CINXE.COM

Claudio Nebbia - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Claudio Nebbia - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="bTVmGItHPyLXKymXcV7t98j2XqrxpAmdaQ0Ql6Wr0djGWUrv3fT9adfeg3Z2djtrShTXE66VKEAAGcRxPrThmw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="claudio nebbia" /> <meta name="description" content="Claudio Nebbia: 1 Following, 14 Research papers. Research interests: Instrumental Music, Musical philology, and Historical Musicology." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277517823,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732780787000); window.Aedu.timeDifference = new Date().getTime() - 1732780787000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/NebbiaClaudio" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio","photo":"https://0.academia-photos.com/177515951/49178120/37150022/s65_claudio.nebbia.png","has_photo":true,"is_analytics_public":false,"interests":[{"id":22346,"name":"Instrumental Music","url":"https://www.academia.edu/Documents/in/Instrumental_Music"},{"id":609733,"name":"Musical philology","url":"https://www.academia.edu/Documents/in/Musical_philology"},{"id":58850,"name":"Historical Musicology","url":"https://www.academia.edu/Documents/in/Historical_Musicology"},{"id":14954,"name":"Baroque Music","url":"https://www.academia.edu/Documents/in/Baroque_Music"},{"id":15342,"name":"Aesthetics and Politics","url":"https://www.academia.edu/Documents/in/Aesthetics_and_Politics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/NebbiaClaudio&quot;,&quot;location&quot;:&quot;/NebbiaClaudio&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/NebbiaClaudio&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-b27c7c6e-1626-4080-9b48-7e9edce4cead"></div> <div id="ProfileCheckPaperUpdate-react-component-b27c7c6e-1626-4080-9b48-7e9edce4cead"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Claudio Nebbia" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/177515951/49178120/37150022/s200_claudio.nebbia.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Claudio Nebbia</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Claudio" data-follow-user-id="177515951" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="177515951"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">0</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="177515951" href="https://www.academia.edu/Documents/in/Instrumental_Music"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/NebbiaClaudio&quot;,&quot;location&quot;:&quot;/NebbiaClaudio&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/NebbiaClaudio&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Instrumental Music&quot;]}" data-trace="false" data-dom-id="Pill-react-component-569f386b-04d5-4cbb-978f-c2c27a4775c1"></div> <div id="Pill-react-component-569f386b-04d5-4cbb-978f-c2c27a4775c1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="177515951" href="https://www.academia.edu/Documents/in/Musical_philology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Musical philology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d74e4e40-4de6-4a9a-a000-d3c93b6913a0"></div> <div id="Pill-react-component-d74e4e40-4de6-4a9a-a000-d3c93b6913a0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="177515951" href="https://www.academia.edu/Documents/in/Historical_Musicology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Historical Musicology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-0b2cc5b1-6159-4d22-aa05-8b7627c9e70e"></div> <div id="Pill-react-component-0b2cc5b1-6159-4d22-aa05-8b7627c9e70e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="177515951" href="https://www.academia.edu/Documents/in/Baroque_Music"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Baroque Music&quot;]}" data-trace="false" data-dom-id="Pill-react-component-29b0acd6-646d-4b09-8860-2e84bcc947e2"></div> <div id="Pill-react-component-29b0acd6-646d-4b09-8860-2e84bcc947e2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="177515951" href="https://www.academia.edu/Documents/in/Aesthetics_and_Politics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Aesthetics and Politics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-322e533c-128e-461b-83bc-522f15ec9dfa"></div> <div id="Pill-react-component-322e533c-128e-461b-83bc-522f15ec9dfa"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Claudio Nebbia</h3></div><div class="js-work-strip profile--work_container" data-work-id="83190515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83190515/The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity"><img alt="Research paper thumbnail of The groups of isometries of the homogeneous tree and non-unimodularity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83190515/The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity">The groups of isometries of the homogeneous tree and non-unimodularity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of degree three. This description implies that the following three properties are equivalent: amenability, non-unimodularity and action without inversions. Moreover, we exhibit examples of non-unimodular transitive groups of isometrics of a homogeneous tree of degree q + 1 &amp;gt; 3 which do not fix any point of the boundary of the tree</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83190515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83190515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83190515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83190515]").text(description); $(".js-view-count[data-work-id=83190515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83190515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83190515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83190515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83190515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83190515,"title":"The groups of isometries of the homogeneous tree and non-unimodularity","translated_title":"","metadata":{"abstract":"In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of degree three. This description implies that the following three properties are equivalent: amenability, non-unimodularity and action without inversions. Moreover, we exhibit examples of non-unimodular transitive groups of isometrics of a homogeneous tree of degree q + 1 \u0026gt; 3 which do not fix any point of the boundary of the tree","publisher":"Unione Matematica Italiana","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of degree three. This description implies that the following three properties are equivalent: amenability, non-unimodularity and action without inversions. Moreover, we exhibit examples of non-unimodular transitive groups of isometrics of a homogeneous tree of degree q + 1 \u0026gt; 3 which do not fix any point of the boundary of the tree","internal_url":"https://www.academia.edu/83190515/The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity","translated_internal_url":"","created_at":"2022-07-15T04:36:48.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[{"id":388681,"name":"Amenable groups","url":"https://www.academia.edu/Documents/in/Amenable_groups"}],"urls":[{"id":22191331,"url":"http://hdl.handle.net/11573/551954"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711795/Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon"><img alt="Research paper thumbnail of Groups of isometries of a tree and the Kunze-Stein phenomenon" class="work-thumbnail" src="https://attachments.academia-assets.com/85007333/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711795/Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon">Groups of isometries of a tree and the Kunze-Stein phenomenon</a></div><div class="wp-workCard_item"><span>Pacific Journal of Mathematics</span><span>, 1988</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="714a0f12890ce300e3fdddc2ebf0c223" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007333,&quot;asset_id&quot;:77711795,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007333/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711795]").text(description); $(".js-view-count[data-work-id=77711795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711795, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "714a0f12890ce300e3fdddc2ebf0c223" } } $('.js-work-strip[data-work-id=77711795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711795,"title":"Groups of isometries of a tree and the Kunze-Stein phenomenon","translated_title":"","metadata":{"publisher":"Mathematical Sciences Publishers","grobid_abstract":"In this paper we prove that every group of isometries of a homogeneous or semihomogeneous tree which acts transitively on the boundary of the tree is a Kunze-Stein group. From this, we deduce a weak Kunze-Stein property for groups acting simply transitively on a tree (in particular free groups on finitely many generators).","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Pacific