CINXE.COM

Search results for: EuroCode 2

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: EuroCode 2</title> <meta name="description" content="Search results for: EuroCode 2"> <meta name="keywords" content="EuroCode 2"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="EuroCode 2" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="EuroCode 2"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 53</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: EuroCode 2</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Dahmani">L. Dahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Drizi"> S. Drizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djemai"> M. Djemai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boudjemia"> A. Boudjemia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Mechiche"> M. O. Mechiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%203" title=" Eurocode 3"> Eurocode 3</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20channel%20beam" title=" steel channel beam"> steel channel beam</a> </p> <a href="https://publications.waset.org/abstracts/22007/lateral-torsional-buckling-of-an-eccentrically-loaded-channel-section-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Effects of Local Ground Conditions on Site Response Analysis Results in Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orsolya%20Kegyes-Brassai">Orsolya Kegyes-Brassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Szilv%C3%A1gyi"> Zsolt Szilvágyi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81kos%20Wolf"> Ákos Wolf</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20P.%20Ray"> Richard P. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local ground conditions have a substantial influence on the seismic response of structures. Their inclusion in seismic hazard assessment and structural design can be realized at different levels of sophistication. However, response results based on more advanced calculation methods e.g. nonlinear or equivalent linear site analysis tend to show significant discrepancies when compared to simpler approaches. This project's main objective was to compare results from several 1-D response programs to Eurocode 8 design spectra. Data from in-situ site investigations were used for assessing local ground conditions at several locations in Hungary. After discussion of the in-situ measurements and calculation methods used, a comprehensive evaluation of all major contributing factors for site response is given. While the Eurocode spectra should account for local ground conditions based on soil classification, there is a wide variation in peak ground acceleration determined from 1-D analyses versus Eurocode. Results show that current Eurocode 8 design spectra may not be conservative enough to account for local ground conditions typical for Hungary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1-D%20site%20response%20analysis" title="1-D site response analysis">1-D site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel%20analysis%20of%20surface%20waves%20%28MASW%29" title=" multichannel analysis of surface waves (MASW)"> multichannel analysis of surface waves (MASW)</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20CPT" title=" seismic CPT"> seismic CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard%20assessment" title=" seismic hazard assessment"> seismic hazard assessment</a> </p> <a href="https://publications.waset.org/abstracts/67541/effects-of-local-ground-conditions-on-site-response-analysis-results-in-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Comparative Study of Numerical and Analytical Buckling Analysis of a Steel Column with Various Slenderness Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahlou%20Dahmani">Lahlou Dahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Warda%20Mekiri"> Warda Mekiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Boudjemia"> Ahmed Boudjemia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This scientific paper explores the comparison between the ultimate buckling load obtained through the Eurocode 3 methodology and the ultimate buckling load obtained through finite element simulations for steel columns under compression. The study aims to provide insights into the adequacy of the design rules proposed in Eurocode 3 for different slenderness ratios. The finite element simulations with the Ansys commercial program involve a geometrical and material non-linear analysis of the columns with imperfections. The loss of equilibrium is generally caused by the geometrically nonlinear effects where the column begins to buckle and lose its stability when the load reaches a certain critical value. The linear buckling analysis predicts the theoretical buckling strength of an elastic structure but the nonlinear one is more accurate with taking into account the initial imperfection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys" title="Ansys">Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20buckling" title=" linear buckling"> linear buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=eigen%20value" title=" eigen value"> eigen value</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20buckling" title=" nonlinear buckling"> nonlinear buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title=" slenderness ratio"> slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%203" title=" Eurocode 3"> Eurocode 3</a> </p> <a href="https://publications.waset.org/abstracts/192964/comparative-study-of-numerical-and-analytical-buckling-analysis-of-a-steel-column-with-various-slenderness-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Examples of RC Design with Eurocode2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20Ferreira">Carla Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Barros"> Helena Barros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper termed “Design of reinforced concrete with Eurocode 2” presents the theory regarding the design of