CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 64 results for author: <span class="mathjax">Connor, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Connor%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Connor, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Connor%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Connor, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Connor%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Connor%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Connor%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01746">arXiv:2412.01746</a> <span> [<a href="https://arxiv.org/pdf/2412.01746">pdf</a>, <a href="https://arxiv.org/format/2412.01746">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Strong gravitational lensing with upcoming wide-field radio surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=McCarty%2C+S">Samuel McCarty</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01746v1-abstract-short" style="display: inline;"> The number of strong lensing systems will soon increase by orders of magnitude thanks to sensitive, wide-field optical and infrared imaging surveys such as Euclid, Rubin-LSST, and Roman. A dramatic increase in strong lenses will also occur at radio wavelengths. The 2000-antenna Deep Synoptic Array (DSA-2000) will detect over $10^9$ continuum sources in the Northern Hemisphere with a high mean reds… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01746v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01746v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01746v1-abstract-full" style="display: none;"> The number of strong lensing systems will soon increase by orders of magnitude thanks to sensitive, wide-field optical and infrared imaging surveys such as Euclid, Rubin-LSST, and Roman. A dramatic increase in strong lenses will also occur at radio wavelengths. The 2000-antenna Deep Synoptic Array (DSA-2000) will detect over $10^9$ continuum sources in the Northern Hemisphere with a high mean redshift ($\langle z_s \rangle \approx2$) and the Square Kilometer Array (SKA) will observe a large sample of extragalactic sources in the South with sub-arcsecond resolution. We forecast lensing rates, finding that the DSA-2000 will discover $\mathcal{O}(10^5)$ strongly lensed systems, many of which will be galaxy group and cluster lenses. We propose strategies for strong lensing discovery in the limit where the Einstein radii are comparable to the PSF angular scale, taking advantage of modern computer vision techniques and multi-survey data. We also forecast synergies with optical and infrared surveys, which will provide redshifts as well as multiwavelength information about the lens systems. Finally, we describe applications of radio strong lensing systems, including time-delay cosmography with transient and variable sources. We find that $\sim$100 time-variable flat-spectrum AGN discovered by the DSA-2000 could be used to constrain $H_0$ at the percent level with the appropriate follow-up. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01746v1-abstract-full').style.display = 'none'; document.getElementById('2412.01746v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16964">arXiv:2409.16964</a> <span> [<a href="https://arxiv.org/pdf/2409.16964">pdf</a>, <a href="https://arxiv.org/format/2409.16964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Preferential Occurrence of Fast Radio Bursts in Massive Star-Forming Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M">Myles Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J">Jakob Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J">James Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D">David Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Leja%2C+J">Joel Leja</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+K+K">Kaustav Kashyap Das</a>, <a href="/search/astro-ph?searchtype=author&query=Qin%2C+Y">Yu-Jing Qin</a>, <a href="/search/astro-ph?searchtype=author&query=Rose%2C+S">Sam Rose</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+D+Z">Dillon Z. Dong</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16964v1-abstract-short" style="display: inline;"> Fast Radio Bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favor highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown. Although galactic magnetars are often… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16964v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16964v1-abstract-full" style="display: none;"> Fast Radio Bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favor highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown. Although galactic magnetars are often linked to core-collapse supernovae (CCSNe), it's uncertain what determines which supernovae result in magnetars. The galactic environments of FRB sources can be harnessed to probe their progenitors. Here, we present the stellar population properties of 30 FRB host galaxies discovered by the Deep Synoptic Array. Our analysis shows a significant deficit of low-mass FRB hosts compared to the occurrence of star-formation in the universe, implying that FRBs are a biased tracer of star-formation, preferentially selecting massive star-forming galaxies. This bias may be driven by galaxy metallicity, which is positively correlated with stellar mass. Metal-rich environments may favor the formation of magnetar progenitors through stellar mergers, as higher metallicity stars are less compact and more likely to fill their Roche lobes, leading to unstable mass transfer. Although massive stars do not have convective interiors to generate strong magnetic fields by dynamo, merger remnants are thought to have the requisite internal magnetic-field strengths to result in magnetars. The preferential occurrence of FRBs in massive star-forming galaxies suggests that CCSN of merger remnants preferentially forms magnetars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16964v1-abstract-full').style.display = 'none'; document.getElementById('2409.16964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature. The final version will be published by the journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16952">arXiv:2409.16952</a> <span> [<a href="https://arxiv.org/pdf/2409.16952">pdf</a>, <a href="https://arxiv.org/format/2409.16952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A gas rich cosmic web revealed by partitioning the missing baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J">Jakob Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J">James Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M">Myles Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D">David Woody</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16952v1-abstract-short" style="display: inline;"> Approximately half of the Universe's dark matter resides in collapsed halos; significantly less than half of the baryonic matter (protons and neutrons) remains confined to halos. A small fraction of baryons are in stars and the interstellar medium within galaxies. The lion's share are diffuse (less than $10^{-3}$ cm$^{-3}$) and ionized (neutral fraction less than $10^{-4}$), located in the interga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16952v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16952v1-abstract-full" style="display: none;"> Approximately half of the Universe's dark matter resides in collapsed halos; significantly less than half of the baryonic matter (protons and neutrons) remains confined to halos. A small fraction of baryons are in stars and the interstellar medium within galaxies. The lion's share are diffuse (less than $10^{-3}$ cm$^{-3}$) and ionized (neutral fraction less than $10^{-4}$), located in the intergalactic medium (IGM) and in the halos of galaxy clusters, groups, and galaxies. The quantity and spatial distribution of this diffuse ionized gas is notoriously difficult to measure, but has wide implications for galaxy formation, astrophysical feedback, and precision cosmology. Recently, the dispersion of extragalactic Fast Radio Bursts (FRBs) has been used to measure the total content of cosmic baryons. However, past efforts had modest samples and methods that cannot discriminate between IGM and halo gas, which is critical for studying feedback and for observational cosmology. Here, we present a large cosmological sample of FRB sources localized to their host galaxies. We have robustly partitioned the missing baryons into the IGM, galaxy clusters, and galaxies, providing a late-Universe measurement of the total baryon density of $惟_b h_{70}$=0.049$\pm$0.003. Our results indicate efficient feedback processes that can expel gas from galaxy halos and into the intergalactic medium, agreeing with the enriched cosmic web scenario seen in cosmological simulations. The large diffuse baryon fraction that we have measured disfavours bottom-heavy stellar initial mass functions, which predict a large total stellar density, $惟_*$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16952v1-abstract-full').style.display = 'none'; document.getElementById('2409.16952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00482">arXiv:2406.00482</a> <span> [<a href="https://arxiv.org/pdf/2406.00482">pdf</a>, <a href="https://arxiv.org/format/2406.00482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450953">10.1051/0004-6361/202450953 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comprehensive analysis of the Apertif Fast Radio Burst sample: similarities with young, energetic neutron stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pastor-Marazuela%2C+I">In茅s Pastor-Marazuela</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Bilous%2C+A">Anna Bilous</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Yogesh Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L">Leon Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">Emily Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Vohl%2C+D">Dany Vohl</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">Kelley M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Orr%C3%B9%2C+E">Emanuela Orr霉</a>, <a href="/search/astro-ph?searchtype=author&query=Sclocco%2C+A">Alessio Sclocco</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuyang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00482v2-abstract-short" style="display: inline;"> Understanding the origin of fast radio bursts (FRBs) has become the main science driver of recent dedicated FRB surveys. Between July 2019 and February 2022, we carried out ALERT, an FRB survey at 1370 MHz using the Apertif instrument installed at the Westerbork Synthesis Radio Telescope (WSRT). Here we report the detection of 18 new FRBs, and we study the properties of the entire 24 burst sample… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00482v2-abstract-full').style.display = 'inline'; document.getElementById('2406.00482v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00482v2-abstract-full" style="display: none;"> Understanding the origin of fast radio bursts (FRBs) has become the main science driver of recent dedicated FRB surveys. Between July 2019 and February 2022, we carried out ALERT, an FRB survey at 1370 MHz using the Apertif instrument installed at the Westerbork Synthesis Radio Telescope (WSRT). Here we report the detection of 18 new FRBs, and we study the properties of the entire 24 burst sample detected during the survey. For five bursts, we identify host galaxy candidates with >50% probability association. We observe an average linear polarisation fraction of $\sim$43% and an average circular polarisation fraction consistent with 0%. A third of the FRBs display multiple components. The sample next reveals a population of highly scattered bursts, which is most likely to have been produced in the immediate circumburst environment. Furthermore, two FRBs show evidence for high rotation measures, reaching |RM|>$10^3$ rad m$^{-2}$ in the source reference frames. Together, the scattering and rotation measures ALERT finds prove that a large fraction of FRBs are embedded in complex media such as star forming regions or supernova remnants. Through the discovery of the third most dispersed FRB so far, we show that one-off FRBs can emit at frequencies in excess of 6 GHz. Finally, we determine an FRB all-sky rate of $459^{+208}_{-155}$ sky$^{-1}$ day$^{-1}$ above a fluence limit of 4.1 Jy ms, and a fluence cumulative distribution with a power law index $纬=-1.23\pm0.06\pm0.2$, which is roughly consistent with the Euclidean Universe predictions. Through the high resolution in time, frequency, polarisation and localisation that ALERT featured, we were able to determine the morphological complexity, polarisation, local scattering and magnetic environment, and high-frequency luminosity of FRBs. We find all these strongly resemble those seen in young, energetic, highly magnetised neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00482v2-abstract-full').style.display = 'none'; document.getElementById('2406.00482v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages (including 11 of appendix), 37 figures, 5 tables. Accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 693, A279 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14182">arXiv:2405.14182</a> <span> [<a href="https://arxiv.org/pdf/2405.14182">pdf</a>, <a href="https://arxiv.org/format/2405.14182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A Heavily Scattered Fast Radio Burst Is Viewed Through Multiple Galaxy Halos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14182v1-abstract-short" style="display: inline;"> We present a multi-wavelength study of the apparently non-repeating, heavily scattered fast radio burst, FRB 20221219A, detected by the Deep Synoptic Array 110 (DSA-110). The burst exhibits a moderate dispersion measure (DM) of $706.7^{+0.6}_{-0.6}$ $\mathrm{pc}~\mathrm{cm}^{-3}$ and an unusually high scattering timescale of $蟿_{\mathrm{obs}} = 19.2_{-2.7}^{+2.7}$ ms at 1.4 GHz. We associate the F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14182v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14182v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14182v1-abstract-full" style="display: none;"> We present a multi-wavelength study of the apparently non-repeating, heavily scattered fast radio burst, FRB 20221219A, detected by the Deep Synoptic Array 110 (DSA-110). The burst exhibits a moderate dispersion measure (DM) of $706.7^{+0.6}_{-0.6}$ $\mathrm{pc}~\mathrm{cm}^{-3}$ and an unusually high scattering timescale of $蟿_{\mathrm{obs}} = 19.2_{-2.7}^{+2.7}$ ms at 1.4 GHz. We associate the FRB with a Milky Way-like host galaxy at $z_{\mathrm{host}} = 0.554$ of stellar mass $\mathrm{log}_{10}(M_{\star, \mathrm{host}}) = 10.20^{+0.04}_{-0.03} ~M_\odot$. We identify two intervening galaxy halos at redshifts $z_{\mathrm{igh1}} = 0.492$ and $z_{\mathrm{igh2}} = 0.438$, with low impact parameters, $b_{\mathrm{igh1}} = 43.0_{-11.3}^{+11.3}$ kpc and $b_{\mathrm{igh2}} = 36.1_{-11.3}^{+11.3}$ kpc, and intermediate stellar masses, $\mathrm{log}_{10}(M_{\star, \mathrm{igh1}}) = 10.01^{+0.02}_{-0.02} ~M_\odot$ and $\mathrm{log}_{10}(M_{\star, \mathrm{igh2}}) = 10.60^{+0.02}_{-0.02} ~M_\odot$. The presence of two such galaxies suggests that the sightline is significantly overcrowded compared to the median sightline to this redshift, as inferred from the halo mass function. We perform a detailed analysis of the sightline toward FRB 20221219A, constructing both DM and scattering budgets. Our results suggest that, unlike most well-localized sources, the host galaxy does not dominate the observed scattering. Instead, we posit that an intersection with a single partially ionized cloudlet in the circumgalactic medium of an intervening galaxy could account for the substantial scattering in FRB 20221219A and remain in agreement with typical electron densities inferred for extra-planar dense cloud-like structures in the Galactic and extragalactic halos (e.g., high-velocity clouds). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14182v1-abstract-full').style.display = 'none'; document.getElementById('2405.14182v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures, submitted to ApJ, comments appreciated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05135">arXiv:2404.05135</a> <span> [<a href="https://arxiv.org/pdf/2404.05135">pdf</a>, <a href="https://arxiv.org/format/2404.05135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1289">10.1093/mnras/stae1289 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for Magnetar Binaries Disrupted by Core-Collapse Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05135v3-abstract-short" style="display: inline;"> Core-collapse Supernovae (CCSNe) are considered the primary magnetar formation channel, with 15 magnetars associated with supernova remnants (SNRs). A large fraction of these should occur in massive stellar binaries that are disrupted by the explosion, meaning that $\sim45\%$ of magnetars should be nearby high-velocity stars. Here we conduct a multi-wavelength search for unbound stars, magnetar bi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05135v3-abstract-full').style.display = 'inline'; document.getElementById('2404.05135v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05135v3-abstract-full" style="display: none;"> Core-collapse Supernovae (CCSNe) are considered the primary magnetar formation channel, with 15 magnetars associated with supernova remnants (SNRs). A large fraction of these should occur in massive stellar binaries that are disrupted by the explosion, meaning that $\sim45\%$ of magnetars should be nearby high-velocity stars. Here we conduct a multi-wavelength search for unbound stars, magnetar binaries, and SNR shells using public optical ($uvgrizy-$bands), infrared ($J-$, $H-$, $K-$, and $K_s-$bands), and radio ($888$ MHz, $1.4$ GHz, and $3$ GHz) catalogs. We use Monte Carlo analyses of candidates to estimate the probability of association with a given magnetar based on their proximity, distance, proper motion, and magnitude. In addition to recovering a proposed magnetar binary, a proposed unbound binary, and 13 of 15 magnetar SNRs, we identify two new candidate unbound systems: an OB star from the Gaia catalog we associate with SGR J1822.3-1606, and an X-ray pulsar we associate with 3XMM J185246.6+003317. Using a Markov-Chain Monte Carlo simulation that assumes all magnetars descend from CCSNe, we constrain the fraction of magnetars with unbound companions to $5\lesssim f_u \lesssim 24\%$, which disagrees with neutron star population synthesis results. Alternate formation channels are unlikely to wholly account for the lack of unbound binaries as this would require $31\lesssim f_{nc} \lesssim 66\%$ of magnetars to descend from such channels. Our results support a high fraction ($48\lesssim f_m \lesssim 86\%$) of pre-CCSN mergers, which can amplify fossil magnetic fields to preferentially form magnetars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05135v3-abstract-full').style.display = 'none'; document.getElementById('2404.05135v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 8 figures, 5 tables, minor errata accepted to MNRAS (10.1093/mnras/stae2124) correcting the position errors for 1E1547, AXJ1818, AXJ1845 and truncated UKIDSS query; no changes to conclusions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02498">arXiv:2401.02498</a> <span> [<a href="https://arxiv.org/pdf/2401.02498">pdf</a>, <a href="https://arxiv.org/format/2401.02498">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad66c9">10.3847/1538-4357/ad66c9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An unidentified Fermi source emitting radio bursts in the Galactic bulge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Anna-Thomas%2C+R">Reshma Anna-Thomas</a>, <a href="/search/astro-ph?searchtype=author&query=Burke-Spolaor%2C+S">Sarah Burke-Spolaor</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">Casey J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Schinzel%2C+F+K">F. K. Schinzel</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+K">Kshitij Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Bower%2C+G+C">Geoffrey C. Bower</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Demorest%2C+P+B">Paul B. Demorest</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02498v2-abstract-short" style="display: inline;"> We report on the detection of radio bursts from the Galactic bulge using the real-time transient detection and localization system, realfast. The pulses were detected commensally on the Karl G. Jansky Very Large Array during a survey of unidentified Fermi $纬$-ray sources. The bursts were localized to subarcsecond precision using realfast fast-sampled imaging. Follow-up observations with the Green… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02498v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02498v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02498v2-abstract-full" style="display: none;"> We report on the detection of radio bursts from the Galactic bulge using the real-time transient detection and localization system, realfast. The pulses were detected commensally on the Karl G. Jansky Very Large Array during a survey of unidentified Fermi $纬$-ray sources. The bursts were localized to subarcsecond precision using realfast fast-sampled imaging. Follow-up observations with the Green Bank Telescope detected additional bursts from the same source. The bursts do not exhibit periodicity in a search up to periods of 480 s, assuming a duty cycle of < 20%. The pulses are nearly 100% linearly polarized, showing circular polarization up to 12%, and exhibit variable scattering on timescales of months. The arcsecond-level realfast localization links the source confidently with the Fermi $纬$-ray source and places it nearby (though not coincident with) an XMM-Newton X-ray source. Based on the source's overall properties, we discuss various options for the nature of this object and propose that it could be a young pulsar, a magnetar, or a binary pulsar system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02498v2-abstract-full').style.display = 'none'; document.getElementById('2401.02498v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00896">arXiv:2311.00896</a> <span> [<a href="https://arxiv.org/pdf/2311.00896">pdf</a>, <a href="https://arxiv.org/format/2311.00896">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad3a6a">10.3847/1538-4357/ad3a6a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 21 cm Intensity Mapping with the DSA-2000 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Byrne%2C+R">Ruby Byrne</a>, <a href="/search/astro-ph?searchtype=author&query=Mahesh%2C+N">Nivedita Mahesh</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G+W">Gregg W. Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Lazio%2C+T+J+W">T. Joseph W. Lazio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00896v2-abstract-short" style="display: inline;"> Line intensity mapping is a promising probe of the universe's large-scale structure. We explore the sensitivity of the DSA-2000, a forthcoming array consisting of over 2000 dishes, to the statistical power spectrum of neutral hydrogen's 21 cm emission line. These measurements would reveal the distribution of neutral hydrogen throughout the near-redshift universe without necessitating resolving ind… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00896v2-abstract-full').style.display = 'inline'; document.getElementById('2311.00896v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00896v2-abstract-full" style="display: none;"> Line intensity mapping is a promising probe of the universe's large-scale structure. We explore the sensitivity of the DSA-2000, a forthcoming array consisting of over 2000 dishes, to the statistical power spectrum of neutral hydrogen's 21 cm emission line. These measurements would reveal the distribution of neutral hydrogen throughout the near-redshift universe without necessitating resolving individual sources. The success of these measurements relies on the instrument's sensitivity and resilience to systematics. We show that the DSA-2000 will have the sensitivity needed to detect the 21 cm power spectrum at z=0.5 and across power spectrum modes of 0.03-35.12 h/Mpc with 0.1 h/Mpc resolution. We find that supplementing the nominal array design with a dense core of 200 antennas will expand its sensitivity at low power spectrum modes and enable measurement of Baryon Acoustic Oscillations (BAOs). Finally, we present a qualitative discussion of the DSA-2000's unique resilience to sources of systematic error that can preclude 21 cm intensity mapping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00896v2-abstract-full').style.display = 'none'; document.getElementById('2311.00896v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04437">arXiv:2309.04437</a> <span> [<a href="https://arxiv.org/pdf/2309.04437">pdf</a>, <a href="https://arxiv.org/format/2309.04437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Single View Refractive Index Tomography with Neural Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zhao%2C+B">Brandon Zhao</a>, <a href="/search/astro-ph?searchtype=author&query=Levis%2C+A">Aviad Levis</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Srinivasan%2C+P+P">Pratul P. Srinivasan</a>, <a href="/search/astro-ph?searchtype=author&query=Bouman%2C+K+L">Katherine L. Bouman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04437v2-abstract-short" style="display: inline;"> Refractive Index Tomography is the inverse problem of reconstructing the continuously-varying 3D refractive index in a scene using 2D projected image measurements. Although a purely refractive field is not directly visible, it bends light rays as they travel through space, thus providing a signal for reconstruction. The effects of such fields appear in many scientific computer vision settings, ran… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04437v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04437v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04437v2-abstract-full" style="display: none;"> Refractive Index Tomography is the inverse problem of reconstructing the continuously-varying 3D refractive index in a scene using 2D projected image measurements. Although a purely refractive field is not directly visible, it bends light rays as they travel through space, thus providing a signal for reconstruction. The effects of such fields appear in many scientific computer vision settings, ranging from refraction due to transparent cells in microscopy to the lensing of distant galaxies caused by dark matter in astrophysics. Reconstructing these fields is particularly difficult due to the complex nonlinear effects of the refractive field on observed images. Furthermore, while standard 3D reconstruction and tomography settings typically have access to observations of the scene from many viewpoints, many refractive index tomography problem settings only have access to images observed from a single viewpoint. We introduce a method that leverages prior knowledge of light sources scattered throughout the refractive medium to help disambiguate the single-view refractive index tomography problem. We differentiably trace curved rays through a neural field representation of the refractive field, and optimize its parameters to best reproduce the observed image. We demonstrate the efficacy of our approach by reconstructing simulated refractive fields, analyze the effects of light source distribution on the recovered field, and test our method on a simulated dark matter mapping problem where we successfully recover the 3D refractive field caused by a realistic dark matter distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04437v2-abstract-full').style.display = 'none'; document.getElementById('2309.04437v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06816">arXiv:2308.06816</a> <span> [<a href="https://arxiv.org/pdf/2308.06816">pdf</a>, <a href="https://arxiv.org/format/2308.06816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad0380">10.3847/2041-8213/ad0380 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array Science: Implications of Faraday Rotation Measures of Localized Fast Radio Bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06816v2-abstract-short" style="display: inline;"> Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of ten as yet non-repeating FRBs detected and localized to host galaxies by the 110-antenna Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06816v2-abstract-full').style.display = 'inline'; document.getElementById('2308.06816v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06816v2-abstract-full" style="display: none;"> Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of ten as yet non-repeating FRBs detected and localized to host galaxies by the 110-antenna Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet non-repeating FRBs show a correlation between the host-DM and host-RM in the rest frame, and we find an anti-correlation between extragalactic RM (in the observer frame) and redshift for non-repeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circum-burst medium in some repeating FRBs, and the intra-cluster medium (ICM) of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths, $\bar{B}_{||}$, are characteristically larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06816v2-abstract-full').style.display = 'none'; document.getElementById('2308.06816v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures, 1 table ; added references to section 1, 2, and 3; added a paragraph in Section 3 to discuss simulations addressing interplay of local and ISM magnetic field; added bar to B|| to indicate average over line of sight</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06813">arXiv:2308.06813</a> <span> [<a href="https://arxiv.org/pdf/2308.06813">pdf</a>, <a href="https://arxiv.org/format/2308.06813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad275e">10.3847/1538-4357/ad275e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array Science: Polarimetry of 25 New Fast Radio Bursts Provides Insights into their Origins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06813v3-abstract-short" style="display: inline;"> We report on a full-polarization analysis of the first 25 as yet non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data-reduction, calibration, and analysis procedures developed for this novel instrument. Faraday rotation measures (RMs) are searched between $\pm10^6$ rad m$^{-2}$ and detected for 20… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06813v3-abstract-full').style.display = 'inline'; document.getElementById('2308.06813v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06813v3-abstract-full" style="display: none;"> We report on a full-polarization analysis of the first 25 as yet non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data-reduction, calibration, and analysis procedures developed for this novel instrument. Faraday rotation measures (RMs) are searched between $\pm10^6$ rad m$^{-2}$ and detected for 20 FRBs with magnitudes ranging from $4-4670$ rad m$^{-2}$. $15/25$ FRBs are consistent with 100% polarization, 10 of which have high ($\ge70\%$) linear-polarization fractions and 2 of which have high ($\ge30\%$) circular-polarization fractions. Our results disfavor multipath RM scattering as a dominant depolarization mechanism. Polarization-state and possible RM variations are observed in the four FRBs with multiple sub-components. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB sub-populations and FRBs with Galactic pulsars. Although FRB polarization fractions are typically higher than those of Galactic pulsars, and cover a wider range than those of pulsar single pulses, they resemble those of the youngest (characteristic ages $<10^{5}$ yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and propagation effects can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric-propagation geometries may form a useful analogy for the origin of FRB polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06813v3-abstract-full').style.display = 'none'; document.getElementById('2308.06813v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 24 figures, 5 tables ; version accepted by ApJ ; revised classification to include polarized signal-to-noise; added appendices for PA error/variability, J1935 polarization ; corrected literature FRB sample and supplemented with omitted data; added discussion of biases, limitations, and selection criteria; revised sigmaRM analysis ; additional plots added ; revised FRB20220424E analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16355">arXiv:2307.16355</a> <span> [<a href="https://arxiv.org/pdf/2307.16355">pdf</a>, <a href="https://arxiv.org/format/2307.16355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Temporal and Spectral Properties of the Persistent Radio Source Associated with FRB 20190520B with the VLA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+X">Xian Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Yu%2C+W">Wenfei Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+S">Shami Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&query=Demorest%2C+P">Paul Demorest</a>, <a href="/search/astro-ph?searchtype=author&query=Yan%2C+Z">Zhen Yan</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+C">Chenhui Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+K">Kshitij Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Anna-Thomas%2C+R">Reshma Anna-Thomas</a>, <a href="/search/astro-ph?searchtype=author&query=Burke-Spolaor%2C+S">Sarah Burke-Spolaor</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Zhu%2C+W">Weiwei Zhu</a>, <a href="/search/astro-ph?searchtype=author&query=Luo%2C+G">Gan Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16355v2-abstract-short" style="display: inline;"> Among more than 800 known fast radio bursts (FRBs), only two, namely FRB 20121102A and FRB 20190520B, are confirmed to be associated with a persistent radio sources (PRS). Here we report evidence of apparent temporal variability in the PRS associated with the bursting FRB 20190520B based on the Karl G. Jansky Very Large Array (VLA) observations taken in 2020 and 2021. Based on the analysis of epoc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16355v2-abstract-full').style.display = 'inline'; document.getElementById('2307.16355v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16355v2-abstract-full" style="display: none;"> Among more than 800 known fast radio bursts (FRBs), only two, namely FRB 20121102A and FRB 20190520B, are confirmed to be associated with a persistent radio sources (PRS). Here we report evidence of apparent temporal variability in the PRS associated with the bursting FRB 20190520B based on the Karl G. Jansky Very Large Array (VLA) observations taken in 2020 and 2021. Based on the analysis of epoch-to-epoch variability of the PRS at L, S, C, and X band in 1-12 GHz, we detected not only overall marginal variability but also a likely radio flux decrease ($\sim$ 3.2 $蟽$) between the observations taken in 2020 and 2021 at 3 GHz. Assuming no spectral variation in the PRS during these observations, we found the evidence for an overall broadband radio flux decrease by about 20 percent between the 2020 and the 2021 observations, suggesting that the PRS probably evolves on the yearly time scale. If we attribute the marginal variability at 3 GHz as intrinsic or due to scintillation, the size of potential variable component of the PRS is constrained to be sub-parsec. On the other hand, the size of the PRS can be also constrained to be larger than about 0.22 parsec from the averaged radio spectrum and the integrated radio luminosity in the 1-12 GHz band based on equipartition and self-absorption arguments. We discuss potential origins of the PRS and suggest that an accreting compact object origin might be able to explain the PRS's temporal and spectral properties. Confirmation of variability or flux decline of the PRS would be critical to our understanding of the PRS and its relation to the bursting source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16355v2-abstract-full').style.display = 'none'; document.getElementById('2307.16355v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03344">arXiv:2307.03344</a> <span> [<a href="https://arxiv.org/pdf/2307.03344">pdf</a>, <a href="https://arxiv.org/format/2307.03344">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array Science: First FRB and Host Galaxy Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">V. Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">G. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">M. Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">J. T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">G. Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">C. Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">G. Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">R. Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">D. Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">M. Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">J. W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">P. Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">M. B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">J. Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">D. Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">R. Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">S. Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">D. P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">N. Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03344v2-abstract-short" style="display: inline;"> Fast Radio Bursts (FRBs) are a powerful and mysterious new class of transient that are luminous enough to be detected at cosmological distances. By associating FRBs to host galaxies, we can measure intrinsic and environmental properties that test FRB origin models, in addition to using them as precise probes of distant cosmic gas. The Deep Synoptic Array (DSA-110) is a radio interferometer built t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03344v2-abstract-full').style.display = 'inline'; document.getElementById('2307.03344v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03344v2-abstract-full" style="display: none;"> Fast Radio Bursts (FRBs) are a powerful and mysterious new class of transient that are luminous enough to be detected at cosmological distances. By associating FRBs to host galaxies, we can measure intrinsic and environmental properties that test FRB origin models, in addition to using them as precise probes of distant cosmic gas. The Deep Synoptic Array (DSA-110) is a radio interferometer built to maximize the rate at which it can simultaneously detect and localize FRBs. Here, we present the first sample of FRBs and host galaxies discovered by the DSA-110. This sample of 11 FRBs is the largest, most uniform sample of localized FRBs to date, as it is selected based on association to host galaxies identified in optical imaging by Pan-STARRS1. These FRBs have not been observed to repeat and their radio properties (dispersion, temporal scattering, energy) are similar to that of the known non-repeating FRB population. Most host galaxies have ongoing star formation, as has been identified before for FRB hosts. Two hosts of the new sample are massive, quiescent galaxies. The distribution of star-formation history across this host-galaxy sample shows that the delay-time distribution is wide, with a powerlaw model that spans from $\sim100$\,Myr to $\gtrsim2$\,Gyr. This requires the existence of one or more progenitor formation channels associated with old stellar populations, such as the binary evolution of compact objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03344v2-abstract-full').style.display = 'none'; document.getElementById('2307.03344v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages. Submitted to AAS Journals. Includes changes based on referee comments and improved host galaxy analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14788">arXiv:2302.14788</a> <span> [<a href="https://arxiv.org/pdf/2302.14788">pdf</a>, <a href="https://arxiv.org/format/2302.14788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acd3ea">10.3847/2041-8213/acd3ea <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science: Two fast radio burst sources in massive galaxy clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sayers%2C+J">Jack Sayers</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14788v1-abstract-short" style="display: inline;"> The hot gas that constitutes the intracluster medium (ICM) has been studied at X-ray and millimeter/sub-millimeter wavelengths (Sunyaev-Zeldovich effect) for decades. Fast radio bursts (FRBs) offer an additional method of directly measuring the ICM and gas surrounding clusters, via observables such as dispersion measure (DM) and Faraday rotation measure (RM). We report the discovery of two FRB sou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14788v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14788v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14788v1-abstract-full" style="display: none;"> The hot gas that constitutes the intracluster medium (ICM) has been studied at X-ray and millimeter/sub-millimeter wavelengths (Sunyaev-Zeldovich effect) for decades. Fast radio bursts (FRBs) offer an additional method of directly measuring the ICM and gas surrounding clusters, via observables such as dispersion measure (DM) and Faraday rotation measure (RM). We report the discovery of two FRB sources detected with the Deep Synoptic Array (DSA-110) whose host galaxies belong to massive galaxy clusters. In both cases, the FRBs exhibit excess extragalactic DM, some of which likely originates in the ICM of their respective clusters. FRB 20220914A resides in the galaxy cluster Abell 2310 at z=0.1125 with a projected offset from the cluster center of 520 kpc. The host of a second source, FRB 20220509G, is an elliptical galaxy at z=0.0894 that belongs to the galaxy cluster Abell 2311 at projected offset of 870 kpc. These sources represent the first time an FRB has been localized to a galaxy cluster. We combine our FRB data with archival X-ray, SZ, and optical observations of these clusters in order to infer properties of the ICM, including a measurement of gas temperature from DM and ySZ of 0.8-3.9 keV. We then compare our results to massive cluster halos from the IllustrisTNG simulation. Finally, we describe how large samples of localized FRBs from future surveys will constrain the ICM, particularly beyond the virial radius of clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14788v1-abstract-full').style.display = 'none'; document.getElementById('2302.14788v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14782">arXiv:2302.14782</a> <span> [<a