infants have an altered microbiome compared to their healthy counterparts. Additionally, the differences found are hypothesized to be involved with inflammation which would contribute to the poor health of the infants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV" title="HIV">HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=metaproteomics" title=" metaproteomics"> metaproteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a> </p> <a href="https://publications.waset.org/abstracts/159308/the-metaproteomic-analysis-of-hiv-uninfected-exposed-infants-gut-microbiome-to-help-understand-their-poor-health-statuses-in-an-african-cohort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8799</span> Genomic Evidence for Ancient Human Migrations Along South America's East Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andre%20Luiz%20Campelo%20dos%20Santos">Andre Luiz Campelo dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Owings"> Amanda Owings</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Socrates%20Lavalle%20Sullasi"> Henry Socrates Lavalle Sullasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Gokcumen"> Omer Gokcumen</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20DeGiorgio"> Michael DeGiorgio</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Lindo"> John Lindo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increasing body of archaeological and genomic evidence have indicated a complex settlement process of the Americas. Here, four newly sequenced ancient genomes from Northeast Brazil and Uruguay are reported to share strong relationships with previously published samples from Panama and Southeast Brazil. Moreover, an unexpected high genomic affinity with present-day Onge is found in ancient individuals unearthed along the northern portion of South America’s Atlantic coast. These results provide genomic evidence for ancient migrations along South America’s Atlantic coast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeogenomics" title="archaeogenomics">archaeogenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20coast" title=" atlantic coast"> atlantic coast</a>, <a href="https://publications.waset.org/abstracts/search?q=paleomigrations" title=" paleomigrations"> paleomigrations</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20America" title=" South America"> South America</a> </p> <a href="https://publications.waset.org/abstracts/148451/genomic-evidence-for-ancient-human-migrations-along-south-americas-east-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8798</span> Whether Chaos Theory Could Reconstruct the Ancient Societies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Kouzehgari">Zahra Kouzehgari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the early emergence of chaos theory in the 1970s in mathematics and physical science, it has increasingly been developed and adapted in social sciences as well. The non-linear and dynamic characteristics of the theory make it a useful conceptual framework to interpret the complex social systems behavior. Regarding chaotic approach principals, sensitivity to initial conditions, dynamic adoption, strange attractors and unpredictability this paper aims to examine whether chaos approach could interpret the ancient social changes. To do this, at first, a brief history of the chaos theory, its development and application in social science as well as the principals making the theory, then its application in archaeological since has been reviewed. The study demonstrates that although based on existing archaeological records reconstruct the whole social system of the human past, the non-linear approaches in studying social complex systems would be of a great help in finding general order of the ancient societies and would enable us to shed light on some of the social phenomena in the human history or to make sense of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeology" title="archaeology">archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20approach" title=" non-linear approach"> non-linear approach</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos%20theory" title=" chaos theory"> chaos theory</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient%20social%20systems" title=" ancient social systems"> ancient social systems</a> </p> <a href="https://publications.waset.org/abstracts/15685/whether-chaos-theory-could-reconstruct-the-ancient-societies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8797</span> Remodeling of Gut Microbiome of Pakistani Expats in China After Intermittent Fasting/Ramadan Fasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Arbab%20Sakandar">Hafiz Arbab Sakandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time-restricted intermittent fasting (TRIF) impacts host’s physiology and health. Plenty of health benefits have been reported for TRIF in animal models. However, limited studies have been conducted on humans especially in underdeveloped economies. Here, we designed a study to investigate the impact of TRIF/Ramadan fasting (16:8) on the modulation of gut-microbiome structure, metabolic pathways, and predicted metabolites and explored the correlation among them at different time points (during and after the month of Ramadan) in Pakistani Expats living in China. We observed different trends of Shannon-Wiener index in different subjects; however, all subjects showed substantial change in bacterial diversity with the progression of TRIF. Moreover, the changes in gut microbial structure by the end of TRIF were higher vis-a-vis in the beginning, significant difference was observed among individuals. Additionally, metabolic pathways analysis revealed that amino acid, carbohydrate and energy metabolism, glycan biosynthesis metabolism of cofactors and vitamins were significantly affected by TRIF. Pyridoxamine, glutamate, citrulline, arachidonic acid, and short chain fatty acid showed substantial difference at different time points based on the predicted metabolism. In conclusion, these results contribute to further our understanding about the key relationship among, dietary intervention (TRIF), gut microbiome structure and function. The preliminary results from study demonstrate significant potential for elucidating the