reinforced concrete sections and the development of the tables and abacuses to verify the concrete section to the ultimate limit and service limit states. This paper is a complement of it, showing how to use the previous tools. Different numerical results are shown, proving the capability of the methodology. When a section of a beam is already chosen, the computer program presents the reinforcing steel in many locations along the structure, and it is the engineer´s task to choose the layout available for the construction, considering the maximum regular kind of reinforcing bars. There are many computer programs available for this task, but the interest of the present kind of tools is the fast and easy way of making the design and choose the optimal solution. Another application of these design tools is in the definition of the section dimensions, in a way that when stresses are evaluated, the final design is acceptable. In the design offices, these are considered by the engineers a very quick and useful way of designing reinforced concrete sections, employing variable strength concrete and higher steel classes. Examples of nonlinear analyses and redistribution of the bending moment will be considered, according to the Eurocode 2 recommendations, for sections under bending moment and axial forces. Examples of the evaluation of the service limit state will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20examples" title="design examples">design examples</a>, <a href="https://publications.waset.org/abstracts/search?q=eurocode%202" title=" eurocode 2"> eurocode 2</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=section%20design" title=" section design"> section design</a> </p> <a href="https://publications.waset.org/abstracts/174988/examples-of-rc-design-with-eurocode2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Dynamic Amplification Factors of Some City Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Paeglite">I. Paeglite</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Paeglitis"> A. Paeglitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20effects" title=" dynamic effects"> dynamic effects</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20testing" title=" load testing"> load testing</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20amplification%20factor" title=" dynamic amplification factor"> dynamic amplification factor</a> </p> <a href="https://publications.waset.org/abstracts/10727/dynamic-amplification-factors-of-some-city-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Evaluating of Design Codes for Circular High Strength Concrete-Filled Steel Tube Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler">Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20Guzel"> Eylem Guzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, concrete-filled steel tube columns are highly popular in high-rise buildings. The main aim of this study is to evaluate the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and American Concrete Institute (ACI) design codes. The axial load capacities of fifteen concrete-filled steel tubes stub columns were compared with design codes EU4 and ACI. The results showed that the EC4 overestimate the axial load capacity for all the specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube%20column" title="concrete-filled steel tube column">concrete-filled steel tube column</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%204" title=" Eurocode 4"> Eurocode 4</a>, <a href="https://publications.waset.org/abstracts/search?q=ACI%20design%20codes" title=" ACI design codes"> ACI design codes</a> </p> <a href="https://publications.waset.org/abstracts/50129/evaluating-of-design-codes-for-circular-high-strength-concrete-filled-steel-tube-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ivandic">K. Ivandic</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dodigovic"> F. Dodigovic</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Stuhec"> D. Stuhec</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Strelec"> S. Strelec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20values" title="characteristic values">characteristic values</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20judgement" title=" engineering judgement"> engineering judgement</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%207" title=" Eurocode 7"> Eurocode 7</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a> </p> <a href="https://publications.waset.org/abstracts/87290/analysis-of-the-engineering-judgement-influence-on-the-selection-of-geotechnical-parameters-characteristic-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Airfield Pavements Made of Reinforced Concrete: Dimensioning According to the Theory of Limit States and Eurocode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nita"> P. Nita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the previous airfield construction industry, pavements made of reinforced concrete have been used very rarely; however, the necessity to use this type of pavements in an emergency situations justifies the need reference to this issue. The paper concerns the problem of airfield pavement dimensioning made of reinforced concrete and&nbsp;the evaluation of selected dimensioning methods of reinforced concrete slabs intended for airfield pavements. Analysis of slabs dimensioning, according to classical method of limit states has been performed and it has been compared to results obtained in case of methods complying with Eurocode 2 guidelines. Basis of an analysis was a concrete slab of class C35/45 with reinforcement, located in tension zone. Steel bars of 16.0 mm have been used as slab reinforcement. According to comparative analysis of obtained results, conclusions were reached regarding application legitimacy of the discussed methods and their design advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainforced%20concrete" title="rainforced