Journal of Mathematics","grobid_abstract_attachment_id":85007333},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711795/Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon","translated_internal_url":"","created_at":"2022-04-26T13:48:46.817-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007333/thumbnails/1.jpg","file_name":"783686c4f46d1e7f917201e7550b3c1ab707.pdf","download_url":"https://www.academia.edu/attachments/85007333/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_isometries_of_a_tree_and_the_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007333/783686c4f46d1e7f917201e7550b3c1ab707-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_isometries_of_a_tree_and_the_K.pdf\u0026Expires=1732784386\u0026Signature=aFeb8MIgGe3KfixIJCI4f7so~yXZ3GvGlQI8T5B5iJuYOiZLKeSVpdh-cORX8MHH-1nPdMraCbnWadnbQoQWtlS2xtW7utvL55x301cPXjJJxHVrepSi7w0leU2jqa~Lg1cCycTtD~LeCr3Y8bJObzv3DCwIVV1S47eulMVQ3pzqzA9LoqnkfCGm87lH-Pg8xoGti3SZ9LFy~VqXPaw9YD6xiFYTEdrtsKmWAHM937LqZVl3oehD~mdYw74~kKcTn0J7Hj2wrfSf-~-D4u1cRAWEcTKYfZ73S1yq7X4gmMRVa30rwQ3YS4xHJzsHOLGB1mmCqtkV68yZNUPNrlPuYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007333/thumbnails/1.jpg","file_name":"783686c4f46d1e7f917201e7550b3c1ab707.pdf","download_url":"https://www.academia.edu/attachments/85007333/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_isometries_of_a_tree_and_the_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007333/783686c4f46d1e7f917201e7550b3c1ab707-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_isometries_of_a_tree_and_the_K.pdf\u0026Expires=1732784386\u0026Signature=aFeb8MIgGe3KfixIJCI4f7so~yXZ3GvGlQI8T5B5iJuYOiZLKeSVpdh-cORX8MHH-1nPdMraCbnWadnbQoQWtlS2xtW7utvL55x301cPXjJJxHVrepSi7w0leU2jqa~Lg1cCycTtD~LeCr3Y8bJObzv3DCwIVV1S47eulMVQ3pzqzA9LoqnkfCGm87lH-Pg8xoGti3SZ9LFy~VqXPaw9YD6xiFYTEdrtsKmWAHM937LqZVl3oehD~mdYw74~kKcTn0J7Hj2wrfSf-~-D4u1cRAWEcTKYfZ73S1yq7X4gmMRVa30rwQ3YS4xHJzsHOLGB1mmCqtkV68yZNUPNrlPuYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711794/Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees"><img alt="Research paper thumbnail of Harmonic Analysis and Representation Theory for Groups Acting on Homogenous Trees" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711794/Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees">Harmonic Analysis and Representation Theory for Groups Acting on Homogenous Trees</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711794]").text(description); $(".js-view-count[data-work-id=77711794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711794, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=77711794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711794,"title":"Harmonic Analysis and Representation Theory for Groups Acting on Homogenous Trees","translated_title":"","metadata":{"publisher":"Cambridge University Press","publication_date":{"day":null,"month":null,"year":1991,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711794/Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees","translated_internal_url":"","created_at":"2022-04-26T13:48:46.735-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":374,"name":"Harmonic Analysis","url":"https://www.academia.edu/Documents/in/Harmonic_Analysis"},{"id":27500,"name":"Representation Theory","url":"https://www.academia.edu/Documents/in/Representation_Theory"},{"id":599635,"name":"Cambridge University","url":"https://www.academia.edu/Documents/in/Cambridge_University"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711793"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711793/Groups_of_Isometries_of_a_Tree_and_the_CCR_Property"><img alt="Research paper thumbnail of Groups of Isometries of a Tree and the CCR Property" class="work-thumbnail" src="https://attachments.academia-assets.com/85007338/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711793/Groups_of_Isometries_of_a_Tree_and_the_CCR_Property">Groups of Isometries of a Tree and the CCR Property</a></div><div class="wp-workCard_item"><span>Rocky Mountain Journal of Mathematics</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="515297e680b09312b37d54d98acb093e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007338,&quot;asset_id&quot;:77711793,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007338/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711793"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711793"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711793; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711793]").text(description); $(".js-view-count[data-work-id=77711793]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711793; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711793']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711793, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "515297e680b09312b37d54d98acb093e" } } $('.js-work-strip[data-work-id=77711793]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711793,"title":"Groups of Isometries of a Tree and the CCR Property","translated_title":"","metadata":{"publisher":"Rocky Mountain Mathematics Consortium","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Rocky Mountain Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711793/Groups_of_Isometries_of_a_Tree_and_the_CCR_Property","translated_internal_url":"","created_at":"2022-04-26T13:48:46.630-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007338/thumbnails/1.jpg","file_name":"1181071692.pdf","download_url":"https://www.academia.edu/attachments/85007338/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_Isometries_of_a_Tree_and_the_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007338/1181071692-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_Isometries_of_a_Tree_and_the_C.pdf\u0026Expires=1732784386\u0026Signature=fkybMnH4NtQhIZ4I6osKcjEKEOnFY1jvA8FCtjfX5g9DpNCUIb58sT57UmeP0FLdxvj6RXPrHBJQSqkZC0rcmB-jiXJWt3O26L~PZVk7iaPSUpB4QCHAsVIhUT-SyJbZ2-R1L1ySIdcG3UNUYCprtE1jOed5PpgJDtZo2bCVYeWLxp-7STNPcemmi90eFkirwPXhISCZ1HPixDLAcI5xHL8efx9BcmbvVC1Ky6OYurdQmx5BKWJD5-yE5qhvDmPaBWNQsI8CNv~Adj4gHzGAlHinw0hS7NoHN0DEso1ZjjvDLuDmZWRZfDlA7OF5UWfayaKnjjANcoCN9hMOoRf1Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Groups_of_Isometries_of_a_Tree_and_the_CCR_Property","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007338/thumbnails/1.jpg","file_name":"1181071692.pdf","download_url":"https://www.academia.edu/attachments/85007338/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_Isometries_of_a_Tree_and_the_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007338/1181071692-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_Isometries_of_a_Tree_and_the_C.pdf\u0026Expires=1732784386\u0026Signature=fkybMnH4NtQhIZ4I6osKcjEKEOnFY1jvA8FCtjfX5g9DpNCUIb58sT57UmeP0FLdxvj6RXPrHBJQSqkZC0rcmB-jiXJWt3O26L~PZVk7iaPSUpB4QCHAsVIhUT-SyJbZ2-R1L1ySIdcG3UNUYCprtE1jOed5PpgJDtZo2bCVYeWLxp-7STNPcemmi90eFkirwPXhISCZ1HPixDLAcI5xHL8efx9BcmbvVC1Ky6OYurdQmx5BKWJD5-yE5qhvDmPaBWNQsI8CNv~Adj4gHzGAlHinw0hS7NoHN0DEso1ZjjvDLuDmZWRZfDlA7OF5UWfayaKnjjANcoCN9hMOoRf1Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711792"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711792/A_note_on_the_amenable_subgroups_of_PSL_2_R_"><img alt="Research paper thumbnail of A note on the amenable subgroups of PSL (2,R)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711792/A_note_on_the_amenable_subgroups_of_PSL_2_R_">A note on the amenable subgroups of PSL (2,R)</a></div><div class="wp-workCard_item"><span>Monatshefte f�r Mathematik</span><span>, 1989</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the ac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the action on the hyperbolic half-plane.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711792"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711792"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711792; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711792]").text(description); $(".js-view-count[data-work-id=77711792]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711792; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711792']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711792, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=77711792]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711792,"title":"A note on the amenable subgroups of PSL (2,R)","translated_title":"","metadata":{"abstract":"In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the action on the hyperbolic half-plane.