mechanisms underlying gut microbiome stability and enhancing the effectiveness of microbiome-tailored interventions among the Pakistani populace. Nonetheless, extensive, and rigorous large-scale research on the Pakistani population is necessary to expound on the association between diet, gut microbiome, and overall health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiome" title="gut microbiome">gut microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=fasting" title=" fasting"> fasting</a>, <a href="https://publications.waset.org/abstracts/search?q=functionality" title=" functionality"> functionality</a> </p> <a href="https://publications.waset.org/abstracts/169806/remodeling-of-gut-microbiome-of-pakistani-expats-in-china-after-intermittent-fastingramadan-fasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8796</span> Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchithra%20V.">Suchithra V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreedhanya"> Shreedhanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavya%20Menon"> Kavya Menon</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidya%20Niranjan"> Vidya Niranjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%2016S%20rRNA" title="bacterial 16S rRNA ">bacterial 16S rRNA </a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title=" next generation sequencing"> next generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20metagenomics" title=" skin metagenomics"> skin metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20microbiome" title=" skin microbiome"> skin microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/99878/data-analysis-for-taxonomy-prediction-and-annotation-of-16s-rrna-gene-sequences-from-metagenome-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8795</span> Effect of Radiotherapy/Chemotherapy Protocol on the Gut Microbiome in Pediatric Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nourhan%20G.%20Sahly">Nourhan G. Sahly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Moustafa"> Ahmed Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Zaghloul"> Mohamed S. Zaghloul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Z.%20Salem"> Tamer Z. Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gut microbiome plays important roles in the human body that includes but not limited to digestion, immunity, homeostasis and response to some drugs such as chemotherapy and immunotherapy. Its role has also been linked to radiotherapy and associated gastrointestinal injuries, where the microbial dysbiosis could be the driving force for dose determination or the complete suspension of the treatment protocol. Linking the gut microbiota alterations to different cancer treatment protocols is not easy especially in humans. However, enormous effort was exerted to understand this complex relationship. In the current study, we described the gut microbiota dysbiosis in pediatric sarcoma patients, in the pelvic region, with regards to radiotherapy and antibiotics. Fecal samples were collected as a source of microbial DNA for which the gene encoding for V3-V5 regions of 16S rRNA was sequenced. Two of the three patients understudy had experienced an increase in alpha diversity post exposure to 50.4 Gy. Although phylum Firmicutes overall relative abundance has generally decreased, six of its taxa increased in all patients. Our results may indicate the possibility of radiosensitivity or enrichment of the antibiotic resistance of the elevated taxa. Further studies are needed to describe the extent of radiosensitivity with regards to antibiotic resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20radiotherapy%20and%20chemotherapy" title="combined radiotherapy and chemotherapy">combined radiotherapy and chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiome" title=" gut microbiome"> gut microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric%20cancer" title=" pediatric cancer"> pediatric cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosensitivity" title=" radiosensitivity"> radiosensitivity</a> </p> <a href="https://publications.waset.org/abstracts/99183/effect-of-radiotherapychemotherapy-protocol-on-the-gut-microbiome-in-pediatric-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8794</span> Functional Beverage to Boosting Immune System in Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adineh%20Tajmousavilangerudi">Adineh Tajmousavilangerudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zein%20Alabiden%20Tlais"> Ali Zein Alabiden Tlais</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaella%20Di%20Cagno"> Raffaella Di Cagno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SARS-Cov-2 pandemic has exposed our vulnerability to new illnesses and novel viruses that attack our immune systems, particularly in the elderly. The vaccine is being gradually introduced over the world, but new strains of the virus and COVID-19 will emerge and continue to cause illness. Aging is associated with significant changes in intestinal physiology, which increases the production of inflammatory products, alters the gut microbiota, and consequently establish inadequate immune response to minimize symptoms and disease development. In this context, older people who followed a Mediterranean-style diet, rich in polyphenols and dietary fiber, performed better physically and mentally (1,2). This demonstrates the importance of the human gut microbiome in transforming complex dietary macromolecules into the most biologically available and active nutrients, which in turn help to regulate metabolism and both intestinal and systemic immune function (3,4). The role of lactic acid fermentation is prominent also as a powerful tool for improving the nutritional quality of the human diet by releasing nutrients and boosting the complex bioactive compounds and vitamin content. the PhD project aims to design fermented and functional foods/beverages capable of modulating human immune function via the gut microbiome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20bevarage" title="functional bevarage">functional bevarage</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20beverage" title=" fermented beverage"> fermented beverage</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota%20functionality" title=" gut