href="https://arxiv.org/pdf/2302.14782">pdf</a>, <a href="https://arxiv.org/format/2302.14782">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/accf1d">10.3847/1538-4357/accf1d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science: A massive elliptical host among two galaxy-cluster fast radio bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14782v1-abstract-short" style="display: inline;"> The stellar population environments associated with fast radio burst (FRB) sources provide important insights for developing their progenitor theories. We expand the diversity of known FRB host environments by reporting two FRBs in massive galaxy clusters discovered by the Deep Synoptic Array (DSA-110) during its commissioning observations. FRB 20220914A has been localized to a star-forming, late-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14782v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14782v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14782v1-abstract-full" style="display: none;"> The stellar population environments associated with fast radio burst (FRB) sources provide important insights for developing their progenitor theories. We expand the diversity of known FRB host environments by reporting two FRBs in massive galaxy clusters discovered by the Deep Synoptic Array (DSA-110) during its commissioning observations. FRB 20220914A has been localized to a star-forming, late-type galaxy at a redshift of 0.1139 with multiple starbursts at lookback times less than $\sim$3.5 Gyr in the Abell 2310 galaxy cluster. Although the host galaxy of FRB 20220914A is similar to typical FRB hosts, the FRB 20220509G host stands out as a quiescent, early-type galaxy at a redshift of 0.0894 in the Abell 2311 galaxy cluster. The discovery of FRBs in both late and early-type galaxies adds to the body of evidence that the FRB sources have multiple formation channels. Therefore, even though FRB hosts are typically star-forming, there must exist formation channels consistent with old stellar population in galaxies. The varied star formation histories of the two FRB hosts we report indicate a wide delay-time distribution of FRB progenitors. Future work in constraining the FRB delay-time distribution, using methods we develop herein, will prove crucial in determining the evolutionary histories of FRB sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14782v1-abstract-full').style.display = 'none'; document.getElementById('2302.14782v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01000">arXiv:2301.01000</a> <span> [<a href="https://arxiv.org/pdf/2301.01000">pdf</a>, <a href="https://arxiv.org/format/2301.01000">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science: a 50 Mpc fast radio burst constrains the mass of the Milky Way circumgalactic medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Cordes%2C+J+M">James M. Cordes</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01000v1-abstract-short" style="display: inline;"> We present the Deep Synoptic Array (DSA-110) discovery and interferometric localization of the so far non-repeating FRB 20220319D. The FRB originates in a young, rapidly star-forming barred spiral galaxy, IRAS 02044$+$7048, at just 50 Mpc. Although the NE2001 and YMW16 models for the Galactic interstellar-medium (ISM) contribution to the DM of FRB 20220319D exceed its total observed DM, we show th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01000v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01000v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01000v1-abstract-full" style="display: none;"> We present the Deep Synoptic Array (DSA-110) discovery and interferometric localization of the so far non-repeating FRB 20220319D. The FRB originates in a young, rapidly star-forming barred spiral galaxy, IRAS 02044$+$7048, at just 50 Mpc. Although the NE2001 and YMW16 models for the Galactic interstellar-medium (ISM) contribution to the DM of FRB 20220319D exceed its total observed DM, we show that uncertainties in these models accommodate an extragalactic origin for the burst. We derive a conservative upper limit on the DM contributed by the circumgalactic medium (CGM) of the Milky Way: the limit is either 28.7 pc cm$^{-3}$ and 47.3 pc cm$^{-3}$, depending on which of two pulsars nearby on the sky to FRB 20220319D is used to estimate the ISM DM. These limits both imply that the total Galactic CGM mass is $<10^{11}M_{\odot}$, and that the baryonic mass of the Milky Way is $\lesssim60\%$ of the cosmological average given the total halo mass. More stringent albeit less conservative constraints are possible when the DMs of pulsars in the distant globular cluster M53 are additionally considered. Although our constraints are sensitive to possible anisotropy in the CGM and to the assumed form of the radial-density profile, they are not subject to uncertainties in the chemical and thermal properties of the CGM. Our results strongly support scenarios commonly predicted by galaxy-formation simulations wherein feedback processes expel baryonic matter from the halos of galaxies like the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01000v1-abstract-full').style.display = 'none'; document.getElementById('2301.01000v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, 3 tables, submitted to AAS Journals</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08504">arXiv:2212.08504</a> <span> [<a href="https://arxiv.org/pdf/2212.08504">pdf</a>, <a href="https://arxiv.org/format/2212.08504">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/rasti/rzad016">10.1093/rasti/rzad016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Morphological Classification of Radio Galaxies with wGAN-supported Augmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Rustige%2C+L">Lennart Rustige</a>, <a href="/search/astro-ph?searchtype=author&query=Kummer%2C+J">Janis Kummer</a>, <a href="/search/astro-ph?searchtype=author&query=Griese%2C+F">Florian Griese</a>, <a href="/search/astro-ph?searchtype=author&query=Borras%2C+K">Kerstin Borras</a>, <a href="/search/astro-ph?searchtype=author&query=Br%C3%BCggen%2C+M">Marcus Br眉ggen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+P+L+S">Patrick L. S. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Gaede%2C+F">Frank Gaede</a>, <a href="/search/astro-ph?searchtype=author&query=Kasieczka%2C+G">Gregor Kasieczka</a>, <a href="/search/astro-ph?searchtype=author&query=Knopp%2C+T">Tobias Knopp</a>, <a href="/search/astro-ph?searchtype=author&query=Schleper%2C+P">Peter Schleper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08504v2-abstract-short" style="display: inline;"> Machine learning techniques that perform morphological classification of astronomical sources often suffer from a scarcity of labelled training data. Here, we focus on the case of supervised deep learning models for the morphological classification of radio galaxies, which is particularly topical for the forthcoming large radio surveys. We demonstrate the use of generative models, specifically Was… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08504v2-abstract-full').style.display = 'inline'; document.getElementById('2212.08504v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08504v2-abstract-full" style="display: none;"> Machine learning techniques that perform morphological classification of astronomical sources often suffer from a scarcity of labelled training data. Here, we focus on the case of supervised deep learning models for the morphological classification of radio galaxies, which is particularly topical for the forthcoming large radio surveys. We demonstrate the use of generative models, specifically Wasserstein GANs (wGANs), to generate data for different classes of radio galaxies. Further, we study the impact of augmenting the training data with images from our wGAN on three different classification architectures. We find that this technique makes it possible to improve models for the morphological classification of radio galaxies. A simple Fully Connected Neural Network (FCN) benefits most from including generated images into the training set, with a considerable improvement of its classification accuracy. In addition, we find it is more difficult to improve complex classifiers. The classification performance of a Convolutional Neural Network (CNN) can be improved slightly. However, this is not the case for a Vision Transformer (ViT). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08504v2-abstract-full').style.display = 'none'; document.getElementById('2212.08504v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7+6 figures, 1+5 tables; v2: matches published version in RASTI</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> RAS Techniques and Instruments 2 (2023) no.1, 264-277 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09049">arXiv:2211.09049</a> <span> [<a href="https://arxiv.org/pdf/2211.09049">pdf</a>, <a href="https://arxiv.org/format/2211.09049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc4b6">10.3847/2041-8213/acc4b6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science I: discovery of the host galaxy of FRB 20220912A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+D">Dillon Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Fremling%2C+C">Christoffer Fremling</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09049v1-abstract-short" style="display: inline;"> We report the detection and interferometric localization of the repeating fast radio burst (FRB) source FRB 20220912A during commissioning observations with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB 20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90% confidence error ellips… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09049v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09049v1-abstract-full" style="display: none;"> We report the detection and interferometric localization of the repeating fast radio burst (FRB) source FRB 20220912A during commissioning observations with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB 20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90% confidence error ellipse of $\pm2$ arcsec and $\pm1$ arcsec in right ascension and declination respectively. The two bursts have disparate polarization properties and temporal profiles. We find a Faraday rotation measure that is consistent with the low value of $+0.6$ rad m$^{-2}$ reported by CHIME/FRB. The DSA-110 localization overlaps with the galaxy PSO J347.2702+48.7066 at a redshift $z=0.0771$, which we identify as the likely host. PSO J347.2702$+$48.7066 has a stellar mass of approximately $10^{10}M_{\odot}$, modest internal dust extinction, and a star-formation rate likely in excess of $0.1\,M_{\odot}$ yr$^{-1}$. The host-galaxy contribution to the dispersion measure is likely $\lesssim50$ pc cm$^{-3}$. The FRB 20220912A source is therefore likely viewed along a tenuous plasma column through the host galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09049v1-abstract-full').style.display = 'none'; document.getElementById('2211.09049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, 2 tables, submitted to AAS Journals</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05348">arXiv:2208.05348</a> <span> [<a href="https://arxiv.org/pdf/2208.05348">pdf</a>, <a href="https://arxiv.org/format/2208.05348">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244007">10.1051/0004-6361/202244007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First release of Apertif imaging survey data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=Denes%2C+H">H. Denes</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">K. M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Kutkin%2C+A">A. Kutkin</a>, <a href="/search/astro-ph?searchtype=author&query=Lucero%2C+D+M">D. M. Lucero</a>, <a href="/search/astro-ph?searchtype=author&query=Morganti%2C+R">R. Morganti</a>, <a href="/search/astro-ph?searchtype=author&query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T+A">T. A. Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Orru%2C+E">E. Orru</a>, <a href="/search/astro-ph?searchtype=author&query=Schulz%2C+R">R. Schulz</a>, <a href="/search/astro-ph?searchtype=author&query=van+Amesfoort%2C+A+S">A. S. van Amesfoort</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+A">A. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Boersma%2C+O+M">O. M. Boersma</a>, <a href="/search/astro-ph?searchtype=author&query=Bouwhuis%2C+M">M. Bouwhuis</a>, <a href="/search/astro-ph?searchtype=author&query=Brink%2C+R+v+d">R. van den Brink</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">A. H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=van+Diepen%2C+G+N+J">G. N. J. van Diepen</a>, <a href="/search/astro-ph?searchtype=author&query=Dijkema%2C+T+J">T. J. Dijkema</a>, <a href="/search/astro-ph?searchtype=author&query=Ebbendorf%2C+N">N. Ebbendorf</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05348v2-abstract-short" style="display: inline;"> (Abridged) Apertif is a phased-array feed system for WSRT, providing forty instantaneous beams over 300 MHz of bandwidth. A dedicated survey program started on 1 July 2019, with the last observations taken on 28 February 2022. We describe the release of data products from the first year of survey operations, through 30 June 2020. We focus on defining quality control metrics for the processed data… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05348v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05348v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05348v2-abstract-full" style="display: none;"> (Abridged) Apertif is a phased-array feed system for WSRT, providing forty instantaneous beams over 300 MHz of bandwidth. A dedicated survey program started on 1 July 2019, with the last observations taken on 28 February 2022. We describe the release of data products from the first year of survey operations, through 30 June 2020. We focus on defining quality control metrics for the processed data products. The Apertif imaging pipeline, Apercal, automatically produces non-primary beam corrected continuum images, polarization images and cubes, and uncleaned spectral line and dirty beam cubes for each beam of an Apertif imaging observation. For this release, processed data products are considered on a beam-by-beam basis within an observation. We validate the continuum images by using metrics that identify deviations from Gaussian noise in the residual images. If the continuum image passes validation, we release all processed data products for a given beam. We apply further validation to the polarization and line data products. We release all raw observational data from the first year of survey observations, for a total of 221 observations of 160 independent target fields, covering approximately one thousand square degrees of sky. Images and cubes are released on a per beam basis, and 3374 beams are released. The median noise in the continuum images is 41.4 uJy/bm, with a slightly lower median noise of 36.9 uJy/bm in the Stokes V polarization image. The median angular resolution is 11.6"/sin(Dec). The median noise for all line cubes, with a spectral resolution of 36.6 kHz, is 1.6 mJy/bm, corresponding to a 3-sigma HI column density sensitivity of 1.8 x 10^20 atoms cm^-2 over 20 km/s (for a median angular resolution of 24" x 15"). We also provide primary beam images for each individual Apertif compound beam. The data are made accessible using a Virtual Observatory interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05348v2-abstract-full').style.display = 'none'; document.getElementById('2208.05348v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A, updated Figure 1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 667, A38 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05342">arXiv:2208.05342</a> <span> [<a href="https://arxiv.org/pdf/2208.05342">pdf</a>, <a href="https://arxiv.org/format/2208.05342">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244008">10.1051/0004-6361/202244008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuum source catalog for the first APERTIF data release </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kutkin%2C+A+M">A. M. Kutkin</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T+A">T. A. Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Morganti%2C+R">R. Morganti</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Mancini%2C+M">M. Mancini</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">K. M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Lucero%2C+D+M">D. M. Lucero</a>, <a href="/search/astro-ph?searchtype=author&query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+A">A. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Brink%2C+R+v+d">R. van den Brink</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=Loose%2C+G+M">G. M. Loose</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">J. van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Y. Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Mika%2C+A">A'. Mika</a>, <a href="/search/astro-ph?searchtype=author&query=Norden%2C+M+J">M. J. Norden</a>, <a href="/search/astro-ph?searchtype=author&query=Offringa%2C+A+R">A. R. Offringa</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L+C">L. C. Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Schuur%2C+D">D. van der Schuur</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05342v1-abstract-short" style="display: inline;"> The first data release of Apertif survey contains 3074 radio continuum images covering a thousand square degrees of the sky. The observations were performed during August 2019 to July 2020. The continuum images were produced at a central frequency 1355 MHz with the bandwidth of $\sim$150 MHz and angular resolution reaching 10". In this work we introduce and apply a new method to obtain a primary b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05342v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05342v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05342v1-abstract-full" style="display: none;"> The first data release of Apertif survey contains 3074 radio continuum images covering a thousand square degrees of the sky. The observations were performed during August 2019 to July 2020. The continuum images were produced at a central frequency 1355 MHz with the bandwidth of $\sim$150 MHz and angular resolution reaching 10". In this work we introduce and apply a new method to obtain a primary beam model using a machine learning approach, Gaussian process regression. The primary beam models obtained with this method are published along with the data products for the first Apertif data release. We apply the method to the continuum images, mosaic them and extract the source catalog. The catalog contains 249672 radio sources many of which are detected for the first time at these frequencies. We cross-match the coordinates with the NVSS, LOFAR/DR1/value-added and LOFAR/DR2 catalogs resulting in 44523, 22825 and 152824 common sources respectively. The first sample provides a unique opportunity to detect long term transient sources which have significantly changed their flux density for the last 25 years. The second and the third ones combined together provide information about spectral properties of the sources as well as the redshift estimates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05342v1-abstract-full').style.display = 'none'; document.getElementById('2208.05342v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures; accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 667, A39 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15131">arXiv:2206.15131</a> <span> [<a href="https://arxiv.org/pdf/2206.15131">pdf</a>, <a href="https://arxiv.org/format/2206.15131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18420/inf2022_38">10.18420/inf2022_38 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio Galaxy Classification with wGAN-Supported Augmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kummer%2C+J">Janis Kummer</a>, <a href="/search/astro-ph?searchtype=author&query=Rustige%2C+L">Lennart Rustige</a>, <a href="/search/astro-ph?searchtype=author&query=Griese%2C+F">Florian Griese</a>, <a href="/search/astro-ph?searchtype=author&query=Borras%2C+K">Kerstin Borras</a>, <a href="/search/astro-ph?searchtype=author&query=Br%C3%BCggen%2C+M">Marcus Br眉ggen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+P+L+S">Patrick L. S. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Gaede%2C+F">Frank Gaede</a>, <a href="/search/astro-ph?searchtype=author&query=Kasieczka%2C+G">Gregor Kasieczka</a>, <a href="/search/astro-ph?searchtype=author&query=Schleper%2C+P">Peter Schleper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15131v2-abstract-short" style="display: inline;"> Novel techniques are indispensable to process the flood of data from the new generation of radio telescopes. In particular, the classification of astronomical sources in images is challenging. Morphological classification of radio galaxies could be automated with deep learning models that require large sets of labelled training data. Here, we demonstrate the use of generative models, specifically… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15131v2-abstract-full').style.display = 'inline'; document.getElementById('2206.15131v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15131v2-abstract-full" style="display: none;"> Novel techniques are indispensable to process the flood of data from the new generation of radio telescopes. In particular, the classification of astronomical sources in images is challenging. Morphological classification of radio galaxies could be automated with deep learning models that require large sets of labelled training data. Here, we demonstrate the use of generative models, specifically Wasserstein GANs (wGAN), to generate artificial data for different classes of radio galaxies. Subsequently, we augment the training data with images from our wGAN. We find that a simple fully-connected neural network for classification can be improved significantly by including generated images into the training set. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15131v2-abstract-full').style.display = 'none'; document.getElementById('2206.15131v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures; accepted to ml.astro; v2: matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> INFORMATIK 2022 Workshops, Lecture Notes in Informatics (LNI) P-326, 469-478 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14310">arXiv:2206.14310</a> <span> [<a href="https://arxiv.org/pdf/2206.14310">pdf</a>, <a href="https://arxiv.org/format/2206.14310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad667">10.1093/mnras/stad667 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stellar prospects for FRB gravitational lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14310v1-abstract-short" style="display: inline;"> Gravitational lensing of fast radio bursts (FRBs) offers an exciting avenue for several cosmological applications. However, it is not yet clear how many such events future surveys will detect nor how to optimally find them. We use the known properties of FRBs to forecast detection rates of gravitational lensing on delay timescales from microseconds to years, corresponding to lens masses spanning f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14310v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14310v1-abstract-full" style="display: none;"> Gravitational lensing of fast radio bursts (FRBs) offers an exciting avenue for several cosmological applications. However, it is not yet clear how many such events future surveys will detect nor how to optimally find them. We use the known properties of FRBs to forecast detection rates of gravitational lensing on delay timescales from microseconds to years, corresponding to lens masses spanning fifteen orders of magnitude. We highlight the role of the FRB redshift distribution on our ability to observe gravitational lensing. We consider cosmological lensing of FRBs by stars in foreground galaxies and show that strong stellar lensing will dominate on microsecond timescales. Upcoming surveys such as DSA-2000 and CHORD will constrain the fraction of dark matter in compact objects (e.g. primordial black holes) and may detect millilensing events from intermediate mass black holes (IMBHs) or small dark matter halos. Coherent all-sky monitors will be able to detect longer-duration lensing events from massive galaxies, in addition to short time-scale lensing. Finally, we propose a new application of FRB gravitational lensing that will measure directly the circumgalactic medium of intervening galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14310v1-abstract-full').style.display = 'none'; document.getElementById('2206.14310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12362">arXiv:2205.12362</a> <span> [<a href="https://arxiv.org/pdf/2205.12362">pdf</a>, <a href="https://arxiv.org/format/2205.12362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244107">10.1051/0004-6361/202244107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Apertif Radio Transient System (ARTS): Design, Commissioning, Data Release, and Detection of the first 5 Fast Radio Bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Kooistra%2C+E">Eric Kooistra</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L">Leon Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Hargreaves%2C+J+E">J. E. Hargreaves</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Yogesh Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Pastor-Marazuela%2C+I">In茅s Pastor-Marazuela</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">Emily Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Schuur%2C+D">Daniel van der Schuur</a>, <a href="/search/astro-ph?searchtype=author&query=Sclocco%2C+A">Alessio Sclocco</a>, <a href="/search/astro-ph?searchtype=author&query=Straal%2C+S+M">Samayra M. Straal</a>, <a href="/search/astro-ph?searchtype=author&query=Vohl%2C+D">Dany Vohl</a>, <a href="/search/astro-ph?searchtype=author&query=Wijnholds%2C+S+J">Stefan J. Wijnholds</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">Bj枚rn Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=Attema%2C+J">Jisk Attema</a>, <a href="/search/astro-ph?searchtype=author&query=Bassa%2C+C">Cees Bassa</a>, <a href="/search/astro-ph?searchtype=author&query=Bast%2C+J+E">Jeanette E. Bast</a>, <a href="/search/astro-ph?searchtype=author&query=Bilous%2C+A">Anna Bilous</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=Boersma%2C+O+M">Oliver M. Boersma</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">Wim A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">Arthur H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">Sieds Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%A9nes%2C+H">Helga D茅nes</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12362v2-abstract-short" style="display: inline;"> Fast Radio Bursts must be powered by uniquely energetic emission mechanisms. This requirement has eliminated a number of possible source types, but several remain. Identifying the physical nature of Fast Radio Burst (FRB) emitters arguably requires good localisation of more detections, and broadband studies enabled by real-time alerting. We here present the Apertif Radio Transient System (ARTS), a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12362v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12362v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12362v2-abstract-full" style="display: none;"> Fast Radio Bursts must be powered by uniquely energetic emission mechanisms. This requirement has eliminated a number of possible source types, but several remain. Identifying the physical nature of Fast Radio Burst (FRB) emitters arguably requires good localisation of more detections, and broadband studies enabled by real-time alerting. We here present the Apertif Radio Transient System (ARTS), a supercomputing radio-telescope instrument that performs real-time FRB detection and localisation on the Westerbork Synthesis Radio Telescope (WSRT) interferometer. It reaches coherent-addition sensitivity over the entire field of the view of the primary dish beam. After commissioning results verified the system performed as planned, we initiated the Apertif FRB survey (ALERT). Over the first 5 weeks we observed at design sensitivity in 2019, we detected 5 new FRBs, and interferometrically localised each of these to 0.4--10 sq. arcmin. All detections are broad band and very narrow, of order 1 ms duration, and unscattered. Dispersion measures are generally high. Only through the very high time and frequency resolution of ARTS are these hard-to-find FRBs detected, producing an unbiased view of the intrinsic population properties. Most localisation regions are small enough to rule out the presence of associated persistent radio sources. Three FRBs cut through the halos of M31 and M33. We demonstrate that Apertif can localise one-off FRBs with an accuracy that maps magneto-ionic material along well-defined lines of sight. The rate of 1 every ~7 days next ensures a considerable number of new sources are detected for such study. The combination of detection rate and localisation accuracy exemplified by the 5 first ARTS FRBs thus marks a new phase in which a growing number of bursts can be used to probe our Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12362v2-abstract-full').style.display = 'none'; document.getElementById('2205.12362v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 672, A117 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16925">arXiv:2203.16925</a> <span> [<a href="https://arxiv.org/pdf/2203.16925">pdf</a>, <a href="https://arxiv.org/format/2203.16925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243201">10.1051/0004-6361/202243201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Apertif science verification campaign - Characteristics of polarised radio sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+A">A. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">K. M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&query=Schulz%2C+R">R. Schulz</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=Hut%2C+B">B. Hut</a>, <a href="/search/astro-ph?searchtype=author&query=Ivashina%2C+M+V">M. V. Ivashina</a>, <a href="/search/astro-ph?searchtype=author&query=Loose%2C+G+M">G. M. Loose</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Y. Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Mika%2C+A">A. Mika</a>, <a href="/search/astro-ph?searchtype=author&query=Mulder%2C+H">H. Mulder</a>, <a href="/search/astro-ph?searchtype=author&query=Norden%2C+M+J">M. J. Norden</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L+C">L. C. Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Orr%C3%BA%2C+E">E. Orr煤</a>, <a href="/search/astro-ph?searchtype=author&query=Ruiter%2C+M">M. Ruiter</a>, <a href="/search/astro-ph?searchtype=author&query=Smits%2C+R">R. Smits</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">J. van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Vermaas%2C+N+J">N. J. Vermaas</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16925v1-abstract-short" style="display: inline;"> We analyse five early science datasets from the APERture Tile in Focus (Apertif) phased array feed system to verify the polarisation capabilities of Apertif in view of future larger data releases. We aim to characterise the source population of the polarised sky in the L-Band using polarised source information in combination with IR and optical data. We use automatic routines to generate full fiel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16925v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16925v1-abstract-full" style="display: none;"> We analyse five early science datasets from the APERture Tile in Focus (Apertif) phased array feed system to verify the polarisation capabilities of Apertif in view of future larger data releases. We aim to characterise the source population of the polarised sky in the L-Band using polarised source information in combination with IR and optical data. We use automatic routines to generate full field-of-view Q- and U-cubes and perform RM-Synthesis, source finding, and cross-matching with published radio, optical, and IR data to generate polarised source catalogues. SED-fitting routines were used to determine photometric redshifts, star-formation rates, and galaxy masses. IR colour information was used to classify sources as AGN or star-forming-dominated and early- or late-type. We surveyed an area of 56deg$^2$ and detected 1357 polarised source components in 1170 sources. The fraction of polarised sources is 10.57% with a median fractional polarisation of 4.70$\pm$0.14%. We confirmed the reliability of the Apertif measurements by comparing them with polarised cross-identified NVSS sources. Average RMs of the individual fields lie within the error of the best Milky Way foreground measurements. All of our polarised sources were found to be dominated by AGN activity in the radio regime with most of them being radio-loud (79%) and of the FRII class (87%). The host galaxies of our polarised source sample are dominated by intermediate disc and star-forming disc galaxies. The contribution of star formation to the radio emission is on the order of a few percent for $\approx$10% of the polarised sources while for $\approx$90% it is completely dominated by the AGN. We do not see any change in fractional polarisation for different star-formation rates of the AGN host galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16925v1-abstract-full').style.display = 'none'; document.getElementById('2203.16925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 663, A103 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08151">arXiv:2203.08151</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Field Reversal around an Active Fast Radio Burst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dai%2C+S">S. Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Feng%2C+Y">Y. Feng</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+Y+P">Y. P. Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+Y+K">Y. K. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">D. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+C+H">C. H. Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+P">P. Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Xue%2C+M+Y">M. Y. Xue</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+B">B. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Burke-Spolaor%2C+S">S. Burke-Spolaor</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Lynch%2C+R+S">R. S. Lynch</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Anna-Thomas%2C+R">R. Anna-Thomas</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+L">L. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Duan%2C+R">R. Duan</a>, <a href="/search/astro-ph?searchtype=author&query=Yao%2C+J+M">J. M. Yao</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C+W">C. W. Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Zhu%2C+W+W">W. W. Zhu</a>, <a href="/search/astro-ph?searchtype=author&query=Cruces%2C+M">M. Cruces</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+G">G. Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Miao%2C+C+C">C. C. Miao</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+J+R">J. R. Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Filipovic%2C+M+D">M. D. Filipovic</a>, <a href="/search/astro-ph?searchtype=author&query=Zhu%2C+S+Q">S. Q. Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08151v2-abstract-short" style="display: inline;"> The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying. The recently localized FRB 20190520B is extremely active, has the largest confirmed host dispersion measure, and is only the second FRB source associated with a compact, persistent radio source (PRS). The main tracer of the magneto-ionic environments is the rotation measure (RM), a path-integra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08151v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08151v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08151v2-abstract-full" style="display: none;"> The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying. The recently localized FRB 20190520B is extremely active, has the largest confirmed host dispersion measure, and is only the second FRB source associated with a compact, persistent radio source (PRS). The main tracer of the magneto-ionic environments is the rotation measure (RM), a path-integral of the line-of-sight component of magnetic field strength (B) and electron density, which does not allow a direct probe of the B-field configuration. Here we report direct evidence for a B-field reversal based on the observed sign change and extreme variation of FRB 20190520B's RM, which changed from $\sim10000$ rad m$^{-2}$ to $\sim-16000$ rad m$^{-2}$ between June 2021 and January 2022. Such extreme RM reversal has never been observed before in any FRB nor in any astronomical object. The implied short-term change of the B-field configuration in or around the FRB could be due to the vicinity of massive black holes, or a magnetized companion star in binary systems, or a young supernova remnant along the line of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08151v2-abstract-full').style.display = 'none'; document.getElementById('2203.08151v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">It was merged into arXiv:2202.11112. Science380,599-603(2023). DOI:10.1126/science.abo6526</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11112">arXiv:2202.11112</a> <span> [<a href="https://arxiv.org/pdf/2202.11112">pdf</a>, <a href="https://arxiv.org/format/2202.11112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abo6526">10.1126/science.abo6526 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field reversal in the turbulent environment around a repeating fast radio burst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Anna-Thomas%2C+R">Reshma Anna-Thomas</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+S">Shi Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Feng%2C+Y">Yi Feng</a>, <a href="/search/astro-ph?searchtype=author&query=Burke-Spolaor%2C+S">Sarah Burke-Spolaor</a>, <a href="/search/astro-ph?searchtype=author&query=Beniamini%2C+P">Paz Beniamini</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+Y">Yuan-Pei Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+Y">Yongkun Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+K">Kshitij Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">Casey J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+C">Chenhui Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+S">Shami Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&query=Cruces%2C+M">Marilyn Cruces</a>, <a href="/search/astro-ph?searchtype=author&query=Duan%2C+R">Ran Duan</a>, <a href="/search/astro-ph?searchtype=author&query=Filipovi%2C+M+D">Miroslav D. Filipovi</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+G">George Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Lynch%2C+R+S">Ryan S. Lynch</a>, <a href="/search/astro-ph?searchtype=author&query=Miao%2C+C">Chenchen Miao</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+J">Jiarui Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella K. Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C">Chao-Wei Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+P">Pei Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Xue%2C+M">Mengyao Xue</a>, <a href="/search/astro-ph?searchtype=author&query=Yao%2C+J">Jumei Yao</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11112v2-abstract-short" style="display: inline;"> Fast radio bursts (FRBs) are brief, intense flashes of radio waves from unidentified extragalactic sources. Polarized FRBs originate in highly magnetized environments. We report observations of the repeating FRB 20190520B spanning seventeen months , which show its amount of Faraday rotation is highly variable and twice changes its sign. The FRB also depolarizes below radio frequencies around 1 to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11112v2-abstract-full').style.display = 'inline'; document.getElementById('2202.11112v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11112v2-abstract-full" style="display: none;"> Fast radio bursts (FRBs) are brief, intense flashes of radio waves from unidentified extragalactic sources. Polarized FRBs originate in highly magnetized environments. We report observations of the repeating FRB 20190520B spanning seventeen months , which show its amount of Faraday rotation is highly variable and twice changes its sign. The FRB also depolarizes below radio frequencies around 1 to 3 GHz. We interpret these properties as due to change in the parallel component of the integrated magnetic field along the line-of-sight, including reversals. This could result from propagation through a turbulent, magnetized screen of plasma located between $10^{-5}$ to 100 parsecs of the FRB source. This is consistent with the bursts passing through the stellar wind of a binary companion of the FRB source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11112v2-abstract-full').style.display = 'none'; document.getElementById('2202.11112v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv:2203.08151 has been merged into this</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 380,599-603(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08002">arXiv:2202.08002</a> <span> [<a href="https://arxiv.org/pdf/2202.08002">pdf</a>, <a href="https://arxiv.org/format/2202.08002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243339">10.1051/0004-6361/202243339 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A fast radio burst with sub-millisecond quasi-periodic structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pastor-Marazuela%2C+I">In茅s Pastor-Marazuela</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Bilous%2C+A">Anna Bilous</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Yogesh Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L">Leon Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">Emily Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Straal%2C+S">Samayra Straal</a>, <a href="/search/astro-ph?searchtype=author&query=Vohl%2C+D">Dany Vohl</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=Attema%2C+J">Jisk Attema</a>, <a href="/search/astro-ph?searchtype=author&query=Boersma%2C+O+M">Oliver M. Boersma</a>, <a href="/search/astro-ph?searchtype=author&query=Brink%2C+R+v+d">R. van den Brink</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">A. H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">K. M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Hut%2C+B">B. Hut</a>, <a href="/search/astro-ph?searchtype=author&query=Kutkin%2C+A">A. Kutkin</a>, <a