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Monatshefte f�r Mathematik"},"translated_abstract":"In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the action on the hyperbolic half-plane.","internal_url":"https://www.academia.edu/77711792/A_note_on_the_amenable_subgroups_of_PSL_2_R_","translated_internal_url":"","created_at":"2022-04-26T13:48:46.505-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_note_on_the_amenable_subgroups_of_PSL_2_R_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711791/Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree"><img alt="Research paper thumbnail of Classification of all irreducible unitary representations of the stabilizer of the horicycles of a tree" class="work-thumbnail" src="https://attachments.academia-assets.com/85007337/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711791/Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree">Classification of all irreducible unitary representations of the stabilizer of the horicycles of a tree</a></div><div class="wp-workCard_item"><span>Israel Journal of Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef8de6cbbd35ee10eb9dcb4981e78c33" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007337,&quot;asset_id&quot;:77711791,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007337/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711791]").text(description); $(".js-view-count[data-work-id=77711791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711791, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef8de6cbbd35ee10eb9dcb4981e78c33" } } $('.js-work-strip[data-work-id=77711791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711791,"title":"Classification of all irreducible unitary representations of the stabilizer of the horicycles of a tree","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Israel Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711791/Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree","translated_internal_url":"","created_at":"2022-04-26T13:48:46.418-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007337,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007337/thumbnails/1.jpg","file_name":"BF02801468.pdf","download_url":"https://www.academia.edu/attachments/85007337/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Classification_of_all_irreducible_unitar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007337/BF02801468-libre.pdf?1651006465=\u0026response-content-disposition=attachment%3B+filename%3DClassification_of_all_irreducible_unitar.pdf\u0026Expires=1732784386\u0026Signature=gc9TSkmZhqz1xybIyMHeVaMaexlBAiWikk9~p4PYYVThnvaMYB8njLuDEFOvYLphwJ0xaVqCujm6-hXcCt0JP4wTavHCBd8n~0e-YF4VclfAma9aRQQTfO5UpoIg4erx0IhS1pP7vOE1OhblSj0oZySuKmXJvVZmNpiRuW99~84tOiWjbDcZTAVKZpkveUU0s3rFOnTtxPJ~7-IQ6rNLmGf0p8-bPuTxtcAer7mXioTDMdKMwHdexPHTik8G9InQ2yNlPGqrmko-cnNCNRIfWl-6KLuh59lJZ6BLqjg20GJcqILoZcLVeUm~K9DCP4UveHQevqbctwwpwRPgDDL8bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007337,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007337/thumbnails/1.jpg","file_name":"BF02801468.pdf","download_url":"https://www.academia.edu/attachments/85007337/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Classification_of_all_irreducible_unitar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007337/BF02801468-libre.pdf?1651006465=\u0026response-content-disposition=attachment%3B+filename%3DClassification_of_all_irreducible_unitar.pdf\u0026Expires=1732784386\u0026Signature=gc9TSkmZhqz1xybIyMHeVaMaexlBAiWikk9~p4PYYVThnvaMYB8njLuDEFOvYLphwJ0xaVqCujm6-hXcCt0JP4wTavHCBd8n~0e-YF4VclfAma9aRQQTfO5UpoIg4erx0IhS1pP7vOE1OhblSj0oZySuKmXJvVZmNpiRuW99~84tOiWjbDcZTAVKZpkveUU0s3rFOnTtxPJ~7-IQ6rNLmGf0p8-bPuTxtcAer7mXioTDMdKMwHdexPHTik8G9InQ2yNlPGqrmko-cnNCNRIfWl-6KLuh59lJZ6BLqjg20GJcqILoZcLVeUm~K9DCP4UveHQevqbctwwpwRPgDDL8bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711790/Cohomology_for_groups_of_isometries_of_regular_trees"><img alt="Research paper thumbnail of Cohomology for groups of isometries of regular trees" class="work-thumbnail" src="https://attachments.academia-assets.com/85007330/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711790/Cohomology_for_groups_of_isometries_of_regular_trees">Cohomology for groups of isometries of regular trees</a></div><div class="wp-workCard_item"><span>Expositiones Mathematicae</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca87a2a60613ef4ba813e03f10721896" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007330,&quot;asset_id&quot;:77711790,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007330/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711790]").text(description); $(".js-view-count[data-work-id=77711790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711790, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca87a2a60613ef4ba813e03f10721896" } } $('.js-work-strip[data-work-id=77711790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711790,"title":"Cohomology for groups of isometries of regular trees","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In this paper, we study the 1-cohomology groups associated with the unitary irreducible representations of locally compact groups of isometries of regular trees. We begin by explaining definitions and terminology about 1-cohomology groups and Gelfand pairs, already well known in the literature. Next, we focus on the irreducible representations of closed groups of isometries of homogeneous or semihomogeneous trees acting transitively on the tree boundary. We prove that all the groups H 1 (G, π) are always zero with only one exception. This result is already known for both groups PGL 2 (F) and PSL 2 (F) where F is a local field.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Expositiones Mathematicae","grobid_abstract_attachment_id":85007330},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711790/Cohomology_for_groups_of_isometries_of_regular_trees","translated_internal_url":"","created_at":"2022-04-26T13:48:46.310-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007330,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007330/thumbnails/1.jpg","file_name":"82151025.pdf","download_url":"https://www.academia.edu/attachments/85007330/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_for_groups_of_isometries_of_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007330/82151025-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_for_groups_of_isometries_of_r.pdf\u0026Expires=1732784386\u0026Signature=FuODPkI5TGDssfPWDZnLLOiD6oNvYPJHdwr~H2ZMQPKEJzPPrh3fvGrJ0b~YdLu~Y-K-SYylOPUDOYFTLxoyH5T2~Spomah80o~A9lNmSF6KG4YyBvGLq5qpy0hC90hmxAv0MXZmwgS2Ba-p-eKd-G9Zq9Lt1TrdAhFW0-WIeJrehmk05skegjgQXT0monZuqffqwbCSwPeztlfikyNIr7LcMznmBzhaUCLhKcNeZ00WBBasbA3VYf5xOqG2aVy7ZdwHlIAUSeQELUJlhPJp9DIKiEu00PslpRVHrkqvhBhHQ852FcxVBDzsQ8FWvpjMm35AvzlkTbYQlSNokqmVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cohomology_for_groups_of_isometries_of_regular_trees","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007330,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007330/thumbnails/1.jpg","file_name":"82151025.pdf","download_url":"https://www.academia.edu/attachments/85007330/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_for_groups_of_isometries_of_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007330/82151025-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_for_groups_of_isometries_of_r.pdf\u0026Expires=1732784386\u0026Signature=FuODPkI5TGDssfPWDZnLLOiD6oNvYPJHdwr~H2ZMQPKEJzPPrh3fvGrJ0b~YdLu~Y-K-SYylOPUDOYFTLxoyH5T2~Spomah80o~A9lNmSF6KG4YyBvGLq5qpy0hC90hmxAv0MXZmwgS2Ba-p-eKd-G9Zq9Lt1TrdAhFW0-WIeJrehmk05skegjgQXT0monZuqffqwbCSwPeztlfikyNIr7LcMznmBzhaUCLhKcNeZ00WBBasbA3VYf5xOqG2aVy7ZdwHlIAUSeQELUJlhPJp9DIKiEu00PslpRVHrkqvhBhHQ852FcxVBDzsQ8FWvpjMm35AvzlkTbYQlSNokqmVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711668/Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree"><img alt="Research paper thumbnail of Amenability and Kunze-Stein property for groups acting on a tree" class="work-thumbnail" src="https://attachments.academia-assets.com/85007265/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711668/Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree">Amenability and Kunze-Stein property for groups acting on a tree</a></div><div class="wp-workCard_item"><span>Pacific Journal of Mathematics</span><span>, 1988</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb9c8a1eb469db7419e2705b5d97a9c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007265,&quot;asset_id&quot;:77711668,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007265/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711668]").text(description); $(".js-view-count[data-work-id=77711668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb9c8a1eb469db7419e2705b5d97a9c3" } } $('.js-work-strip[data-work-id=77711668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711668,"title":"Amenability and Kunze-Stein property for groups acting on a tree","translated_title":"","metadata":{"publisher":"Mathematical Sciences