CINXE.COM
Search results for: superstructure
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: superstructure</title> <meta name="description" content="Search results for: superstructure"> <meta name="keywords" content="superstructure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="superstructure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="superstructure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 65</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: superstructure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> An Analytical Study of FRP-Concrete Bridge Superstructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20I.%20Alnahhal">Wael I. Alnahhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20superstructure" title="bridge superstructure">bridge superstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20polymer" title=" fiber reinforced polymer"> fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/28411/an-analytical-study-of-frp-concrete-bridge-superstructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhrubajyoti%20Thakuria"> Dhrubajyoti Thakuria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20superstructure" title="bridge superstructure">bridge superstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20vehicle" title=" high speed vehicle"> high speed vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=TMD" title=" TMD"> TMD</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a> </p> <a href="https://publications.waset.org/abstracts/26465/vibration-control-of-bridge-super-structure-using-tuned-mass-damper-tmd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20S.%20Fajar">Angga S. Fajar</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Takahashi"> Y. Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kiyono"> J. Kiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sawada"> S. Sawada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20Pier" title="RC Pier">RC Pier</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20expansion" title=" thermal expansion"> thermal expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20sliding%20friction%20device" title=" multi sliding friction device"> multi sliding friction device</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20small%20deformation" title=" flexible small deformation"> flexible small deformation</a> </p> <a href="https://publications.waset.org/abstracts/58179/the-structural-system-concept-of-reinforced-concrete-pier-accompanied-with-friction-device-plus-gap-in-numerical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> A Seismic Study on The Settlement of Superstructures Due to the Tunnel Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Mohammadi"> Saeideh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urban development leads to the construction of urban tunnels for transport. Passage of tunnels under the surface structures and utilities prompted the changes in the site conditions and hence alteration of the dynamic response of surface structures. Therefore, in this study, the effect of the interaction of tunnel-superstructure on the site response is investigated numerically. For this purpose, Fast Lagrangian Analysis of Continua (FLAC 2D) is used, and stratification and properties of soil layers are selected based on the line No 7 of Tehran subway. The superstructure is modeled both as an equivalent surcharge and the actual structure, and the results are compared. A comparison of the results shows that consideration of structure geometry is necessary for dynamic analysis and it leads to the changes in displacements and accelerations. Consequently, the geometry of the superstructure should be modeled completely instead of the application of an equivalent load. The effect of tunnel diameter and depth on the settlement of superstructures is also studied. Results show that when the tunnel depth and diameter grow, the settlements increase considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel" title="tunnel">tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC2D" title=" FLAC2D"> FLAC2D</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/118483/a-seismic-study-on-the-settlement-of-superstructures-due-to-the-tunnel-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Koren">David Koren</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojko%20Kilar"> Vojko Kilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extruded%20polystyrene%20%28XPS%29" title="extruded polystyrene (XPS)">extruded polystyrene (XPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20on%20thermal%20insulation" title=" foundation on thermal insulation"> foundation on thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-efficient%20buildings" title=" energy-efficient buildings"> energy-efficient buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20seismic%20analysis" title=" nonlinear seismic analysis"> nonlinear seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%E2%80%93structure%20interaction" title=" soil–structure interaction"> soil–structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/5121/buildings-founded-on-thermal-insulation-layer-subjected-to-earthquake-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> CO2 Emissions Quantification of the Modular Bridge Superstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanhyuck%20Jeon">Chanhyuck Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many industries put emphasis on environmentally-friendliness as environmental problems are on the rise all over the world. Among themselves, the Modular Bridge research is going on. Also performing cross-section optimization and duration reducing, this research aims at developing the modular bridge with Environment-Friendliness and economic feasibility. However, the difficulty lies in verifying environmental effectiveness because there are no field applications of the modular bridge until now. Therefore, this thesis is categorized according to the form of the modular bridge superstructure and assessed CO₂ emission quantification per work types and materials according to each form to verify the environmental effectiveness of the modular bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title="modular bridge">modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor" title=" carbon emission factor"> carbon emission factor</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20%28Life%20Cycle%20Assessment%29" title=" LCA (Life Cycle Assessment)"> LCA (Life Cycle Assessment)</a> </p> <a href="https://publications.waset.org/abstracts/28224/co2-emissions-quantification-of-the-modular-bridge-superstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> The Application of Artificial Neural Network for Bridge Structures Design Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20S.