href="/search/astro-ph?searchtype=author&query=Loose%2C+G+M">G. Marcel Loose</a>, <a href="/search/astro-ph?searchtype=author&query=Lucero%2C+D+M">D. M. Lucero</a>, <a href="/search/astro-ph?searchtype=author&query=Mika%2C+%C3%81">脕. Mika</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08002v1-abstract-short" style="display: inline;"> Fast radio bursts (FRBs) are extragalactic radio transients of extraordinary luminosity. Studying the diverse temporal and spectral behaviour recently observed in a number of FRBs may help determine the nature of the entire class. For example, a fast spinning or highly magnetised neutron star might generate the rotation-powered acceleration required to explain the bright emission. Periodic, sub-se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08002v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08002v1-abstract-full" style="display: none;"> Fast radio bursts (FRBs) are extragalactic radio transients of extraordinary luminosity. Studying the diverse temporal and spectral behaviour recently observed in a number of FRBs may help determine the nature of the entire class. For example, a fast spinning or highly magnetised neutron star might generate the rotation-powered acceleration required to explain the bright emission. Periodic, sub-second components, suggesting such rotation, were recently reported in one FRB, and potentially in two more. Here we report the discovery of FRB 20201020A with Apertif, an FRB showing five components regularly spaced by 0.415 ms. This sub-millisecond structure in FRB 20201020A carries important clues about the progenitor of this FRB specifically, and potentially about that of FRBs in general. We thus contrast its features to the predictions of the main FRB source models. We perform a timing analysis of the FRB 20201020A components to determine the significance of the periodicity. We compare these against the timing properties of the previously reported CHIME FRBs with sub-second quasi-periodic components, and against two Apertif bursts from repeating FRB 20180916B that show complex time-frequency structure. We find the periodicity of FRB 20201020A to be marginally significant at 2.5$蟽$. Its repeating subcomponents cannot be explained as a pulsar rotation since the required spin rate of over 2 kHz exceeds the limits set by typical neutron star equations of state and observations. The fast periodicity is also in conflict with a compact object merger scenario. These quasi-periodic components could, however, be caused by equidistant emitting regions in the magnetosphere of a magnetar. The sub-millisecond spacing of the components in FRB 20201020A, the smallest observed so far in a one-off FRB, may rule out both neutron-star rotation and binary mergers as the direct source of quasi-periodic FRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08002v1-abstract-full').style.display = 'none'; document.getElementById('2202.08002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 3 tables, supplementary material. Submitted to A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 678, A149 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07639">arXiv:2112.07639</a> <span> [<a href="https://arxiv.org/pdf/2112.07639">pdf</a>, <a href="https://arxiv.org/format/2112.07639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Effects of Selection Biases on the Analysis of Localised Fast Radio Bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Seebeck%2C+J">Jerome Seebeck</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Uzgil%2C+B">Bade Uzgil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07639v1-abstract-short" style="display: inline;"> The objects that emit extragalatic fast radio bursts (FRBs) remain unidentified. Studies of the host galaxies and environments of accurately localised ($\lesssim1$ arcsec) FRBs promise to deliver critical insights into the nature of their progenitors. Here we demonstrate the effects of observational selection biases on analyses of the distributions of FRB host-galaxy properties (including star-for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07639v1-abstract-full').style.display = 'inline'; document.getElementById('2112.07639v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07639v1-abstract-full" style="display: none;"> The objects that emit extragalatic fast radio bursts (FRBs) remain unidentified. Studies of the host galaxies and environments of accurately localised ($\lesssim1$ arcsec) FRBs promise to deliver critical insights into the nature of their progenitors. Here we demonstrate the effects of observational selection biases on analyses of the distributions of FRB host-galaxy properties (including star-formation rate, SFR, and stellar mass, $M_{*}$), and on the distributions of FRB offsets from the centres of their hosts. We consider the effects of "radio selection", wherein FRBs with larger dispersion measures and scattering timescales are less likely to be detected, and the effects of "optical selection", wherein FRBs with fainter host galaxies are more likely to have unidentified or mis-identified hosts. We develop a plausible, illustrative model for these effects in observations of FRBs and their host galaxies by combining the output catalogues of a semi-analytic galaxy formation model with a recently developed algorithm to associate FRBs with host galaxies (PATH). We find that optical selection biases are most important for the host-galaxy $M_{*}$ and SFR distributions, and that radio selection biases are most important for the distribution of FRB projected physical offsets. For our fiducial simulation of FRBs at $z<0.5$, the selection biases cause the median host-galaxy SFR to be increased by $\sim0.3$ dex, and the median $M_{*}$ by $\sim0.5$ dex. The median projected physical offset is increased by $\sim2$ kpc ($\sim0.25$ dex). These effects are sufficiently large so as to merit careful consideration in studies of localised FRBs, and our simulations provide a guide towards their mitigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07639v1-abstract-full').style.display = 'none'; document.getElementById('2112.07639v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03722">arXiv:2112.03722</a> <span> [<a href="https://arxiv.org/pdf/2112.03722">pdf</a>, <a href="https://arxiv.org/format/2112.03722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ascom.2021.100514">10.1016/j.ascom.2021.100514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Apercal -- The Apertif Calibration Pipeline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=Schulz%2C+R">R. Schulz</a>, <a href="/search/astro-ph?searchtype=author&query=Dijkema%2C+T+J">T. J. Dijkema</a>, <a href="/search/astro-ph?searchtype=author&query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&query=Offringa%2C+A+R">A. R. Offringa</a>, <a href="/search/astro-ph?searchtype=author&query=Kutkin%2C+A">A. Kutkin</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">B. S. Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Vilchez%2C+N+P+E">N. P. E. Vilchez</a>, <a href="/search/astro-ph?searchtype=author&query=Verstappen%2C+J">J. Verstappen</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+K">E. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=Denes%2C+H">H. Denes</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">K. M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Lucero%2C+D">D. Lucero</a>, <a href="/search/astro-ph?searchtype=author&query=Morganti%2C+R">R. Morganti</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T">T. Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Pisano%2C+D+-">D. -J. Pisano</a>, <a href="/search/astro-ph?searchtype=author&query=Ivashina%2C+M+V">M. V. Ivashina</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L+D">L. D. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">A. H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=Loose%2C+G+M">G. M. Loose</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Y. Maan</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03722v1-abstract-short" style="display: inline;"> Apertif (APERture Tile In Focus) is one of the Square Kilometre Array (SKA) pathfinder facilities. The Apertif project is an upgrade to the 50-year-old Westerbork Synthesis Radio Telescope (WSRT) using phased-array feed technology. The new receivers create 40 individual beams on the sky, achieving an instantaneous sky coverage of 6.5 square degrees. The primary goal of the Apertif Imaging Survey i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03722v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03722v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03722v1-abstract-full" style="display: none;"> Apertif (APERture Tile In Focus) is one of the Square Kilometre Array (SKA) pathfinder facilities. The Apertif project is an upgrade to the 50-year-old Westerbork Synthesis Radio Telescope (WSRT) using phased-array feed technology. The new receivers create 40 individual beams on the sky, achieving an instantaneous sky coverage of 6.5 square degrees. The primary goal of the Apertif Imaging Survey is to perform a wide survey of 3500 square degrees (AWES) and a medium deep survey of 350 square degrees (AMES) of neutral atomic hydrogen (up to a redshift of 0.26), radio continuum emission and polarisation. Each survey pointing yields 4.6 TB of correlated data. The goal of Apercal is to process this data and fully automatically generate science ready data products for the astronomical community while keeping up with the survey observations. We make use of common astronomical software packages in combination with Python based routines and parallelisation. We use an object oriented module-based approach to ensure easy adaptation of the pipeline. A Jupyter notebook based framework allows user interaction and execution of individual modules as well as a full automatic processing of a complete survey observation. If nothing interrupts processing, we are able to reduce a single pointing survey observation on our five node cluster with 24 physical cores and 256 GB of memory each within 24h keeping up with the speed of the surveys. The quality of the generated images is sufficient for scientific usage for 44 % of the recorded data products with single images reaching dynamic ranges of several thousands. Future improvements will increase this percentage to over 80 %. Our design allowed development of the pipeline in parallel to the commissioning of the Apertif system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03722v1-abstract-full').style.display = 'none'; document.getElementById('2112.03722v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astronomy and Computing 38 (2022) 100514 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03249">arXiv:2111.03249</a> <span> [<a href="https://arxiv.org/pdf/2111.03249">pdf</a>, <a href="https://arxiv.org/format/2111.03249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1329">10.1093/mnras/stac1329 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Radio Interferometric Imaging with POLISH: DSA-2000 and weak lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Bouman%2C+K+L">Katherine L. Bouman</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03249v2-abstract-short" style="display: inline;"> Radio interferometry allows astronomers to probe small spatial scales that are often inaccessible with single-dish instruments. However, recovering the radio sky from an interferometer is an ill-posed deconvolution problem that astronomers have worked on for half a century. More challenging still is achieving resolution below the array's diffraction limit, known as super-resolution imaging. To thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03249v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03249v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03249v2-abstract-full" style="display: none;"> Radio interferometry allows astronomers to probe small spatial scales that are often inaccessible with single-dish instruments. However, recovering the radio sky from an interferometer is an ill-posed deconvolution problem that astronomers have worked on for half a century. More challenging still is achieving resolution below the array's diffraction limit, known as super-resolution imaging. To this end, we have developed a new learning-based approach for radio interferometric imaging, leveraging recent advances in the classical computer vision problems of single-image super-resolution (SISR) and deconvolution. We have developed and trained a high dynamic range residual neural network to learn the mapping between the dirty image and the true radio sky. We call this procedure POLISH, in contrast to the traditional CLEAN algorithm. The feed forward nature of learning-based approaches like POLISH is critical for analyzing data from the upcoming Deep Synoptic Array (DSA-2000). We show that POLISH achieves super-resolution, and we demonstrate its ability to deconvolve real observations from the Very Large Array (VLA). Super-resolution on DSA-2000 will allow us to measure the shapes and orientations of several hundred million star forming radio galaxies (SFGs), making it a powerful cosmological weak lensing survey and probe of dark energy. We forecast its ability to constrain the lensing power spectrum, finding that it will be complementary to next-generation optical surveys such as Euclid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03249v2-abstract-full').style.display = 'none'; document.getElementById('2111.03249v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15323">arXiv:2110.15323</a> <span> [<a href="https://arxiv.org/pdf/2110.15323">pdf</a>, <a href="https://arxiv.org/format/2110.15323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4c42">10.3847/1538-4357/ac4c42 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Fast Radio Burst and Persistent Radio Source Populations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+K">K. Aggarwal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15323v1-abstract-short" style="display: inline;"> The first Fast Radio Burst (FRB) to be precisely localized was associated with a luminous persistent radio source (PRS). Recently, a second FRB/PRS association was discovered for another repeating source of FRBs. However, it is not clear what makes FRBs or PRS or how they are related. We compile FRB and PRS properties to consider the population of FRB/PRS sources. We suggest a practical definition… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15323v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15323v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15323v1-abstract-full" style="display: none;"> The first Fast Radio Burst (FRB) to be precisely localized was associated with a luminous persistent radio source (PRS). Recently, a second FRB/PRS association was discovered for another repeating source of FRBs. However, it is not clear what makes FRBs or PRS or how they are related. We compile FRB and PRS properties to consider the population of FRB/PRS sources. We suggest a practical definition for PRS as FRB associations with luminosity greater than $10^{29}$ erg s$^{-1}$ Hz$^{-1}$ that is not attributed to star-formation activity in the host galaxy. We model the probability distribution of the fraction of FRBs with PRS for repeaters and non-repeaters, showing there is not yet evidence for repeaters to be preferentially associated with PRS. We discuss how FRB/PRS sources may be distinguished by the combination of active repetition and an excess dispersion measure local to the FRB environment. We use CHIME/FRB event statistics to bound the mean per-source repetition rate of FRBs to be between 25 and 440 yr$^{-1}$. We use this to provide a bound on the density of FRB-emitting sources in the local universe of between $2.2\times10^2$ and $5.2\times10^4$ Gpc$^{-3}$ assuming a pulsar-like beam width for FRB emission. This density implies that PRS may comprise as much as 1\% of compact, luminous radio sources detected in the local universe. The cosmic density and phenomenology of PRS are similar to that of the newly-discovered, off-nuclear "wandering" AGN. We argue that it is likely that some PRS have already been detected and misidentified as AGN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15323v1-abstract-full').style.display = 'none'; document.getElementById('2110.15323v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. 12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07418">arXiv:2110.07418</a> <span> [<a href="https://arxiv.org/pdf/2110.07418">pdf</a>, <a href="https://arxiv.org/format/2110.07418">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04755-5">10.1038/s41586-022-04755-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A repeating fast radio burst associated with a persistent radio source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Niu%2C+C+-">C. -H. Niu</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+K">K. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">D. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+X">X. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+S">S. Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&query=Tsai%2C+C+-">C. -W. Tsai</a>, <a href="/search/astro-ph?searchtype=author&query=Yu%2C+W">W. Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Burke-Spolaor%2C+S">S. Burke-Spolaor</a>, <a href="/search/astro-ph?searchtype=author&query=Cordes%2C+J+M">J. M. Cordes</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+Y+-">Y. -K. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S">S. Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Yao%2C+J+-">J. -M. Yao</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+P">P. Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Feng%2C+Y">Y. Feng</a>, <a href="/search/astro-ph?searchtype=author&query=Niino%2C+Y">Y. Niino</a>, <a href="/search/astro-ph?searchtype=author&query=Bochenek%2C+C">C. Bochenek</a>, <a href="/search/astro-ph?searchtype=author&query=Cruces%2C+M">M. Cruces</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Jiang%2C+J+-">J. -A. Jiang</a>, <a href="/search/astro-ph?searchtype=author&query=Dai%2C+S">S. Dai</a>, <a href="/search/astro-ph?searchtype=author&query=Luo%2C+R">R. Luo</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+G+-">G. -D. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Miao%2C+C+-">C. -C. Miao</a>, <a href="/search/astro-ph?searchtype=author&query=Niu%2C+J+-">J. -R. Niu</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07418v3-abstract-short" style="display: inline;"> The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium, which is assumed to dominate the total extragalactic dispersion. While the host galaxy contributions to dispersion measure (DM) appear to be small for most FRBs, in at least one case there is evidence for an extreme magneto-ionic local environment and a compact persistent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07418v3-abstract-full').style.display = 'inline'; document.getElementById('2110.07418v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07418v3-abstract-full" style="display: none;"> The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium, which is assumed to dominate the total extragalactic dispersion. While the host galaxy contributions to dispersion measure (DM) appear to be small for most FRBs, in at least one case there is evidence for an extreme magneto-ionic local environment and a compact persistent radio source. Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific star formation rate at a redshift $z=0.241\pm0.001$. The estimated host galaxy DM $\approx 903^{+72}_{-111}$ pc cm$^{-3}$, nearly an order of magnitude higher than the average of FRB host galaxies, far exceeds the DM contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host galaxy identifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07418v3-abstract-full').style.display = 'none'; document.getElementById('2110.07418v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted, Version 3</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14234">arXiv:2109.14234</a> <span> [<a href="https://arxiv.org/pdf/2109.14234">pdf</a>, <a href="https://arxiv.org/format/2109.14234">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141739">10.1051/0004-6361/202141739 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Apertif, Phased Array Feeds for the Westerbork Synthesis Radio Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T+A">T. A. Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=Verheijen%2C+M+A+W">M. A. W. Verheijen</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=Braun%2C+R">R. Braun</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">K. M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=Holties%2C+H">H. Holties</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Hut%2C+B">B. Hut</a>, <a href="/search/astro-ph?searchtype=author&query=Kooistra%2C+E">E. Kooistra</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">J. van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Loose%2C+G+M">G. M. Loose</a>, <a href="/search/astro-ph?searchtype=author&query=Morganti%2C+R">R. Morganti</a>, <a href="/search/astro-ph?searchtype=author&query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&query=Orr%C3%BA%2C+E">E. Orr煤</a>, <a href="/search/astro-ph?searchtype=author&query=Ruiter%2C+M">M. Ruiter</a>, <a href="/search/astro-ph?searchtype=author&query=Schoenmakers%2C+A+P">A. P. Schoenmakers</a>, <a href="/search/astro-ph?searchtype=author&query=Vermaas%2C+N+J">N. J. Vermaas</a>, <a href="/search/astro-ph?searchtype=author&query=Wijnholds%2C+S+J">S. J. Wijnholds</a>, <a href="/search/astro-ph?searchtype=author&query=van+Amesfoort%2C+A+S">A. S. van Amesfoort</a>, <a href="/search/astro-ph?searchtype=author&query=Arts%2C+M+J">M. J. Arts</a>, <a href="/search/astro-ph?searchtype=author&query=Attema%2C+J+J">J. J. Attema</a>, <a href="/search/astro-ph?searchtype=author&query=Bakker%2C+L">L. Bakker</a>, <a href="/search/astro-ph?searchtype=author&query=Bassa%2C+C+G">C. G. Bassa</a> , et al. (65 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14234v2-abstract-short" style="display: inline;"> We describe the APERture Tile In Focus (Apertif) system, a phased array feed (PAF) upgrade of the Westerbork Synthesis Radio Telescope which has transformed this telescope into a high-sensitivity, wide field-of-view L-band imaging and transient survey instrument. Using novel PAF technology, up to 40 partially overlapping beams can be formed on the sky simultaneously, significantly increasing the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14234v2-abstract-full').style.display = 'inline'; document.getElementById('2109.14234v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14234v2-abstract-full" style="display: none;"> We describe the APERture Tile In Focus (Apertif) system, a phased array feed (PAF) upgrade of the Westerbork Synthesis Radio Telescope which has transformed this telescope into a high-sensitivity, wide field-of-view L-band imaging and transient survey instrument. Using novel PAF technology, up to 40 partially overlapping beams can be formed on the sky simultaneously, significantly increasing the survey speed of the telescope. With this upgraded instrument, an imaging survey covering an area of 2300 deg2 is being performed which will deliver both continuum and spectral line data sets, of which the first data has been publicly released. In addition, a time domain transient and pulsar survey covering 15,000 deg2 is in progress. An overview of the Apertif science drivers, hardware and software of the upgraded telescope is presented, along with its key performance characteristics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14234v2-abstract-full').style.display = 'none'; document.getElementById('2109.14234v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 42 figures, accepted for publication by A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 658, A146 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08500">arXiv:2109.08500</a> <span> [<a href="https://arxiv.org/pdf/2109.08500">pdf</a>, <a href="https://arxiv.org/format/2109.08500">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142242">10.1051/0004-6361/202142242 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dual-frequency single-pulse study of PSR B0950+08 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bilous%2C+A+V">A. V. Bilous</a>, <a href="/search/astro-ph?searchtype=author&query=Griessmeier%2C+J+M">J. M. Griessmeier</a>, <a href="/search/astro-ph?searchtype=author&query=Pennucci%2C+T">T. Pennucci</a>, <a href="/search/astro-ph?searchtype=author&query=Wu%2C+Z">Z. Wu</a>, <a href="/search/astro-ph?searchtype=author&query=Bondonneau%2C+L">L. Bondonneau</a>, <a href="/search/astro-ph?searchtype=author&query=Kondratiev%2C+V">V. Kondratiev</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">J. van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Y. Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L+C">L. C. Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">E. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Verbiest%2C+J+P+W">J. P. W. Verbiest</a>, <a href="/search/astro-ph?searchtype=author&query=Vohl%2C+D">D. Vohl</a>, <a href="/search/astro-ph?searchtype=author&query=McKee%2C+J+W">J. W. McKee</a>, <a href="/search/astro-ph?searchtype=author&query=Shaifullah%2C+G">G. Shaifullah</a>, <a href="/search/astro-ph?searchtype=author&query=Theureau%2C+G">G. Theureau</a>, <a href="/search/astro-ph?searchtype=author&query=Ulyanov%2C+O+M">O. M. Ulyanov</a>, <a href="/search/astro-ph?searchtype=author&query=Cecconi%2C+B">B. Cecconi</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H">A. H. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Corbel%2C+S">S. Corbel</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=Denes%2C+H">H. Denes</a>, <a href="/search/astro-ph?searchtype=author&query=Girard%2C+J+N">J. N. Girard</a>, <a href="/search/astro-ph?searchtype=author&query=Hut%2C+B">B. Hut</a>, <a href="/search/astro-ph?searchtype=author&query=Ivashina%2C+M">M. Ivashina</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08500v2-abstract-short" style="display: inline;"> PSR B0950+08 is a bright non-recycled pulsar whose single-pulse fluence variability is reportedly large. Based on observations at two widely separated frequencies, 55 MHz (NenuFAR) and 1.4 GHz (Westerbork Synthesis Radio Telescope), we review the properties of these single pulses. We conclude that they are more similar to ordinary pulses of radio emission than to a special kind of short and bright… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08500v2-abstract-full').style.display = 'inline'; document.getElementById('2109.08500v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08500v2-abstract-full" style="display: none;"> PSR B0950+08 is a bright non-recycled pulsar whose single-pulse fluence variability is reportedly large. Based on observations at two widely separated frequencies, 55 MHz (NenuFAR) and 1.4 GHz (Westerbork Synthesis Radio Telescope), we review the properties of these single pulses. We conclude that they are more similar to ordinary pulses of radio emission than to a special kind of short and bright Giant Pulses, observed from only a handful of pulsars. We argue that temporal variation of properties of interstellar medium along the line of sight to this nearby pulsar, namely the fluctuating size of decorrelation bandwidth of diffractive scintillation makes important contribution to observed single-pulse fluence variability. We further present interesting structures in the low-frequency single-pulse spectra that resemble the "sad trombones" seen in Fast Radio Bursts (FRBs); although for PSR B0950+08 the upward frequency drift is also routinely present. We explain these spectral features with radius-to-frequency mapping, similar to the model developed by Wang et al. (2019) for FRBs. Finally, we speculate that microsecond-scale fluence variability of the general pulsar population remains poorly known, and that its further study may bring important clues about the nature of FRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08500v2-abstract-full').style.display = 'none'; document.getElementById('2109.08500v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by A&A. This version includes a number of minor corrections, including corrected FRB luminosities on the time-luminosity phase-space plot for radio pulses from neutron stars and repeating FRBs</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 658, A143 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13692">arXiv:2107.13692</a> <span> [<a href="https://arxiv.org/pdf/2107.13692">pdf</a>, <a href="https://arxiv.org/format/2107.13692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The observed impact of galaxy halo gas on fast radio bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13692v3-abstract-short" style="display: inline;"> Galaxies and groups of galaxies exist in dark-matter halos filled with diffuse gas. The diffuse gas represents up to 80\% of the mass in baryonic matter within the halos(1,2), but is difficult to detect because of its low density (particle number densities of $\lesssim10^{-4}$\,cm$^{-3}$) and high temperature (mostly greater than $10^{6}$\,K). Here we analyze the impact of diffuse gas associated w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13692v3-abstract-full').style.display = 'inline'; document.getElementById('2107.13692v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13692v3-abstract-full" style="display: none;"> Galaxies and groups of galaxies exist in dark-matter halos filled with diffuse gas. The diffuse gas represents up to 80\% of the mass in baryonic matter within the halos(1,2), but is difficult to detect because of its low density (particle number densities of $\lesssim10^{-4}$\,cm$^{-3}$) and high temperature (mostly greater than $10^{6}$\,K). Here we analyze the impact of diffuse gas associated with nearby galaxies using the dispersion measures (DMs) of extragalactic fast radio bursts (FRBs). FRB DMs provide direct measurements of the total ionized-gas contents along their sightlines. Out of a sample of 474 distant FRBs from the CHIME/FRB Catalog 1(3), we identify a subset of events that likely intersect the dark-matter halos of galaxies in the local Universe ($<40$\,Mpc). The mean DM of the galaxy-intersecting FRBs is larger than the non-intersecting DMs with probability $>0.99$ and the excess DM is $>90$\,pc\,cm$^{-3}$ with $>95\%$ confidence. The excess is larger than expected for the diffuse gas surrounding isolated galaxies, but may be explained by additional contributions from gas surrounding galaxy groups, including from the Local Group. This result demonstrates the predicted ability of FRBs to be used as sensitive, model-independent measures of the diffuse-gas contents of dark-matter halos(4-7). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13692v3-abstract-full').style.display = 'none'; document.getElementById('2107.13692v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09710">arXiv:2106.09710</a> <span> [<a href="https://arxiv.org/pdf/2106.09710">pdf</a>, <a href="https://arxiv.org/format/2106.09710">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac465">10.1093/mnras/stac465 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The host galaxy and persistent radio counterpart of FRB 20201124A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">Casey J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Dongzi Li</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+K">Kshitij Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Burke-Spolaor%2C+S">Sarah Burke-Spolaor</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Lazio%2C+T+J+W">T. Joseph W. Lazio</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Tendulkar%2C+S+P">Shriharsh P. Tendulkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09710v1-abstract-short" style="display: inline;"> The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star-formation rate, implicating a ubiquitously occurring progenitor object. FRBs localised with ~arcsecond accuracy also enable effective searches for associated multi-wavelength and mult… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09710v1-abstract-full').style.display = 'inline'; document.getElementById('2106.09710v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09710v1-abstract-full" style="display: none;"> The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star-formation rate, implicating a ubiquitously occurring progenitor object. FRBs localised with ~arcsecond accuracy also enable effective searches for associated multi-wavelength and multi-timescale counterparts, such as the persistent radio source associated with FRB 20121102A. Here we present a localisation of the repeating source FRB 20201124A, and its association with a host galaxy (SDSS J050803.48+260338.0, z=0.098) and persistent radio source. The galaxy is massive ($\sim3\times10^{10} M_{\odot}$), star-forming (few solar masses per year), and dusty. Very Large Array and Very Long Baseline Array observations of the persistent radio source measure a luminosity of $1.2\times10^{29}$ erg s$^{-1}$ Hz$^{-1}$, and show that is extended on scales $\gtrsim50$ mas. We associate this radio emission with the ongoing star-formation activity in SDSS J050803.48+260338.0. Deeper, more detailed observations are required to better utilise the milliarcsecond-scale localisation of FRB 20201124A reported from the European VLBI Network, and determine the origin of the large dispersion measure ($150-220$ pc cm$^{-3}$) contributed by the host. SDSS J050803.48+260338.0 is an order of magnitude more massive than any galaxy or stellar system previously associated with a repeating FRB source, but is comparable to the hosts of so far non-repeating FRBs, further building the link between the two apparent populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09710v1-abstract-full').style.display = 'none'; document.getElementById('2106.09710v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 1 table, submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.04280">arXiv:2104.04280</a> <span> [<a href="https://arxiv.org/pdf/2104.04280">pdf</a>, <a href="https://arxiv.org/format/2104.04280">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140578">10.1051/0004-6361/202140578 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for radio emission from double-neutron star merger GW190425 using Apertif </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Boersma%2C+O">Oliv茅r Boersma</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">Bj枚rn Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=Kutkin%2C+A">Alexander Kutkin</a>, <a href="/search/astro-ph?searchtype=author&query=Oosterloo%2C+T">Tom Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=Brink%2C+R+v+d">R. van den Brink</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">A. H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">K. M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Hut%2C+B">B. Hut</a>, <a href="/search/astro-ph?searchtype=author&query=Ivashina%2C+M">M. Ivashina</a>, <a href="/search/astro-ph?searchtype=author&query=Loose%2C+G+M">G. M. Loose</a>, <a href="/search/astro-ph?searchtype=author&query=Lucero%2C+D+M">D. M. Lucero</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Y. Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Mika%2C+%C3%81">脕. Mika</a>, <a href="/search/astro-ph?searchtype=author&query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&query=Mulder%2C+H">H. Mulder</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L+C">L. C. Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Ruiter%2C+M">M. Ruiter</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Schuur%2C+D">D. van der Schuur</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.04280v1-abstract-short" style="display: inline;"> Detection of the electromagnetic emission from coalescing binary neutron stars (BNS) is important for understanding the merger and afterglow. We present a search for a radio counterpart to the gravitational-wave source GW190425, a BNS merger, using Apertif on the Westerbork Synthesis Radio Telescope (WSRT). We observe a field of high probability in the associated localisation region for 3 epochs a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04280v1-abstract-full').style.display = 'inline'; document.getElementById('2104.04280v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.04280v1-abstract-full" style="display: none;"> Detection of the electromagnetic emission from coalescing binary neutron stars (BNS) is important for understanding the merger and afterglow. We present a search for a radio counterpart to the gravitational-wave source GW190425, a BNS merger, using Apertif on the Westerbork Synthesis Radio Telescope (WSRT). We observe a field of high probability in the associated localisation region for 3 epochs at 68, 90 and 109 days post merger. We identify all sources that exhibit flux variations consistent with the expected afterglow emission of GW190425. We also look for possible transients. These are sources which are only present in one epoch. In addition, we quantify our ability to search for radio afterglows in fourth and future observing runs of the gravitational-wave detector network using Monte Carlo simulations. We found 25 afterglow candidates based on their variability. None of these could be associated with a possible host galaxy at the luminosity distance of GW190425. We also found 55 transient afterglow candidates that were only detected in one epoch. All turned out to be image artefacts. In the fourth observing run, we predict that up to three afterglows will be detectable by Apertif. While we did not find a source related to the afterglow emission of GW190425, the search validates our methods for future searches of radio afterglows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04280v1-abstract-full').style.display = 'none'; document.getElementById('2104.04280v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 650, A131 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09905">arXiv:2101.09905</a> <span> [<a href="https://arxiv.org/pdf/2101.09905">pdf</a>, <a href="https://arxiv.org/format/2101.09905">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/ac0bcc">10.1088/1538-3873/ac0bcc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galactic Radio Explorer: an all-sky monitor for bright radio bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Shila%2C+K+A">Kiran A. Shila</a>, <a href="/search/astro-ph?searchtype=author&query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&query=Flygare%2C+J">Jonas Flygare</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Dongzi Li</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+W">Wenbin Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09905v2-abstract-short" style="display: inline;"> We present the Galactic Radio Explorer (GReX), an all-sky monitor to probe the brightest bursts in the radio sky. Building on the success of STARE2, we will search for fast radio bursts (FRBs) emitted from Galactic magnetars as well as bursts from nearby galaxies. GReX will search down to ten microseconds time resolution, allowing us to find new super giant radio pulses from Milky Way pulsars and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09905v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09905v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09905v2-abstract-full" style="display: none;"> We present the Galactic Radio Explorer (GReX), an all-sky monitor to probe the brightest bursts in the radio sky. Building on the success of STARE2, we will search for fast radio bursts (FRBs) emitted from Galactic magnetars as well as bursts from nearby galaxies. GReX will search down to ten microseconds time resolution, allowing us to find new super giant radio pulses from Milky Way pulsars and study their broadband emission. The proposed instrument will employ ultra-wide band (0.7-2 GHz) feeds coupled to a high performance (receiver temperature 10 K) low noise amplifier (LNA) originally developed for the DSA-110 and DSA-2000 projects. In GReX Phase I (GReX-I), unit systems will be deployed at Owens Valley Radio Observatory (OVRO) and Big Smoky Valley, Nevada. Phase II will expand the array, placing feeds in India, Australia, and elsewhere in order to build up to continuous coverage of nearly 4$蟺$ steradians and to increase our exposure to the Galactic plane. We model the local magnetar population to forecast for GReX, finding the improved sensitivity and increased exposure to the Galactic plane could lead to dozens of FRB-like bursts per year. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09905v2-abstract-full').style.display = 'none'; document.getElementById('2101.09905v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08348">arXiv:2012.08348</a> <span> [<a href="https://arxiv.org/pdf/2012.08348">pdf</a>, <a href="https://arxiv.org/format/2012.08348">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03724-8">10.1038/s41586-021-03724-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chromatic periodic activity down to 120 MHz in a Fast Radio Burst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pastor-Marazuela%2C+I">In茅s Pastor-Marazuela</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Yogesh Maan</a>, <a href="/search/astro-ph?searchtype=author&query=ter+Veen%2C+S">Sander ter Veen</a>, <a href="/search/astro-ph?searchtype=author&query=Bilous%2C+A">Anna Bilous</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L">Leon Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">Emily Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Straal%2C+S">Samayra Straal</a>, <a href="/search/astro-ph?searchtype=author&query=Vohl%2C+D">Dany Vohl</a>, <a href="/search/astro-ph?searchtype=author&query=Attema%2C+J">Jisk Attema</a>, <a href="/search/astro-ph?searchtype=author&query=Boersma%2C+O+M">Oliver M. Boersma</a>, <a href="/search/astro-ph?searchtype=author&query=Kooistra%2C+E">Eric Kooistra</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Schuur%2C+D">Daniel van der Schuur</a>, <a href="/search/astro-ph?searchtype=author&query=Sclocco%2C+A">Alessio Sclocco</a>, <a href="/search/astro-ph?searchtype=author&query=Smits%2C+R">Roy Smits</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">Bj枚rn Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">Willem J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">Arthur H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">Sieds Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/astro-ph?searchtype=author&query=Hess%2C+K+M">Kelley M. Hess</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Hulst%2C+T">Thijs van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&query=Hut%2C+B">Boudewijn Hut</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08348v1-abstract-short" style="display: inline;"> Fast radio bursts (FRBs) are extragalactic astrophysical transients whose brightness requires emitters that are highly energetic, yet compact enough to produce the short, millisecond-duration bursts. FRBs have thus far been detected between 300 MHz and 8 GHz, but lower-frequency emission has remained elusive. A subset of FRBs is known to repeat, and one of those sources, FRB 20180916B, does so wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08348v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08348v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08348v1-abstract-full" style="display: none;"> Fast radio bursts (FRBs) are extragalactic astrophysical transients whose brightness requires emitters that are highly energetic, yet compact enough to produce the short, millisecond-duration bursts. FRBs have thus far been detected between 300 MHz and 8 GHz, but lower-frequency emission has remained elusive. A subset of FRBs is known to repeat, and one of those sources, FRB 20180916B, does so with a 16.3 day activity period. Using simultaneous Apertif and LOFAR data, we show that FRB 20180916B emits down to 120 MHz, and that its activity window is both narrower and earlier at higher frequencies. Binary wind interaction models predict a narrower periodic activity window at lower frequencies, which is the opposite of our observations. Our detections establish that low-frequency FRB emission can escape the local medium. For bursts of the same fluence, FRB 20180916B is more active below 200 MHz than at 1.4 GHz. Combining our results with previous upper-limits on the all-sky FRB rate at 150 MHz, we find that there are 3-450 FRBs/sky/day above 50 Jy ms at 90% confidence. We are able to rule out the scenario in which companion winds cause FRB periodicity. We also demonstrate that some FRBs live in clean environments that do not absorb or scatter low-frequency radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08348v1-abstract-full').style.display = 'none'; document.getElementById('2012.08348v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 14 figures, 3 tables, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02460">arXiv:2012.02460</a> <span> [<a href="https://arxiv.org/pdf/2012.02460">pdf</a>, <a href="https://arxiv.org/format/2012.02460">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039626">10.1051/0004-6361/202039626 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesizing the repeating FRB population using frbpoppy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gardenier%2C+D+W">D. W. Gardenier</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">J. van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L+C">L. C. Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">E. Petroff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02460v1-abstract-short" style="display: inline;"> The observed Fast Radio Burst (FRB) population can be divided into one-off and repeating FRB sources. Either this division is a true dichotomy of the underlying sources, or selection effects and low activity prohibit us from observing repeat pulses from all constituents making up the FRB source population. We attempt to break this degeneracy through FRB population synthesis. With that aim we exten… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02460v1-abstract-full').style.display = 'inline'; document.getElementById('2012.02460v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02460v1-abstract-full" style="display: none;"> The observed Fast Radio Burst (FRB) population can be divided into one-off and repeating FRB sources. Either this division is a true dichotomy of the underlying sources, or selection effects and low activity prohibit us from observing repeat pulses from all constituents making up the FRB source population. We attempt to break this degeneracy through FRB population synthesis. With that aim we extend frbpoppy, which earlier only handled one-off FRBs, to also simulate repeaters. We next model the Canadian Hydrogen Intensity Mapping Experiment FRB survey (CHIME/FRB). Using this implementation, we investigate the impact of luminosity functions on the observed dispersion measure (DM) and distance distributions of both repeating and one-off FRBs. We show that for a single, intrinsically repeating source population with a steep luminosity function, selection effects should shape the DM distributions of one-off and repeating FRB sources differently. This difference is not yet observed. We next show how the repeater fraction over time can help in determining the repetition rate of an intrinsic source population. We simulate this fraction for CHIME/FRB, and show that a source population comprised solely of repeating FRBs can describe CHIME/FRB observations with the use of a flat luminosity function. From the outcome of these two methods we thus conclude that all FRBs originate from a single and mostly uniform population of varying repeaters. Within this population, the luminosity function cannot be steep, and there must be minor differences in physical or behaviour parameters that correlate with repeat rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02460v1-abstract-full').style.display = 'none'; document.getElementById('2012.02460v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, submitted to Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 647, A30 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11930">arXiv:2003.11930</a> <span> [<a href="https://arxiv.org/pdf/2003.11930">pdf</a>, <a href="https://arxiv.org/format/2003.11930">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa2074">10.1093/mnras/staa2074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beaming as an explanation of the repetition/width relation in FRBs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+M+C">M. C. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Gardenier%2C+D+W">D. W. Gardenier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11930v3-abstract-short" style="display: inline;"> It is currently not known if repeating fast radio bursts (FRBs) are fundamentally different from those that have not been seen to repeat. One striking difference between repeaters and apparent non-repeaters in the CHIME sample is that the once-off events are typically shorter in duration than sources that have been detected two or more times. We offer a simple explanation for this discrepancy base… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11930v3-abstract-full').style.display = 'inline'; document.getElementById('2003.11930v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11930v3-abstract-full" style="display: none;"> It is currently not known if repeating fast radio bursts (FRBs) are fundamentally different from those that have not been seen to repeat. One striking difference between repeaters and apparent non-repeaters in the CHIME sample is that the once-off events are typically shorter in duration than sources that have been detected two or more times. We offer a simple explanation for this discrepancy based on a selection effect due to beamed emission, in which highly-beamed FRBs are less easily observed to repeat, but are abundant enough to detect often as once-off events. The explanation predicts that there is a continuous distribution of burst duration---not a static bimodal one---with a correlation between repetition rate and width. Pulse width and opening angle may be related by relativistic effects in shocks, where short-duration bursts have small solid angles due to a large common Lorentz factor. Alternatively, the relationship could be a geometric effect where narrow beams sweep past the observer more quickly, as with pulsars. Our model has implications for the FRB emission mechanism and energy scale, volumetric event rates, and the application of FRBs to cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11930v3-abstract-full').style.display = 'none'; document.getElementById('2003.11930v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.01399">arXiv:2002.01399</a> <span> [<a href="https://arxiv.org/pdf/2002.01399">pdf</a>, <a href="https://arxiv.org/format/2002.01399">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3009">10.1093/mnras/staa3009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A bright, high rotation-measure FRB that skewers the M33 halo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L+C">L. C. Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">E. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Yogesh Maan</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Attema%2C+J+J">J. J. Attema</a>, <a href="/search/astro-ph?searchtype=author&query=Bast%2C+J+E">J. E. Bast</a>, <a href="/search/astro-ph?searchtype=author&query=Boersma%2C+O+M">O. M. Boersma</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&query=Gardenier%2C+D+W">D. W. Gardenier</a>, <a href="/search/astro-ph?searchtype=author&query=Hargreaves%2C+J+E">J. E. Hargreaves</a>, <a href="/search/astro-ph?searchtype=author&query=Kooistra%2C+E">E. Kooistra</a>, <a href="/search/astro-ph?searchtype=author&query=Pastor-Marazuela%2C+I">I. Pastor-Marazuela</a>, <a href="/search/astro-ph?searchtype=author&query=Schulz%2C+R">R. Schulz</a>, <a href="/search/astro-ph?searchtype=author&query=Sclocco%2C+A">A. Sclocco</a>, <a href="/search/astro-ph?searchtype=author&query=Smits%2C+R">R. Smits</a>, <a href="/search/astro-ph?searchtype=author&query=Straal%2C+S+M">S. M. Straal</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Schuur%2C+D">D. van der Schuur</a>, <a href="/search/astro-ph?searchtype=author&query=Vohl%2C+D">Dany Vohl</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">A. H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.01399v2-abstract-short" style="display: inline;"> We report the detection of a bright fast radio burst, FRB\,191108, with Apertif on the Westerbork Synthesis Radio Telescope (WSRT). The interferometer allows us to localise the FRB to a narrow $5\arcsec\times7\arcmin$ ellipse by employing both multibeam information within the Apertif phased-array feed (PAF) beam pattern, and across different tied-array beams. The resulting sight line passes close… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01399v2-abstract-full').style.display = 'inline'; document.getElementById('2002.01399v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.01399v2-abstract-full" style="display: none;"> We report the detection of a bright fast radio burst, FRB\,191108, with Apertif on the Westerbork Synthesis Radio Telescope (WSRT). The interferometer allows us to localise the FRB to a narrow $5\arcsec\times7\arcmin$ ellipse by employing both multibeam information within the Apertif phased-array feed (PAF) beam pattern, and across different tied-array beams. The resulting sight line passes close to Local Group galaxy M33, with an impact parameter of only 18\,kpc with respect to the core. It also traverses the much larger circumgalactic medium of M31, the Andromeda Galaxy. We find that the shared plasma of the Local Group galaxies could contribute $\sim$10\% of its dispersion measure of 588\,pc\,cm$^{-3}$. FRB\,191108 has a Faraday rotation measure of +474\,$\pm\,3$\,rad\,m$^{-2}$, which is too large to be explained by either the Milky Way or the intergalactic medium. Based on the more moderate RMs of other extragalactic sources that traverse the halo of M33, we conclude that the dense magnetised plasma resides in the host galaxy. The FRB exhibits frequency structure on two scales, one that is consistent with quenched Galactic scintillation and broader spectral structure with $螖谓\approx40$\,MHz. If the latter is due to scattering in the shared M33/M31 CGM, our results constrain the Local Group plasma environment. We found no accompanying persistent radio sources in the Apertif imaging survey data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01399v2-abstract-full').style.display = 'none'; document.getElementById('2002.01399v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06019">arXiv:2001.06019</a> <span> [<a href="https://arxiv.org/pdf/2001.06019">pdf</a>, <a href="https://arxiv.org/format/2001.06019">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833376">10.1051/0004-6361/201833376 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A dispersion excess from pulsar wind nebulae and supernova remnants: Implications for pulsars and FRBs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Straal%2C+S+M">Samayra M. Straal</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06019v1-abstract-short" style="display: inline;"> Young pulsars and the pulsar wind nebulae (PWNe) or supernova remnants (SNRs) that surround them are some of the most dynamic and high-powered environments in our Universe. With the rise of more sensitive observations, the number of pulsar-SNR and PWN associations (hereafter, SNR/PWN) has increased, yet we do not understand to which extent this environment influences the pulsars' impulsive radio s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06019v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06019v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06019v1-abstract-full" style="display: none;"> Young pulsars and the pulsar wind nebulae (PWNe) or supernova remnants (SNRs) that surround them are some of the most dynamic and high-powered environments in our Universe. With the rise of more sensitive observations, the number of pulsar-SNR and PWN associations (hereafter, SNR/PWN) has increased, yet we do not understand to which extent this environment influences the pulsars' impulsive radio signals. We studied the dispersive contribution of SNRs and PWNe on Galactic pulsars, and considered their relevance to fast radio bursts (FRBs) such as FRB 121102. We investigated the dispersion measure (DM) contribution of SNRs and PWNe by comparing the measured DMs of Galactic pulsars in a SNR/PWN to the DM expected only from the intervening interstellar electrons, using the NE2001 model. We find that a two-$蟽$ DM contribution of SNRs and PWNe to the pulsar signal exists, amounting to $21.1 \pm 10.6$ pc cm$^{-3}$. The control sample of pulsars unassociated with a SNR/PWN shows no excess. We model the SNR and PWN electron densities for each young pulsar in our sample and show that these indeed predict an excess of this magnitude. By extrapolating to the kind of fast-spinning, high magnetic field, young pulsars that may power FRBs, we show their SNR and PWN are capable of significantly contributing to the observed DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06019v1-abstract-full').style.display = 'none'; document.getElementById('2001.06019v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 2 tables. Accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 634, A105 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12217">arXiv:1912.12217</a> <span> [<a href="https://arxiv.org/pdf/1912.12217">pdf</a>, <a href="https://arxiv.org/format/1912.12217">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201937422">10.1051/0004-6361/201937422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Repeating fast radio bursts with WSRT/Apertif </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Oostrum%2C+L+C">L. C. Oostrum</a>, <a href="/search/astro-ph?searchtype=author&query=Maan%2C+Y">Y. Maan</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">J. van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">E. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Attema%2C+J+J">J. J. Attema</a>, <a href="/search/astro-ph?searchtype=author&query=Bast%2C+J+E">J. E. Bast</a>, <a href="/search/astro-ph?searchtype=author&query=Gardenier%2C+D+W">D. W. Gardenier</a>, <a href="/search/astro-ph?searchtype=author&query=Hargreaves%2C+J+E">J. E. Hargreaves</a>, <a href="/search/astro-ph?searchtype=author&query=Kooistra%2C+E">E. Kooistra</a>, <a href="/search/astro-ph?searchtype=author&query=van+der+Schuur%2C+D">D. van der Schuur</a>, <a href="/search/astro-ph?searchtype=author&query=Sclocco%2C+A">A. Sclocco</a>, <a href="/search/astro-ph?searchtype=author&query=Smits%2C+R">R. Smits</a>, <a href="/search/astro-ph?searchtype=author&query=Straal%2C+S+M">S. M. Straal</a>, <a href="/search/astro-ph?searchtype=author&query=ter+Veen%2C+S">S. ter Veen</a>, <a href="/search/astro-ph?searchtype=author&query=Vohl%2C+D">D. Vohl</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+E+A+K">E. A. K. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adebahr%2C+B">B. Adebahr</a>, <a href="/search/astro-ph?searchtype=author&query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/astro-ph?searchtype=author&query=Brink%2C+R+H+v+d">R. H. van den Brink</a>, <a href="/search/astro-ph?searchtype=author&query=van+Cappellen%2C+W+A">W. A. van Cappellen</a>, <a href="/search/astro-ph?searchtype=author&query=Coolen%2C+A+H+W+M">A. H. W. M. Coolen</a>, <a href="/search/astro-ph?searchtype=author&query=Damstra%2C+S">S. Damstra</a>, <a href="/search/astro-ph?searchtype=author&query=van+Diepen%2C+G+N+J">G. N. J. van Diepen</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+B+S">B. S. Frank</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12217v2-abstract-short" style="display: inline;"> Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRBs as a population. We aim to detect the first two repeating FRBs: FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and characterise their repeat statisti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12217v2-abstract-full').style.display = 'inline'; document.getElementById('1912.12217v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12217v2-abstract-full" style="display: none;"> Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRBs as a population. We aim to detect the first two repeating FRBs: FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and characterise their repeat statistics. We also want to significantly improve the sky localisation of R2. We use the Westerbork Synthesis Radio Telescope to conduct extensive follow-up of these two repeating FRBs. The new phased-array feed system, Apertif, allows covering the entire sky position uncertainty of R2 with fine spatial resolution in one pointing. We characterise the energy distribution and the clustering of detected R1 bursts. We detected 30 bursts from R1. Our measurements indicate a dispersion measure of 563.5(2) pc cm$^{-3}$, suggesting a significant increase in DM over the past few years. We place an upper limit of 8% on the linear polarisation fraction of the brightest burst. We did not detect any bursts from R2. A single power-law might not fit the R1 burst energy distribution across the full energy range or widely separated detections. Our observations provide improved constraints on the clustering of R1 bursts. Our stringent upper limits on the linear polarisation fraction imply a significant depolarisation, either intrinsic to the emission mechanism or caused by the intervening medium, at 1400 MHz that is not observed at higher frequencies. The non-detection of any bursts from R2 implies either a highly clustered nature of the bursts, a steep spectral index, or a combination of both. Alternatively, R2 has turned off completely, either permanently or for an extended period of time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12217v2-abstract-full').style.display = 'none'; document.getElementById('1912.12217v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, submitted to A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 635, A61 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11228">arXiv:1911.11228</a> <span> [<a href="https://arxiv.org/pdf/1911.11228">pdf</a>, <a href="https://arxiv.org/format/1911.11228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201937065">10.1051/0004-6361/201937065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A LOFAR radio search for single and periodic pulses from M31 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">Joeri van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Mikhailov%2C+K">Klim Mikhailov</a>, <a href="/search/astro-ph?searchtype=author&query=Keane%2C+E">Evan Keane</a>, <a href="/search/astro-ph?searchtype=author&query=Coenen%2C+T">Thijs Coenen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Kondratiev%2C+V">Vlad Kondratiev</a>, <a href="/search/astro-ph?searchtype=author&query=Michilli%2C+D">Daniele Michilli</a>, <a href="/search/astro-ph?searchtype=author&query=Sanidas%2C+S">Sotiris Sanidas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11228v1-abstract-short" style="display: inline;"> Bright, short radio bursts are emitted by sources at a large range of distances: from the nearby Crab pulsar to remote Fast Radio Bursts (FRBs). FRBs are likely to originate from distant neutron stars, but our knowledge of the radio pulsar population has been limited to the Galaxy and the Magellanic Clouds. In an attempt to increase our understanding of extragalactic pulsar populations, and its gi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11228v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11228v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11228v1-abstract-full" style="display: none;"> Bright, short radio bursts are emitted by sources at a large range of distances: from the nearby Crab pulsar to remote Fast Radio Bursts (FRBs). FRBs are likely to originate from distant neutron stars, but our knowledge of the radio pulsar population has been limited to the Galaxy and the Magellanic Clouds. In an attempt to increase our understanding of extragalactic pulsar