microbiota functionality"> gut microbiota functionality</a>, <a href="https://publications.waset.org/abstracts/search?q=immun%20system" title=" immun system"> immun system</a> </p> <a href="https://publications.waset.org/abstracts/151178/functional-beverage-to-boosting-immune-system-in-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8793</span> Surgical Imaging in Ancient Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Madkour">Mohamed Ahmed Madkour</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Magdy%20Hamad"> Haitham Magdy Hamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study of the surgery science and imaging in ancient Egypt, and how to diagnose the surgical cases, whether due to injuries or disease that requires surgical intervention, Medical diagnosis and how to treat it. The ancient Egyptian physician tried to change over from magic and theological thinking to become a stand-alone experimental science, they were able to distinguish between diseases and they divide them into internal and external diseases even this division exists to date in modern medicine. There is no evidence to recognize the amount of human knowledge in the prehistoric knowledge of medicine and surgery except skeleton. It is not far from the human being in those times familiar with some means of treatment, Surgery in the Stone age was rudimentary, Flint stone was used after trimming in a certain way as a lancet to slit and open the skin. Wooden tree branches were used to make splints to treat bone fractures. Surgery developed further when copper was discovered, it led to the advancement of Egyptian civilization, then modern and advanced tools appeared in the operating theater like a knife or a scalpel. The climate and environmental conditions have preserved medical papyri and human remains that have confirmed their knowledge of surgical methods including sedation. The ancient Egyptians reached a great importance in surgery, evidenced by the scenes that depict the pathological image and the surgical process, but the image alone is not sufficient to prove the pathology, its presence in ancient Egypt and its treatment method. As there are a number of medical papyri, especially Edwin Smith and Ebris, which prove the ancient Egyptian surgeon's knowledge of the pathological condition that It requires a surgical intervention, otherwise its diagnosis and the method of treatment will not be described with such accuracy through these texts. Some surgeries are described in the department of surgery at Ebris papyrus. The level of surgery in ancient Egypt was high, and they performed surgery such as hernias and Aneurysm, however we have not received a lengthy explanation of the various surgeries and the surgeon has usually only said “treated surgically”. It is evident in the Ebris papyrus that they used sharp surgical tools and cautery in operations where bleeding is expected, such as hernias, arterial sacs and tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20Egypt" title="ancient Egypt">ancient Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeology" title=" archaeology"> archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20history" title=" Egyptian history"> Egyptian history</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient%20asurgical%20imaging" title=" ancient asurgical imaging"> ancient asurgical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20civilization" title=" Egyptian civilization"> Egyptian civilization</a>, <a href="https://publications.waset.org/abstracts/search?q=civilization" title=" civilization"> civilization</a> </p> <a href="https://publications.waset.org/abstracts/163800/surgical-imaging-in-ancient-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8792</span> Surgical Imaging in Ancient Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gourg%20Ebrahim%20Shafik%20Eskandar">Gourg Ebrahim Shafik Eskandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study of the surgery science and imaging in ancient Egypt, and how to diagnose the surgical cases, whether due to injuries or disease that requires surgical intervention, Medical diagnosis and how to treat it. The ancient Egyptian physician tried to change over from magic and theological thinking to become a stand-alone experimental science, they were able to distinguish between diseases and they divide them into internal and external diseases even this division exists to date in modern medicine. There is no evidence to recognize the amount of human knowledge in the prehistoric knowledge of medicine and surgery except skeleton. It is not far from the human being in those times familiar with some means of treatment, Surgery in the Stone age was rudimentary, Flint stone was used after trimming in a certain way as a lancet to slit and open the skin. Wooden tree branches were used to make splints to treat bone fractures. Surgery developed further when copper was discovered, it led to the advancement of Egyptian civilization, then modern and advanced tools appeared in the operating theater like a knife or a scalpel, there is evidence of surgery performed in ancient Egypt during the dynastic period (323 – 3200 BC). The climate and environmental conditions have preserved medical papyri and human remains that have confirmed their knowledge of surgical methods including sedation. The ancient Egyptians reached a great importance in surgery, evidenced by the scenes that depict the pathological image and the surgical process, but the image alone is not sufficient to prove the pathology, its presence in ancient Egypt and its treatment method. As there are a number of medical papyri, especially Edwin Smith and Ebris, which prove the ancient Egyptian surgeon's knowledge of the pathological condition that It requires a surgical intervention, otherwise its diagnosis and the method of treatment will not be described with such accuracy through these texts. Some surgeries are described in the department of surgery at Ebris papyrus (recipes from 863 to 877). The level of surgery in ancient Egypt was high, and they performed surgery such as hernias and Aneurysm, however we have not received a lengthy explanation of the various surgeries and the surgeon has usually only said “treated surgically”. It