concrete">rainforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airport%20pavements" title=" airport pavements"> airport pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensioning" title=" dimensioning"> dimensioning</a> </p> <a href="https://publications.waset.org/abstracts/53911/airfield-pavements-made-of-reinforced-concrete-dimensioning-according-to-the-theory-of-limit-states-and-eurocode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Computational Modeling of Perpendicular to Grain Stress in a Non-Standard Glulam Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Gilewski">Wojciech Gilewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Al%20Sabouni-Zawadzka"> Anna Al Sabouni-Zawadzka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Pelczynski"> Jan Pelczynski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the analysis of tensile stresses perpendicular to the grain in simply supported beams with different geometry made of glued laminated timber. Two types of beams are considered: standard double-tapered beams described in Eurocode 5 and non-standard glulam beams with a flattened apex. The beams are analyzed using two methodology approaches: a code design verification method and a finite element method (FEM) in terms of the linear theory of elasticity with plane stress assumption. The performed analyses proved that both methodologies lead to consistent results in case of standard glulam beams and therefore, the FEM can be used in case of non-standard structures, which are not included in Eurocode 5. Moreover, the FE analysis of the glulam beam with a flattened apex showed that it can be treated as a structure with two apex zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-tapered%20beams" title="double-tapered beams">double-tapered beams</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=glued%20laminated%20timber" title=" glued laminated timber"> glued laminated timber</a>, <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20to%20grain%20stress" title=" perpendicular to grain stress"> perpendicular to grain stress</a> </p> <a href="https://publications.waset.org/abstracts/77546/computational-modeling-of-perpendicular-to-grain-stress-in-a-non-standard-glulam-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Time-Dependent Behaviour of Reinforced Concrete Beams under Sustained and Repeated Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Daud">Sultan Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20P.%20Forth"> John P. Forth</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Nikitas"> Nikolaos Nikitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study aims to highlight the loading characteristics impact on the time evolution (focusing particularly on long term effects) of the deformation of realized reinforced concrete beams. Namely the tension stiffening code provisions (i.e. within Eurocode 2) are reviewed with a clear intention to reassess their operational value and predicting capacity. In what follows the experimental programme adopted along with some preliminary findings and numerical modelling attempts are presented. For a range of long slender reinforced concrete simply supported beams (4200 mm) constant static sustained and repeated cyclic loadings were applied mapping the time evolution of deformation. All experiments were carried out at the Heavy Structures Lab of the University of Leeds. During tests the mid-span deflection, creep coefficient and shrinkage strains were monitored for duration of 90 days. The obtained results are set against the values predicted by Eurocode 2 and the tools within an FE commercial package (i.e. Midas FEA) to yield that existing knowledge and practise is at times over-conservative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eurocode2" title="Eurocode2">Eurocode2</a>, <a href="https://publications.waset.org/abstracts/search?q=midas%20fea" title=" midas fea"> midas fea</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated" title=" repeated"> repeated</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20loading." title=" sustained loading."> sustained loading.</a> </p> <a href="https://publications.waset.org/abstracts/35305/time-dependent-behaviour-of-reinforced-concrete-beams-under-sustained-and-repeated-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Reliability Based Investigation on the Choice of Characteristic Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jann-Eike%20Saathoff">Jann-Eike Saathoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Alexander%20Schmoor"> Kirill Alexander Schmoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Achmus"> Martin Achmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Terceros"> Mauricio Terceros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using partial factors of safety, uncertainties due to the inherent variability of the soil properties and loads are taken into account in the geotechnical design process. According to the reliability index concept in Eurocode-0 in conjunction with Eurocode-7 a minimum safety level of &beta;&nbsp;=&nbsp;3.8 for reliability class RC2 shall be established. The reliability of the system depends heavily on the choice of the prespecified safety factor and the choice of the characteristic soil properties. The safety factors stated in the standards are mainly based on experience. However, no general accepted method for the calculation of a characteristic value within the current design practice exists. In this study, a laterally loaded monopile is investigated and the influence of the chosen quantile values of the deterministic system, calculated with p-y springs, will be presented. Monopiles are the most common foundation concepts for offshore wind energy converters. Based on the calculations for non-cohesive soils, a recommendation for an appropriate quantile value for the necessary safety level according to the standards for a deterministic design is given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20sampling" title="asymptotic