populations, and its giant-pulse emission, we employed the low-frequency radio telescope LOFAR to search the Andromeda Galaxy (M31) for radio bursts emitted by young, Crab-like pulsars. For direct comparison we also present a LOFAR study on the low-frequency giant pulses from the Crab pulsar; their fluence distribution follows a power law with slope 3.04(3). A number of candidate signals were detected from M31 but none proved persistent. FRBs are sometimes thought of as Crab-like pulsars with exceedingly bright giant pulses -- given our sensitivity, we can rule out that M31 hosts pulsars more than an order of magnitude brighter than the Crab pulsar, assuming their pulse scattering follows that of the known FRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11228v1-abstract-full').style.display = 'none'; document.getElementById('1911.11228v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A. 6 pages with 4 nice figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 634, A3 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08365">arXiv:1910.08365</a> <span> [<a href="https://arxiv.org/pdf/1910.08365">pdf</a>, <a href="https://arxiv.org/format/1910.08365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201936404">10.1051/0004-6361/201936404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesizing the intrinsic FRB population using frbpoppy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gardenier%2C+D+W">D. W. Gardenier</a>, <a href="/search/astro-ph?searchtype=author&query=van+Leeuwen%2C+J">J. van Leeuwen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">E. Petroff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08365v1-abstract-short" style="display: inline;"> Fast Radio Bursts (FRBs) are radio transients of an unknown origin. Naturally, we are curious as to their nature. Enough FRBs have been detected for a statistical approach to parts of this challenge to be feasible. To understand the crucial link between detected FRBs and the underlying FRB source classes we perform FRB population synthesis, to determine how the underlying population behaves. The P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08365v1-abstract-full').style.display = 'inline'; document.getElementById('1910.08365v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08365v1-abstract-full" style="display: none;"> Fast Radio Bursts (FRBs) are radio transients of an unknown origin. Naturally, we are curious as to their nature. Enough FRBs have been detected for a statistical approach to parts of this challenge to be feasible. To understand the crucial link between detected FRBs and the underlying FRB source classes we perform FRB population synthesis, to determine how the underlying population behaves. The Python package we developed for this synthesis, frbpoppy, is open source and freely available. Our goal is to determine the current best fit FRB population model. Our secondary aim is to provide an easy-to-use tool for simulating and understanding FRB detections. It can compare surveys, or inform us of the intrinsic FRB population. frbpoppy simulates intrinsic FRB populations and the surveys that find them, to produce virtual observed populations. These resulting populations can then be compared with real data, allowing constrains to be placed on underlying physics and selection effects. We are able to replicate real Parkes and ASKAP FRB surveys, in terms of both detection rates and distributions observed. We also show the effect of beam patterns on the observed dispersion measure (DM) distributions. We compare four types of source models. The "Complex" model, featuring a range of luminosities, pulse widths and spectral indices, reproduces current detections best. Using frbpoppy, an open-source FRB population synthesis package, we explain current FRB detections and offer a first glimpse of what the true population must be. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08365v1-abstract-full').style.display = 'none'; document.getElementById('1910.08365v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, accepted for publication in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 632, A125 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12559">arXiv:1907.12559</a> <span> [<a href="https://arxiv.org/pdf/1907.12559">pdf</a>, <a href="https://arxiv.org/format/1907.12559">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Packed Ultra-wideband Mapping Array (PUMA): A Radio Telescope for Cosmology and Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Castorina%2C+E">Emanuele Castorina</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Green%2C+D">Daniel Green</a>, <a href="/search/astro-ph?searchtype=author&query=Karagiannis%2C+D">Dionysios Karagiannis</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+A">Adrian Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K+W">Kiyoshi W. Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Meerburg%2C+D">Daan Meerburg</a>, <a href="/search/astro-ph?searchtype=author&query=M%C3%BCnchmeyer%2C+M">Moritz M眉nchmeyer</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L+B">Laura B. Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Ng%2C+C">Cherry Ng</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Connor%2C+P">Paul O'Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Obuljen%2C+A">Andrej Obuljen</a>, <a href="/search/astro-ph?searchtype=author&query=Padmanabhan%2C+H">Hamsa Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&query=Saliwanchik%2C+B">Benjamin Saliwanchik</a>, <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+J+R">J. Richard Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Sheehy%2C+C">Christopher Sheehy</a>, <a href="/search/astro-ph?searchtype=author&query=Stankus%2C+P">Paul Stankus</a>, <a href="/search/astro-ph?searchtype=author&query=Slosar%2C+A">An啪e Slosar</a>, <a href="/search/astro-ph?searchtype=author&query=Stebbins%2C+A">Albert Stebbins</a>, <a href="/search/astro-ph?searchtype=author&query=Timbie%2C+P+T">Peter T. Timbie</a>, <a href="/search/astro-ph?searchtype=author&query=Tyndall%2C+W">William Tyndall</a>, <a href="/search/astro-ph?searchtype=author&query=Villaescusa-Navarro%2C+F">Francisco Villaescusa-Navarro</a>, <a href="/search/astro-ph?searchtype=author&query=Wallisch%2C+B">Benjamin Wallisch</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12559v1-abstract-short" style="display: inline;"> PUMA is a proposal for an ultra-wideband, low-resolution and transit interferometric radio telescope operating at $200-1100\,\mathrm{MHz}$. Its design is driven by six science goals which span three science themes: the physics of dark energy (measuring the expansion history and growth of the universe up to $z=6$), the physics of inflation (constraining primordial non-Gaussianity and primordial fea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12559v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12559v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12559v1-abstract-full" style="display: none;"> PUMA is a proposal for an ultra-wideband, low-resolution and transit interferometric radio telescope operating at $200-1100\,\mathrm{MHz}$. Its design is driven by six science goals which span three science themes: the physics of dark energy (measuring the expansion history and growth of the universe up to $z=6$), the physics of inflation (constraining primordial non-Gaussianity and primordial features) and the transient radio sky (detecting one million fast radio bursts and following up SKA-discovered pulsars). We propose two array configurations composed of hexagonally close-packed 6m dish arrangements with 50% fill factor. The initial 5,000 element 'petite array' is scientifically compelling, and can act as a demonstrator and a stepping stone to the full 32,000 element 'full array'. Viewed as a 21cm intensity mapping telescope, the program has the noise equivalent of a traditional spectroscopic galaxy survey comprised of 0.6 and 2.5 billion galaxies at a comoving wavenumber of $k=0.5\,h\mathrm{Mpc}^{-1}$ spanning the redshift range $z = 0.3 - 6$ for the petite and full configurations, respectively. At redshifts beyond $z=2$, the 21cm technique is a uniquely powerful way of mapping the universe, while the low-redshift range will allow for numerous cross-correlations with existing and upcoming surveys. This program is enabled by the development of ultra-wideband radio feeds, cost-effective dish construction methods, commodity radio-frequency electronics driven by the telecommunication industry and the emergence of sufficient computing power to facilitate real-time signal processing that exploits the full potential of massive radio arrays. The project has an estimated construction cost of 55 and 330 million FY19 USD for the petite and full array configurations. Including R&D, design, operations and science analysis, the cost rises to 125 and 600 million FY19 USD, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12559v1-abstract-full').style.display = 'none'; document.getElementById('1907.12559v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages + references, 3 figures, 3 tables; project white paper submitted to the Astro2020 decadal survey; further details in updated arXiv:1810.09572</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00755">arXiv:1905.00755</a> <span> [<a href="https://arxiv.org/pdf/1905.00755">pdf</a>, <a href="https://arxiv.org/format/1905.00755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1666">10.1093/mnras/stz1666 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interpreting the distributions of FRB observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00755v1-abstract-short" style="display: inline;"> Fast radio bursts (FRBs) are short-duration radio transients of unknown origin. Thus far, they have been blindly detected at millisecond timescales with dispersion measures (DMs) between 110--2600\,pc\,cm$^{-3}$. However, the observed pulse width, DM, and even brightness distributions depend strongly on the time and frequency resolution of the detection instrument. Spectral and temporal resolution… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00755v1-abstract-full').style.display = 'inline'; document.getElementById('1905.00755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00755v1-abstract-full" style="display: none;"> Fast radio bursts (FRBs) are short-duration radio transients of unknown origin. Thus far, they have been blindly detected at millisecond timescales with dispersion measures (DMs) between 110--2600\,pc\,cm$^{-3}$. However, the observed pulse width, DM, and even brightness distributions depend strongly on the time and frequency resolution of the detection instrument. Spectral and temporal resolution also significantly affect FRB detection rates, similar to beam size and system-equivalent flux density (SEFD). I discuss the interplay between underlying FRB properties and instrumental response, and provide a generic formalism for calculating the \textit{observed} distributions of parameters given an intrinsic FRB distribution, focusing on pulse width and DM. I argue that if there exist many FRBs of duration $<<$\,1\,ms (as with giant pulses from Galactic pulsars) or events with high DM, they are being missed due to the deleterious effects of smearing. I outline how to optimise spectral and temporal resolution for FRB surveys that are throughput-limited. I also investigate how such effects may have been imprinted on the distributions of FRBs at real telescopes, like the different observed DMs at ASKAP and Parkes. Finally, I discuss the impact of intrinsic correlations between FRB parameters on detection statistics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00755v1-abstract-full').style.display = 'none'; document.getElementById('1905.00755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.10748">arXiv:1811.10748</a> <span> [<a href="https://arxiv.org/pdf/1811.10748">pdf</a>, <a href="https://arxiv.org/format/1811.10748">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab13ae">10.3847/2041-8213/ab13ae <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FRB 121102 Bursts Show Complex Time-Frequency Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hessels%2C+J+W+T">J. W. T. Hessels</a>, <a href="/search/astro-ph?searchtype=author&query=Spitler%2C+L+G">L. G. Spitler</a>, <a href="/search/astro-ph?searchtype=author&query=Seymour%2C+A+D">A. D. Seymour</a>, <a href="/search/astro-ph?searchtype=author&query=Cordes%2C+J+M">J. M. Cordes</a>, <a href="/search/astro-ph?searchtype=author&query=Michilli%2C+D">D. Michilli</a>, <a href="/search/astro-ph?searchtype=author&query=Lynch%2C+R+S">R. S. Lynch</a>, <a href="/search/astro-ph?searchtype=author&query=Gourdji%2C+K">K. Gourdji</a>, <a href="/search/astro-ph?searchtype=author&query=Archibald%2C+A+M">A. M. Archibald</a>, <a href="/search/astro-ph?searchtype=author&query=Bassa%2C+C+G">C. G. Bassa</a>, <a href="/search/astro-ph?searchtype=author&query=Bower%2C+G+C">G. C. Bower</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+S">S. Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Crawford%2C+F">F. Crawford</a>, <a href="/search/astro-ph?searchtype=author&query=Deneva%2C+J+S">J. S. Deneva</a>, <a href="/search/astro-ph?searchtype=author&query=Gajjar%2C+V">V. Gajjar</a>, <a href="/search/astro-ph?searchtype=author&query=Kaspi%2C+V+M">V. M. Kaspi</a>, <a href="/search/astro-ph?searchtype=author&query=Keimpema%2C+A">A. Keimpema</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Marcote%2C+B">B. Marcote</a>, <a href="/search/astro-ph?searchtype=author&query=McLaughlin%2C+M+A">M. A. McLaughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Paragi%2C+Z">Z. Paragi</a>, <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+E">E. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Ransom%2C+S+M">S. M. Ransom</a>, <a href="/search/astro-ph?searchtype=author&query=Scholz%2C+P">P. Scholz</a>, <a href="/search/astro-ph?searchtype=author&query=Stappers%2C+B+W">B. W. Stappers</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.10748v1-abstract-short" style="display: inline;"> FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1-8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal complex time-frequency structures that include sub-bursts with finite bandwidths. The frequency-dependent burst structure complicates the determination… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10748v1-abstract-full').style.display = 'inline'; document.getElementById('1811.10748v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.10748v1-abstract-full" style="display: none;"> FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1-8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal complex time-frequency structures that include sub-bursts with finite bandwidths. The frequency-dependent burst structure complicates the determination of a dispersion measure (DM); we argue that it is appropriate to use a DM metric that maximizes frequency-averaged pulse structure, as opposed to peak signal-to-noise, and find DM = 560.57 +/- 0.07 pc/cc at MJD 57644. After correcting for dispersive delay, we find that the sub-bursts have characteristic frequencies that typically drift lower at later times in the total burst envelope. In the 1.1-1.7 GHz band, the ~ 0.5-1-ms sub-bursts have typical bandwidths ranging from 100-400 MHz, and a characteristic drift rate of ~ 200 MHz/ms towards lower frequencies. At higher radio frequencies, the sub-burst bandwidths and drift rate are larger, on average. While these features could be intrinsic to the burst emission mechanism, they could also be imparted by propagation effects in the medium local to the source. Comparison of the burst DMs with previous values in the literature suggests an increase of Delta(DM) ~ 1-3 pc/cc in 4 years, though this could be a stochastic variation as opposed to a secular trend. This implies changes in the local medium or an additional source of frequency-dependent delay. Overall, the results are consistent with previously proposed scenarios in which FRB 121102 is embedded in a dense nebula. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10748v1-abstract-full').style.display = 'none'; document.getElementById('1811.10748v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ; comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09572">arXiv:1810.09572</a> <span> [<a href="https://arxiv.org/pdf/1810.09572">pdf</a>, <a href="https://arxiv.org/format/1810.09572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cosmic+Visions+21+cm+Collaboration"> Cosmic Visions 21 cm Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Ansari%2C+R">R茅za Ansari</a>, <a href="/search/astro-ph?searchtype=author&query=Arena%2C+E+J">Evan J. Arena</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Bull%2C+P">Philip Bull</a>, <a href="/search/astro-ph?searchtype=author&query=Castorina%2C+E">Emanuele Castorina</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+T">Tzu-Ching Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+S">Shi-Fan Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Frisch%2C+J">Josef Frisch</a>, <a href="/search/astro-ph?searchtype=author&query=Green%2C+D">Daniel Green</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+M+C">Matthew C. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Karagiannis%2C+D">Dionysios Karagiannis</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+A">Adrian Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K+W">Kiyoshi W. Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Meerburg%2C+P+D">P. Daniel Meerburg</a>, <a href="/search/astro-ph?searchtype=author&query=M%C3%BCnchmeyer%2C+M">Moritz M眉nchmeyer</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L+B">Laura B. Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Obuljen%2C+A">Andrej Obuljen</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Connor%2C+P">Paul O'Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Padmanabhan%2C+H">Hamsa Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+J+R">J. Richard Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Sheehy%2C+C">Christopher Sheehy</a>, <a href="/search/astro-ph?searchtype=author&query=Slosar%2C+A">An啪e Slosar</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09572v3-abstract-short" style="display: inline;"> This white paper envisions a revolutionary post-DESI, post-LSST dark energy program based on intensity mapping of the redshifted 21cm emission line from neutral hydrogen at radio frequencies. The proposed intensity mapping survey has the unique capability to quadruple the volume of the Universe surveyed by optical programs, provide a percent-level measurement of the expansion history to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09572v3-abstract-full').style.display = 'inline'; document.getElementById('1810.09572v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09572v3-abstract-full" style="display: none;"> This white paper envisions a revolutionary post-DESI, post-LSST dark energy program based on intensity mapping of the redshifted 21cm emission line from neutral hydrogen at radio frequencies. The proposed intensity mapping survey has the unique capability to quadruple the volume of the Universe surveyed by optical programs, provide a percent-level measurement of the expansion history to $z \sim 6$, open a window to explore physics beyond the concordance $螞$CDM model, and to significantly improve the precision on standard cosmological parameters. In addition, characterization of dark energy and new physics will be powerfully enhanced by cross-correlations with optical surveys and cosmic microwave background measurements. The rich dataset obtained by the proposed intensity mapping instrument will be simultaneously useful in exploring the time-domain physics of fast radio transients and pulsars, potentially in live "multi-messenger" coincidence with other observatories. The core dark energy/inflation science advances enabled by this program are the following: (i) Measure the expansion history of the universe over $z=0.3-6$ with a single instrument, extending the range deep into the pre-acceleration era, providing an unexplored window for new physics; (ii) Measure the growth rate of structure in the universe over the same redshift range; (iii) Observe, or constrain, the presence of inflationary relics in the primordial power spectrum, improving existing constraints by an order of magnitude; (iv) Observe, or constrain, primordial non-Gaussianity with unprecedented precision, improving constraints on several key numbers by an order of magnitude. Detailed mapping of the enormous, and still largely unexplored, volume of cosmic space will thus provide unprecedented information on fundamental questions of the vacuum energy and early-universe physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09572v3-abstract-full').style.display = 'none'; document.getElementById('1810.09572v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This white-paper was prepared under auspices of the Department of Energy Cosmic Visions Dark Energy program; v1: initial release in Oct 2018; v2: Jul 2019 update: strawman design matches PUMA Decadal Submission, updated forecasting, new figures and science section; v3: fixed reference, missing author in metadata</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Connor%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Connor%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Connor%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>