%20Fajar">Angga S. Fajar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminullah"> A. Aminullah</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kiyono"> J. Kiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Safitri"> R. A. Safitri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20structures" title="bridge structures">bridge structures</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20propagation" title=" back propagation"> back propagation</a> </p> <a href="https://publications.waset.org/abstracts/58189/the-application-of-artificial-neural-network-for-bridge-structures-design-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Evaluation of Pile Performance in Different Layers of Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orod%20Zarrin">Orod Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohesn%20Ramezan%20Shirazi"> Mohesn Ramezan Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Moniri"> Hassan Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pile" title="pile">pile</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-liquefiable" title=" non-liquefiable"> non-liquefiable</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/46209/evaluation-of-pile-performance-in-different-layers-of-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Castaldo">Paolo Castaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Palazzo"> Bruno Palazzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Lodato"> Laura Lodato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP%20devices" title="FP devices">FP devices</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reliability" title=" seismic reliability"> seismic reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20robustness" title=" seismic robustness"> seismic robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a> </p> <a href="https://publications.waset.org/abstracts/55083/seizure-effects-of-fp-bearings-on-the-seismic-reliability-of-base-isolated-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orod%20Zarrin">Orod Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohesn%20Ramezan%20Shirazi"> Mohesn Ramezan Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Moniri"> Hassan Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=post-cracking" title=" post-cracking"> post-cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20inverse%20technique" title=" direct and inverse technique"> direct and inverse technique</a> </p> <a href="https://publications.waset.org/abstracts/46208/the-investigation-of-fiber-reinforcement-self-compacting-concrete-and-fiber-reinforcement-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Bridges Seismic Isolation Using CNT Reinforced Polymer Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Attia">Mohamed Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vissarion%20Papadopoulos"> Vissarion Papadopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is no doubt that there is a continuous deterioration of structures as a result of multiple hazards which can be divided into natural hazards (e.g., earthquakes, floods, winds) and other hazards due to human behavior (e.g., ship collisions, excessive traffic, terrorist attacks). There have been numerous attempts to address the catastrophic consequences of these hazards and traditional solutions through structural design and safety factors within the design codes, but there has not been much research addressing solutions through the use of new materials that have high performance and can be more effective than usual materials such as reinforced concrete and steel. To illustrate the effect of one of the new high-performance materials, carbon nanotube-reinforced polymer (CNT/polymer) bearings with different weight fractions were simulated as structural components of seismic isolation using ABAQUS in the connection between a bridge superstructure and the substructure. The results of the analyzes showed a significant increase in the time period of the bridge and a clear decrease in the bending moment at the base of the bridge piers at each time step of the time-history analysis in the case of using CNT/polymer bearings compared to the case of direct contact between the superstructure of the bridge and the substructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolation" title="seismic isolation">seismic isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=bridges%20damage" title=" bridges damage"> bridges damage</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20hazard" title=" earthquake hazard"> earthquake hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structures" title=" earthquake resistant structures"> earthquake resistant structures</a> </p> <a href="https://publications.waset.org/abstracts/148249/bridges-seismic-isolation-using-cnt-reinforced-polymer-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Provision of Slope Stability with Barette Piles: A Case Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leyla%20Yesilbas">Leyla Yesilbas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sukru%20Ozcoban"> M. Sukru Ozcoban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ergenekon%20Selcuk"> M. Ergenekon Selcuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From past to present, there is a constant need for engineering structures such as high-rise buildings, wide-span bridges, airports and stadiums, business towers due to technological developments and increasing population. Because of the large loads transferred from the superstructure to the ground layers in these types of structures, the bearing strength and seating problems usually occur on the floors. In order to solve these problems, piled foundations are used by passing the weak soil layers and transferring the loads from the superstructure to the solid soil layers. Considering the factors such as the characteristics of the building to be constructed, the purpose and location of the building, the basic cost of the pile should be at normal levels. When these requirements are taken into consideration, a new basic system called 'Barette Foundation' has been developed. In this thesis, an application made to provide slope stability with 'Baret Piles' was investigated. In addition, the ground parameters obtained from the field and laboratory experiments were numerically modeled using a PLAXİS 2D finite element software and barette piles. The effects of barette piles on slope stability were investigated by numerical analysis, and the results of inclinometer measurements in the field were compared with numerical analysis results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barette%20pile" title="barette