Publishers","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Pacific Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711668/Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_internal_url":"","created_at":"2022-04-26T13:47:54.392-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007265/thumbnails/1.jpg","file_name":"1102688299.pdf","download_url":"https://www.academia.edu/attachments/85007265/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amenability_and_Kunze_Stein_property_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007265/1102688299-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DAmenability_and_Kunze_Stein_property_for.pdf\u0026Expires=1732784386\u0026Signature=RgCuGfj3UHUbn5Y0FKg4wg7M7n~rgotCFk4ySBbYMY6uJwQnUv6t6rK~PkfFSOATpDTeDkAqhzgI29BJLJAUsUnhpFLDOWsOwH8VANc9zRlMj62vuc1cS0UejTq8FES9kNTp4iUKQK2YXnmXit3TOlm~gq2PYlCNwxsoPXsPzhYOj3pXmpJOnluc~eLsesL1pDYkgyW34pIIFOH9Av3onFHxxs0Z5NpqUTybz~pNACkU7y375rHI3-Zvj2VJnE-MCqajkq1z5nG7e1GhdHNK70U-PtRKzZVDhQe9nurB5tsVYgmXQbL7osnTuy-bmt499Rzf7XM105RTb-SPTV1KuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007265/thumbnails/1.jpg","file_name":"1102688299.pdf","download_url":"https://www.academia.edu/attachments/85007265/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amenability_and_Kunze_Stein_property_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007265/1102688299-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DAmenability_and_Kunze_Stein_property_for.pdf\u0026Expires=1732784386\u0026Signature=RgCuGfj3UHUbn5Y0FKg4wg7M7n~rgotCFk4ySBbYMY6uJwQnUv6t6rK~PkfFSOATpDTeDkAqhzgI29BJLJAUsUnhpFLDOWsOwH8VANc9zRlMj62vuc1cS0UejTq8FES9kNTp4iUKQK2YXnmXit3TOlm~gq2PYlCNwxsoPXsPzhYOj3pXmpJOnluc~eLsesL1pDYkgyW34pIIFOH9Av3onFHxxs0Z5NpqUTybz~pNACkU7y375rHI3-Zvj2VJnE-MCqajkq1z5nG7e1GhdHNK70U-PtRKzZVDhQe9nurB5tsVYgmXQbL7osnTuy-bmt499Rzf7XM105RTb-SPTV1KuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71367582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71367582/On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree"><img alt="Research paper thumbnail of On the amenability and Kunze–Stein property for groups acting on a tree" class="work-thumbnail" src="https://attachments.academia-assets.com/80740322/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71367582/On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree">On the amenability and Kunze–Stein property for groups acting on a tree</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We characterize the amenable groups acting on a locally finite tree. In particular if the tree is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We characterize the amenable groups acting on a locally finite tree. In particular if the tree is homogeneous and the group G acts transitively on the vertices then we prove that G is amenable iff G fixes one point of the boundary of the tree. Moreover we prove that a group G which acts transitively on the vertices and on an open subset of the boundary is either amenable or a Kunze-Stein group. 1. Introduction and notations. Let X b e a locally finite tree, that is, a connected graph without circuits such that every vertex belongs to a finite set of edges. Let V be the set of vertices and E the set of edges. If V \ and v2 are in V, let [^1,^2] be the unique geodesic connecting v \ to v2; the distance d(v\, v2) is defined as the length of</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7784641e74de941aa696507af8fa607b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80740322,&quot;asset_id&quot;:71367582,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80740322/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71367582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71367582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71367582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71367582]").text(description); $(".js-view-count[data-work-id=71367582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71367582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71367582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71367582, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7784641e74de941aa696507af8fa607b" } } $('.js-work-strip[data-work-id=71367582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71367582,"title":"On the amenability and Kunze–Stein property for groups acting on a tree","translated_title":"","metadata":{"abstract":"We characterize the amenable groups acting on a locally finite tree. In particular if the tree is homogeneous and the group G acts transitively on the vertices then we prove that G is amenable iff G fixes one point of the boundary of the tree. Moreover we prove that a group G which acts transitively on the vertices and on an open subset of the boundary is either amenable or a Kunze-Stein group. 1. Introduction and notations. Let X b e a locally finite tree, that is, a connected graph without circuits such that every vertex belongs to a finite set of edges. Let V be the set of vertices and E the set of edges. If V \\ and v2 are in V, let [^1,^2] be the unique geodesic connecting v \\ to v2; the distance d(v\\, v2) is defined as the length of","publication_date":{"day":null,"month":null,"year":1988,"errors":{}}},"translated_abstract":"We characterize the amenable groups acting on a locally finite tree. In particular if the tree is homogeneous and the group G acts transitively on the vertices then we prove that G is amenable iff G fixes one point of the boundary of the tree. Moreover we prove that a group G which acts transitively on the vertices and on an open subset of the boundary is either amenable or a Kunze-Stein group. 1. Introduction and notations. Let X b e a locally finite tree, that is, a connected graph without circuits such that every vertex belongs to a finite set of edges. Let V be the set of vertices and E the set of edges. If V \\ and v2 are in V, let [^1,^2] be the unique geodesic connecting v \\ to v2; the distance d(v\\, v2) is defined as the length of","internal_url":"https://www.academia.edu/71367582/On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_internal_url":"","created_at":"2022-02-13T11:05:37.092-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80740322,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80740322/thumbnails/1.jpg","file_name":"pjm-v135-n2-p11-s.pdf","download_url":"https://www.academia.edu/attachments/80740322/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_amenability_and_Kunze_Stein_prope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80740322/pjm-v135-n2-p11-s-libre.pdf?1644779408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_amenability_and_Kunze_Stein_prope.pdf\u0026Expires=1732784386\u0026Signature=LWH3Bg~5z-b4apNJGJoEYkVCf-0w9QLdlTpmvbX16lGuH5RlOf8SQ2K~nfDNxSPI~KuVK8skPwLYkw7KKkfa-2PwRQ9IQRMnMzD61UV8~qTYFloZmSG0EY3ClcHZfT0w8TZTY4JhUDkylawX1PVoWMmEVXOD9kDkM8mvrwiCe0hEx5sAM2WnRAjuI04h7pvo1T0iUWjLRB2CZpeBi4Lk3mAPQ8j5QRHo-eSgNjRaIpHpBZDLj6CHLnG550X44KmwtAl4n52nOO5ZsUMjxFqcTdKM8CosaLKSRmakkBRUkvy~3xaJQJq9Oe1MCkgUZZic9y4-AxpybnfKSL6P-oQH4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":80740322,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80740322/thumbnails/1.jpg","file_name":"pjm-v135-n2-p11-s.pdf","download_url":"https://www.academia.edu/attachments/80740322/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_amenability_and_Kunze_Stein_prope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80740322/pjm-v135-n2-p11-s-libre.pdf?1644779408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_amenability_and_Kunze_Stein_prope.pdf\u0026Expires=1732784386\u0026Signature=LWH3Bg~5z-b4apNJGJoEYkVCf-0w9QLdlTpmvbX16lGuH5RlOf8SQ2K~nfDNxSPI~KuVK8skPwLYkw7KKkfa-2PwRQ9IQRMnMzD61UV8~qTYFloZmSG0EY3ClcHZfT0w8TZTY4JhUDkylawX1PVoWMmEVXOD9kDkM8mvrwiCe0hEx5sAM2WnRAjuI04h7pvo1T0iUWjLRB2CZpeBi4Lk3mAPQ8j5QRHo-eSgNjRaIpHpBZDLj6CHLnG550X44KmwtAl4n52nOO5ZsUMjxFqcTdKM8CosaLKSRmakkBRUkvy~3xaJQJq9Oe1MCkgUZZic9y4-AxpybnfKSL6P-oQH4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":17619831,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.849.8478\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66348485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66348485/Minimally_almost_periodic_totally_disconnected_groups"><img alt="Research paper thumbnail of Minimally almost periodic totally disconnected groups" class="work-thumbnail" src="https://attachments.academia-assets.com/77576412/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66348485/Minimally_almost_periodic_totally_disconnected_groups">Minimally almost periodic totally disconnected groups</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup G′ which is minimally almost periodic. Moreover we prove that G′ is a topologically simple group.