CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 104 results for author: <span class="mathjax">Sharma, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Sharma%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sharma, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sharma%2C+K&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sharma, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18882">arXiv:2502.18882</a> <span> [<a href="https://arxiv.org/pdf/2502.18882">pdf</a>, <a href="https://arxiv.org/ps/2502.18882">ps</a>, <a href="https://arxiv.org/format/2502.18882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Implications of 蟽-cut potential on Antikaon condensates in neutron stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+P">Prashant Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Kumaran%2C+Y">Yashmitha Kumaran</a>, <a href="/search/astro-ph?searchtype=author&query=Sudarsan%2C+L">Lakshana Sudarsan</a>, <a href="/search/astro-ph?searchtype=author&query=Kunnampully%2C+K">Krishna Kunnampully</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+B+K">B. K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Jha%2C+T+K">T. K. Jha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18882v1-abstract-short" style="display: inline;"> We investigate the properties of neutron stars with antikaon condensation in the framework of the Relativistic Mean-Field (RMF) model with a $蟽$-cut potential. The well-known RMF models, TM1 and TM1e, are used to analyze the structure and composition of neutron stars. The antikaon condensation part of the equation of state (EoS) is constrained from the experimental data of K$^{-}$ atomic and kaon-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18882v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18882v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18882v1-abstract-full" style="display: none;"> We investigate the properties of neutron stars with antikaon condensation in the framework of the Relativistic Mean-Field (RMF) model with a $蟽$-cut potential. The well-known RMF models, TM1 and TM1e, are used to analyze the structure and composition of neutron stars. The antikaon condensation part of the equation of state (EoS) is constrained from the experimental data of K$^{-}$ atomic and kaon-nucleon scattering. The $蟽$-cut potential, which is known to make the EoS stiffer at high densities, is modulated by a free parameter $f_{s}$. Our present analysis suggests that one can obtain neutron star configurations heavier than 2$M_{\odot}$ with antikaon condensates in most cases for $f_{s}$ = 0.6. The antikaon phase transition is a second-order for $f_{s}$ = 0.6 for both TM1 and TM1e parameter sets. The calculated global properties of neutron stars with antikaon condensates i.e., mass and radius seem to be in resonable agreement with other theoretical and observational data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18882v1-abstract-full').style.display = 'none'; document.getElementById('2502.18882v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures Accepted in Physical Review C (PRC) on 25-02-2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01495">arXiv:2501.01495</a> <span> [<a href="https://arxiv.org/pdf/2501.01495">pdf</a>, <a href="https://arxiv.org/format/2501.01495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1794 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01495v1-abstract-short" style="display: inline;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent ana… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01495v1-abstract-full" style="display: none;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'none'; document.getElementById('2501.01495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main paper: 12 pages, 6 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400315 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12323">arXiv:2412.12323</a> <span> [<a href="https://arxiv.org/pdf/2412.12323">pdf</a>, <a href="https://arxiv.org/format/2412.12323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Revolutionizing $f(Q)$ Gravity Studies: Observational Cosmology through Deep Learning and Bayesian Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+L+K">Lokesh Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Parekh%2C+S">Suresh Parekh</a>, <a href="/search/astro-ph?searchtype=author&query=Yadav%2C+A+K">Anil Kumar Yadav</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12323v2-abstract-short" style="display: inline;"> One of the most exciting elements of cosmology is researching the potential of anisotropy in the early cosmos. We examine the expansion of the cosmos over time using an anisotropic Bianchi type-I spacetime subjected to the $f(Q)$ gravity. We do this by limiting the number of cosmological parameters used. The approach, we used is known as CoLFI, which stands for "Estimating Cosmological Parameters… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12323v2-abstract-full').style.display = 'inline'; document.getElementById('2412.12323v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12323v2-abstract-full" style="display: none;"> One of the most exciting elements of cosmology is researching the potential of anisotropy in the early cosmos. We examine the expansion of the cosmos over time using an anisotropic Bianchi type-I spacetime subjected to the $f(Q)$ gravity. We do this by limiting the number of cosmological parameters used. The approach, we used is known as CoLFI, which stands for "Estimating Cosmological Parameters with deep learning." This paper presents a revolutionary deep learning-based technique to the parameter inference. The deep learning methodology clearly outperforms the MCMC method in terms of best-fit values, parameter errors, and correlations between parameters. This is the result of comparing the two different ways. Moreover, we obtained the transition redshift $z_{t} = 0.63$ which leads the transitioning model of the Universe from early deceleration to current acceleration phase. The dynamics of jerk parameter and validation of energy conditions of the model are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12323v2-abstract-full').style.display = 'none'; document.getElementById('2412.12323v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13242">arXiv:2411.13242</a> <span> [<a href="https://arxiv.org/pdf/2411.13242">pdf</a>, <a href="https://arxiv.org/format/2411.13242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Light Curve Properties of Gamma-Ray Burst Associated Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+A">Amit Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kaushal Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13242v1-abstract-short" style="display: inline;"> A rapidly spinning, millisecond magnetar is widely considered one of the most plausible power sources for gamma-ray burst-associated supernovae (GRB-SNe). Recent studies have demonstrated that the magnetar model can effectively explain the bolometric light curves of most GRB-SNe. In this work, we investigate the bolometric light curves of 13 GRB-SNe, focusing on key observational parameters such a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13242v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13242v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13242v1-abstract-full" style="display: none;"> A rapidly spinning, millisecond magnetar is widely considered one of the most plausible power sources for gamma-ray burst-associated supernovae (GRB-SNe). Recent studies have demonstrated that the magnetar model can effectively explain the bolometric light curves of most GRB-SNe. In this work, we investigate the bolometric light curves of 13 GRB-SNe, focusing on key observational parameters such as peak luminosity, rise time, and decay time, estimated using Gaussian Process (GP) regression for light curve fitting. We also apply Principal Component Analysis to all the light curve parameters to reduce the dimensionality of the dataset and visualize the distribution of SNe in lower-dimensional space. Our findings indicate that while most GRB-SNe share common physical characteristics, a few outliers, notably SNe 2010ma and 2011kl, exhibit distinct features. These events suggest potential differences in progenitor properties or explosion mechanisms, offering deeper insight into the diversity of GRB-SNe and their central engines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13242v1-abstract-full').style.display = 'none'; document.getElementById('2411.13242v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures and 1 table. Accepted for publication by World Scientific. Proceeding of my invited talk at the 17th Marcel Grossmann Meeting, Italy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16565">arXiv:2410.16565</a> <span> [<a href="https://arxiv.org/pdf/2410.16565">pdf</a>, <a href="https://arxiv.org/format/2410.16565">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves emitted from SN 2023ixf </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16565v1-abstract-short" style="display: inline;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16565v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16565v1-abstract-full" style="display: none;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'none'; document.getElementById('2410.16565v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400125 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09151">arXiv:2410.09151</a> <span> [<a href="https://arxiv.org/pdf/2410.09151">pdf</a>, <a href="https://arxiv.org/format/2410.09151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09151v1-abstract-short" style="display: inline;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09151v1-abstract-full" style="display: none;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'none'; document.getElementById('2410.09151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages of text including references, 4 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400192 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16964">arXiv:2409.16964</a> <span> [<a href="https://arxiv.org/pdf/2409.16964">pdf</a>, <a href="https://arxiv.org/format/2409.16964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Preferential Occurrence of Fast Radio Bursts in Massive Star-Forming Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M">Myles Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J">Jakob Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J">James Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D">David Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Leja%2C+J">Joel Leja</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+K+K">Kaustav Kashyap Das</a>, <a href="/search/astro-ph?searchtype=author&query=Qin%2C+Y">Yu-Jing Qin</a>, <a href="/search/astro-ph?searchtype=author&query=Rose%2C+S">Sam Rose</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+D+Z">Dillon Z. Dong</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16964v1-abstract-short" style="display: inline;"> Fast Radio Bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favor highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown. Although galactic magnetars are often… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16964v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16964v1-abstract-full" style="display: none;"> Fast Radio Bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favor highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown. Although galactic magnetars are often linked to core-collapse supernovae (CCSNe), it's uncertain what determines which supernovae result in magnetars. The galactic environments of FRB sources can be harnessed to probe their progenitors. Here, we present the stellar population properties of 30 FRB host galaxies discovered by the Deep Synoptic Array. Our analysis shows a significant deficit of low-mass FRB hosts compared to the occurrence of star-formation in the universe, implying that FRBs are a biased tracer of star-formation, preferentially selecting massive star-forming galaxies. This bias may be driven by galaxy metallicity, which is positively correlated with stellar mass. Metal-rich environments may favor the formation of magnetar progenitors through stellar mergers, as higher metallicity stars are less compact and more likely to fill their Roche lobes, leading to unstable mass transfer. Although massive stars do not have convective interiors to generate strong magnetic fields by dynamo, merger remnants are thought to have the requisite internal magnetic-field strengths to result in magnetars. The preferential occurrence of FRBs in massive star-forming galaxies suggests that CCSN of merger remnants preferentially forms magnetars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16964v1-abstract-full').style.display = 'none'; document.getElementById('2409.16964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature. The final version will be published by the journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16952">arXiv:2409.16952</a> <span> [<a href="https://arxiv.org/pdf/2409.16952">pdf</a>, <a href="https://arxiv.org/format/2409.16952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A gas rich cosmic web revealed by partitioning the missing baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J">Jakob Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J">James Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M">Myles Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D">David Woody</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16952v1-abstract-short" style="display: inline;"> Approximately half of the Universe's dark matter resides in collapsed halos; significantly less than half of the baryonic matter (protons and neutrons) remains confined to halos. A small fraction of baryons are in stars and the interstellar medium within galaxies. The lion's share are diffuse (less than $10^{-3}$ cm$^{-3}$) and ionized (neutral fraction less than $10^{-4}$), located in the interga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16952v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16952v1-abstract-full" style="display: none;"> Approximately half of the Universe's dark matter resides in collapsed halos; significantly less than half of the baryonic matter (protons and neutrons) remains confined to halos. A small fraction of baryons are in stars and the interstellar medium within galaxies. The lion's share are diffuse (less than $10^{-3}$ cm$^{-3}$) and ionized (neutral fraction less than $10^{-4}$), located in the intergalactic medium (IGM) and in the halos of galaxy clusters, groups, and galaxies. The quantity and spatial distribution of this diffuse ionized gas is notoriously difficult to measure, but has wide implications for galaxy formation, astrophysical feedback, and precision cosmology. Recently, the dispersion of extragalactic Fast Radio Bursts (FRBs) has been used to measure the total content of cosmic baryons. However, past efforts had modest samples and methods that cannot discriminate between IGM and halo gas, which is critical for studying feedback and for observational cosmology. Here, we present a large cosmological sample of FRB sources localized to their host galaxies. We have robustly partitioned the missing baryons into the IGM, galaxy clusters, and galaxies, providing a late-Universe measurement of the total baryon density of $惟_b h_{70}$=0.049$\pm$0.003. Our results indicate efficient feedback processes that can expel gas from galaxy halos and into the intergalactic medium, agreeing with the enriched cosmic web scenario seen in cosmological simulations. The large diffuse baryon fraction that we have measured disfavours bottom-heavy stellar initial mass functions, which predict a large total stellar density, $惟_*$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16952v1-abstract-full').style.display = 'none'; document.getElementById('2409.16952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15263">arXiv:2409.15263</a> <span> [<a href="https://arxiv.org/pdf/2409.15263">pdf</a>, <a href="https://arxiv.org/format/2409.15263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> The Palomar twilight survey of 'Ayl贸'chaxnim, Atiras, and comets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bolin%2C+B+T">B. T. Bolin</a>, <a href="/search/astro-ph?searchtype=author&query=Masci%2C+F+J">F. J. Masci</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">M. W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Duev%2C+D+A">D. A. Duev</a>, <a href="/search/astro-ph?searchtype=author&query=Ivezi%C4%87%2C+%C5%BD">沤. Ivezi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+R+L">R. L. Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Yoachim%2C+P">P. Yoachim</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">T. Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Bhalerao%2C+V">V. Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&query=Choudhary%2C+H">H. Choudhary</a>, <a href="/search/astro-ph?searchtype=author&query=Contreras%2C+C">C. Contreras</a>, <a href="/search/astro-ph?searchtype=author&query=Cheng%2C+Y+-">Y. -C. Cheng</a>, <a href="/search/astro-ph?searchtype=author&query=Copperwheat%2C+C+M">C. M. Copperwheat</a>, <a href="/search/astro-ph?searchtype=author&query=Deshmukh%2C+K">K. Deshmukh</a>, <a href="/search/astro-ph?searchtype=author&query=Fremling%2C+C">C. Fremling</a>, <a href="/search/astro-ph?searchtype=author&query=Granvik%2C+M">M. Granvik</a>, <a href="/search/astro-ph?searchtype=author&query=Hardegree-Ullman%2C+K+K">K. K. Hardegree-Ullman</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+A+Y+Q">A. Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Jedicke%2C+R">R. Jedicke</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M">M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">H. Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Lin%2C+Z+-">Z. -Y. Lin</a>, <a href="/search/astro-ph?searchtype=author&query=Mahabal%2C+A">A. Mahabal</a>, <a href="/search/astro-ph?searchtype=author&query=Monson%2C+A">A. Monson</a>, <a href="/search/astro-ph?searchtype=author&query=Neill%2C+J+D">J. D. Neill</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15263v1-abstract-short" style="display: inline;"> Near-sun sky twilight observations allow for the detection of asteroid interior to the orbit of Venus (Aylos), the Earth (Atiras), and comets. We present the results of observations with the Palomar 48-inch telescope (P48)/Zwicky Transient Facility (ZTF) camera in 30 s r-band exposures taken during evening astronomical twilight from 2019 Sep 20 to 2022 March 7 and during morning astronomical twili… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15263v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15263v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15263v1-abstract-full" style="display: none;"> Near-sun sky twilight observations allow for the detection of asteroid interior to the orbit of Venus (Aylos), the Earth (Atiras), and comets. We present the results of observations with the Palomar 48-inch telescope (P48)/Zwicky Transient Facility (ZTF) camera in 30 s r-band exposures taken during evening astronomical twilight from 2019 Sep 20 to 2022 March 7 and during morning astronomical twilight sky from 2019 Sep 21 to 2022 Sep 29. More than 46,000 exposures were taken in evening and morning astronomical twilight within 31 to 66 degrees from the Sun with an r-band limiting magnitude between 18.1 and 20.9. The twilight pointings show a slight seasonal dependence in limiting magnitude and ability to point closer towards the Sun, with limiting magnitude slightly improving during summer. In total, the one Aylo, (594913) 'Ayl贸'chaxnim, and 4 Atiras, 2020 OV1, 2021 BS1, 2021 PB2, and 2021 VR3, were discovered in evening and morning twilight observations. Additional twilight survey discoveries also include 6 long-period comets: C/2020 T2, C/2020 V2, C/2021 D2, C/2021 E3, C/2022 E3, and C/2022 P3, and two short-period comets: P/2021 N1 and P/2022 P2 using deep learning comet detection pipelines. The P48/ZTF twilight survey also recovered 11 known Atiras, one Aylo, three short-period comes, two long-period comets, and one interstellar object. Lastly, the Vera Rubin Observatory will conduct a twilight survey starting in its first year of operations and will cover the sky within 45 degrees of the Sun. Twilight surveys such as those by ZTF and future surveys will provide opportunities for discovering asteroids inside the orbits of Earth and Venus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15263v1-abstract-full').style.display = 'none'; document.getElementById('2409.15263v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures, 4 tables, accepted for publication in Icarus</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13866">arXiv:2409.13866</a> <span> [<a href="https://arxiv.org/pdf/2409.13866">pdf</a>, <a href="https://arxiv.org/format/2409.13866">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> ESIGMAHM: An Eccentric, Spinning inspiral-merger-ringdown waveform model with Higher Modes for the detection and characterization of binary black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Paul%2C+K">Kaushik Paul</a>, <a href="/search/astro-ph?searchtype=author&query=Maurya%2C+A">Akash Maurya</a>, <a href="/search/astro-ph?searchtype=author&query=Henry%2C+Q">Quentin Henry</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kartikey Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Satheesh%2C+P">Pranav Satheesh</a>, <a href="/search/astro-ph?searchtype=author&query=Divyajyoti"> Divyajyoti</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+P">Prayush Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Mishra%2C+C+K">Chandra Kant Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13866v1-abstract-short" style="display: inline;"> We present a time-domain inspiral-merger-ringdowm (IMR) waveform model ESIGMAHM constructed within a framework we named ESIGMA for coalescing binaries of spinning black holes on moderately eccentric orbits (Huerta et al. (2018) [Phys. Rev. D 97, 024031]). We now include the effect of black hole spins on the dynamics of eccentric binaries, as well as model sub-dominant waveform harmonics emitted by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13866v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13866v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13866v1-abstract-full" style="display: none;"> We present a time-domain inspiral-merger-ringdowm (IMR) waveform model ESIGMAHM constructed within a framework we named ESIGMA for coalescing binaries of spinning black holes on moderately eccentric orbits (Huerta et al. (2018) [Phys. Rev. D 97, 024031]). We now include the effect of black hole spins on the dynamics of eccentric binaries, as well as model sub-dominant waveform harmonics emitted by them. The inspiral evolution is described by a consistent combination of latest results from post-Newtonian theory, self-force, and black hole perturbation theory. We assume that these moderately eccentric binaries radiate away most of their orbital eccentricity before merger, and seamlessly connect the eccentric inspiral with a numerical relativity based surrogate waveform model for mergers of spinning binaries on quasi-circular orbits. We validate ESIGMAHM against eccentric Numerical Relativity simulations, and also against contemporary effective-one-body and phenomenological models in the quasi-circular limit. We find that ESIGMAHM achieves match values greater than $99\%$ for quasi-circular spin-aligned binaries with mass ratios up to $8$, and above $97\%$ for non-spinning and spinning eccentric systems with small or positively aligned spins. Using IMRESIGMA, we quantify the impact of orbital eccentricity on GW signals, showing that next-generation detectors can detect eccentric sources up to $10\%$ louder than quasi-circular ones. We also show that current templated LIGO-Virgo searches will lose more than $10\%$ of optimal SNR for about $20\%$ of all eccentric sources by using only quasi-circular waveform templates. The same will result in a $25\%$ loss in detection rate for eccentric sources with mass ratios $m_1/m_2\geq 4$. Our results highlight the need for including eccentricity and higher-order modes in GW source models and searches for asymmetric eccentric BBH signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13866v1-abstract-full').style.display = 'none'; document.getElementById('2409.13866v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13144">arXiv:2408.13144</a> <span> [<a href="https://arxiv.org/pdf/2408.13144">pdf</a>, <a href="https://arxiv.org/format/2408.13144">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Constraining binary mergers in AGN disks using the non-observation of lensed gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Leong%2C+S+H+W">Samson H. W. Leong</a>, <a href="/search/astro-ph?searchtype=author&query=Janquart%2C+J">Justin Janquart</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+A+K">Aditya Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Martens%2C+P">Paul Martens</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">Parameswaran Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Hannuksela%2C+O+A">Otto A. Hannuksela</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13144v1-abstract-short" style="display: inline;"> The dense and dynamic environments within active galactic nuclei (AGN) accretion disks may serve as prolific birthplaces for binary black holes (BBHs) and one possible origin for some of the BBHs detected by gravitational-wave (GW) observatories. We show that a considerable fraction of the BBH in AGN disks will be strongly lensed by the central supermassive black hole (SMBH). Thus, the non-observa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13144v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13144v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13144v1-abstract-full" style="display: none;"> The dense and dynamic environments within active galactic nuclei (AGN) accretion disks may serve as prolific birthplaces for binary black holes (BBHs) and one possible origin for some of the BBHs detected by gravitational-wave (GW) observatories. We show that a considerable fraction of the BBH in AGN disks will be strongly lensed by the central supermassive black hole (SMBH). Thus, the non-observation of lensed GW signals can be used to constrain the fraction of BBH binaries residing in AGN disks. The non-detection of lensing with current ${\cal O}(100)$ detections will be sufficient to start placing constraints on the fraction of BBHs living within accretion disks near the SMBH. In the next-generation detectors era, with ${\cal O}(10^5)$ BBH observations and no lensed events, we will be able to rule out most migration traps as dominant birthplaces of BBH mergers; moreover, we will be able to constrain the minimum size of the accretion disk. On the other hand, should AGNs constitute a major formation channel, lensed events from AGNs will become prominent in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13144v1-abstract-full').style.display = 'none'; document.getElementById('2408.13144v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO DCC - P2400346 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04204">arXiv:2408.04204</a> <span> [<a href="https://arxiv.org/pdf/2408.04204">pdf</a>, <a href="https://arxiv.org/format/2408.04204">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Reconciling Early and Late Time Tensions with Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">Mohit K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sami%2C+M">M. Sami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04204v1-abstract-short" style="display: inline;"> We study the possibility of accommodating both early and late-time tensions using a novel reinforcement learning technique. By applying this technique, we aim to optimize the evolution of the Hubble parameter from recombination to the present epoch, addressing both tensions simultaneously. To maximize the goodness of fit, our learning technique achieves a fit that surpasses even the $螞$CDM model.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04204v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04204v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04204v1-abstract-full" style="display: none;"> We study the possibility of accommodating both early and late-time tensions using a novel reinforcement learning technique. By applying this technique, we aim to optimize the evolution of the Hubble parameter from recombination to the present epoch, addressing both tensions simultaneously. To maximize the goodness of fit, our learning technique achieves a fit that surpasses even the $螞$CDM model. Our results demonstrate a tendency to weaken both early and late time tensions in a completely model-independent manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04204v1-abstract-full').style.display = 'none'; document.getElementById('2408.04204v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03780">arXiv:2408.03780</a> <span> [<a href="https://arxiv.org/pdf/2408.03780">pdf</a>, <a href="https://arxiv.org/format/2408.03780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Feasibility of dark matter admixed neutron star based on recent observational constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+P">Prashant Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Malik%2C+T">Tuhin Malik</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+A">Arpan Das</a>, <a href="/search/astro-ph?searchtype=author&query=Jha%2C+T+K">T. K. Jha</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+B+K">B. K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Provid%C3%AAncia%2C+C">Constan莽a Provid锚ncia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03780v1-abstract-short" style="display: inline;"> The equation of state (EOS) for neutron stars is modeled using the Relativistic Mean Field (RMF) approach with a mesonic nonlinear (NL) interaction, a modified sigma cut potential (NL-$蟽$ cut), and the influences of dark matter in the NL (NL DM). Using a Bayesian analysis framework, we evaluate the plausibility and impact of each scenario. Experimental constraints on the general properties of fini… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03780v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03780v1-abstract-full" style="display: none;"> The equation of state (EOS) for neutron stars is modeled using the Relativistic Mean Field (RMF) approach with a mesonic nonlinear (NL) interaction, a modified sigma cut potential (NL-$蟽$ cut), and the influences of dark matter in the NL (NL DM). Using a Bayesian analysis framework, we evaluate the plausibility and impact of each scenario. Experimental constraints on the general properties of finite nuclei and heavy ion collisions, along with astrophysical observational data on neutron star radii and tidal deformation, have been taken into account. It was shown that all models, including the PREX-II data, were less favored, indicating that this experimental data seemed to be in tension with the other constraints included in the inference procedure, and were incompatible with chiral effective field theoretical calculations of pure neutron matter. Considering the models with no PREX-II constraints, we find the model NL-$蟽$ cut with the largest Bayes evidence, indicating that the constraints considered favor the stiffening of the EOS at large densities. Conversely, the neutron star with a dark matter component is the least favorable case in light of recent observational constraints, among different scenarios considered here. The $f$ and $p$ modes were calculated within the Cowling approximation, and it can be seen that $f$ modes are sensitive to the EOS. An analysis of the slopes of the mass-radius curves and $f$-mode mass curves has indicated that these quantities may help distinguish the different scenarios.We also analyzed the impact of new PSR J0437-4715 measurements on neutron star mass-radius estimates, noting a $\sim$ 0.2 km reduction in the 90\% CI upper boundary across all models and a significant Bayes evidence decrease, indicating potential conflicts with previous data or the necessity for more adaptable models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03780v1-abstract-full').style.display = 'none'; document.getElementById('2408.03780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures and 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12867">arXiv:2407.12867</a> <span> [<a href="https://arxiv.org/pdf/2407.12867">pdf</a>, <a href="https://arxiv.org/format/2407.12867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/astro-ph?searchtype=author&query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/astro-ph?searchtype=author&query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/astro-ph?searchtype=author&query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/astro-ph?searchtype=author&query=Campana%2C+S">Sergio Campana</a>, <a href="/search/astro-ph?searchtype=author&query=Cusumano%2C+G">Giancarlo Cusumano</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ai%2C+A">Antonino D'Ai</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Avanzo%2C+P">Paolo