sampling">asymptotic sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20value" title=" characteristic value"> characteristic value</a>, <a href="https://publications.waset.org/abstracts/search?q=monopile%20foundation" title=" monopile foundation"> monopile foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20design" title=" probabilistic design"> probabilistic design</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20values" title=" quantile values"> quantile values</a> </p> <a href="https://publications.waset.org/abstracts/101485/reliability-based-investigation-on-the-choice-of-characteristic-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Spatial Analysis for Wind Risk Index Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ljiljana%20Seric">Ljiljana Seric</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Divic"> Vladimir Divic</a>, <a href="https://publications.waset.org/abstracts/search?q=Marin%20Bugaric"> Marin Bugaric</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents methodology for spatial analysis of GIS data that is used for assessing the microlocation risk index from potential damages of high winds. The analysis is performed on freely available GIS data comprising information about wind load, terrain cover and topography of the area. The methodology utilizes the legislation of Eurocode norms for determination of wind load of buildings and constructions. The core of the methodology is adoption of the wind load parameters related to location on geographical spatial grid. Presented work is a part of the Wind Risk Project, supported by the European Commission under the Civil Protection Financial Instrument of the European Union (ECHO). The partners involved in Wind Risk project performed Wind Risk assessment and proposed action plan for three European countries – Slovenia, Croatia and Germany. The proposed method is implemented in GRASS GIS open source GIS software and demonstrated for Case study area of wider area of Split, Croatia. Obtained Wind Risk Index is visualized and correlated with critical infrastructures like buildings, roads and power lines. The results show good correlation between high Wind Risk Index with recent incidents related to wind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eurocode%20norms" title="Eurocode norms">Eurocode norms</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20distribution" title=" wind distribution"> wind distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20risk" title=" wind risk"> wind risk</a> </p> <a href="https://publications.waset.org/abstracts/84746/spatial-analysis-for-wind-risk-index-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kreso%20Ivandic">Kreso Ivandic</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20Dodigovic"> Filip Dodigovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Stuhec"> Damir Stuhec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action-resistance%20factor%20design" title="action-resistance factor design">action-resistance factor design</a>, <a href="https://publications.waset.org/abstracts/search?q=classic%20approach" title=" classic approach"> classic approach</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20retaining%20wall" title=" embedded retaining wall"> embedded retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%207" title=" Eurocode 7"> Eurocode 7</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20states" title=" limit states"> limit states</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20factor%20design" title=" material factor design"> material factor design</a> </p> <a href="https://publications.waset.org/abstracts/87481/challenges-in-the-material-and-action-resistance-factor-design-for-embedded-retaining-wall-limit-state-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alagha">Ahmed Alagha</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Lamri"> Belkacem Lamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Kada."> Abdelhak Kada.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eurocode%205" title="Eurocode 5">Eurocode 5</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO834" title=" ISO834"> ISO834</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20shear" title=" simple shear"> simple shear</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behaviour" title=" thermal behaviour"> thermal behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-steel%20connection" title=" wood-steel connection"> wood-steel connection</a> </p> <a href="https://publications.waset.org/abstracts/160170/thermo-mechanical-behavior-of-steel-wood-connections-of-wooden-structures-under-the-effect-of-a-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal">Saruhan Kartal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan"> Ilker Kalkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement" title="polymer reinforcement">polymer reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20bending" title=" four-point bending"> four-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20use%20of%20reinforcement" title=" hybrid use of reinforcement"> hybrid use of reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20moment" title=" cracking moment"> cracking moment</a> </p> <a href="https://publications.waset.org/abstracts/107997/first-cracking-moments-of-hybrid-fiber-reinforced-polymer-steel-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Analytical Study of Flexural Strength of Concrete-Filled Steel Tube Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maru%20R.">Maru R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Singh%20V.%20P."