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a94234341786302456773969df0d7ecb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77576412,&quot;asset_id&quot;:66348485,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77576412/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66348485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66348485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66348485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66348485]").text(description); $(".js-view-count[data-work-id=66348485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66348485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66348485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66348485, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a94234341786302456773969df0d7ecb" } } $('.js-work-strip[data-work-id=66348485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66348485,"title":"Minimally almost periodic totally disconnected groups","translated_title":"","metadata":{"abstract":"In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup G′ which is minimally almost periodic. Moreover we prove that G′ is a topologically simple group.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}}},"translated_abstract":"In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup G′ which is minimally almost periodic. Moreover we prove that G′ is a topologically simple group.","internal_url":"https://www.academia.edu/66348485/Minimally_almost_periodic_totally_disconnected_groups","translated_internal_url":"","created_at":"2021-12-29T03:17:03.232-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77576412,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77576412/thumbnails/1.jpg","file_name":"S0002-9939-99-05027-3.pdf","download_url":"https://www.academia.edu/attachments/77576412/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minimally_almost_periodic_totally_discon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77576412/S0002-9939-99-05027-3-libre.pdf?1640776775=\u0026response-content-disposition=attachment%3B+filename%3DMinimally_almost_periodic_totally_discon.pdf\u0026Expires=1732784386\u0026Signature=CuT-yp-Z1YOnlFJKYMrOE78w6RBzowKnhvWbbSVcWUaBFWvaf3hVL76JAKT-6LvQb5LT4eBSBYvZNtMVruwElVvl0U6KGCF9gn88EA6sa38ZGTaDWo2nXsNBuG~RD7p3SCBRdlPMkukmvoHjg5IPEogLW7pCcf2xjU-nLsq3kS25XTJazkmoRr3NX9pe2MzLaZTyF~N669afRzhiRsppDR18TRSKPzWLjOFQejXTINRx2BLmgMuFSuSfK7oYmYMeZFQma8uvaO7m8q079iwZAXhJWKUz12tM5XQCGQ5xjNwE4hyZ0zez3Z31glGr-ikhzkyYEr2DC9Tda3piUY6ltg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Minimally_almost_periodic_totally_disconnected_groups","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":77576412,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77576412/thumbnails/1.jpg","file_name":"S0002-9939-99-05027-3.pdf","download_url":"https://www.academia.edu/attachments/77576412/download_file?st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minimally_almost_periodic_totally_discon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77576412/S0002-9939-99-05027-3-libre.pdf?1640776775=\u0026response-content-disposition=attachment%3B+filename%3DMinimally_almost_periodic_totally_discon.pdf\u0026Expires=1732784386\u0026Signature=CuT-yp-Z1YOnlFJKYMrOE78w6RBzowKnhvWbbSVcWUaBFWvaf3hVL76JAKT-6LvQb5LT4eBSBYvZNtMVruwElVvl0U6KGCF9gn88EA6sa38ZGTaDWo2nXsNBuG~RD7p3SCBRdlPMkukmvoHjg5IPEogLW7pCcf2xjU-nLsq3kS25XTJazkmoRr3NX9pe2MzLaZTyF~N669afRzhiRsppDR18TRSKPzWLjOFQejXTINRx2BLmgMuFSuSfK7oYmYMeZFQma8uvaO7m8q079iwZAXhJWKUz12tM5XQCGQ5xjNwE4hyZ0zez3Z31glGr-ikhzkyYEr2DC9Tda3piUY6ltg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77576413,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77576413/thumbnails/1.jpg","file_name":"S0002-9939-99-05027-3.pdf","download_url":"https://www.academia.edu/attachments/77576413/download_file","bulk_download_file_name":"Minimally_almost_periodic_totally_discon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77576413/S0002-9939-99-05027-3-libre.pdf?1640776775=\u0026response-content-disposition=attachment%3B+filename%3DMinimally_almost_periodic_totally_discon.pdf\u0026Expires=1732784386\u0026Signature=VgSq4wR8kl0sjMmXtE-lTX-1vNSqIFaXjNAa0nu7g6EvYizoNLgqJTVB35xRcOYtBZUglpIEKisku6oDQZI6YQg4LvixPMk2Er4LTiSSRpGXQWFfxKt-TQy9OjU-OZCtKFOlNj9iWpmTn5TXUWan2LZuNWCXIHW~JqryRGTnOrOPngxoVIOf799EpQ1LRAYrfO8--x2XIcB0MkAakEuwqtK5plZWZfjMgu1zwdm8pi7LHz3D8aCWrn7tezyRftw0fXo6c7T9ySeUtuSFPM6HLmpcV0VUUt0DfIZ3uXW~tpUUQgh8nSs-QvAMdjSFzlRlLF7fAdShsPj4qWNs3pvIvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":15814056,"url":"http://www.ams.org/journals/proc/2000-128-02/S0002-9939-99-05027-3/S0002-9939-99-05027-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="51438096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/51438096/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups"><img alt="Research paper thumbnail of Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/51438096/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups">Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51438096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51438096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51438096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51438096]").text(description); $(".js-view-count[data-work-id=51438096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51438096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51438096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 51438096, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51438096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51438096,"title":"Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1982,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/51438096/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_internal_url":"","created_at":"2021-09-07T10:59:54.564-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="51438095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/51438095/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups"><img alt="Research paper thumbnail of Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/51438095/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups">Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51438095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51438095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51438095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51438095]").text(description); $(".js-view-count[data-work-id=51438095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51438095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51438095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 51438095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51438095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51438095,"title":"Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1982,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/51438095/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_internal_url":"","created_at":"2021-09-07T10:59:52.927-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="48205047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48205047/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups"><img alt="Research paper thumbnail of Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups" class="work-thumbnail" src="https://attachments.academia-assets.com/66939009/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48205047/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups">Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1982</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="730dc0f8cc3a9036ca3a2061ff9ab9f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66939009,&quot;asset_id&quot;:48205047,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66939009/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48205047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48205047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48205047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48205047]").text(description); $(".js-view-count[data-work-id=48205047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48205047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48205047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 48205047, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "730dc0f8cc3a9036ca3a2061ff9ab9f4" } } $('.js-work-strip[data-work-id=48205047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48205047,"title":"Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups","translated_title":"","metadata":{"publisher":"American Mathematical Society (AMS)","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48205047/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_internal_url":"","created_at":"2021-05-04T04:53:52.810-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66939009,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66939009/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66939009/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66939009/S0002-9939-1982-0643747-3-libre.pdf?1620546263=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=LdHU2PI8xojE~hFfUM~W63hrl7SAK6FqjF5W4Khfo5dOKdffuz~bGwh1if2X9ZTaTXdm3CS7iu2oFEQHbv5azc6OEE~Ih-pGjFm9tYLRb9f9Uirit~JA8slOhlWzWMYYx72MIbdG~7n6UOel-uFkz8zN-geWjtGsMWWqzHlGQdFIdvtrfqyNkR4rTFME9FptdoEBQQuGi9dJ-lvKF5YxZxdVb0zU5-ajb-U5qjIQ4Y1X7ZK~tKUxUyIdmBYTMzLe4zBrhorbJBLt1J3s9rmpCKOvWp00S4Xl4cXRZ~TQWuEMk24Rtw2XmZFKL7bznTi0iRmRzdDfvS8rL0danckZKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":66939009,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66939009/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66939009/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66939009/S0002-9939-1982-0643747-3-libre.pdf?1620546263=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=LdHU2PI8xojE~hFfUM~W63hrl7SAK6FqjF5W4Khfo5dOKdffuz~bGwh1if2X9ZTaTXdm3CS7iu2oFEQHbv5azc6OEE~Ih-pGjFm9tYLRb9f9Uirit~JA8slOhlWzWMYYx72MIbdG~7n6UOel-uFkz8zN-geWjtGsMWWqzHlGQdFIdvtrfqyNkR4rTFME9FptdoEBQQuGi9dJ-lvKF5YxZxdVb0zU5-ajb-U5qjIQ4Y1X7ZK~tKUxUyIdmBYTMzLe4zBrhorbJBLt1J3s9rmpCKOvWp00S4Xl4cXRZ~TQWuEMk24Rtw2XmZFKL7bznTi0iRmRzdDfvS8rL0danckZKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1167854,"name":"Asymptotic