is evident in the Ebris papyrus that they used sharp surgical tools and cautery in operations where bleeding is expected, such as hernias, arterial sacs and tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20egypt" title="ancient egypt">ancient egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=egypt" title=" egypt"> egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20imaging" title=" surgical imaging"> surgical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery%20in%20the%20stone%20age" title=" surgery in the stone age"> surgery in the stone age</a> </p> <a href="https://publications.waset.org/abstracts/189635/surgical-imaging-in-ancient-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8791</span> Nutritional Genomics Profile Based Personalized Sport Nutrition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eszter%20Repasi">Eszter Repasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akos%20Koller"> Akos Koller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our genetic information determines our look, physiology, sports performance and all our features. Maximizing the performances of athletes have adopted a science-based approach to the nutritional support. Nowadays genetics studies have blended with nutritional sciences, and a dynamically evolving, new research field have appeared. Nutritional genomics is needed to be used by nutritional experts. This is a recent field of nutritional science, which can provide a solution to reach the best sport performance using correlations between the athlete’s genome, nutritions, molecules, included human microbiome (links between food, microbiome and epigenetics), nutrigenomics and nutrigenetics. Nutritional genomics has a tremendous potential to change the future of dietary guidelines and personal recommendations. Experts need to use new technology to get information about the athletes, like nutritional genomics profile (included the determination of the oral and gut microbiome and DNA coded reaction for food components), which can modify the preparation term and sports performance. The influence of nutrients on the genes expression is called Nutrigenomics. The heterogeneous response of gene variants to nutrients, dietary components is called Nutrigenetics. The human microbiome plays a critical role in the state of health and well-being, and there are more links between food or nutrition and the human microbiome composition, which can develop diseases and epigenetic changes as well. A nutritional genomics-based profile of athletes can be the best technic for a dietitian to make a unique sports nutrition diet plan. Using functional food and the right food components can be effected on health state, thus sports performance. Scientists need to determine the best response, due to the effect of nutrients on health, through altering genome promote metabolites and result changes in physiology. Nutritional biochemistry explains why polymorphisms in genes for the absorption, circulation, or metabolism of essential nutrients (such as n-3 polyunsaturated fatty acids or epigallocatechin-3-gallate), would affect the efficacy of that nutrient. Controlled nutritional deficiencies and failures, prevented the change of health state or a newly discovered food intolerance are observed by a proper medical team, can support better sports performance. It is important that the dietetics profession informed on gene-diet interactions, that may be leading to optimal health, reduced risk of injury or disease. A special medical application for documentation and monitoring of data of health state and risk factors can uphold and warn the medical team for an early action and help to be able to do a proper health service in time. This model can set up a personalized nutrition advice from the status control, through the recovery, to the monitoring. But more studies are needed to understand the mechanisms and to be able to change the composition of the microbiome, environmental and genetic risk factors in cases of athletes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene-diet%20interaction" title="gene-diet interaction">gene-diet interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=multidisciplinary%20team" title=" multidisciplinary team"> multidisciplinary team</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=diet%20plan" title=" diet plan"> diet plan</a> </p> <a href="https://publications.waset.org/abstracts/72214/nutritional-genomics-profile-based-personalized-sport-nutrition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8790</span> Surgical Imaging in Ancient Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hefny%20Mohamed%20El-Badwy">Ahmed Hefny Mohamed El-Badwy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study of the surgery science and imaging in ancient Egypt, and how to diagnose the surgical cases, whether due to injuries or disease that requires surgical intervention, Medical diagnosis and how to treat it. The ancient Egyptian physician tried to change over from magic and theological thinking to become a stand-alone experimental science, they were able to distinguish between diseases, and they divide them into internal and external diseases even this division exists to date in modern medicine. There is no evidence to recognize the amount of human knowledge in the prehistoric knowledge of medicine and surgery except skeleton. It is not far from the human being in those times familiar with some means of treatment, Surgery in the Stone age was rudimentary, Flint stone was used after trimming in a certain way as a lancet to slit and open the skin. Wooden tree branches were used to make splints to treat bone fractures. Surgery developed further when copper was discovered, it led to the advancement of Egyptian civilization, then modern and advanced tools appeared in the operating theater, like a knife or a scalpel, there is evidence of surgery performed in ancient Egypt during the dynastic period (323 – 3200 BC). The climate and environmental conditions have preserved medical papyri and human remains that have confirmed their knowledge of surgical methods, including sedation. The ancient Egyptians reached a great importance in surgery, evidenced by the scenes that depict the pathological image and the