> Singh V. P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, analytical study of the flexural strength of Concrete Filled Steel Tube (CFST) beams is carried out based on wide-range finite element models to obtain the better perspective for flexural strength achievement with the use of ABAQUS finite element program. This work adopts concrete damaged plasticity model to get the actual simulation of CFST under bending. To get the decent interaction between concrete and steel, normal and tangential surface interaction provided by ABAQUS is used with hard contact for normal surface interaction and for 0.65 friction coefficient for tangential surface interactions. In this study, rectangular and square CFST beam model cross-sections are adopted with its limits pertained to Eurocode specifications. To get the visualization for flexural strength of CFST beams, total of 74 rectangular CFST beams and 86 square CFST beams are used with four-point bending test setup and the length of the beam model as 1000mm. The grades of concrete and grades of steel are used as 30 MPa & 35MPa and 235 MPa and 275MPa respectively for both sections to get the confinement factor 0.583 to 2.833, steel ratio of 0.069 to 0.236 and length to depth ratio of 4.167 to 16.667. It was found based on this study that flexural strength of CFST beams falls around strain of 0.012. Eurocode provides the results harmonically with finite elemental results. It was also noted for square sections that reduction of steel ratio is not useful as compared to rectangular section although it increases moment capacity up to certain limits because for square sectional area similar to that of rectangular, it possesses lesser depth than rectangular sections. Also It can be said that effect of increment of grade of concrete can be achieved when thicker steel tube is present. It is observed that there is less increment in moment capacity initially but after D/b ratio 1.2, moment capacity of CFST beam rapidly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=CFST%20beams" title=" CFST beams"> CFST beams</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20bending" title=" four-point bending"> four-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20and%20square%20sections" title=" rectangular and square sections"> rectangular and square sections</a> </p> <a href="https://publications.waset.org/abstracts/136170/analytical-study-of-flexural-strength-of-concrete-filled-steel-tube-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Lateral Torsional Buckling: Tests on Glued Laminated Timber Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Wilden">Vera Wilden</a>, <a href="https://publications.waset.org/abstracts/search?q=Benno%20Hoffmeister"> Benno Hoffmeister</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Feldmann"> Markus Feldmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glued laminated timber (glulam) is a preferred choice for long span girders, e.g., for gyms or storage halls. While the material provides sufficient strength to resist the bending moments, large spans lead to increased slenderness of such members and to a higher susceptibility to stability issues, in particular to lateral torsional buckling (LTB). Rules for the determination of the ultimate LTB resistance are provided by Eurocode 5. The verifications of the resistance may be performed using the so called equivalent member method or by means of theory 2nd order calculations (direct method), considering equivalent imperfections. Both methods have significant limitations concerning their applicability; the equivalent member method is limited to rather simple cases; the direct method is missing detailed provisions regarding imperfections and requirements for numerical modeling. In this paper, the results of a test series on slender glulam beams in three- and four-point bending are presented. The tests were performed in an innovative, newly developed testing rig, allowing for a very precise definition of loading and boundary conditions. The load was introduced by a hydraulic jack, which follows the lateral deformation of the beam by means of a servo-controller, coupled with the tested member and keeping the load direction vertically. The deformation-controlled tests allowed for the identification of the ultimate limit state (governed by elastic stability) and the corresponding deformations. Prior to the tests, the structural and geometrical imperfections were determined and used later in the numerical models. After the stability tests, the nearly undamaged members were tested again in pure bending until reaching the ultimate moment resistance of the cross-section. These results, accompanied by numerical studies, were compared to resistance values obtained using both methods according to Eurocode 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title="experimental tests">experimental tests</a>, <a href="https://publications.waset.org/abstracts/search?q=glued%20laminated%20timber" title=" glued laminated timber"> glued laminated timber</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/141065/lateral-torsional-buckling-tests-on-glued-laminated-timber-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Pe%C4%8Denko">Robert Pečenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20Toma%C5%BEi%C4%8D"> Karin Tomažič</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Planinc"> Igor Planinc</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Hu%C4%8D"> Sabina Huč</a>, <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20Hozjan"> Tomaž Hozjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20numerical%20modelling" title="advanced numerical modelling">advanced numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20fire%20exposure" title=" parametric fire exposure"> parametric fire exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20structures" title=" timber structures"> timber structures</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20strength%20layer" title=" zero strength layer"> zero strength layer</a> </p> <a href="https://publications.waset.org/abstracts/81429/numerical-investigation-on-design-method-of-timber-structures-exposed-to-parametric-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klara%20Krizova">Klara Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20Hela"> Rudolf Hela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20%0D%0Aof%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=EuroCode%202" title=" EuroCode 2"> EuroCode 2</a> </p> <a href="https://publications.waset.org/abstracts/30167/evaluation-of-static-modulus-of-elasticity-depending-on-concrete-compressive-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Reliability Analysis of Partial Safety Factor Design Method for Slopes in Granular Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Daryani">K. E. Daryani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohamad"> H. Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainties in the geo-structure analysis and design have a significant impact on the safety of slopes. Traditionally, uncertainties in the geotechnical design are addressed by incorporating a conservative factor of safety in the analytical model. In this paper, a risk-based approach is adopted to assess the influence of the geotechnical variable uncertainties on the stability of infinite slopes in cohesionless soils using the “partial factor of safety on shear strength” approach as stated in Eurocode 7. Analyses conducted using Monte Carlo simulation show that the same partial factor can have very different levels of risk depending on the degree of uncertainty of the mean values of the soil friction angle and void ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safety" title="Safety">Safety</a>, <a href="https://publications.waset.org/abstracts/search?q=Probability%20of%20Failure" title=" Probability of Failure"> Probability of Failure</a>, <a href="https://publications.waset.org/abstracts/search?q=Reliability" title=" Reliability"> Reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=Infinite%20Slopes" title=" Infinite Slopes"> Infinite Slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sand." title=" Sand."> Sand.</a> </p> <a href="https://publications.waset.org/abstracts/17508/reliability-analysis-of-partial-safety-factor-design-method-for-slopes-in-granular-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> The Fire Performance of Exposed Timber Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernice%20V.%20Y.%20Wong">Bernice V. Y. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kong%20Fah%20Tee"> Kong Fah Tee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-laminated timber is increasingly being used in the construction of high-rise buildings due to its simple manufacturing system. In term of fire resistance, cross-laminated timber panels are promoted as having excellent fire resistance, comparable to that of non-combustible materials and to heavy timber construction, due to the ability of thick wood assemblies to char slowly at a predictable rate while maintaining most of their strength during the fire exposure. This paper presents an overview of fire performance of cross-laminated timber and evaluation of its resistance to elevated temperature in comparison to homogeneous timber panels. Charring rates for cross-laminated timber panels of those obtained experimentally were compared with those provided by Eurocode simplified calculation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=timber%20structure" title="timber structure">timber structure</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-laminated%20timber" title=" cross-laminated timber"> cross-laminated timber</a>, <a href="https://publications.waset.org/abstracts/search?q=charring%20rate" title=" charring rate"> charring rate</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20fire%20resistance" title=" timber fire resistance"> timber fire resistance</a> </p> <a href="https://publications.waset.org/abstracts/7520/the-fire-performance-of-exposed-timber-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> A Brief Review of the Axial Capacity of Circular High Strength CFST Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuat%20Korkut">Fuat Korkut</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler"> Soner Guler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube%20column" title="concrete-filled steel tube column">concrete-filled steel tube column</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20code" title=" Chinese code"> Chinese code</a>, <a href="https://publications.waset.org/abstracts/search?q=Australian%20Standard" title=" Australian Standard"> Australian Standard</a> </p> <a href="https://publications.waset.org/abstracts/51395/a-brief-review-of-the-axial-capacity-of-circular-high-strength-cfst-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Emissivity Analysis of Hot-Dip Galvanized Steel in Fire </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Gaigl">Christian Gaigl</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Mensinger"> Martin Mensinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Once a fire resistance rating is necessary, it has to be proofed that the load bearing behavior of a steel construction under the exposure of fire still fits the static demands. High costs of passive fire protection, which satisfies the requirements, frequently result in a concrete solution. To optimize these expenses, one method is to determine the critical temperature according to the Eurocode DIN EN 1993-1-2. For this purpose, positive effects of hot-dip galvanized surface layers on the temperature development of steel members in the accidental situation of fire exposure has been investigated. The test results show a significant better heating behavior of hot-dip galvanized steel components compared to normal steel specimen. This leads in many cases to a R30 (30 minutes of ISO-fire) fire protection requirement of unprotected steel members and therefore to an economic added value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance" title="fire resistance">fire resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-dip%20galvanizing" title=" hot-dip galvanizing"> hot-dip galvanizing</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20constructions" title=" steel