D'Avanzo</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Elia%2C+V">Valerio D'Elia</a>, <a href="/search/astro-ph?searchtype=author&query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+P">Phil Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Kuin%2C+P">Paul Kuin</a>, <a href="/search/astro-ph?searchtype=author&query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Brien%2C+P">Paul O'Brien</a>, <a href="/search/astro-ph?searchtype=author&query=Osborne%2C+J+P">Julian P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+K">Kim Page</a>, <a href="/search/astro-ph?searchtype=author&query=Palmer%2C+D+M">David M. Palmer</a>, <a href="/search/astro-ph?searchtype=author&query=Sbarufatti%2C+B">Boris Sbarufatti</a>, <a href="/search/astro-ph?searchtype=author&query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a> , et al. (1797 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12867v1-abstract-short" style="display: inline;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12867v1-abstract-full" style="display: none;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'none'; document.getElementById('2407.12867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14182">arXiv:2405.14182</a> <span> [<a href="https://arxiv.org/pdf/2405.14182">pdf</a>, <a href="https://arxiv.org/format/2405.14182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A Heavily Scattered Fast Radio Burst Is Viewed Through Multiple Galaxy Halos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14182v1-abstract-short" style="display: inline;"> We present a multi-wavelength study of the apparently non-repeating, heavily scattered fast radio burst, FRB 20221219A, detected by the Deep Synoptic Array 110 (DSA-110). The burst exhibits a moderate dispersion measure (DM) of $706.7^{+0.6}_{-0.6}$ $\mathrm{pc}~\mathrm{cm}^{-3}$ and an unusually high scattering timescale of $蟿_{\mathrm{obs}} = 19.2_{-2.7}^{+2.7}$ ms at 1.4 GHz. We associate the F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14182v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14182v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14182v1-abstract-full" style="display: none;"> We present a multi-wavelength study of the apparently non-repeating, heavily scattered fast radio burst, FRB 20221219A, detected by the Deep Synoptic Array 110 (DSA-110). The burst exhibits a moderate dispersion measure (DM) of $706.7^{+0.6}_{-0.6}$ $\mathrm{pc}~\mathrm{cm}^{-3}$ and an unusually high scattering timescale of $蟿_{\mathrm{obs}} = 19.2_{-2.7}^{+2.7}$ ms at 1.4 GHz. We associate the FRB with a Milky Way-like host galaxy at $z_{\mathrm{host}} = 0.554$ of stellar mass $\mathrm{log}_{10}(M_{\star, \mathrm{host}}) = 10.20^{+0.04}_{-0.03} ~M_\odot$. We identify two intervening galaxy halos at redshifts $z_{\mathrm{igh1}} = 0.492$ and $z_{\mathrm{igh2}} = 0.438$, with low impact parameters, $b_{\mathrm{igh1}} = 43.0_{-11.3}^{+11.3}$ kpc and $b_{\mathrm{igh2}} = 36.1_{-11.3}^{+11.3}$ kpc, and intermediate stellar masses, $\mathrm{log}_{10}(M_{\star, \mathrm{igh1}}) = 10.01^{+0.02}_{-0.02} ~M_\odot$ and $\mathrm{log}_{10}(M_{\star, \mathrm{igh2}}) = 10.60^{+0.02}_{-0.02} ~M_\odot$. The presence of two such galaxies suggests that the sightline is significantly overcrowded compared to the median sightline to this redshift, as inferred from the halo mass function. We perform a detailed analysis of the sightline toward FRB 20221219A, constructing both DM and scattering budgets. Our results suggest that, unlike most well-localized sources, the host galaxy does not dominate the observed scattering. Instead, we posit that an intersection with a single partially ionized cloudlet in the circumgalactic medium of an intervening galaxy could account for the substantial scattering in FRB 20221219A and remain in agreement with typical electron densities inferred for extra-planar dense cloud-like structures in the Galactic and extragalactic halos (e.g., high-velocity clouds). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14182v1-abstract-full').style.display = 'none'; document.getElementById('2405.14182v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures, submitted to ApJ, comments appreciated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05397">arXiv:2405.05397</a> <span> [<a href="https://arxiv.org/pdf/2405.05397">pdf</a>, <a href="https://arxiv.org/format/2405.05397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> From Young Massive Clusters to Old Globular Clusters: Density Profile Evolution and IMBH Formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kuldeep Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Rodriguez%2C+C+L">Carl L. Rodriguez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05397v1-abstract-short" style="display: inline;"> The surface brightness profiles of globular clusters are conventionally described with the well-known King profile. However, observations of young massive clusters (YMCs) in the local Universe suggest that they are better fit by simple models with flat central cores and simple power-law densities in their outer regions (such as the Elson-Fall-Freeman, or EFF, profile). Depending on their initial c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05397v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05397v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05397v1-abstract-full" style="display: none;"> The surface brightness profiles of globular clusters are conventionally described with the well-known King profile. However, observations of young massive clusters (YMCs) in the local Universe suggest that they are better fit by simple models with flat central cores and simple power-law densities in their outer regions (such as the Elson-Fall-Freeman, or EFF, profile). Depending on their initial central density, these YMCs may also facilitate large numbers of stellar collisions, potentially creating very massive stars that will directly collapse to intermediate-mass black holes (IMBHs). Using Monte Carlo $N$-body models of YMCs, we show that EFF-profile clusters transform to Wilson or King profiles through natural dynamical evolution, but that their final $W_0$ parameters do not strongly correlate to their initial concentrations. The most centrally-dense YMCs can produce runaway stellar mergers as massive as $4000\,M_{\odot}$ (the largest resolved mass in our simulations) which can collapse to produce IMBHs of similar masses. In doing so, these runaway collisions also deplete the clusters of their primordial massive stars, reducing the number of stellar-mass BHs by as much as $\sim$ 40\%. This depletion will accelerate the core collapse of clusters, suggesting that the process of IMBH formation itself may produce the high densities observed in some core-collapsed clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05397v1-abstract-full').style.display = 'none'; document.getElementById('2405.05397v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05135">arXiv:2404.05135</a> <span> [<a href="https://arxiv.org/pdf/2404.05135">pdf</a>, <a href="https://arxiv.org/format/2404.05135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1289">10.1093/mnras/stae1289 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for Magnetar Binaries Disrupted by Core-Collapse Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05135v3-abstract-short" style="display: inline;"> Core-collapse Supernovae (CCSNe) are considered the primary magnetar formation channel, with 15 magnetars associated with supernova remnants (SNRs). A large fraction of these should occur in massive stellar binaries that are disrupted by the explosion, meaning that $\sim45\%$ of magnetars should be nearby high-velocity stars. Here we conduct a multi-wavelength search for unbound stars, magnetar bi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05135v3-abstract-full').style.display = 'inline'; document.getElementById('2404.05135v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05135v3-abstract-full" style="display: none;"> Core-collapse Supernovae (CCSNe) are considered the primary magnetar formation channel, with 15 magnetars associated with supernova remnants (SNRs). A large fraction of these should occur in massive stellar binaries that are disrupted by the explosion, meaning that $\sim45\%$ of magnetars should be nearby high-velocity stars. Here we conduct a multi-wavelength search for unbound stars, magnetar binaries, and SNR shells using public optical ($uvgrizy-$bands), infrared ($J-$, $H-$, $K-$, and $K_s-$bands), and radio ($888$ MHz, $1.4$ GHz, and $3$ GHz) catalogs. We use Monte Carlo analyses of candidates to estimate the probability of association with a given magnetar based on their proximity, distance, proper motion, and magnitude. In addition to recovering a proposed magnetar binary, a proposed unbound binary, and 13 of 15 magnetar SNRs, we identify two new candidate unbound systems: an OB star from the Gaia catalog we associate with SGR J1822.3-1606, and an X-ray pulsar we associate with 3XMM J185246.6+003317. Using a Markov-Chain Monte Carlo simulation that assumes all magnetars descend from CCSNe, we constrain the fraction of magnetars with unbound companions to $5\lesssim f_u \lesssim 24\%$, which disagrees with neutron star population synthesis results. Alternate formation channels are unlikely to wholly account for the lack of unbound binaries as this would require $31\lesssim f_{nc} \lesssim 66\%$ of magnetars to descend from such channels. Our results support a high fraction ($48\lesssim f_m \lesssim 86\%$) of pre-CCSN mergers, which can amplify fossil magnetic fields to preferentially form magnetars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05135v3-abstract-full').style.display = 'none'; document.getElementById('2404.05135v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 8 figures, 5 tables, minor errata accepted to MNRAS (10.1093/mnras/stae2124) correcting the position errors for 1E1547, AXJ1818, AXJ1845 and truncated UKIDSS query; no changes to conclusions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04248">arXiv:2404.04248</a> <span> [<a href="https://arxiv.org/pdf/2404.04248">pdf</a>, <a href="https://arxiv.org/format/2404.04248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad5beb">10.3847/2041-8213/ad5beb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Ak%C3%A7ay%2C+S">S. Ak莽ay</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a> , et al. (1771 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04248v3-abstract-short" style="display: inline;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the so… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'inline'; document.getElementById('2404.04248v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04248v3-abstract-full" style="display: none;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than $5~M_\odot$ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of $55^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1}$ for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'none'; document.getElementById('2404.04248v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages (10 pages author list, 13 pages main text, 1 page acknowledgements, 13 pages appendices, 8 pages bibliography), 17 figures, 16 tables. Update to match version published in The Astrophysical Journal Letters. Data products available from https://zenodo.org/records/10845779</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300352 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 970, L34 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18076">arXiv:2403.18076</a> <span> [<a href="https://arxiv.org/pdf/2403.18076">pdf</a>, <a href="https://arxiv.org/format/2403.18076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Magnetars as Powering Sources of Gamma-Ray Burst Associated Supernovae, and Unsupervised Clustering of Cosmic Explosions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+A">Amit Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kaushal Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Vink%C3%B3%2C+J">Jozsef Vink贸</a>, <a href="/search/astro-ph?searchtype=author&query=Steeghs%2C+D">Danny Steeghs</a>, <a href="/search/astro-ph?searchtype=author&query=Gompertz%2C+B">Benjamin Gompertz</a>, <a href="/search/astro-ph?searchtype=author&query=Lyman%2C+J">Joseph Lyman</a>, <a href="/search/astro-ph?searchtype=author&query=Dastidar%2C+R">Raya Dastidar</a>, <a href="/search/astro-ph?searchtype=author&query=Singh%2C+A">Avinash Singh</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">Kendall Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Pursiainen%2C+M">Miika Pursiainen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18076v1-abstract-short" style="display: inline;"> We present the semi-analytical light curve modelling of 13 supernovae associated with gamma-ray bursts (GRB-SNe) along with two relativistic broad-lined (Ic-BL) SNe without GRBs association (SNe 2009bb and 2012ap), considering millisecond magnetars as central-engine-based power sources for these events. The bolometric light curves of all 15 SNe in our sample are well-regenerated utilising a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18076v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18076v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18076v1-abstract-full" style="display: none;"> We present the semi-analytical light curve modelling of 13 supernovae associated with gamma-ray bursts (GRB-SNe) along with two relativistic broad-lined (Ic-BL) SNe without GRBs association (SNe 2009bb and 2012ap), considering millisecond magnetars as central-engine-based power sources for these events. The bolometric light curves of all 15 SNe in our sample are well-regenerated utilising a $蠂^2-$minimisation code, $\texttt{MINIM}$, and numerous parameters are constrained. The median values of ejecta mass ($M_{\textrm{ej}}$), magnetar's initial spin period ($P_\textrm{i}$) and magnetic field ($B$) for GRB-SNe are determined to be $\approx$ 5.2 M$_\odot$, 20.5 ms and 20.1 $\times$ 10$^{14}$ G, respectively. We leverage machine learning (ML) algorithms to comprehensively compare the 3-dimensional parameter space encompassing $M_{\textrm{ej}}$, $P_\textrm{i}$, and $B$ for GRB-SNe determined herein to those of H-deficient superluminous SNe (SLSNe-I), fast blue optical transients (FBOTs), long GRBs (LGRBs), and short GRBs (SGRBs) obtained from the literature. The application of unsupervised ML clustering algorithms on the parameters $M_{\textrm{ej}}$, $P_\textrm{i}$, and $B$ for GRB-SNe, SLSNe-I, and FBOTs yields a classification accuracy of $\sim$95%. Extending these methods to classify GRB-SNe, SLSNe-I, LGRBs, and SGRBs based on $P_\textrm{i}$ and $B$ values results in an accuracy of $\sim$84%. Our investigations show that GRB-SNe and relativistic Ic-BL SNe presented in this study occupy different parameter spaces for $M_{\textrm{ej}}$, $P_\textrm{i}$, and $B$ than those of SLSNe-I, FBOTs, LGRBs and SGRBs. This indicates that magnetars with different $P_\textrm{i}$ and $B$ can give birth to distinct types of transients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18076v1-abstract-full').style.display = 'none'; document.getElementById('2403.18076v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, and 3 tables (including appendix). Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03004">arXiv:2403.03004</a> <span> [<a href="https://arxiv.org/pdf/2403.03004">pdf</a>, <a href="https://arxiv.org/format/2403.03004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight vector dark matter search using data from the KAGRA O3GK run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a> , et al. (1778 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03004v1-abstract-short" style="display: inline;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03004v1-abstract-full" style="display: none;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'none'; document.getElementById('2403.03004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00502">arXiv:2403.00502</a> <span> [<a href="https://arxiv.org/pdf/2403.00502">pdf</a>, <a href="https://arxiv.org/format/2403.00502">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad583f">10.3847/1538-4357/ad583f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the abundance of spinning deformed Galactic compact objects with continuous gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Prabhu%2C+G">Gopalkrishna Prabhu</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+A+K">Aditya Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Prasad%2C+R">R. Prasad</a>, <a href="/search/astro-ph?searchtype=author&query=Kapadia%2C+S+J">Shasvath J. Kapadia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00502v3-abstract-short" style="display: inline;"> Galactic spinning compact objects (COs) with non-zero ellipticity are expected to be sources of continuous gravitational waves (CGWs). Certain classes of hypothetical COs, such as neutron stars with quark cores (hybrid stars), and quark stars, are thought to be capable of sustaining large ellipticities from theoretical considerations. Such exotic COs (eCOs) with large ellipticities should produce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00502v3-abstract-full').style.display = 'inline'; document.getElementById('2403.00502v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00502v3-abstract-full" style="display: none;"> Galactic spinning compact objects (COs) with non-zero ellipticity are expected to be sources of continuous gravitational waves (CGWs). Certain classes of hypothetical COs, such as neutron stars with quark cores (hybrid stars), and quark stars, are thought to be capable of sustaining large ellipticities from theoretical considerations. Such exotic COs (eCOs) with large ellipticities should produce CGWs detectable by the current LIGO-Virgo-Kagra GW detector network. Since no detections for CGWs, from searches in LIGO-Virgo data, have so far been reported, we place constraints on the abundance of highly elliptical eCOs in our Galaxy. We formulate a Bayesian framework to place upper limits on the number count $N_{tot}$ of highly deformed Galactic eCOs. We divide our constraints into two classes: an "agnostic" set of upper limits on $N_{tot}$ evaluated on a CGW frequency and ellipticity grid that depend only on the choice of spatial distribution of COs; and a model-dependent set that additionally assumes prior information on the distribution of frequencies. We find that COs with ellipticities $蔚\gtrsim 10^{-5}$ have abundance upper limits at $90\%$ confidence, of $N_{tot}^{90\%} \lesssim 100$, and those with $蔚\gtrsim 10^{-6}$ have $N_{tot}^{90\%} \lesssim 10^4$. We additionally place upper-limits on the ellipticity of Galactic COs informed by our choices of spatial distributions, given different abundances $N_{tot}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00502v3-abstract-full').style.display = 'none'; document.getElementById('2403.00502v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 971 135 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13596">arXiv:2402.13596</a> <span> [<a href="https://arxiv.org/pdf/2402.13596">pdf</a>, <a href="https://arxiv.org/format/2402.13596">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Constraining anisotropic universe under $f(R,T)$ theory of gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+L+K">Lokesh Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Parekh%2C+S">Suresh Parekh</a>, <a href="/search/astro-ph?searchtype=author&query=Ray%2C+S">Saibal Ray</a>, <a href="/search/astro-ph?searchtype=author&query=Yadav%2C+A+K">Anil Kumar Yadav</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13596v2-abstract-short" style="display: inline;"> We try to find the possibility of a Bianchi V universe in the modified gravitational field theory of $f(R,T)$. We have considered a Lagrangian model in the connection between the trace of the energy-momentum tensor $T$ and the Ricci scalar $R$. In order to solve the field equations a power law for the scaling factor was also considered. To make a comparison of the model parameters with the observa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13596v2-abstract-full').style.display = 'inline'; document.getElementById('2402.13596v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13596v2-abstract-full" style="display: none;"> We try to find the possibility of a Bianchi V universe in the modified gravitational field theory of $f(R,T)$. We have considered a Lagrangian model in the connection between the trace of the energy-momentum tensor $T$ and the Ricci scalar $R$. In order to solve the field equations a power law for the scaling factor was also considered. To make a comparison of the model parameters with the observational data, we put constraints on the model under the datasets of the Hubble parameter, Baryon Acoustic Oscillations, Pantheon, joint datasets of Hubble parameter + Pantheon, and collective datasets of the Hubble parameter + Baryon Acoustic Oscillations + Pantheon. The outcomes for the Hubble parameter in the present epoch are reasonably acceptable, especially since our estimation of this $H_0$ is remarkably consistent with various recent Planck Collaboration studies that utilize the $螞$-CDM model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13596v2-abstract-full').style.display = 'none'; document.getElementById('2402.13596v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11142">arXiv:2401.11142</a> <span> [<a href="https://arxiv.org/pdf/2401.11142">pdf</a>, <a href="https://arxiv.org/format/2401.11142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Generic Predictions for Primordial Perturbations and their implications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">Mohit K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sami%2C+M">M. Sami</a>, <a href="/search/astro-ph?searchtype=author&query=Mota%2C+D+F">David F. Mota</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11142v2-abstract-short" style="display: inline;"> We introduce a novel framework for studying small-scale primordial perturbations and their cosmological implications. The framework uses a deep reinforcement learning to generate scalar power spectrum profiles that are consistent with current observational constraints. The framework is shown to predict the abundance of primordial black holes and the production of secondary induced gravitational wa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11142v2-abstract-full').style.display = 'inline'; document.getElementById('2401.11142v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11142v2-abstract-full" style="display: none;"> We introduce a novel framework for studying small-scale primordial perturbations and their cosmological implications. The framework uses a deep reinforcement learning to generate scalar power spectrum profiles that are consistent with current observational constraints. The framework is shown to predict the abundance of primordial black holes and the production of secondary induced gravitational waves. We demonstrate that the set up under consideration is capable of generating predictions that are beyond the traditional model-based approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11142v2-abstract-full').style.display = 'none'; document.getElementById('2401.11142v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for Publication in Physics Letters B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18665">arXiv:2310.18665</a> <span> [<a href="https://arxiv.org/pdf/2310.18665">pdf</a>, <a href="https://arxiv.org/format/2310.18665">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A power law solution for FRLW Universe with observational constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+L+K">Lokesh Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Parekh%2C+S">Suresh Parekh</a>, <a href="/search/astro-ph?searchtype=author&query=Maurya%2C+S">Sanjay Maurya</a>, <a href="/search/astro-ph?searchtype=author&query=Singh%2C+K">Kuldeep Singh</a>, <a href="/search/astro-ph?searchtype=author&query=Ray%2C+S">Saibal Ray</a>, <a href="/search/astro-ph?searchtype=author&query=Mehta%2C+K+C+K">Kalyani C. K. Mehta</a>, <a href="/search/astro-ph?searchtype=author&query=Trivedi%2C+V">Vaibhav Trivedi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18665v1-abstract-short" style="display: inline;"> This paper examines a power law solution under $f(R,T)$ gravity for an isotropic and homogeneous universe by considering its functional form as $f(R,T) = R + 尉RT$, where $尉$ is a positive constant. In $f(R,T)$ gravity, we have built the field equation for homogeneous and isotropic spacetime. The developed model's solution is $a = 伪t^尾$. We have used the redshift in the range $0 \leq z \leq 1.965$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18665v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18665v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18665v1-abstract-full" style="display: none;"> This paper examines a power law solution under $f(R,T)$ gravity for an isotropic and homogeneous universe by considering its functional form as $f(R,T) = R + 尉RT$, where $尉$ is a positive constant. In $f(R,T)$ gravity, we have built the field equation for homogeneous and isotropic spacetime. The developed model's solution is $a = 伪t^尾$. We have used the redshift in the range $0 \leq z \leq 1.965$ and obtained the model parameters $伪$, $尾$, $H_0$ by using the Markov Chain Monte Carlo (MCMC) method. The constrained values of the model parameter are as follows: $H_0 = 67.098^{+2.148}_{-1.792}$ km s$^{-1}$ Mpc$^{-1}$, $H_0 = 67.588^{+2.229}_{-2.170}$ km s$^{-1}$ Mpc$^{-1}$, $H_0 = 66.270^{+2.215}_{-2.181}$ km s$^{-1}$ Mpc$^{-1}$, $H_0 = 65.960^{+2.380}_{-1.834}$ km s$^{-1}$ Mpc$^{-1}$, $H_0 = 66.274^{+2.015}_{-1.864}$ km s$^{-1}$ Mpc$^{-1}$ which have been achieved by bounding the model with the Hubble parameter ($H(z)$) dataset, Baryon Acoustic Oscillations (BAO) dataset, Pantheon dataset, joint $H(z)$ + Pantheon dataset and collective $H(z)$ + BAO + Pantheon dataset, respectively. These computed $H_o$ observational values agree well with the outcomes from the Plank collaboration group. Through an analysis of the energy conditions' behaviour on our obtained solution, the model has been examined and analysed. Using the Om diagnostic as the state finder diagnostic tool and the jerk parameter, we have also investigated the model's validity. Our results show that, within a certain range of restrictions, the proposed model agrees with the observed signatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18665v1-abstract-full').style.display = 'none'; document.getElementById('2310.18665v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14397">arXiv:2310.14397</a> <span> [<a href="https://arxiv.org/pdf/2310.14397">pdf</a>, <a href="https://arxiv.org/format/2310.14397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the Ordinary Broad-lined Type Ic SN 2023pel from the Energetic GRB 230812B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Connor%2C+B+M">Brendan M. O'Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Antier%2C+S">Sarah Antier</a>, <a href="/search/astro-ph?searchtype=author&query=Guessoum%2C+N">Nidhal Guessoum</a>, <a href="/search/astro-ph?searchtype=author&query=Hussenot-Desenonges%2C+T">Thomas Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&query=Hello%2C+P">Patrice Hello</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Hammerstein%2C+E">Erica Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+M+C">M. Coleman Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&query=Dutta%2C+A">Anirban Dutta</a>, <a href="/search/astro-ph?searchtype=author&query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&query=Jaodand%2C+A+D">Amruta D. Jaodand</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14397v2-abstract-short" style="display: inline;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 230812B, and its associated supernova (SN) SN 2023pel. The proximity ($z = 0.36$) and high energy ($E_{纬, \rm{iso}} \sim 10^{53}$ erg) make it an important event to study as a probe of the connection between massive star core-collapse and relativistic jet formation. With a phenomenological power-law model for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14397v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14397v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14397v2-abstract-full" style="display: none;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 230812B, and its associated supernova (SN) SN 2023pel. The proximity ($z = 0.36$) and high energy ($E_{纬, \rm{iso}} \sim 10^{53}$ erg) make it an important event to study as a probe of the connection between massive star core-collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peak $r$-band magnitude of $M_r = -19.46 \pm 0.18$ mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN of $M_{\rm{Ni}} = 0.38 \pm 0.01$ $\rm{M_\odot}$, and a peak bolometric luminosity of $L_{\rm{bol}} \sim 1.3 \times 10^{43}$ $\rm{erg}$ $\rm{s^{-1}}$. We confirm SN 2023pel's classification as a broad-lined Type Ic SN with a spectrum taken 15.5 days after its peak in $r$ band, and derive a photospheric expansion velocity of $v_{\rm{ph}} = 11,300 \pm 1,600$ $\rm{km}$ $\rm{s^{-1}}$ at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta mass $M_{\rm{ej}} = 1.0 \pm 0.6$ $\rm{M_\odot}$ and kinetic energy $E_{\rm{KE}} = 1.3^{+3.3}_{-1.2} \times10^{51}$ $\rm{erg}$. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness and $E_{纬, \rm{iso}}$ for their associated GRBs, across a broad range of 7 orders of magnitude, provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14397v2-abstract-full').style.display = 'none'; document.getElementById('2310.14397v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 Figures, 1 Table, Accepted to ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00401">arXiv:2309.00401</a> <span> [<a href="https://arxiv.org/pdf/2309.00401">pdf</a>, <a href="https://arxiv.org/format/2309.00401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Early Dark Energy beyond slow-roll: implications for cosmic tensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+R+K">Ravi Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+S">Subinoy Das</a>, <a href="/search/astro-ph?searchtype=author&query=Poulin%2C+V">Vivian Poulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00401v1-abstract-short" style="display: inline;"> In this work, we explore the possibility that Early Dark Energy (EDE) is dynamical in nature and study its effect on cosmological observables. We introduce a parameterization of the equation of state allowing for an equation of state $w$ differing considerably from cosmological constant (cc, $w={-1}$) and vary both the initial $w_i$ as well final $w_f$ equation of state of the EDE fluid. This idea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00401v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00401v1-abstract-full" style="display: none;"> In this work, we explore the possibility that Early Dark Energy (EDE) is dynamical in nature and study its effect on cosmological observables. We introduce a parameterization of the equation of state allowing for an equation of state $w$ differing considerably from cosmological constant (cc, $w={-1}$) and vary both the initial $w_i$ as well final $w_f$ equation of state of the EDE fluid. This idea is motivated by the fact that in many models of EDE, the scalar field may have some kinetic energy when it starts to behave like EDE before the CMB decoupling. We find that the present data have a mild preference for non-cc early dark energy $( w_i= -0.78)$ using Planck+BAO+Pantheon+S$H_0$ES data sets, leading to $螖蠂^2_{\rm min}$ improvement of -2.5 at the expense of one more parameter. However, $w_i$ is only weakly constrained, with $w_i < -0.56$ at $1蟽$. We argue that allowing for $w_i\neq -1$ can play a role in decreasing the $蟽_8$ parameter. Yet, in practice the decrease is only $\sim0.4蟽$ and $蟽_8$ is still larger than weak lensing measurements. We conclude that while promising, a dynamical EDE cannot resolve both $H_0$ and $蟽_8$ tensions simultaneously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00401v1-abstract-full').style.display = 'none'; document.getElementById('2309.00401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures, Comments are most welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06816">arXiv:2308.06816</a> <span> [<a href="https://arxiv.org/pdf/2308.06816">pdf</a>, <a href="https://arxiv.org/format/2308.06816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad0380">10.3847/2041-8213/ad0380 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array Science: Implications of Faraday Rotation Measures of Localized Fast Radio Bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06816v2-abstract-short" style="display: inline;"> Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of ten as yet non-repeating FRBs detected and localized to host galaxies by the 110-antenna Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06816v2-abstract-full').style.display = 'inline'; document.getElementById('2308.06816v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06816v2-abstract-full" style="display: none;"> Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of