pile">barette pile</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAX%C4%B0S%202D" title=" PLAXİS 2D"> PLAXİS 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/104350/provision-of-slope-stability-with-barette-piles-a-case-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qudama%20Albu-Jasim">Qudama Albu-Jasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Majdi%20Kanaan"> Majdi Kanaan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20rating" title="load rating">load rating</a>, <a href="https://publications.waset.org/abstracts/search?q=CSIBridge" title=" CSIBridge"> CSIBridge</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainties" title=" uncertainties"> uncertainties</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a> </p> <a href="https://publications.waset.org/abstracts/141480/strengthening-evaluation-of-steel-girder-bridge-under-load-rating-analysis-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Seismic Evaluation of Connected and Disconnected Piled Raft Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fallah%20Yeznabad">Ali Fallah Yeznabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Baziar"> Mohammad H. Baziar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Saedi%20Azizkandi"> Alireza Saedi Azizkandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piled%20Rafts%20%28PR%29" title="Piled Rafts (PR)">Piled Rafts (PR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Disconnected%20Piled%20Rafts%20%28DPR%29" title=" Disconnected Piled Rafts (DPR)"> Disconnected Piled Rafts (DPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20loading" title=" dynamic loading"> dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance "> seismic performance </a> </p> <a href="https://publications.waset.org/abstracts/37165/seismic-evaluation-of-connected-and-disconnected-piled-raft-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Taha">Abdelrahman Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Malekghaini"> Niloofar Malekghaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Ebrahimian"> Hamed Ebrahimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20approach" title="direct approach">direct approach</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20function" title=" impedance function"> impedance function</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=substructure%20approach" title=" substructure approach"> substructure approach</a> </p> <a href="https://publications.waset.org/abstracts/153295/time-domain-analysis-approaches-of-soil-structure-interaction-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Mu%C3%B1iz%20Cano">Beatriz Muñiz Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ripoll%20Sau"> J. Ripoll Sau</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pacile"> D. Pacile</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Sheverdyaeva"> P. M. Sheverdyaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Moras"> P. Moras</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Camarero"> J. Camarero</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Miranda"> R. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Garnica"> M. Garnica</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Valbuena"> M. A. Valbuena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20resolved%20photoemission%20spectroscopy" title="angle resolved photoemission spectroscopy">angle resolved photoemission spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ARPES" title=" ARPES"> ARPES</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-orbitronics" title=" spin-orbitronics"> spin-orbitronics</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title=" 2D materials"> 2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20dichalcogenides" title=" transition metal dichalcogenides"> transition metal dichalcogenides</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDCs" title=" TMDCs"> TMDCs</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDs" title=" TMDs"> TMDs</a>, <a href="https://publications.waset.org/abstracts/search?q=LEED" title=" LEED"> LEED</a>, <a href="https://publications.waset.org/abstracts/search?q=STM" title=" STM"> STM</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20materials" title=" quantum materials"> quantum materials</a> </p> <a href="https://publications.waset.org/abstracts/146640/engineering-a-band-gap-opening-in-dirac-cones-on-graphenetellurium-heterostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhwane%20Boudjelthia">Radhwane Boudjelthia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most recent earthquakes occurred in the world have killed thousands of people and severe damage. For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach to protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads, among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation," to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20forces" title=" seismic forces"> seismic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=response." title=" response."> response.</a> </p> <a href="https://publications.waset.org/abstracts/165358/the-effects-of-damping-devices-on-displacements-velocities-and-accelerations-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhwane%20Boudjelthia">Radhwane Boudjelthia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most recent earthquakes that occurred in the world and particularly in Algeria, have killed thousands of people and severe damage. The example that is etched in our memory is the last earthquake in the regions of Boumerdes and Algiers (Boumerdes earthquake of May 21, 2003). For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation" to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20forces" title=" seismic forces"> seismic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a> </p> <a href="https://publications.waset.org/abstracts/125244/the-effects-of-damping-devices-on-displacements-velocities-and-accelerations-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Sustainable Upgrade of Existing Heritage Infrastructure - Strengthening and Rehabilitation of The LH Ford Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vince%20Scolaro">Vince Scolaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshman%20Prasad"> Lakshman Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ted%20Polley"> Ted Polley</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjivan%20Deshpande"> Sanjivan Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LH Ford Bridge, built in the 1960s, comprises 28 spans, is 800m long and crosses the Macquarie River at Dubbo, NSW. The main bridge spans comprise three spans with a 63m center span (25m drop-in section) supported by halving joints from the main cantilevers