constructions"> steel constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=R30%20requirement" title=" R30 requirement"> R30 requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a> </p> <a href="https://publications.waset.org/abstracts/94148/emissivity-analysis-of-hot-dip-galvanized-steel-in-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> A Review of the Axial Capacity of Circular High Strength Concrete-Filled Steel Tube Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen">Mustafa Gülen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel"> Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler"> Soner Guler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube%20column" title="concrete-filled steel tube column">concrete-filled steel tube column</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20code" title=" Chinese code"> Chinese code</a>, <a href="https://publications.waset.org/abstracts/search?q=Australian%20Standard" title=" Australian Standard"> Australian Standard</a> </p> <a href="https://publications.waset.org/abstracts/50131/a-review-of-the-axial-capacity-of-circular-high-strength-concrete-filled-steel-tube-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> A Comparative Study for the Axial Load Capacity of Circular High Strength CFST Columns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20Guzel">Eylem Guzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Osmanoglu"> Faruk Osmanoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Kurucu"> Muhammet Kurucu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete-filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube%20column" title="concrete-filled steel tube column">concrete-filled steel tube column</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20code" title=" Chinese code"> Chinese code</a>, <a href="https://publications.waset.org/abstracts/search?q=Australian%20standard" title=" Australian standard"> Australian standard</a> </p> <a href="https://publications.waset.org/abstracts/43455/a-comparative-study-for-the-axial-load-capacity-of-circular-high-strength-cfst-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Study of the Performance of Metal Tanks with a Floating Roof</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezki%20Akkouche">Rezki Akkouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work exposes metal tanks in general and floating roofs in particular by listing the codes and standards which study this kind of structure. Initial research discusses the types of tanks, how they are designed, and the disadvantages and advantages that each type has. Then, in-depth research was carried out carefully in order to popularize the floating roof tank and the principles of its design and operation while defining the different types of this kind of roof, how and what they are designed, naming the main installation accessories for these roofs and the dangers that a malfunction of these accessories would cause, also exposing the problems likely to be encountered on these roofs and the considerable and important advantages that floating roof tanks bring. A simplification of the two API 650 and Eurocode 3 regulations - Tanks part - has been made by explaining and mentioning the design rules and laws of this type of structure. Thus a comparison of the two regulations is accomplished by exemplifying this with a study of an actual project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanks%20of%20metal" title="tanks of metal">tanks of metal</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof" title=" floating roof"> floating roof</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a> </p> <a href="https://publications.waset.org/abstracts/167127/study-of-the-performance-of-metal-tanks-with-a-floating-roof" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Flexural Behavior of Light-Gauge Steel Box Sections Filled with Normal and Recycled Aggregates Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rola%20%20El-Nimri">Rola El-Nimri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%E2%80%99Tasime%20Abdel-Jaber"> Mu’Tasime Abdel-Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Hunaiti"> Yasser Hunaiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural behavior of light-gauge steel box sections filled with recycled concrete was assessed through an experimental program involving 15 composite beams. Recycled concrete was obtained by replacing natural aggregates (NA) with recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) with replacement levels of 20%, 40%, 60%, 80%, and 100% by the total weight of NA. In addition, RCA and RAP were incorporated in the same mixes with replacement levels of (1) 20% RCA and 80% RAP; (2) 40% RCA and 60% RAP; (3) 60% RCA and 40% RAP; and (4) 80% RCA and 20% RAP. A comparison between the experimental capacities and the theoretically predicted values according to Eurocode 4 (EC4) was made as well. Results proved that the ultimate capacity of composite beams decreased with the increase of recycled aggregate (RA) percentage and EC4 was conservative in predicting the ultimate capacity of composite beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexure" title="flexure">flexure</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20gauge" title=" light gauge"> light gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title=" recycled asphalt pavement"> recycled asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20tube" title=" steel tube"> steel tube</a> </p> <a href="https://publications.waset.org/abstracts/125387/flexural-behavior-of-light-gauge-steel-box-sections-filled-with-normal-and-recycled-aggregates-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Rehabilitation of Orthotropic Steel Deck Bridges Using a Modified Ortho-Composite Deck System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhdeh%20Shirinzadeh">Mozhdeh Shirinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Stroetmann"> Richard Stroetmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthotropic steel deck bridge consists of a deck plate, longitudinal stiffeners under the deck plate, cross beams and the main longitudinal girders. Due to the several advantages, Orthotropic Steel Deck (OSD) systems have been utilized in many bridges worldwide. The significant feature of this structural system is its high load-bearing capacity while having relatively low dead weight. In addition, cost efficiency and the ability of rapid field erection have made the orthotropic steel deck a popular type of bridge worldwide. However, OSD bridges are highly susceptible to fatigue damage. A large number of welded joints can be regarded as the main weakness of this system. This problem is, in particular, evident in the bridges which were built before 1994 when the fatigue design criteria had not been introduced in the bridge design codes. Recently, an Orthotropic-composite slab (OCS) for road bridges has been experimentally and numerically evaluated and developed at Technische Universität Dresden as a part of AIF-FOSTA research project P1265. The results of the project have provided a solid foundation for the design and analysis of Orthotropic-composite decks with dowel strips as a durable alternative to conventional steel or reinforced concrete decks. In continuation, while using the achievements of that project, the application of a modified Ortho-composite deck for an existing typical OSD bridge is investigated. Composite action is obtained by using rows of dowel strips in a clothoid (CL) shape. Regarding Eurocode criteria for different fatigue detail categories of an OSD bridge, the effect of the proposed modification approach is assessed. Moreover, a numerical parametric study is carried out utilizing finite element software to determine the impact of different variables, such as the size and arrangement of dowel strips, the application of transverse or longitudinal rows of dowel strips, and local wheel loads. For the verification of the simulation technique, experimental results of a segment of an OCS deck are used conducted in project P1265. Fatigue assessment is performed based on the last draft of Eurocode 1993-2 (2024) for the most probable detail categories (Hot-Spots) that have been reported in the previous statistical studies. Then, an analytical comparison is provided between the typical orthotropic steel deck and the modified Ortho-composite deck bridge in terms of fatigue issues and durability. The load-bearing capacity of the bridge, the critical deflections, and the composite behavior are also evaluated and compared. Results give a comprehensive overview of the efficiency of the rehabilitation method considering the required design service life of the bridge. Moreover, the proposed approach is assessed with regard to the construction method, details and practical aspects, as well as the economic point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20action" title="composite action">composite action</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20deck" title=" steel deck"> steel deck</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a> </p> <a href="https://publications.waset.org/abstracts/170778/rehabilitation-of-orthotropic-steel-deck-bridges-using-a-modified-ortho-composite-deck-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> The Effect of Spatial Variability on Axial Pile Design of Closed Ended Piles in Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cormac%20Reale">Cormac Reale</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20J.%20Prendergast"> Luke J. Prendergast</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Gavin"> Kenneth Gavin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While significant improvements have been made in axial pile design methods over recent years, the influence of soils natural variability has not been adequately accounted for within them. Soil variability is a crucial parameter to consider as it can account for large variations in pile capacity across the same site. This paper seeks to address this knowledge deficit, by demonstrating how soil spatial variability can be accommodated into existing cone penetration test (CPT) based pile design methods, in the form of layered non-homogeneous random fields. These random fields model the scope of a given property’s variance and define how it varies spatially. A Monte Carlo analysis of the pile will be performed taking into account parameter uncertainty and spatial variability, described using the measured scales of fluctuation. The results will be discussed in light of Eurocode 7 and the effect of spatial averaging on design capacities will be analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pile%20axial%20design" title="pile axial design">pile axial design</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT" title=" CPT "> CPT </a> </p> <a href="https://publications.waset.org/abstracts/75333/the-effect-of-spatial-variability-on-axial-pile-design-of-closed-ended-piles-in-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak%20Kumar">P. Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishwarya%20Alok"> Aishwarya Alok</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Maiti"> P. R. Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20filled%20containers" title="liquid filled containers">liquid filled containers</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20tanks" title=" circular tanks"> circular tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=IS%201893%20%28part%202%29" title=" IS 1893 (part 2)"> IS 1893 (part 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a> </p> <a href="https://publications.waset.org/abstracts/28169/comparative-study-of-dynamic-effect-on-analysis-approaches-for-circular-tanks-using-codal-provisions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=EuroCode%202&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=EuroCode%202&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10