surgical process, but the image alone is not sufficient to prove the pathology, its presence in ancient Egypt and its treatment method. As there are a number of medical papyri, especially Edwin Smith and Ebris, which prove the ancient Egyptian surgeon's knowledge of the pathological condition that It requires a surgical intervention, otherwise, its diagnosis and the method of treatment will not be described with such accuracy through these texts. Some surgeries are described in the department of surgery at Ebris papyrus (recipes from 863 to 877). The level of surgery in ancient Egypt was high, and they performed surgery such as hernias and Aneurysm, however, we have not received a lengthy explanation of the various surgeries, and the surgeon has usually only said “treated surgically”. It is evident in the Ebris papyrus that they used sharp surgical tools and cautery in operations where bleeding is expected, such as hernias, arterial sacs and tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancientegypt" title="ancientegypt">ancientegypt</a>, <a href="https://publications.waset.org/abstracts/search?q=egypt" title=" egypt"> egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeology" title=" archaeology"> archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20ancient%20egyptian" title=" the ancient egyptian"> the ancient egyptian</a> </p> <a href="https://publications.waset.org/abstracts/171076/surgical-imaging-in-ancient-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8789</span> Reverence Posture at Darius’ Relief in Persepolis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Moeini%20Sam">Behzad Moeini Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mohammadi%20Avendi"> Sara Mohammadi Avendi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The beliefs of the ancient peoples about gods and kings and how to perform rituals played an active part in the ancient civilizations. One of them in the ancient Near Eastern civilizations, which were accomplished, was paying homage to the gods and kings. The reverence posture during the Achaemenid period consisted of raising one right hand with the palm and the extended fingers facing the mouth. It is worth paying attention to the fact that the ancient empires such as Akkadian, Assyrian, Babylonian, and Persian should be regarded as successive versions of the same multinational power structure, each resulting from an internal power struggle within this structure. This article tries to show the reverence gesture with those of the ancient Near East. The working method is to study Darius one in Persepolis and pay homage to him and his similarities to those of the ancient Near East. Thus, it is logical to assume that the Reverence gesture follows the Sumerian and Akkadian ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darius" title="Darius">Darius</a>, <a href="https://publications.waset.org/abstracts/search?q=Persepolis" title=" Persepolis"> Persepolis</a>, <a href="https://publications.waset.org/abstracts/search?q=Achaemenid" title=" Achaemenid"> Achaemenid</a>, <a href="https://publications.waset.org/abstracts/search?q=Proskynesis" title=" Proskynesis"> Proskynesis</a> </p> <a href="https://publications.waset.org/abstracts/181860/reverence-posture-at-darius-relief-in-persepolis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8788</span> Foodborne Pathogens in Different Types of Milk: From the Microbiome to Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pasquali%20Frederique">Pasquali Frederique</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfreda%20Chiara"> Manfreda Chiara</a>, <a href="https://publications.waset.org/abstracts/search?q=Crippa%20Cecilia"> Crippa Cecilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Indio%20Valentina"> Indio Valentina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ianieri%20Adriana"> Ianieri Adriana</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Cesare%20Alessandra"> De Cesare Alessandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbiological hazards can be transmitted to humans through milk. In this study, we compared the microbiome composition and presence of foodborne pathogens in organic milk (n=6), organic hay milk (n=6), standard milk (n=6) and high-quality milk (n=6). The milk samples were collected during six samplings between December 2022 to January 2023 and between April and May 2024 to take into account seasonal variations. The 24 milk samples were submitted to DNA extraction and library preparation before shotgun sequencing on the Illumina HiScan™ SQ System platform. The total sequencing output was 600 GB. In all the milk samples, the phyla with the highest relative abundances were Pseudomonadota, Bacillota, Ascomycota, Actinomycetota and Apicomplexa, while the most represented genera were Pseudomonas, Streptococcus, Geotrichum, Acinetobacter and Babesia. The alpha and beta diversity indexes showed a clear separation between the microbiome of high-quality milk and those of the other milk types. Moreover, in the high-quality milk, the relative abundance of Staphylococcus (4.4%), Campylobacter (4.5%), Bacillus (2.5%), Enterococcus (2.4%), Klebsiella (1.3%) and Escherichia (0 .7%) was significantly higher in comparison to other types of milk. On the contrary, the relative abundance of Geotrichum (0.5%) was significantly lower. The microbiome results collected in this study showed significant differences in terms of the relative abundance of bacteria genera, including foodborne pathogen species. These results should be incorporated into risk assessment models tailored to different types of milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title="raw milk">raw milk</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20pathogens" title=" foodborne pathogens"> foodborne pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/188934/foodborne-pathogens-in-different-types-of-milk-from-the-microbiome-to-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8787</span> Ancient Cities of Deltaic Bengal: Origin and Nature on the Riverine Bed of Ganges Valley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Bin%20Doza">Sajid Bin Doza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A town or a city contributes a lot to human mankind. City evolves