Behaviour","url":"https://www.academia.edu/Documents/in/Asymptotic_Behaviour"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="48203912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48203912/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups"><img alt="Research paper thumbnail of Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups" class="work-thumbnail" src="https://attachments.academia-assets.com/66938439/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48203912/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups">Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1982</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8599e4543e18174d791d1b9771c2fca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66938439,&quot;asset_id&quot;:48203912,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66938439/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48203912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48203912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48203912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48203912]").text(description); $(".js-view-count[data-work-id=48203912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48203912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48203912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 48203912, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8599e4543e18174d791d1b9771c2fca" } } $('.js-work-strip[data-work-id=48203912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48203912,"title":"Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups","translated_title":"","metadata":{"publisher":"American Mathematical Society (AMS)","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48203912/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_internal_url":"","created_at":"2021-05-04T04:51:27.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66938439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66938439/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66938439/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66938439/S0002-9939-1982-0643747-3-libre.pdf?1620138152=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=UFXUhPtodIxoX4Lectq2hcJgyt5YYWhzuzgGuvTGreC0tcP9sbFGLG~le~uKU3iHPVXu1MtRVZR4Ose8Dv9UJ2Db3pKvn4MGEVpdY-7j20Lckdl2k5RpfrI69LOX-V9ULpklNRIlvokueO0SPwPnRn1BmPG8qOz6PUR4p4Te1-wc9PiqazrVNgc0cZg0pLpQe-V700GBYfOcMJwStjtIdGVAYlOkNF9UGoWObcGyReSKNe2EE4Etu1IFT5eF1-sO2RZdgueSZd6nvH482twyvEypzTRYJEw47-PdECVZaism6-TGXv9UvJ3m9~8~AWD7SworKrKETqVNvmuoQLHwlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":66938439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66938439/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66938439/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66938439/S0002-9939-1982-0643747-3-libre.pdf?1620138152=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=UFXUhPtodIxoX4Lectq2hcJgyt5YYWhzuzgGuvTGreC0tcP9sbFGLG~le~uKU3iHPVXu1MtRVZR4Ose8Dv9UJ2Db3pKvn4MGEVpdY-7j20Lckdl2k5RpfrI69LOX-V9ULpklNRIlvokueO0SPwPnRn1BmPG8qOz6PUR4p4Te1-wc9PiqazrVNgc0cZg0pLpQe-V700GBYfOcMJwStjtIdGVAYlOkNF9UGoWObcGyReSKNe2EE4Etu1IFT5eF1-sO2RZdgueSZd6nvH482twyvEypzTRYJEw47-PdECVZaism6-TGXv9UvJ3m9~8~AWD7SworKrKETqVNvmuoQLHwlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1167854,"name":"Asymptotic Behaviour","url":"https://www.academia.edu/Documents/in/Asymptotic_Behaviour"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="11192904" id="papers"><div class="js-work-strip profile--work_container" data-work-id="83190515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83190515/The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity"><img alt="Research paper thumbnail of The groups of isometries of the homogeneous tree and non-unimodularity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83190515/The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity">The groups of isometries of the homogeneous tree and non-unimodularity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of degree three. This description implies that the following three properties are equivalent: amenability, non-unimodularity and action without inversions. Moreover, we exhibit examples of non-unimodular transitive groups of isometrics of a homogeneous tree of degree q + 1 &amp;gt; 3 which do not fix any point of the boundary of the tree</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83190515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83190515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83190515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83190515]").text(description); $(".js-view-count[data-work-id=83190515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83190515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83190515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83190515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83190515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83190515,"title":"The groups of isometries of the homogeneous tree and non-unimodularity","translated_title":"","metadata":{"abstract":"In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of degree three. This description implies that the following three properties are equivalent: amenability, non-unimodularity and action without inversions. Moreover, we exhibit examples of non-unimodular transitive groups of isometrics of a homogeneous tree of degree q + 1 \u0026gt; 3 which do not fix any point of the boundary of the tree","publisher":"Unione Matematica Italiana","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"In this paper we describe the groups of isometrics acting transitively on the homogeneous tree of degree three. This description implies that the following three properties are equivalent: amenability, non-unimodularity and action without inversions. Moreover, we exhibit examples of non-unimodular transitive groups of isometrics of a homogeneous tree of degree q + 1 \u0026gt; 3 which do not fix any point of the boundary of the tree","internal_url":"https://www.academia.edu/83190515/The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity","translated_internal_url":"","created_at":"2022-07-15T04:36:48.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_groups_of_isometries_of_the_homogeneous_tree_and_non_unimodularity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[{"id":388681,"name":"Amenable groups","url":"https://www.academia.edu/Documents/in/Amenable_groups"}],"urls":[{"id":22191331,"url":"http://hdl.handle.net/11573/551954"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711795/Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon"><img alt="Research paper thumbnail of Groups of isometries of a tree and the Kunze-Stein phenomenon" class="work-thumbnail" src="https://attachments.academia-assets.com/85007333/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711795/Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon">Groups of isometries of a tree and the Kunze-Stein phenomenon</a></div><div class="wp-workCard_item"><span>Pacific Journal of Mathematics</span><span>, 1988</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="714a0f12890ce300e3fdddc2ebf0c223" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007333,&quot;asset_id&quot;:77711795,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007333/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711795]").text(description); $(".js-view-count[data-work-id=77711795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711795, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "714a0f12890ce300e3fdddc2ebf0c223" } } $('.js-work-strip[data-work-id=77711795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711795,"title":"Groups of isometries of a tree and the Kunze-Stein phenomenon","translated_title":"","metadata":{"publisher":"Mathematical Sciences Publishers","grobid_abstract":"In this paper we prove that every group of isometries of a homogeneous or semihomogeneous tree which acts transitively on the boundary of the tree is a Kunze-Stein group. From this, we deduce a weak Kunze-Stein property for groups acting simply transitively on a tree (in particular free groups on finitely many generators).","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Pacific Journal