ten as yet non-repeating FRBs detected and localized to host galaxies by the 110-antenna Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet non-repeating FRBs show a correlation between the host-DM and host-RM in the rest frame, and we find an anti-correlation between extragalactic RM (in the observer frame) and redshift for non-repeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circum-burst medium in some repeating FRBs, and the intra-cluster medium (ICM) of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths, $\bar{B}_{||}$, are characteristically larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06816v2-abstract-full').style.display = 'none'; document.getElementById('2308.06816v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures, 1 table ; added references to section 1, 2, and 3; added a paragraph in Section 3 to discuss simulations addressing interplay of local and ISM magnetic field; added bar to B|| to indicate average over line of sight</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06813">arXiv:2308.06813</a> <span> [<a href="https://arxiv.org/pdf/2308.06813">pdf</a>, <a href="https://arxiv.org/format/2308.06813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad275e">10.3847/1538-4357/ad275e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array Science: Polarimetry of 25 New Fast Radio Bursts Provides Insights into their Origins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06813v3-abstract-short" style="display: inline;"> We report on a full-polarization analysis of the first 25 as yet non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data-reduction, calibration, and analysis procedures developed for this novel instrument. Faraday rotation measures (RMs) are searched between $\pm10^6$ rad m$^{-2}$ and detected for 20… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06813v3-abstract-full').style.display = 'inline'; document.getElementById('2308.06813v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06813v3-abstract-full" style="display: none;"> We report on a full-polarization analysis of the first 25 as yet non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data-reduction, calibration, and analysis procedures developed for this novel instrument. Faraday rotation measures (RMs) are searched between $\pm10^6$ rad m$^{-2}$ and detected for 20 FRBs with magnitudes ranging from $4-4670$ rad m$^{-2}$. $15/25$ FRBs are consistent with 100% polarization, 10 of which have high ($\ge70\%$) linear-polarization fractions and 2 of which have high ($\ge30\%$) circular-polarization fractions. Our results disfavor multipath RM scattering as a dominant depolarization mechanism. Polarization-state and possible RM variations are observed in the four FRBs with multiple sub-components. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB sub-populations and FRBs with Galactic pulsars. Although FRB polarization fractions are typically higher than those of Galactic pulsars, and cover a wider range than those of pulsar single pulses, they resemble those of the youngest (characteristic ages $<10^{5}$ yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and propagation effects can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric-propagation geometries may form a useful analogy for the origin of FRB polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06813v3-abstract-full').style.display = 'none'; document.getElementById('2308.06813v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 24 figures, 5 tables ; version accepted by ApJ ; revised classification to include polarized signal-to-noise; added appendices for PA error/variability, J1935 polarization ; corrected literature FRB sample and supplemented with omitted data; added discussion of biases, limitations, and selection criteria; revised sigmaRM analysis ; additional plots added ; revised FRB20220424E analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03344">arXiv:2307.03344</a> <span> [<a href="https://arxiv.org/pdf/2307.03344">pdf</a>, <a href="https://arxiv.org/format/2307.03344">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array Science: First FRB and Host Galaxy Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">V. Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">G. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">M. Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">L. Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">J. T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">G. Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">C. Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">G. Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">R. Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">D. Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">M. Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">J. W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">P. Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">M. B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">J. Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">D. Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">R. Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">S. Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">D. P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">N. Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03344v2-abstract-short" style="display: inline;"> Fast Radio Bursts (FRBs) are a powerful and mysterious new class of transient that are luminous enough to be detected at cosmological distances. By associating FRBs to host galaxies, we can measure intrinsic and environmental properties that test FRB origin models, in addition to using them as precise probes of distant cosmic gas. The Deep Synoptic Array (DSA-110) is a radio interferometer built t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03344v2-abstract-full').style.display = 'inline'; document.getElementById('2307.03344v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03344v2-abstract-full" style="display: none;"> Fast Radio Bursts (FRBs) are a powerful and mysterious new class of transient that are luminous enough to be detected at cosmological distances. By associating FRBs to host galaxies, we can measure intrinsic and environmental properties that test FRB origin models, in addition to using them as precise probes of distant cosmic gas. The Deep Synoptic Array (DSA-110) is a radio interferometer built to maximize the rate at which it can simultaneously detect and localize FRBs. Here, we present the first sample of FRBs and host galaxies discovered by the DSA-110. This sample of 11 FRBs is the largest, most uniform sample of localized FRBs to date, as it is selected based on association to host galaxies identified in optical imaging by Pan-STARRS1. These FRBs have not been observed to repeat and their radio properties (dispersion, temporal scattering, energy) are similar to that of the known non-repeating FRB population. Most host galaxies have ongoing star formation, as has been identified before for FRB hosts. Two hosts of the new sample are massive, quiescent galaxies. The distribution of star-formation history across this host-galaxy sample shows that the delay-time distribution is wide, with a powerlaw model that spans from $\sim100$\,Myr to $\gtrsim2$\,Gyr. This requires the existence of one or more progenitor formation channels associated with old stellar populations, such as the binary evolution of compact objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03344v2-abstract-full').style.display = 'none'; document.getElementById('2307.03344v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages. Submitted to AAS Journals. Includes changes based on referee comments and improved host galaxy analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17510">arXiv:2306.17510</a> <span> [<a href="https://arxiv.org/pdf/2306.17510">pdf</a>, <a href="https://arxiv.org/format/2306.17510">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.083003">10.1103/PhysRevD.108.083003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of Dark Matter on the Magnetized Neutron Star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Parmar%2C+V">Vishal Parmar</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+H+C">H. C. Das</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">M. K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Patra%2C+S+K">S. K. Patra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17510v2-abstract-short" style="display: inline;"> Over the past two decades, significant strides have been made in the study of Dark Matter (DM) admixed neutron stars and their associated properties. However, an intriguing facet regarding the effect of DM on magnetized neutron stars still remains unexplored. This study is carried out to analyze the properties of DM admixed magnetized neutron stars. The equation of state for the DM admixed neutron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17510v2-abstract-full').style.display = 'inline'; document.getElementById('2306.17510v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17510v2-abstract-full" style="display: none;"> Over the past two decades, significant strides have been made in the study of Dark Matter (DM) admixed neutron stars and their associated properties. However, an intriguing facet regarding the effect of DM on magnetized neutron stars still remains unexplored. This study is carried out to analyze the properties of DM admixed magnetized neutron stars. The equation of state for the DM admixed neutron star is calculated using the relativistic mean-field model with the inclusion of a density-dependent magnetic field. Several macroscopic properties, such as mass, radius, particle fractions, tidal deformability, and the $f$-mode frequency, are calculated with different magnetic field strengths and DM configurations. The equation of state is softer with the presence of DM as well as for the parallel components of the magnetic field and vice-versa for the perpendicular one. Other macroscopic properties, such as mass, radius, tidal deformability, etc., are also affected by both DM and magnetic fields. The change in the magnitude of different neutron star observables is proportional to the amount of DM percentage and the strength of the magnetic field. We observe that the change is seen mainly in the core part of the star without affecting the crustal properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17510v2-abstract-full').style.display = 'none'; document.getElementById('2306.17510v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, Published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 083003 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16519">arXiv:2306.16519</a> <span> [<a href="https://arxiv.org/pdf/2306.16519">pdf</a>, <a href="https://arxiv.org/format/2306.16519">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1989">10.1093/mnras/stad1989 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Astreaks: Astrometry of NEOs with trailed background stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Choudhary%2C+H">Harsh Choudhary</a>, <a href="/search/astro-ph?searchtype=author&query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&query=Bolin%2C+B">Bryce Bolin</a>, <a href="/search/astro-ph?searchtype=author&query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&query=Barway%2C+S">Sudhanshu Barway</a>, <a href="/search/astro-ph?searchtype=author&query=Joharle%2C+S">Simran Joharle</a>, <a href="/search/astro-ph?searchtype=author&query=Shenoy%2C+V">Vedant Shenoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16519v1-abstract-short" style="display: inline;"> The detection and accurate astrometry of fast-moving near-Earth objects (NEOs) has been a challenge for the follow-up community. Their fast apparent motion results in streaks in sidereal images, thus affecting the telescope's limiting magnitude and astrometric accuracy. A widely adopted technique to mitigate trailing losses is non-sidereal tracking, which transfers the streaking to background refe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16519v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16519v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16519v1-abstract-full" style="display: none;"> The detection and accurate astrometry of fast-moving near-Earth objects (NEOs) has been a challenge for the follow-up community. Their fast apparent motion results in streaks in sidereal images, thus affecting the telescope's limiting magnitude and astrometric accuracy. A widely adopted technique to mitigate trailing losses is non-sidereal tracking, which transfers the streaking to background reference stars. However, no existing publicly available astrometry software is configured to detect such elongated stars. We present Astreaks, a streaking source detection algorithm, to obtain accurate astrometry of NEOs in non-sidereal data. We validate the astrometric accuracy of Astreaks on 371 non-sidereally tracked images for 115 NEOs with two instrument set-ups of the GROWTH-India Telescope. The observed NEOs had V-band magnitude in the range [15, 22] with proper motion up to 140$^{\prime\prime}$/min, thus resulting in stellar streaks as high as 6.5$^\prime$ (582 pixels) in our data. Our method obtained astrometric solutions for all images with 100% success rate. The standard deviation in Observed-minus-Computed (O-C) residuals is 0.52$^{\prime\prime}$, with O-C residuals <2$^{\prime\prime}$(<1$^{\prime\prime}$) for 98.4% (84.4%) of our measurements. These are appreciable, given the pixel scale of $\sim$0.3$^{\prime\prime}$ and $\sim$0.7$^{\prime\prime}$ of our two instrument set-ups. This demonstrates that our modular and fully-automated algorithm helps improve the telescope system's limiting magnitude without compromising astrometric accuracy by enabling non-sidereal tracking on the target. This will help the NEO follow-up community cope with the accelerated discovery rates and improved sensitivity of the next-generation NEO surveys. Astreaks has been made available to the community under an open-source license. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16519v1-abstract-full').style.display = 'none'; document.getElementById('2306.16519v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.15736">arXiv:2305.15736</a> <span> [<a href="https://arxiv.org/pdf/2305.15736">pdf</a>, <a href="https://arxiv.org/format/2305.15736">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.043518">10.1103/PhysRevD.108.043518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-thermal warm dark matter limits from small-scale structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Banerjee%2C+A">Arka Banerjee</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+S">Subinoy Das</a>, <a href="/search/astro-ph?searchtype=author&query=Maharana%2C+A">Anshuman Maharana</a>, <a href="/search/astro-ph?searchtype=author&query=Nadler%2C+E+O">Ethan O. Nadler</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+R+K">Ravi Kumar Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.15736v1-abstract-short" style="display: inline;"> We present small-scale structure constraints on sterile dark matter produced from a heavy mediator particle, inspired by models of moduli decay. Dark matter particles produced through this mechanism can contribute to the entire dark matter energy density but the particles have a non-thermal phase-space distribution; however, we show that the resulting linear matter power spectra can be mapped to e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15736v1-abstract-full').style.display = 'inline'; document.getElementById('2305.15736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.15736v1-abstract-full" style="display: none;"> We present small-scale structure constraints on sterile dark matter produced from a heavy mediator particle, inspired by models of moduli decay. Dark matter particles produced through this mechanism can contribute to the entire dark matter energy density but the particles have a non-thermal phase-space distribution; however, we show that the resulting linear matter power spectra can be mapped to effective thermal-relic warm dark matter models. This production mechanism is therefore subject to warm dark matter constraints from small-scale structure as probed by ultra-faint dwarf galaxy abundances and strong gravitational lensing flux ratio statistics. We use the correspondence to thermal-relic models to derive a lower bound on the non-thermal particle mass of $107\ \mathrm{keV}$, at $95\%$ confidence. These are the first and most stringent constraints derived on sterile dark matter produced via the heavy mediator decay scenario we consider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15736v1-abstract-full').style.display = 'none'; document.getElementById('2305.15736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are most welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 043518 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07301">arXiv:2303.07301</a> <span> [<a href="https://arxiv.org/pdf/2303.07301">pdf</a>, <a href="https://arxiv.org/format/2303.07301">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Phantom dark energy as a natural selection of evolutionary processes $\hat{\rm a}$ $\textit{la}$ $\textit{genetic algorithm}$ and cosmological tensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gangopadhyay%2C+M+R">Mayukh R. Gangopadhyay</a>, <a href="/search/astro-ph?searchtype=author&query=Sami%2C+M">M. Sami</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">Mohit K. Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07301v3-abstract-short" style="display: inline;"> We study the late-time cosmological tensions using the low-redshift background and redshift-space distortion data by employing a machine learning (ML) technique. By comparing the generated observables with the standard cosmological scenario, our findings indicate support for the phantom nature of dark energy, which ultimately leads to a reduction in the existing tensions. The model-independent app… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07301v3-abstract-full').style.display = 'inline'; document.getElementById('2303.07301v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07301v3-abstract-full" style="display: none;"> We study the late-time cosmological tensions using the low-redshift background and redshift-space distortion data by employing a machine learning (ML) technique. By comparing the generated observables with the standard cosmological scenario, our findings indicate support for the phantom nature of dark energy, which ultimately leads to a reduction in the existing tensions. The model-independent approach also enables us to examine the combined background and perturbative history, where tensions are reduced. Moreover, from a statistical perspective, we have shown that our results exhibit a better fit to the data when compared to the $螞$CDM model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07301v3-abstract-full').style.display = 'none'; document.getElementById('2303.07301v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PRD; Major revision with more details and references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14788">arXiv:2302.14788</a> <span> [<a href="https://arxiv.org/pdf/2302.14788">pdf</a>, <a href="https://arxiv.org/format/2302.14788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acd3ea">10.3847/2041-8213/acd3ea <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science: Two fast radio burst sources in massive galaxy clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sayers%2C+J">Jack Sayers</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14788v1-abstract-short" style="display: inline;"> The hot gas that constitutes the intracluster medium (ICM) has been studied at X-ray and millimeter/sub-millimeter wavelengths (Sunyaev-Zeldovich effect) for decades. Fast radio bursts (FRBs) offer an additional method of directly measuring the ICM and gas surrounding clusters, via observables such as dispersion measure (DM) and Faraday rotation measure (RM). We report the discovery of two FRB sou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14788v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14788v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14788v1-abstract-full" style="display: none;"> The hot gas that constitutes the intracluster medium (ICM) has been studied at X-ray and millimeter/sub-millimeter wavelengths (Sunyaev-Zeldovich effect) for decades. Fast radio bursts (FRBs) offer an additional method of directly measuring the ICM and gas surrounding clusters, via observables such as dispersion measure (DM) and Faraday rotation measure (RM). We report the discovery of two FRB sources detected with the Deep Synoptic Array (DSA-110) whose host galaxies belong to massive galaxy clusters. In both cases, the FRBs exhibit excess extragalactic DM, some of which likely originates in the ICM of their respective clusters. FRB 20220914A resides in the galaxy cluster Abell 2310 at z=0.1125 with a projected offset from the cluster center of 520 kpc. The host of a second source, FRB 20220509G, is an elliptical galaxy at z=0.0894 that belongs to the galaxy cluster Abell 2311 at projected offset of 870 kpc. These sources represent the first time an FRB has been localized to a galaxy cluster. We combine our FRB data with archival X-ray, SZ, and optical observations of these clusters in order to infer properties of the ICM, including a measurement of gas temperature from DM and ySZ of 0.8-3.9 keV. We then compare our results to massive cluster halos from the IllustrisTNG simulation. Finally, we describe how large samples of localized FRBs from future surveys will constrain the ICM, particularly beyond the virial radius of clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14788v1-abstract-full').style.display = 'none'; document.getElementById('2302.14788v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14782">arXiv:2302.14782</a> <span> [<a href="https://arxiv.org/pdf/2302.14782">pdf</a>, <a href="https://arxiv.org/format/2302.14782">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/accf1d">10.3847/1538-4357/accf1d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science: A massive elliptical host among two galaxy-cluster fast radio bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14782v1-abstract-short" style="display: inline;"> The stellar population environments associated with fast radio burst (FRB) sources provide important insights for developing their progenitor theories. We expand the diversity of known FRB host environments by reporting two FRBs in massive galaxy clusters discovered by the Deep Synoptic Array (DSA-110) during its commissioning observations. FRB 20220914A has been localized to a star-forming, late-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14782v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14782v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14782v1-abstract-full" style="display: none;"> The stellar population environments associated with fast radio burst (FRB) sources provide important insights for developing their progenitor theories. We expand the diversity of known FRB host environments by reporting two FRBs in massive galaxy clusters discovered by the Deep Synoptic Array (DSA-110) during its commissioning observations. FRB 20220914A has been localized to a star-forming, late-type galaxy at a redshift of 0.1139 with multiple starbursts at lookback times less than $\sim$3.5 Gyr in the Abell 2310 galaxy cluster. Although the host galaxy of FRB 20220914A is similar to typical FRB hosts, the FRB 20220509G host stands out as a quiescent, early-type galaxy at a redshift of 0.0894 in the Abell 2311 galaxy cluster. The discovery of FRBs in both late and early-type galaxies adds to the body of evidence that the FRB sources have multiple formation channels. Therefore, even though FRB hosts are typically star-forming, there must exist formation channels consistent with old stellar population in galaxies. The varied star formation histories of the two FRB hosts we report indicate a wide delay-time distribution of FRB progenitors. Future work in constraining the FRB delay-time distribution, using methods we develop herein, will prove crucial in determining the evolutionary histories of FRB sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14782v1-abstract-full').style.display = 'none'; document.getElementById('2302.14782v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01281">arXiv:2301.01281</a> <span> [<a href="https://arxiv.org/pdf/2301.01281">pdf</a>, <a href="https://arxiv.org/format/2301.01281">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Turbulent Drag Reduction in Magnetohydrodynamic Turbulence and Dynamo from Energy Flux Perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Verma%2C+M+K">Mahendra K. Verma</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">Manohar K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+S">Soumyadeep Chatterjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01281v1-abstract-short" style="display: inline;"> In this review, we describe turbulent drag reduction in a variety of flows using a universal framework of energy flux. In a turbulent flow with dilute polymers and magnetic field, the kinetic energy injected at large scales cascades to the velocity field at intermediate scales, as well as to the polymers and magnetic field at all scales. Consequently, the kinetic energy flux, $ 螤_u(k) $, is suppre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01281v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01281v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01281v1-abstract-full" style="display: none;"> In this review, we describe turbulent drag reduction in a variety of flows using a universal framework of energy flux. In a turbulent flow with dilute polymers and magnetic field, the kinetic energy injected at large scales cascades to the velocity field at intermediate scales, as well as to the polymers and magnetic field at all scales. Consequently, the kinetic energy flux, $ 螤_u(k) $, is suppressed in comparison to the pure hydrodynamic turbulence. We argue that the suppression of $螤_u(k)$ is an important factor in the reduction of the inertial force $\langle {\bf u \cdot \nabla u} \rangle$ and \textit{turbulent drag}. This feature of turbulent drag reduction is observed in polymeric, magnetohydrodynamic, quasi-static magnetohydrodynamic, and stably-stratified turbulence, and in dynamos. In addition, it is shown that turbulent drag reduction in thermal convection is due to the smooth thermal plates, similar to the turbulent drag reduction over bluff bodies. In all these flows, turbulent drag reduction often leads to a strong large-scale velocity in the flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01281v1-abstract-full').style.display = 'none'; document.getElementById('2301.01281v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, submitted to Reviews of Modern Plasma Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01000">arXiv:2301.01000</a> <span> [<a href="https://arxiv.org/pdf/2301.01000">pdf</a>, <a href="https://arxiv.org/format/2301.01000">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science: a 50 Mpc fast radio burst constrains the mass of the Milky Way circumgalactic medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Cordes%2C+J+M">James M. Cordes</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01000v1-abstract-short" style="display: inline;"> We present the Deep Synoptic Array (DSA-110) discovery and interferometric localization of the so far non-repeating FRB 20220319D. The FRB originates in a young, rapidly star-forming barred spiral galaxy, IRAS 02044$+$7048, at just 50 Mpc. Although the NE2001 and YMW16 models for the Galactic interstellar-medium (ISM) contribution to the DM of FRB 20220319D exceed its total observed DM, we show th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01000v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01000v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01000v1-abstract-full" style="display: none;"> We present the Deep Synoptic Array (DSA-110) discovery and interferometric localization of the so far non-repeating FRB 20220319D. The FRB originates in a young, rapidly star-forming barred spiral galaxy, IRAS 02044$+$7048, at just 50 Mpc. Although the NE2001 and YMW16 models for the Galactic interstellar-medium (ISM) contribution to the DM of FRB 20220319D exceed its total observed DM, we show that uncertainties in these models accommodate an extragalactic origin for the burst. We derive a conservative upper limit on the DM contributed by the circumgalactic medium (CGM) of the Milky Way: the limit is either 28.7 pc cm$^{-3}$ and 47.3 pc cm$^{-3}$, depending on which of two pulsars nearby on the sky to FRB 20220319D is used to estimate the ISM DM. These limits both imply that the total Galactic CGM mass is $<10^{11}M_{\odot}$, and that the baryonic mass of the Milky Way is $\lesssim60\%$ of the cosmological average given the total halo mass. More stringent albeit less conservative constraints are possible when the DMs of pulsars in the distant globular cluster M53 are additionally considered. Although our constraints are sensitive to possible anisotropy in the CGM and to the assumed form of the radial-density profile, they are not subject to uncertainties in the chemical and thermal properties of the CGM. Our results strongly support scenarios commonly predicted by galaxy-formation simulations wherein feedback processes expel baryonic matter from the halos of galaxies like the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01000v1-abstract-full').style.display = 'none'; document.getElementById('2301.01000v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, 3 tables, submitted to AAS Journals</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12041">arXiv:2211.12041</a> <span> [<a href="https://arxiv.org/pdf/2211.12041">pdf</a>, <a href="https://arxiv.org/format/2211.12041">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Generic modification of gravity, late time acceleration and Hubble tension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gangopadhyay%2C+M+R">Mayukh R. Gangopadhyay</a>, <a href="/search/astro-ph?searchtype=author&query=Pacif%2C+S+K+J">Shibesh K. Jas Pacif</a>, <a href="/search/astro-ph?searchtype=author&query=Sami%2C+M">M. Sami</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">Mohit K. Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12041v1-abstract-short" style="display: inline;"> We consider a scenario of large-scale modification of gravity that does not invoke extra degrees of freedom but includes coupling between baryonic matter and dark matter in the Einstein frame. The total matter energy density follows the standard conservation, and evolution has the character of deceleration in this frame. The model exhibits interesting features in the Jordan frame realized by virtu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12041v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12041v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12041v1-abstract-full" style="display: none;"> We consider a scenario of large-scale modification of gravity that does not invoke extra degrees of freedom but includes coupling between baryonic matter and dark matter in the Einstein frame. The total matter energy density follows the standard conservation, and evolution has the character of deceleration in this frame. The model exhibits interesting features in the Jordan frame realized by virtue of a disformal transformation where individual matter components adhere to standard conservation but gravity is modified. A generic parametrization of disformal transformation leaves thermal history intact. It gives rise to late time acceleration in the Jordan frame, which necessarily includes phantom crossing, which, in the standard framework, can be realized using at least two scalar fields. This scenario is embodied by two distinguishing features, namely, acceleration in the Jordan frame and deceleration in the Einstein frame, and the possibility of resolution of the Hubble tension thanks to the emergence of the phantom phase at late times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12041v1-abstract-full').style.display = 'none'; document.getElementById('2211.12041v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10616">arXiv:2211.10616</a> <span> [<a href="https://arxiv.org/pdf/2211.10616">pdf</a>, <a href="https://arxiv.org/format/2211.10616">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.106.055806">10.1103/PhysRevC.106.055806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of the $蟽$-cut potential on the properties of neutron stars with or without a hyperonic core </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Patra%2C+N+K">N. K. Patra</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+B+K">B. K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Reghunath%2C+A">A. Reghunath</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+A+K+H">A. K. H. Das</a>, <a href="/search/astro-ph?searchtype=author&query=Jha%2C+T+K">T. K. Jha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10616v1-abstract-short" style="display: inline;"> Motivated by the recent observation of high-mass pulsars ($M \simeq 2 M_{\odot}$), we employ the $蟽$-cut potential on the equation of state (EOS) of high-density matter and the properties of neutron stars within the relativistic mean-field (RMF) model using TM1$^{*}$ parameter set. The $蟽$-cut potential is known to reduce the contributions of the $蟽$ field, resulting in a stiffer EOS at high densi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10616v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10616v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10616v1-abstract-full" style="display: none;"> Motivated by the recent observation of high-mass pulsars ($M \simeq 2 M_{\odot}$), we employ the $蟽$-cut potential on the equation of state (EOS) of high-density matter and the properties of neutron stars within the relativistic mean-field (RMF) model using TM1$^{*}$ parameter set. The $蟽$-cut potential is known to reduce the contributions of the $蟽$ field, resulting in a stiffer EOS at high densities and hence leading to larger neutron star masses without affecting the properties of nuclear matter at normal saturation density. We also analyzed the effect of the same on pure neutron matter and also on the neutron star matter with and without hyperonic core and compared it with the available theoretical, experimental, and observational data. The corresponding tidal deformability ($螞_{1.4}$) is also calculated. With the choice of meson-hyperon coupling fixed to hypernuclear potentials, we obtain $\approx 10~\%$ increase in mass by employing the $蟽$-cut potential for $f_{s} = 0.6$. Our results are in good agreement with various experimental constraints and observational data, particularly with the GW170817 data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10616v1-abstract-full').style.display = 'none'; document.getElementById('2211.10616v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 6 Figures and 1 Table (Accepted in Phys. Rev. C)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09049">arXiv:2211.09049</a> <span> [<a href="https://arxiv.org/pdf/2211.09049">pdf</a>, <a href="https://arxiv.org/format/2211.09049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc4b6">10.3847/2041-8213/acc4b6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Synoptic Array science I: discovery of the host galaxy of FRB 20220912A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+G">Ge Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Faber%2C+J+T">Jakob T. Faber</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sherman%2C+M+B">Myles B. Sherman</a>, <a href="/search/astro-ph?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/astro-ph?searchtype=author&query=Simard%2C+D">Dana Simard</a>, <a href="/search/astro-ph?searchtype=author&query=Squillace%2C+R">Reynier Squillace</a>, <a href="/search/astro-ph?searchtype=author&query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&query=Yadlapalli%2C+N">Nitika Yadlapalli</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+D">Dillon Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Fremling%2C+C">Christoffer Fremling</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09049v1-abstract-short" style="display: inline;"> We report the detection and interferometric localization of the repeating fast radio burst (FRB) source FRB 20220912A during commissioning observations with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB 20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90% confidence error ellips… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09049v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09049v1-abstract-full" style="display: none;"> We report the detection and interferometric localization of the repeating fast radio burst (FRB) source FRB 20220912A during commissioning observations with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB 20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90% confidence error ellipse of $\pm2$ arcsec and $\pm1$ arcsec in right ascension and declination respectively. The two bursts have disparate polarization properties and temporal profiles. We find a Faraday rotation measure that is consistent with the low value of $+0.6$ rad m$^{-2}$ reported by CHIME/FRB. The DSA-110 localization overlaps with the galaxy PSO J347.2702+48.7066 at a redshift $z=0.0771$, which we identify as the likely host. PSO J347.2702$+$48.7066 has a stellar mass of approximately $10^{10}M_{\odot}$, modest internal dust extinction, and a star-formation rate likely in excess of $0.1\,M_{\odot}$ yr$^{-1}$. The host-galaxy contribution to the dispersion measure is likely $\lesssim50$ pc cm$^{-3}$. The FRB 20220912A source is therefore likely viewed along a tenuous plasma column through the host galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09049v1-abstract-full').style.display = 'none'; document.getElementById('2211.09049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, 2 tables, submitted to AAS Journals</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08388">arXiv:2211.08388</a> <span> [<a href="https://arxiv.org/pdf/2211.08388">pdf</a>, <a href="https://arxiv.org/format/2211.08388">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3336">10.1093/mnras/stac3336 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photometric identification of compact galaxies, stars and quasars using multiple neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chaini%2C+S">Siddharth Chaini</a>, <a href="/search/astro-ph?searchtype=author&query=Bagul%2C+A">Atharva Bagul</a>, <a href="/search/astro-ph?searchtype=author&query=Deshpande%2C+A">Anish Deshpande</a>, <a href="/search/astro-ph?searchtype=author&query=Gondkar%2C+R">Rishi Gondkar</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kaushal Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Vivek%2C+M">M. Vivek</a>, <a href="/search/astro-ph?searchtype=author&query=Kembhavi%2C+A">Ajit Kembhavi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08388v1-abstract-short" style="display: inline;"> We present MargNet, a deep learning-based classifier for identifying stars, quasars and compact galaxies using photometric parameters and images from the Sloan Digital Sky Survey (SDSS) Data Release 16 (DR16) catalogue. MargNet consists of a combination of Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) architectures. Using a carefully curated dataset consisting of 240,000 c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08388v1-abstract-full').style.display = 'inline'; document.getElementById('2211.08388v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08388v1-abstract-full" style="display: none;"> We present MargNet, a deep learning-based classifier for identifying stars, quasars and compact galaxies using photometric parameters and images from the Sloan Digital Sky Survey (SDSS) Data Release 16 (DR16) catalogue. MargNet consists of a combination of Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) architectures. Using a carefully curated dataset consisting of 240,000 compact objects and an additional 150,000 faint objects, the machine learns classification directly from the data, minimising the need for human intervention. MargNet is the first classifier focusing exclusively on compact galaxies and performs better than other methods to classify compact galaxies from stars and quasars, even at fainter magnitudes. This model and feature engineering in such deep learning architectures will provide greater success in identifying objects in the ongoing and upcoming surveys, such as Dark Energy Survey (DES) and images from the Vera C. Rubin Observatory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08388v1-abstract-full').style.display = 'none'; document.getElementById('2211.08388v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07339">arXiv:2211.07339</a> <span> [<a href="https://arxiv.org/pdf/2211.07339">pdf</a>, <a href="https://arxiv.org/format/2211.07339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.043022">10.1103/PhysRevD.107.043022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetised neutron star crust within effective relativistic mean-field model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Parmar%2C+V">Vishal Parmar</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+H+C">H. C. Das</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">M. K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Patra%2C+S+K">S. K. Patra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07339v2-abstract-short" style="display: inline;"> Even though the crystallize nature of the neutron star crust plays a pivotal role in describing various fascinating astrophysical observations, its microscopic structure is not fully understood in the presence of a colossal magnetic field. In the present work, we study the crustal properties of a neutron star within an effective relativistic mean field framework in the presence of magnetic field s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07339v2-abstract-full').style.display = 'inline'; document.getElementById('2211.07339v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07339v2-abstract-full" style="display: none;"> Even though the crystallize nature of the neutron star crust plays a pivotal role in describing various fascinating astrophysical observations, its microscopic structure is not fully understood in the presence of a colossal magnetic field. In the present work, we study the crustal properties of a neutron star within an effective relativistic mean field framework in the presence of magnetic field strength $\sim 10^{17}$G. We calculate the equilibrium composition of the outer crust by minimizing the Gibbs free energy using the most recent atomic mass evaluations. The magnetic field significantly affects the equation of state (EoS) and the properties of the outer crust, such as neutron drip density, pressure, and melting temperature. For the inner crust, we use the compressible liquid drop model for the first time to study the crustal properties in a magnetic environment. The inner crust properties, such as mass and charge number distribution, isospin asymmetry, cluster density, etc., show typical quantum oscillations (De Haas-van Alphen effect) sensitive to the magnetic field's strength. The density-dependent symmetry energy influences the magnetic inner crust like the field-free case. We study the probable modifications in the pasta structures and it is observed that their mass and thickness changes by $\sim 10-15 \%$ depending upon the magnetic field strength. The fundamental torsional oscillation mode frequency is investigated for the magnetized crust in the context of quasiperiodic oscillations (QPO) in soft gamma repeaters. The magnetic field strengths considered in this work influences only the EoS of outer and shallow regions of the inner crust, which results in no significant change in global neutron star properties. However, the outer crust mass and its moment of inertia increase considerably with increase in magnetic field strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07339v2-abstract-full').style.display = 'none'; document.getElementById('2211.07339v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures, 5 tables, Published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 043022 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02545">arXiv:2208.02545</a> <span> [<a href="https://arxiv.org/pdf/2208.02545">pdf</a>, <a href="https://arxiv.org/format/2208.02545">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Fishing massive black hole binaries with THAMES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Chandra%2C+K">Koustav Chandra</a>, <a href="/search/astro-ph?searchtype=author&query=Pai%2C+A">Archana Pai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02545v1-abstract-short" style="display: inline;"> Hierarchical mergers in a dense environment are one of the primary formation channels of intermediate-mass black hole (IMBH) binary system. We expect that the resulting massive binary system will exhibit mass asymmetry. The emitted gravitational-wave (GW) carry significant contribution from higher-order modes and hence complex waveform morphology due to superposition of different modes. Further, I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02545v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02545v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02545v1-abstract-full" style="display: none;"> Hierarchical mergers in a dense environment are one of the primary formation channels of intermediate-mass black hole (IMBH) binary system. We expect that the resulting massive binary system will exhibit mass asymmetry. The emitted gravitational-wave (GW) carry significant contribution from higher-order modes and hence complex waveform morphology due to superposition of different modes. Further, IMBH binaries exhibit lower merger frequency and shorter signal duration in the LIGO detector which increases the risk of them being misclassified as short-duration noisy glitches. Deep learning algorithms can be trained to discriminate noisy glitches from short GW transients. We present the $\mathtt{THAMES}$ -- a deep-learning-based end-to-end signal detection algorithm for GW signals from quasi-circular nearly edge-on, mass asymmetric IMBH binaries in advanced GW detectors. Our study shows that it outperforms matched-filter based $\mathtt{PyCBC}$ searches for higher mass asymmetric, nearly edge-on IMBH binaries. The maximum gain in the sensitive volume-time product for mass ratio $q \in (5, 10)$ is by a factor of 5.24 (2.92) against $\mathtt{PyCBC-IMBH}$ ($\mathtt{PyCBC-HM}$) search at a false alarm rate of 1 in 100 years. Compared to the broad $\mathtt{PyCBC}$ search this factor is $\sim100$ for the $q \in (10,18)$. One of the reasons for this leap in volumetric sensitivity is its ability to discriminate between signals with complex waveform morphology and noisy transients, clearly demonstrating the potential of deep learning algorithms in probing into complex signal morphology in the field of gravitational wave astronomy. With the current training set, $\mathtt{THAMES}$ slightly underperforms with respect to $\mathtt{PyCBC}$-based searches targeting intermediate-mass black hole binaries with mass ratio $q \in (5, 10)$ and detector frame total mass $M_T(1+z) \in (100,200)~M_\odot$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02545v1-abstract-full').style.display = 'none'; document.getElementById('2208.02545v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO DCC No LIGO-P2200227 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.13535">arXiv:2206.13535</a> <span> [<a href="https://arxiv.org/pdf/2206.13535">pdf</a>, <a href="https://arxiv.org/format/2206.13535">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac7bea">10.3847/1538-3881/ac7bea <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> India's first robotic eye for time domain astrophysics: the GROWTH-India telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&query=Barway%2C+S">Sudhanshu Barway</a>, <a href="/search/astro-ph?searchtype=author&query=Basu%2C+J">Judhajeet Basu</a>, <a href="/search/astro-ph?searchtype=author&query=Deshmukh%2C+K">Kunal Deshmukh</a>, <a href="/search/astro-ph?searchtype=author&query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&query=Dutta%2C+A">Anirban Dutta</a>, <a href="/search/astro-ph?searchtype=author&query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&query=Iyer%2C+H">Hrishikesh Iyer</a>, <a href="/search/astro-ph?searchtype=author&query=Jassani%2C+A">Adeem Jassani</a>, <a href="/search/astro-ph?searchtype=author&query=Joharle%2C+S">Simran Joharle</a>, <a href="/search/astro-ph?searchtype=author&query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&query=Khandagale%2C+M">Maitreya Khandagale</a>, <a href="/search/astro-ph?searchtype=author&query=Krishna%2C+K+A">K Adithya Krishna</a>, <a href="/search/astro-ph?searchtype=author&query=Kulkarni%2C+S">Sumeet Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&query=Mate%2C+S">Sujay Mate</a>, <a href="/search/astro-ph?searchtype=author&query=Patil%2C+A">Atharva Patil</a>, <a href="/search/astro-ph?searchtype=author&query=Phanindra%2C+D">DVS Phanindra</a>, <a href="/search/astro-ph?searchtype=author&query=Samantaray%2C+S">Subham Samantaray</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+Y">Yashvi Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Shenoy%2C+V">Vedant Shenoy</a>, <a href="/search/astro-ph?searchtype=author&query=Singh%2C+A">Avinash Singh</a>, <a href="/search/astro-ph?searchtype=author&query=Srivastava%2C+S">Shubham Srivastava</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.13535v1-abstract-short" style="display: inline;"> We present the design and performance of the GROWTH-India telescope, a 0.7 m robotic telescope dedicated to time-domain astronomy. The telescope is equipped with a 4k back-illuminated camera giving a 0.82-degree field of view and sensitivity of m_g ~20.5 in 5-min exposures. Custom software handles observatory operations: attaining high on-sky observing efficiencies (>~ 80%) and allowing rapid resp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13535v1-abstract-full').style.display = 'inline'; document.getElementById('2206.13535v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.13535v1-abstract-full" style="display: none;"> We present the design and performance of the GROWTH-India telescope, a 0.7 m robotic telescope dedicated to time-domain astronomy. The telescope is equipped with a 4k back-illuminated camera giving a 0.82-degree field of view and sensitivity of m_g ~20.5 in 5-min exposures. Custom software handles observatory operations: attaining high on-sky observing efficiencies (>~ 80%) and allowing rapid response to targets of opportunity. The data processing pipelines are capable of performing PSF photometry as well as image subtraction for transient searches. We also present an overview of the GROWTH-India telescope's contributions to the studies of Gamma-ray Bursts, the electromagnetic counterparts to gravitational wave sources, supernovae, novae and solar system objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13535v1-abstract-full').style.display = 'none'; document.getElementById('2206.13535v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, Accepted for publication in The Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15249">arXiv:2205.15249</a> <span> [<a href="https://arxiv.org/pdf/2205.15249">pdf</a>, <a href="https://arxiv.org/format/2205.15249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Composite pseudo Nambu Goldstone Quintessence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gangopadhyay%2C+M+R">Mayukh R. Gangopadhyay</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+N">Nilanjana Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Mukherjee%2C+A">Ankan Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">Mohit K. Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15249v3-abstract-short" style="display: inline;"> A pseudo-Nambu Goldstone Boson (pNGB) arising from the breaking of a global symmetry ($G\rightarrow H$) can be one of the most promising candidates for the quintessence model, to explain the late-time acceleration of our universe. Motivated from the Composite Higgs scenario, we have investigated the case where the pNGB associated with $SO(N)/ SO(N-1)$ develops a potential through its couplings wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15249v3-abstract-full').style.display = 'inline'; document.getElementById('2205.15249v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15249v3-abstract-full" style="display: none;"> A pseudo-Nambu Goldstone Boson (pNGB) arising from the breaking of a global symmetry ($G\rightarrow H$) can be one of the most promising candidates for the quintessence model, to explain the late-time acceleration of our universe. Motivated from the Composite Higgs scenario, we have investigated the case where the pNGB associated with $SO(N)/ SO(N-1)$ develops a potential through its couplings with the particles that do not form the complete representations of $G$. The Coleman Weinberg (CW) potential is generated via the external particles in the loop which are linked with the strongly interacting dynamics and can be computed predicatively. The model of Dark Energy (DE) is tested against several latest cosmological observations such as supernovae data of Pantheon, Baryon Acoustic Oscillation (BAO), Redshift-space distortion (RSD) data, etc. We have found that the fit prefers the sub-Planckian value of the pNGB field decay constant. Moreover, we have found that the model predicts cosmological parameters well within the allowed range of the observation and thus gives a well-motivated model of quintessence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15249v3-abstract-full').style.display = 'none'; document.getElementById('2205.15249v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13514">arXiv:2205.13514</a> <span> [<a href="https://arxiv.org/pdf/2205.13514">pdf</a>, <a href="https://arxiv.org/format/2205.13514">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2023.169345">10.1016/j.aop.2023.169345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Oscillatory Universe, phantom crossing and the Hubble tension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">Mohit K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Pacif%2C+S+K+J">Shibesh Kumar Jas Pacif</a>, <a href="/search/astro-ph?searchtype=author&query=Yergaliyeva%2C+G">Gulmira Yergaliyeva</a>, <a href="/search/astro-ph?searchtype=author&query=Yesmakhanova%2C+K">Kuralay Yesmakhanova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13514v2-abstract-short" style="display: inline;"> We investigate the validity of cosmological models with an oscillating scale factor in relation to late-time cosmological observations. We show that these models not only meet the required late time observational constraints but can also alleviate the Hubble tension. As a generic feature of the model, the Hubble parameter increases near the current epoch due to its cyclical nature exhibiting the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13514v2-abstract-full').style.display = 'inline'; document.getElementById('2205.13514v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13514v2-abstract-full" style="display: none;"> We investigate the validity of cosmological models with an oscillating scale factor in relation to late-time cosmological observations. We show that these models not only meet the required late time observational constraints but can also alleviate the Hubble tension. As a generic feature of the model, the Hubble parameter increases near the current epoch due to its cyclical nature exhibiting the phantom nature allowing to address the said issue related to late time acceleration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13514v2-abstract-full').style.display = 'none'; document.getElementById('2205.13514v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.00022">arXiv:2205.00022</a> <span> [<a href="https://arxiv.org/pdf/2205.00022">pdf</a>, <a href="https://arxiv.org/format/2205.00022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acab50">10.3847/2041-8213/acab50 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for the observation of continuous gravitational waves from spinning neutron stars lensed by the galactic supermassive black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">Soummyadip Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+A+K">Aditya Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Kapadia%2C+S+J">Shasvath J. Kapadia</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">Parameswaran Ajith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.00022v3-abstract-short" style="display: inline;"> We study the prospects of detecting continuous gravitational waves (CGWs) from spinning neutron stars (NSs), gravitationally lensed by the galactic supermassive black hole. Assuming various astrophysically motivated spatial distributions of galactic NSs, we find that CGW signals from a few ($\sim 0-6$) neutron stars should be strongly lensed. Lensing will produce two copies of the signal (with tim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00022v3-abstract-full').style.display = 'inline'; document.getElementById('2205.00022v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.00022v3-abstract-full" style="display: none;"> We study the prospects of detecting continuous gravitational waves (CGWs) from spinning neutron stars (NSs), gravitationally lensed by the galactic supermassive black hole. Assuming various astrophysically motivated spatial distributions of galactic NSs, we find that CGW signals from a few ($\sim 0-6$) neutron stars should be strongly lensed. Lensing will produce two copies of the signal (with time delays of seconds to minutes) that will interfere with each other. The relative motion of the NS with respect to the lensing optical axis will change the interference pattern, which will help us to identify a lensed signal. Accounting for the magnifications and time delays of the lensed signals, we investigate their detectability by ground-based detectors. Modelling the spin distribution of NSs based on that of known pulsars and assuming an ellipticity of $蔚= 10^{-7}$, lensed CGWs are unlikely to be detectable by LIGO and Virgo in realistic searches involving $\mathcal{O}(10^{12})$ templates. However, third generation detectors have a $\sim 2-51\%$ probability of detecting at least one lensed CGW signal. For an ellipticity of $蔚= 10^{-8}$, the detection probability reduces to $\sim 0-18 \, \% $. Though rare, such an observation will enable interesting probes of the supermassive black hole and its environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00022v3-abstract-full').style.display = 'none'; document.getElementById('2205.00022v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16827">arXiv:2203.16827</a> <span> [<a href="https://arxiv.org/pdf/2203.16827">pdf</a>, <a href="https://arxiv.org/format/2203.16827">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.023031">10.1103/PhysRevD.106.023031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pasta properties of the neutron star within effective relativistic mean-field model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Parmar%2C+V">Vishal Parmar</a>, <a href="/search/astro-ph?searchtype=author&query=Das%2C+H+C">H. C. Das</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+A">Ankit Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+A">Ankit Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+M+K">M. K. Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&query=Patra%2C+S+K">S. K. Patra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16827v2-abstract-short" style="display: inline;"> We study the properties of pasta structures and their influence on the neutron star observables employing the effective relativistic mean-field (E-RMF) model. The compressible liquid drop model is used to incorporate the finite size effects, considering the possibility of nonspherical structures in the inner crust. The unified equation of states are constructed for several E-RMF parameters to stud… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16827v2-abstract-full').style.display = 'inline'; document.getElementById('2203.16827v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16827v2-abstract-full" style="display: none;"> We study the properties of pasta structures and their influence on the neutron star observables employing the effective relativistic mean-field (E-RMF) model. The compressible liquid drop model is used to incorporate the finite size effects, considering the possibility of nonspherical structures in the inner crust. The unified equation of states are constructed for several E-RMF parameters to study various properties such as pasta mass and thickness in the neutron star's crust. The majority of the pasta properties are sensitive to the symmetry energy in the subsaturation density region. Using the results from Monte Carlo simulations, we estimate the shear modulus of the crust in the context of quasiperiodic oscillations from soft gamma-ray repeaters and calculate the frequency of fundamental torsional oscillation mode in the inner crust. Global properties of the neutron star such as mass-radius profile, the moment of inertia, crustal mass, crustal thickness, and fractional crustal moment of inertia are worked out. The results are consistent with various observational and theoretical constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16827v2-abstract-full').style.display = 'none'; document.getElementById('2203.16827v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, 3 tables, Published in Phys Rev. D. The unified equation of states are available on GitHub (https://github.com/hcdas/Unfied_pasta_eos)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 023031 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16547">arXiv:2203.16547</a> <span> [<a href="https://arxiv.org/pdf/2203.16547">pdf</a>, <a href="https://arxiv.org/format/2203.16547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad578">10.1093/mnras/stad578 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Great Balls of FIRE II: The evolution and destruction of star clusters across cosmic time in a Milky Way-mass galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Rodriguez%2C+C+L">Carl L. Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&query=Hafen%2C+Z">Zachary Hafen</a>, <a href="/search/astro-ph?searchtype=author&query=Grudi%C4%87%2C+M+Y">Michael Y. Grudi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Lamberts%2C+A">Astrid Lamberts</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+K">Kuldeep Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Faucher-Gigu%C3%A8re%2C+C">Claude-Andr茅 Faucher-Gigu猫re</a>, <a href="/search/astro-ph?searchtype=author&query=Wetzel%2C+A">Andrew Wetzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16547v2-abstract-short" style="display: inline;"> The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16547v2-abstract-full').style.display = 'inline'; document.getElementById('2203.16547v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16547v2-abstract-full" style="display: none;"> The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star $N$-body models of massive ($N\sim10^5-10^7$) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 ($\sim 30\%$) of the YMCs with $ > 6\times10^4M_{\odot}$ from Grudi膰 et al.~2022 and integrate them to $z=0$ using the Cluster Monte Carlo Code, \texttt{CMC}. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that $N$-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16547v2-abstract-full').style.display = 'none'; document.getElementById('2203.16547v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 16 figures, matches version accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06741">arXiv:2203.06741</a> <span> [<a href="https://arxiv.org/pdf/2203.06741">pdf</a>, <a href="https://arxiv.org/format/2203.06741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Effect of the modified gravity on the large scale structure formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+A+K">Ajay Kumar Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Verma%2C+M+M">Murli Manohar Verma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06741v1-abstract-short" style="display: inline;"> We investigate the formation of the large scale structures in the present accelerated era in $f(R)$ gravity background. This is done by considering the linear growth of matter perturbations at low redshift $z<1$. The effect of $f(R)$ alters the behaviour of the matter density perturbations from the matter dominated universe to the late-time accelerated universe which is encoded in the Newtonian gr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06741v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06741v1-abstract-full" style="display: none;"> We investigate the formation of the large scale structures in the present accelerated era in $f(R)$ gravity background. This is done by considering the linear growth of matter perturbations at low redshift $z<1$. The effect of $f(R)$ alters the behaviour of the matter density perturbations from the matter dominated universe to the late-time accelerated universe which is encoded in the Newtonian gravitational constant as $G\rightarrow G_{eff}$. The modified gravitational constant ($G_{eff}$) depends on the form of $f(R)$. The late-time accelerated expansion affects the formation of large scale structures by slowing down the growth of matter density. On the other hand, $f(R)$ increases the growth rate of the matter density perturbations. We have found that the source term in $f(R)$ background, $G_{eff}惟_m$ overcomes the accelerated expansion and the effect of accelerated expansion suppresses the formation of the large scale structures in the asymptotic future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06741v1-abstract-full').style.display = 'none'; document.getElementById('2203.06741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Sharma%2C+K&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>