memory, ambition, frustration and achievement. The city is something that offers life, as the character of the city is. A city is having confined image to the human being. Time place and matter generate this vive, city celebrates with its inhabitant, belongs and to care for each other. Apart from all these; although city and settlements are the contentious and changing phenomenon; the origin of the city in the very delta land started with unique and strategic sequences. Religious belief, topography, availability of resource and connection with commercial hub make the potential of the settlement. Ancient cities of Bengal are not the exception from these phenomenologies. From time immemorial; Bengal is enriched with numerous cities and notorious settlements. These cities and settlements were connected with other inland ports and Bengal became an important trade route, trailed by the Riverine connections. The delta land formation is valued for its geographic situation, consequences of this position; a new story or a new conception could be found in origin of an ancient city. However, the objective of this research is to understand the origin and spirit of the ancient city of Bengal, the research would also try to unfold the authentic and rational meaning of soul of the city, this research addresses the interest to elaborate the soul of the ancient sites of Riverine Delta. As rivers used to have the common character in this very landform; river supported community generated as well. River gives people wealth, sometimes fall us in sorrow. The river provides us commerce and trading. River gives us faith and religion. All these potentials have evolved from the Riverine excel. So the research would approach thoroughly to justify the riverine value as the soul for the ancient cities of Bengal. Cartographic information and illustration would be the preferred language for this research. Preferably, the historic mapping would be the unique folio of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memory%20of%20the%20city" title="memory of the city">memory of the city</a>, <a href="https://publications.waset.org/abstracts/search?q=riverine%20network" title=" riverine network"> riverine network</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient%20cities" title=" ancient cities"> ancient cities</a>, <a href="https://publications.waset.org/abstracts/search?q=cartographic%20mapping" title=" cartographic mapping"> cartographic mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement%20pattern" title=" settlement pattern"> settlement pattern</a> </p> <a href="https://publications.waset.org/abstracts/65280/ancient-cities-of-deltaic-bengal-origin-and-nature-on-the-riverine-bed-of-ganges-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8786</span> The Greek Root Word ‘Kos’ and the Trade of Ancient Greek with Tamil Nadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pugazhendhi">D. Pugazhendhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ancient Greeks were forerunners in many fields than other societies. So, the Greeks were well connected with all the countries which were well developed during that time through trade route. In this connection, trading of goods from the ancient Greece to Tamil Nadu which is presently in India, though they are geographically far away, played an important role. In that way, the word and the goods related with <em>kos</em> and <em>kare</em> got exchanged between these two societies. So, it is necessary to compare the phonology and the morphological occurrences of these words that are found common both in the ancient Greek and Tamil literatures of the contemporary period. The results show that there were many words derived from the root <em>kos</em> with the basic meaning of ‘arrange’ in the ancient Greek language, but this is not the case in the usage of the word <em>kare</em>. In the ancient Tamil literature, the word <em>‘kos’</em> does not have any root and also had rare occurrences. But it was just the opposite in the case of the word <em>‘kare’</em>. One of all the meanings of the word, which was derived from the root <em>‘kos’</em> in ancient Greek literature, is related with costly ornaments. This meaning seems to have close resemblance with the usage of word<em> ‘kos’</em> in ancient Tamil literature. Also, the meaning of the word <em>‘kare’</em> in ancient Tamil literature is related with spices whereas, in the ancient Greek literature, its meaning is related to that of the cooking of meat using spices. Hence, the similarity seen in the meanings of these words <em>‘kos’</em> and <em>‘kare’</em> in both these languages provides lead for further study. More than that, the ancient literary resources which are available in both these languages ensure the export and import of gold and spices from the ancient Greek land to Tamil land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arrange" title="arrange">arrange</a>, <a href="https://publications.waset.org/abstracts/search?q=kare" title=" kare"> kare</a>, <a href="https://publications.waset.org/abstracts/search?q=Kos" title=" Kos"> Kos</a>, <a href="https://publications.waset.org/abstracts/search?q=ornament" title=" ornament"> ornament</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamil" title=" Tamil"> Tamil</a> </p> <a href="https://publications.waset.org/abstracts/117046/the-greek-root-word-kos-and-the-trade-of-ancient-greek-with-tamil-nadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8785</span> Blood Microbiome in Different Metabolic Types of Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20M.%20Kolesnikova">Irina M. Kolesnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20M.%20Gaponov"> Andrey M. Gaponov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Roumiantsev"> Sergey A. Roumiantsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20V.%20Grigoryeva"> Tatiana V. Grigoryeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilyara%20R.%20Khusnutdinova"> Dilyara R. Khusnutdinova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilyara%20R.