of Mathematics","grobid_abstract_attachment_id":85007333},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711795/Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon","translated_internal_url":"","created_at":"2022-04-26T13:48:46.817-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007333/thumbnails/1.jpg","file_name":"783686c4f46d1e7f917201e7550b3c1ab707.pdf","download_url":"https://www.academia.edu/attachments/85007333/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_isometries_of_a_tree_and_the_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007333/783686c4f46d1e7f917201e7550b3c1ab707-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_isometries_of_a_tree_and_the_K.pdf\u0026Expires=1732784386\u0026Signature=aFeb8MIgGe3KfixIJCI4f7so~yXZ3GvGlQI8T5B5iJuYOiZLKeSVpdh-cORX8MHH-1nPdMraCbnWadnbQoQWtlS2xtW7utvL55x301cPXjJJxHVrepSi7w0leU2jqa~Lg1cCycTtD~LeCr3Y8bJObzv3DCwIVV1S47eulMVQ3pzqzA9LoqnkfCGm87lH-Pg8xoGti3SZ9LFy~VqXPaw9YD6xiFYTEdrtsKmWAHM937LqZVl3oehD~mdYw74~kKcTn0J7Hj2wrfSf-~-D4u1cRAWEcTKYfZ73S1yq7X4gmMRVa30rwQ3YS4xHJzsHOLGB1mmCqtkV68yZNUPNrlPuYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Groups_of_isometries_of_a_tree_and_the_Kunze_Stein_phenomenon","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007333/thumbnails/1.jpg","file_name":"783686c4f46d1e7f917201e7550b3c1ab707.pdf","download_url":"https://www.academia.edu/attachments/85007333/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_isometries_of_a_tree_and_the_K.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007333/783686c4f46d1e7f917201e7550b3c1ab707-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_isometries_of_a_tree_and_the_K.pdf\u0026Expires=1732784386\u0026Signature=aFeb8MIgGe3KfixIJCI4f7so~yXZ3GvGlQI8T5B5iJuYOiZLKeSVpdh-cORX8MHH-1nPdMraCbnWadnbQoQWtlS2xtW7utvL55x301cPXjJJxHVrepSi7w0leU2jqa~Lg1cCycTtD~LeCr3Y8bJObzv3DCwIVV1S47eulMVQ3pzqzA9LoqnkfCGm87lH-Pg8xoGti3SZ9LFy~VqXPaw9YD6xiFYTEdrtsKmWAHM937LqZVl3oehD~mdYw74~kKcTn0J7Hj2wrfSf-~-D4u1cRAWEcTKYfZ73S1yq7X4gmMRVa30rwQ3YS4xHJzsHOLGB1mmCqtkV68yZNUPNrlPuYg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711794/Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees"><img alt="Research paper thumbnail of Harmonic Analysis and Representation Theory for Groups Acting on Homogenous Trees" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711794/Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees">Harmonic Analysis and Representation Theory for Groups Acting on Homogenous Trees</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711794]").text(description); $(".js-view-count[data-work-id=77711794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711794, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=77711794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711794,"title":"Harmonic Analysis and Representation Theory for Groups Acting on Homogenous Trees","translated_title":"","metadata":{"publisher":"Cambridge University Press","publication_date":{"day":null,"month":null,"year":1991,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711794/Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees","translated_internal_url":"","created_at":"2022-04-26T13:48:46.735-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Harmonic_Analysis_and_Representation_Theory_for_Groups_Acting_on_Homogenous_Trees","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":374,"name":"Harmonic Analysis","url":"https://www.academia.edu/Documents/in/Harmonic_Analysis"},{"id":27500,"name":"Representation Theory","url":"https://www.academia.edu/Documents/in/Representation_Theory"},{"id":599635,"name":"Cambridge University","url":"https://www.academia.edu/Documents/in/Cambridge_University"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711793"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711793/Groups_of_Isometries_of_a_Tree_and_the_CCR_Property"><img alt="Research paper thumbnail of Groups of Isometries of a Tree and the CCR Property" class="work-thumbnail" src="https://attachments.academia-assets.com/85007338/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711793/Groups_of_Isometries_of_a_Tree_and_the_CCR_Property">Groups of Isometries of a Tree and the CCR Property</a></div><div class="wp-workCard_item"><span>Rocky Mountain Journal of Mathematics</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="515297e680b09312b37d54d98acb093e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007338,&quot;asset_id&quot;:77711793,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007338/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711793"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711793"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711793; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711793]").text(description); $(".js-view-count[data-work-id=77711793]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711793; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711793']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711793, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "515297e680b09312b37d54d98acb093e" } } $('.js-work-strip[data-work-id=77711793]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711793,"title":"Groups of Isometries of a Tree and the CCR Property","translated_title":"","metadata":{"publisher":"Rocky Mountain Mathematics Consortium","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Rocky Mountain Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711793/Groups_of_Isometries_of_a_Tree_and_the_CCR_Property","translated_internal_url":"","created_at":"2022-04-26T13:48:46.630-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007338/thumbnails/1.jpg","file_name":"1181071692.pdf","download_url":"https://www.academia.edu/attachments/85007338/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_Isometries_of_a_Tree_and_the_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007338/1181071692-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_Isometries_of_a_Tree_and_the_C.pdf\u0026Expires=1732784386\u0026Signature=fkybMnH4NtQhIZ4I6osKcjEKEOnFY1jvA8FCtjfX5g9DpNCUIb58sT57UmeP0FLdxvj6RXPrHBJQSqkZC0rcmB-jiXJWt3O26L~PZVk7iaPSUpB4QCHAsVIhUT-SyJbZ2-R1L1ySIdcG3UNUYCprtE1jOed5PpgJDtZo2bCVYeWLxp-7STNPcemmi90eFkirwPXhISCZ1HPixDLAcI5xHL8efx9BcmbvVC1Ky6OYurdQmx5BKWJD5-yE5qhvDmPaBWNQsI8CNv~Adj4gHzGAlHinw0hS7NoHN0DEso1ZjjvDLuDmZWRZfDlA7OF5UWfayaKnjjANcoCN9hMOoRf1Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Groups_of_Isometries_of_a_Tree_and_the_CCR_Property","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007338/thumbnails/1.jpg","file_name":"1181071692.pdf","download_url":"https://www.academia.edu/attachments/85007338/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Groups_of_Isometries_of_a_Tree_and_the_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007338/1181071692-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DGroups_of_Isometries_of_a_Tree_and_the_C.pdf\u0026Expires=1732784386\u0026Signature=fkybMnH4NtQhIZ4I6osKcjEKEOnFY1jvA8FCtjfX5g9DpNCUIb58sT57UmeP0FLdxvj6RXPrHBJQSqkZC0rcmB-jiXJWt3O26L~PZVk7iaPSUpB4QCHAsVIhUT-SyJbZ2-R1L1ySIdcG3UNUYCprtE1jOed5PpgJDtZo2bCVYeWLxp-7STNPcemmi90eFkirwPXhISCZ1HPixDLAcI5xHL8efx9BcmbvVC1Ky6OYurdQmx5BKWJD5-yE5qhvDmPaBWNQsI8CNv~Adj4gHzGAlHinw0hS7NoHN0DEso1ZjjvDLuDmZWRZfDlA7OF5UWfayaKnjjANcoCN9hMOoRf1Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711792"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711792/A_note_on_the_amenable_subgroups_of_PSL_2_R_"><img alt="Research paper thumbnail of A note on the amenable subgroups of PSL (2,R)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711792/A_note_on_the_amenable_subgroups_of_PSL_2_R_">A note on the amenable subgroups of PSL (2,R)</a></div><div class="wp-workCard_item"><span>Monatshefte f�r Mathematik</span><span>, 1989</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the ac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the action on the hyperbolic half-plane.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711792"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711792"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711792; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711792]").text(description); $(".js-view-count[data-work-id=77711792]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711792; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711792']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711792, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=77711792]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711792,"title":"A note on the amenable subgroups of PSL (2,R)","translated_title":"","metadata":{"abstract":"In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the action on the hyperbolic half-plane.