and back spans of 28m. The main bridge spans were built using complex construction staging (the first of this type in NSW). They comprise twin precast boxes, in-situ reinforced concrete infills, and cantilevered outriggers stressed both longitudinally and transversely. Since construction, this bridge has undergone significantly increased design vehicle loads and showed signs of excessive shrinkage and creep leading to significant sagging of the centre span with evidence of previous failure and remediation of the halving joints. A comprehensive load rating assessment was undertaken taking account of the original complex construction staging. Deficiencies identified included inadequate capacity of the halving joints, failure of the bearings at the halving joints, inadequate shear capacity of the girder webs and inadequate girder flexural capacity to carry B-Double design vehicles. A unique strengthening system comprising two new piers (under each of the halving joints), new bearings and installation of external prestressing to the soffit of both drop-in-span and back spans was adopted. A portion of the dead load had to be transferred from the superstructure to the new piers via innovative soft/stiff bearing combinations to reduce new locked-in stresses resulting from the new pier supports. Significant temporary works comprised a precast concrete shell beam forming the pile cap/pier structure, addition of a temporary suspended scaffold (without overstressing the existing superstructure) and the installation of jacking stays for new bearing top and bottom plates. This paper presents how this existing historic and socially important bridge was strengthened and updated to increase its design life without the need for replacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strengthening" title="strengthening">strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20girder" title=" box girder"> box girder</a> </p> <a href="https://publications.waset.org/abstracts/177574/sustainable-upgrade-of-existing-heritage-infrastructure-strengthening-and-rehabilitation-of-the-lh-ford-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20C.%20Filippou"> Filip C. Filippou</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base-isolated%20structures" title="base-isolated structures">base-isolated structures</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20time%20integration" title=" mixed time integration"> mixed time integration</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20exponential%20model" title=" nonlinear exponential model"> nonlinear exponential model</a> </p> <a href="https://publications.waset.org/abstracts/58215/nonlinear-dynamic-analysis-of-base-isolated-structures-using-a-partitioned-solution-approach-and-an-exponential-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Interface Designer as Cultural Producer: A Dialectic Materialist Approach to the Role of Visual Designer in the Present Digital Era</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cagri%20Baris%20Kasap">Cagri Baris Kasap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, how interface designers can be viewed as producers of culture in the current era will be interrogated from a critical theory perspective. Walter Benjamin was a German Jewish literary critical theorist who, during 1930s, was engaged in opposing and criticizing the Nazi use of art and media. ‘The Author as Producer’ is an essay that Benjamin has read at the Communist Institute for the Study of Fascism in Paris. In this article, Benjamin relates directly to the dialectics between base and superstructure and argues that authors, normally placed within the superstructure should consider how writing and publishing is production and directly related to the base. Through it, he discusses what it could mean to see author as producer of his own text, as a producer of writing, understood as an ideological construct that rests on the apparatus of production and distribution. So Benjamin concludes that the author must write in ways that relate to the conditions of production, he must do so in order to prepare his readers to become writers and even make this possible for them by engineering an ‘improved apparatus’ and must work toward turning consumers to producers and collaborators. In today’s world, it has become a leading business model within Web 2.0 services of multinational Internet technologies and culture industries like Amazon, Apple and Google, to transform readers, spectators, consumers or users into collaborators and co-producers through platforms such as Facebook, YouTube and Amazon’s CreateSpace Kindle Direct Publishing print-on-demand, e-book and publishing platforms. However, the way this transformation happens is tightly controlled and monitored by combinations of software and hardware. In these global-market monopolies, it has become increasingly difficult to get insight into how one’s writing and collaboration is used, captured, and capitalized as a user of Facebook or Google. In the lens of this study, it could be argued that this criticism could very well be considered by digital producers or even by the mass of collaborators in contemporary social networking software. How do software and design incorporate users and their collaboration? Are they truly empowered, are they put in a position where they are able to understand the apparatus and how their collaboration is part of it? Or has the apparatus become a means against the producers? Thus, when using corporate systems like Google and Facebook, iPhone and Kindle without any control over the means of production, which is closed off by opaque interfaces and licenses that limit our rights of use and ownership, we are already the collaborators that Benjamin calls for. For example, the iPhone and the Kindle combine a specific use of technology to distribute the relations between the ‘authors’ and the ‘prodUsers’ in ways that secure their monopolistic business models by limiting the potential of the technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interface%20designer" title="interface designer">interface designer</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20producer" title=" cultural producer"> cultural producer</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Benjamin" title=" Walter Benjamin"> Walter Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=materialist%20aesthetics" title=" materialist aesthetics"> materialist aesthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=dialectical%20thinking" title=" dialectical thinking"> dialectical thinking</a> </p> <a href="https://publications.waset.org/abstracts/108231/interface-designer-as-cultural-producer-a-dialectic-materialist-approach-to-the-role-of-visual-designer-in-the-present-digital-era" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Causes of Construction Delays in Qatar Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Gunduz">Murat Gunduz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohanad%20H.