%20Kamaldinova"> Dilyara R. Kamaldinova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Shestopalov"> Alexander V. Shestopalov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background. Obese patients have unequal risks of metabolic disorders. It is accepted to distinguish between metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). MUHO patients have a high risk of metabolic disorders, insulin resistance, and diabetes mellitus. Among the other things, the gut microbiota also contributes to the development of metabolic disorders in obesity. Obesity is accompanied by significant changes in the gut microbial community. In turn, bacterial translocation from the intestine is the basis for the blood microbiome formation. The aim was to study the features of the blood microbiome in patients with various metabolic types of obesity. Patients, materials, methods. The study included 116 healthy donors and 101 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=36) and MUHO (n=53). Quantitative and qualitative assessment of the blood microbiome was based on metagenomic analysis. Blood samples were used to isolate DNA and perform sequencing of the variable v3-v4 region of the 16S rRNA gene. Alpha diversity indices (Simpson index, Shannon index, Chao1 index, phylogenetic diversity, the number of observed operational taxonomic units) were calculated. Moreover, we compared taxa (phyla, classes, orders, and families) in terms of isolation frequency and the taxon share in the total bacterial DNA pool between different patient groups. Results. In patients with MHO, the characteristics of the alpha-diversity of the blood microbiome were like those of healthy donors. However, MUHO was associated with an increase in all diversity indices. The main phyla of the blood microbiome were Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Cyanobacteria, TM7, Thermi, Verrucomicrobia, Chloroflexi, Acidobacteria, Planctomycetes, Gemmatimonadetes, and Tenericutes were found to be less significant phyla of the blood microbiome. Phyla Acidobacteria, TM7, and Verrucomicrobia were more often isolated in blood samples of patients with MUHO compared with healthy donors. Obese patients had a decrease in some taxonomic ranks (Bacilli, Caulobacteraceae, Barnesiellaceae, Rikenellaceae, Williamsiaceae). These changes appear to be related to the increased diversity of the blood microbiome observed in obesity. An increase of Lachnospiraceae, Succinivibrionaceae, Prevotellaceae, and S24-7 was noted for MUHO patients, which, apparently, is explained by a magnification in intestinal permeability. Conclusion. Blood microbiome differs in obese patients and healthy donors at class, order, and family levels. Moreover, the nature of the changes is determined by the metabolic type of obesity. MUHO linked to increased diversity of the blood microbiome. This appears to be due to increased microbial translocation from the intestine and non-intestinal sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20microbiome" title="blood microbiome">blood microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20bacterial%20DNA" title=" blood bacterial DNA"> blood bacterial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolically%20healthy%20obesity" title=" metabolically healthy obesity"> metabolically healthy obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolically%20unhealthy%20obesity" title=" metabolically unhealthy obesity"> metabolically unhealthy obesity</a> </p> <a href="https://publications.waset.org/abstracts/145332/blood-microbiome-in-different-metabolic-types-of-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8784</span> Human Microbiome Hidden Association with Chronic and Autoimmune Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Davasaz%20Tabrizi">Elmira Davasaz Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%CC%88s%CC%A7teba%20Sevil"> Müşteba Sevil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Arican"> Ercan Arican</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, there has been a sharp increase in the prevalence of several unrelated chronic diseases. The use of long-term antibiotics for chronic illnesses is increasing. The antibiotic resistance occurrence and its relationship with host microbiomes are still unclear. Properties of the identifying antibodies have been the focus of chronic disease research, such as prostatitis or autoimmune. The immune system is made up of a complicated but well-organized network of cell types that constantly monitor and maintain their surroundings. The regulated homeostatic interaction between immune system cells and their surrounding environment shapes the microbial flora. Researchers believe that the disappearance of special bacterial species from our ancestral microbiota might have altered the body flora that can cause a rise in disease during the human life span. This unpleasant pattern demonstrates the importance of focusing on discovering and revealing the root causes behind the disappearance or alteration of our microbiota. In this review, we gathered the results of some studies that reveal changes in the diversity and quantity of microorganisms that may affect chronic and autoimmune diseases. Additionally, a Ph.D. thesis that is still in process as Metagenomic studies in chronic prostatitis samples is mentioned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metagenomic" title="metagenomic">metagenomic</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmune" title=" autoimmune"> autoimmune</a>, <a href="https://publications.waset.org/abstracts/search?q=prostatitis" title=" prostatitis"> prostatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a> </p> <a href="https://publications.waset.org/abstracts/159476/human-microbiome-hidden-association-with-chronic-and-autoimmune-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8783</span> Characterization of the Blood Microbiome in Rheumatoid Arthritis Patients Compared to Healthy Control Subjects Using V4 Region 16S rRNA Sequencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Hammad">D. Hammad</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Tonge"> D. P. Tonge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis (RA) is a disabling and common autoimmune disease during which the body's immune system attacks healthy tissues. This results in complicated and long-lasting actions being carried out by the immune system, which typically only occurs when the immune system encounters a foreign object. In