%20A.%20AbuHassan"> Mohanad H. A. AbuHassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction industry mainly focuses on the superstructure, infrastructure, and oil and gas industry. The development of infrastructure projects in developing countries attracted a lot of foreign construction contractors, consultants, suppliers and diversified workforce to interfere and to be evolved in such huge investment. Reducing worksite delays in such projects require knowledge and attention. Therefore, it is important to identify the influencing delay attributes affecting construction projects. The significant project factors affecting construction delays were investigated. Data collection was carried out through an online web survey system to capture significant factors. Significant factors were determined with importance index and relevant recommendations are made. The output of the data analysis would lead the industry experts better assess the impact of construction delays on construction projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title="construction industry">construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=delays" title=" delays"> delays</a>, <a href="https://publications.waset.org/abstracts/search?q=importance%20index" title=" importance index"> importance index</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20index" title=" frequency index"> frequency index</a> </p> <a href="https://publications.waset.org/abstracts/48492/causes-of-construction-delays-in-qatar-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adinew%20Gebremeskel%20Tizazu">Adinew Gebremeskel Tizazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20soil%20structure" title="effect of soil structure">effect of soil structure</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response%20corroborated" title=" dynamic response corroborated"> dynamic response corroborated</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20modal%20superposition%20principle" title=" the modal superposition principle"> the modal superposition principle</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20studies" title=" parametric studies"> parametric studies</a> </p> <a href="https://publications.waset.org/abstracts/189166/a-research-on-the-effect-of-soil-structure-interaction-on-the-dynamic-response-of-symmetrical-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stojan%20Kravanja">Stojan Kravanja</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrej%20Ivani%C4%8D"> Andrej Ivanič</a>, <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20%C5%BDula"> Tomaž Žula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MINLP" title="MINLP">MINLP</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20non-linear%20programming" title=" mixed-integer non-linear programming"> mixed-integer non-linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/185274/optimization-of-structures-with-mixed-integer-non-linear-programming-minlp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Mitigation of Seismic Forces Effect on Highway Bridge Using Aseismic Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaoutar%20Zellat">Kaoutar Zellat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Kadri"> Tahar Kadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of new aseismic techniques is to provide an additional means of energy dissipation, thereby reducing the transmitted acceleration into the superstructure. In order to demonstrate the effectiveness of aseismic bearings technique and understand the behavior of seismically isolated bridges by such devices a three-span continuous deck bridge made of reinforced concrete is considered. The bridge is modeled as a discrete model and the relative displacements of the isolation bearing are crucial from the design point of view of isolation system and separation joints at the abutment level. The systems presented here are passive control systems and the results of some important experimental tests are also included. The results show that the base shear in the piers is significantly reduced for the isolated system as compared to the non isolated system in the both directions of the bridge. This indicates that the use of aseismic systems is effective in reducing the earthquake response of the bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aseismic%20bearings" title="aseismic bearings">aseismic bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20isolation" title=" bridge isolation"> bridge isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a> </p> <a href="https://publications.waset.org/abstracts/14253/mitigation-of-seismic-forces-effect-on-highway-bridge-using-aseismic-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> The Relationship between Religious Orientation and Country Reputation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Aydogan">Sibel Aydogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceyda%20Aysuna"> Ceyda Aysuna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Religion is a social superstructure institution. Religious beliefs and practices are undeniable phenomena in the simplest and / or most complex societies and communities. All individuals in the society are not devout, but yet they are affected by religion one way or another. This study aims to identify the relationship between religion and country reputation. The uniqueness of the study lies in the fact that in the literature there is no study aimed to examine this relationship. Because of this reason the findings of the study can have important implications to fill this literature gap. Beyond examining this relationship, in the study also different religious oriented people’s opinions of country reputation was analyzed. The results of the analysis of data consisting of 985 respondents reveal that there is a significant relationship between religion and people’s opinions on country reputation. Another important finding of the study is people with different religious orientations have different opinions about a country’s reputation. The findings of the reputation may be important for people and organizations who are responsible for increasing a country’s reputation. Also the findings may shed light on country branding activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=religion" title="religion">religion</a>, <a href="https://publications.waset.org/abstracts/search?q=religiosity" title=" religiosity"> religiosity</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20orientation" title=" religious orientation"> religious orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=country%20reputation" title=" country reputation"> country reputation</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/19806/the-relationship-between-religious-orientation-and-country-reputation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> A Model Suggestion on Competitiveness and Sustainability of SMEs in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Diken">Ahmet Diken</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahsin%20Karabulut"> Tahsin Karabulut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The factor which developing countries are in need is capital. Such countries make an effort to increase their income in order to meet their expenses for employment, infrastructure, superstructure investments, education, health and defense. The sole income of the countries is taxes collected from businesses. The businesses should drive profit and return in order to be able to toll. In a world where competition exists, different strategies may be followed by business in developing countries and they must specify their target markets. İn order to minimize cost and maximize profit, SMEs have to concentrate on target markets and select cost oriented strategy. In this study, a theoretical model is suggested that SME firms have to act as cluster between each other, and also must be optimal provider for large scale firms. SMEs’ policy must be supported by public. This relationship can benefit large scale firms to have brand over the world, and this organization increases value added for developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title="competitiveness">competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=countries" title=" countries"> countries</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs%20developing" title=" SMEs developing"> SMEs developing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/51052/a-model-suggestion-on-competitiveness-and-sustainability-of-smes-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Dynamic Response of Structure-Raft-Pile-Soil with Respect to System Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Razmi">B. Razmi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rafiee"> F. Rafiee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baziar"> M. Baziar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Saeedi%20Azizkandi"> A. Saeedi Azizkandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present research, a series of 3-D finite element numerical modeling was performed to study the effect of system frequency and excitation specifications on the internal forces of the piled raft (PR) system in a dry sand layer. The results of numerical simulations were first compared with those associated with centrifuge tests. The natural frequency of superstructure, modeled on the piled raft foundation, was smaller than the natural frequency of the fixed-base super-structure. This difference was greater for super-structures with higher frequencies. In PR systems, the excitation with a frequency close to the system frequency produced the largest responses. Furthermore, based on the results of presented numerical analyses, ignoring the interactions and characteristics of all components of a pile-raft-structure, may lead to highly uneconomical design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifuge%20test" title="centrifuge test">centrifuge test</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20frequency" title=" excitation frequency"> excitation frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency%20of%20super-structure" title=" natural frequency of super-structure"> natural frequency of super-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=piled%20raft%20foundation" title=" piled raft foundation"> piled raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20finite%20element%20model" title=" 3-D finite element model"> 3-D finite element model</a> </p> <a href="https://publications.waset.org/abstracts/150187/dynamic-response-of-structure-raft-pile-soil-with-respect-to-system-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Seismic Retrofit of Existing Bridge Foundations with Micropiles: 3D Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohanad%20Talal%20Alfach">Mohanad Talal Alfach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper concerns the seismic behaviour of soil-piles-bridge reinforced by additional micropiles. The analysis carried out by three-dimensional finite element modelling using the FE software ABAQUS. The soil behaviour is assumed to be elastic with Rayleigh damping, while the micropiles are modeled as 3D elastic beam elements. The bridge deck slab was represented by a concentrated mass at the top of the pier column. The interaction between the added micropiles and the existing piles as well as the performance of the retrofitted soil-pile-superstructure system were investigated for different configurations of additional micropiles (number, position, inclination). Numerical simulation results show that additional micropiles constitute an efficient retrofitting solution. Analysis of results also shows that spacing between existing piles and retrofitting micropiles has little effect; while it is observed a substantial improvement (in case of weak piles/micropiles - soil interface) with reducing the inclination angle of retrofitting micropiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title="retrofitting">retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=micropiles" title=" micropiles"> micropiles</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic" title=" elastic"> elastic</a> </p> <a href="https://publications.waset.org/abstracts/109238/seismic-retrofit-of-existing-bridge-foundations-with-micropiles-3d-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Prediction of Compressive Strength Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Pal%20Singh">Vijay Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Chandra%20Kotiyal"> Yogesh Chandra Kotiyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rebound" title="rebound">rebound</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-sonic%20pulse" title=" ultra-sonic pulse"> ultra-sonic pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration" title=" penetration"> penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/2487/prediction-of-compressive-strength-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superstructure&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superstructure&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superstructure&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>