the case of RA, the disease affects millions of people and causes joint inflammation, ultimately leading to the destruction of cartilage and bone. Interestingly, the disease mechanism still remains unclear. It is likely that RA occurs as a result of a complex interplay of genetic and environmental factors including an imbalance in the microorganism population inside our body. The human microbiome or microbiota is an extensive community of microorganisms in and on the bodies of animals, which comprises bacteria, fungi, viruses, and protozoa. Recently, the development of molecular techniques to characterize entire bacterial communities has renewed interest in the involvement of the microbiome in the development and progression of RA. We believe that an imbalance in some of the specific bacterial species in the gut, mouth and other sites may lead to atopobiosis; the translocation of these organisms into the blood, and that this may lead to changes in immune system status. The aim of this study was, therefore, to characterize the microbiome of RA serum samples in comparison to healthy control subjects using 16S rRNA gene amplification and sequencing. Serum samples were obtained from healthy control volunteers and from patients with RA both prior to, and following treatment. The bacterial community present in each sample was identified utilizing V4 region 16S rRNA amplification and sequencing. Bacterial identification, to the lowest taxonomic rank, was performed using a range of bioinformatics tools. Significantly, the proportions of the Lachnospiraceae, Ruminococcaceae, and Halmonadaceae families were significantly increased in the serum of RA patients compared with healthy control serum. Furthermore, the abundance of Bacteroides and Lachnospiraceae nk4a136_group, Lachnospiraceae_UGC-001, RuminococcaceaeUCG-014, Rumnococcus-1, and Shewanella was also raised in the serum of RA patients relative to healthy control serum. These data support the notion of a blood microbiome and reveal RA-associated changes that may have significant implications for biomarker development and may present much-needed opportunities for novel therapeutic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20microbiome" title="blood microbiome">blood microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20and%20oral%20bacteria" title=" gut and oral bacteria"> gut and oral bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rheumatoid%20arthritis" title=" Rheumatoid arthritis"> Rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20gene%20sequencing" title=" 16S rRNA gene sequencing"> 16S rRNA gene sequencing</a> </p> <a href="https://publications.waset.org/abstracts/94190/characterization-of-the-blood-microbiome-in-rheumatoid-arthritis-patients-compared-to-healthy-control-subjects-using-v4-region-16s-rrna-sequencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8782</span> Surgical Imaging in Ancient Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Nabil%20Zaghlol%20Hasan">Haitham Nabil Zaghlol Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study of the surgery science and imaging in ancient Egypt and how to diagnose the surgical cases, whether due to injuries or disease that requires surgical intervention, Medical diagnosis and how to treat it. The ancient Egyptian physician tried to change over from magic and theological thinking to become a stand-alone experimental science, they were able to distinguish between diseases, and they divide them into internal and external diseases even though this division exists to date in modern medicine. There is no evidence to recognize the amount of human knowledge in the prehistoric knowledge of medicine and surgery except skeleton. It is not far from the human being in those times familiar with some means of treatment, Surgery in the Stone age was rudimentary, Flint stone was used after trimming in a certain way as a lancet to slit and open the skin. Wooden tree branches were used to make splints to treat bone fractures. Surgery developed further when copper was discovered, it led to the advancement of Egyptian civilization, then modern and advanced tools appeared in the operating theater, like a knife or a scalpel, there is evidence of surgery performed in ancient Egypt during the dynastic period (323 – 3200 BC). The climate and environmental conditions have preserved medical papyri and human remains that have confirmed their knowledge of surgical methods, including sedation. The ancient Egyptians reached great importance in surgery, evidenced by the scenes that depict the pathological image and the surgical process, but the image alone is not sufficient to prove the pathology, its presence in ancient Egypt and its treatment method. As there are a number of medical papyri, especially Edwin Smith and Ebris, which prove the ancient Egyptian surgeon's knowledge of the pathological condition that It requires surgical intervention, otherwise, its diagnosis and the method of treatment will not be described with such accuracy through these texts. Some surgeries are described in the department of surgery at Ebris papyrus (recipes from 863 to 877). The level of surgery in ancient Egypt was high, and they performed surgery such as hernias and Aneurysm, however, we have not received a lengthy explanation of the various surgeries, and the surgeon has usually only said: “treated surgically”. It is evident in the Ebris papyrus that they used sharp surgical tools and cautery in operations where bleeding is expected, such as hernias, arterial sacs and tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egypt" title="egypt">egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=ancient_egypt" title=" ancient_egypt"> ancient_egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=civilization" title=" civilization"> civilization</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeology" title=" archaeology"> archaeology</a> </p> <a href="https://publications.waset.org/abstracts/167988/surgical-imaging-in-ancient-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=293">293</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=294">294</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ancient%20human%20microbiome&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>