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Monatshefte f�r Mathematik"},"translated_abstract":"In this note we give a characterization of the amenable subgroups of PSL (2,R) in terms of the action on the hyperbolic half-plane.","internal_url":"https://www.academia.edu/77711792/A_note_on_the_amenable_subgroups_of_PSL_2_R_","translated_internal_url":"","created_at":"2022-04-26T13:48:46.505-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_note_on_the_amenable_subgroups_of_PSL_2_R_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711791/Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree"><img alt="Research paper thumbnail of Classification of all irreducible unitary representations of the stabilizer of the horicycles of a tree" class="work-thumbnail" src="https://attachments.academia-assets.com/85007337/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711791/Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree">Classification of all irreducible unitary representations of the stabilizer of the horicycles of a tree</a></div><div class="wp-workCard_item"><span>Israel Journal of Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef8de6cbbd35ee10eb9dcb4981e78c33" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007337,&quot;asset_id&quot;:77711791,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007337/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711791]").text(description); $(".js-view-count[data-work-id=77711791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711791, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef8de6cbbd35ee10eb9dcb4981e78c33" } } $('.js-work-strip[data-work-id=77711791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711791,"title":"Classification of all irreducible unitary representations of the stabilizer of the horicycles of a tree","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Israel Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711791/Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree","translated_internal_url":"","created_at":"2022-04-26T13:48:46.418-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007337,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007337/thumbnails/1.jpg","file_name":"BF02801468.pdf","download_url":"https://www.academia.edu/attachments/85007337/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Classification_of_all_irreducible_unitar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007337/BF02801468-libre.pdf?1651006465=\u0026response-content-disposition=attachment%3B+filename%3DClassification_of_all_irreducible_unitar.pdf\u0026Expires=1732784386\u0026Signature=gc9TSkmZhqz1xybIyMHeVaMaexlBAiWikk9~p4PYYVThnvaMYB8njLuDEFOvYLphwJ0xaVqCujm6-hXcCt0JP4wTavHCBd8n~0e-YF4VclfAma9aRQQTfO5UpoIg4erx0IhS1pP7vOE1OhblSj0oZySuKmXJvVZmNpiRuW99~84tOiWjbDcZTAVKZpkveUU0s3rFOnTtxPJ~7-IQ6rNLmGf0p8-bPuTxtcAer7mXioTDMdKMwHdexPHTik8G9InQ2yNlPGqrmko-cnNCNRIfWl-6KLuh59lJZ6BLqjg20GJcqILoZcLVeUm~K9DCP4UveHQevqbctwwpwRPgDDL8bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Classification_of_all_irreducible_unitary_representations_of_the_stabilizer_of_the_horicycles_of_a_tree","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007337,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007337/thumbnails/1.jpg","file_name":"BF02801468.pdf","download_url":"https://www.academia.edu/attachments/85007337/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Classification_of_all_irreducible_unitar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007337/BF02801468-libre.pdf?1651006465=\u0026response-content-disposition=attachment%3B+filename%3DClassification_of_all_irreducible_unitar.pdf\u0026Expires=1732784386\u0026Signature=gc9TSkmZhqz1xybIyMHeVaMaexlBAiWikk9~p4PYYVThnvaMYB8njLuDEFOvYLphwJ0xaVqCujm6-hXcCt0JP4wTavHCBd8n~0e-YF4VclfAma9aRQQTfO5UpoIg4erx0IhS1pP7vOE1OhblSj0oZySuKmXJvVZmNpiRuW99~84tOiWjbDcZTAVKZpkveUU0s3rFOnTtxPJ~7-IQ6rNLmGf0p8-bPuTxtcAer7mXioTDMdKMwHdexPHTik8G9InQ2yNlPGqrmko-cnNCNRIfWl-6KLuh59lJZ6BLqjg20GJcqILoZcLVeUm~K9DCP4UveHQevqbctwwpwRPgDDL8bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711790/Cohomology_for_groups_of_isometries_of_regular_trees"><img alt="Research paper thumbnail of Cohomology for groups of isometries of regular trees" class="work-thumbnail" src="https://attachments.academia-assets.com/85007330/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711790/Cohomology_for_groups_of_isometries_of_regular_trees">Cohomology for groups of isometries of regular trees</a></div><div class="wp-workCard_item"><span>Expositiones Mathematicae</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca87a2a60613ef4ba813e03f10721896" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007330,&quot;asset_id&quot;:77711790,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007330/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711790]").text(description); $(".js-view-count[data-work-id=77711790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711790, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca87a2a60613ef4ba813e03f10721896" } } $('.js-work-strip[data-work-id=77711790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711790,"title":"Cohomology for groups of isometries of regular trees","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In this paper, we study the 1-cohomology groups associated with the unitary irreducible representations of locally compact groups of isometries of regular trees. We begin by explaining definitions and terminology about 1-cohomology groups and Gelfand pairs, already well known in the literature. Next, we focus on the irreducible representations of closed groups of isometries of homogeneous or semihomogeneous trees acting transitively on the tree boundary. We prove that all the groups H 1 (G, π) are always zero with only one exception. This result is already known for both groups PGL 2 (F) and PSL 2 (F) where F is a local field.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Expositiones Mathematicae","grobid_abstract_attachment_id":85007330},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711790/Cohomology_for_groups_of_isometries_of_regular_trees","translated_internal_url":"","created_at":"2022-04-26T13:48:46.310-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007330,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007330/thumbnails/1.jpg","file_name":"82151025.pdf","download_url":"https://www.academia.edu/attachments/85007330/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_for_groups_of_isometries_of_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007330/82151025-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_for_groups_of_isometries_of_r.pdf\u0026Expires=1732784386\u0026Signature=FuODPkI5TGDssfPWDZnLLOiD6oNvYPJHdwr~H2ZMQPKEJzPPrh3fvGrJ0b~YdLu~Y-K-SYylOPUDOYFTLxoyH5T2~Spomah80o~A9lNmSF6KG4YyBvGLq5qpy0hC90hmxAv0MXZmwgS2Ba-p-eKd-G9Zq9Lt1TrdAhFW0-WIeJrehmk05skegjgQXT0monZuqffqwbCSwPeztlfikyNIr7LcMznmBzhaUCLhKcNeZ00WBBasbA3VYf5xOqG2aVy7ZdwHlIAUSeQELUJlhPJp9DIKiEu00PslpRVHrkqvhBhHQ852FcxVBDzsQ8FWvpjMm35AvzlkTbYQlSNokqmVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cohomology_for_groups_of_isometries_of_regular_trees","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007330,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007330/thumbnails/1.jpg","file_name":"82151025.pdf","download_url":"https://www.academia.edu/attachments/85007330/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_for_groups_of_isometries_of_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007330/82151025-libre.pdf?1651006467=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_for_groups_of_isometries_of_r.pdf\u0026Expires=1732784386\u0026Signature=FuODPkI5TGDssfPWDZnLLOiD6oNvYPJHdwr~H2ZMQPKEJzPPrh3fvGrJ0b~YdLu~Y-K-SYylOPUDOYFTLxoyH5T2~Spomah80o~A9lNmSF6KG4YyBvGLq5qpy0hC90hmxAv0MXZmwgS2Ba-p-eKd-G9Zq9Lt1TrdAhFW0-WIeJrehmk05skegjgQXT0monZuqffqwbCSwPeztlfikyNIr7LcMznmBzhaUCLhKcNeZ00WBBasbA3VYf5xOqG2aVy7ZdwHlIAUSeQELUJlhPJp9DIKiEu00PslpRVHrkqvhBhHQ852FcxVBDzsQ8FWvpjMm35AvzlkTbYQlSNokqmVnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77711668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77711668/Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree"><img alt="Research paper thumbnail of Amenability and Kunze-Stein property for groups acting on a tree" class="work-thumbnail" src="https://attachments.academia-assets.com/85007265/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77711668/Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree">Amenability and Kunze-Stein property for groups acting on a tree</a></div><div class="wp-workCard_item"><span>Pacific Journal of Mathematics</span><span>, 1988</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb9c8a1eb469db7419e2705b5d97a9c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:85007265,&quot;asset_id&quot;:77711668,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/85007265/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77711668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77711668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77711668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77711668]").text(description); $(".js-view-count[data-work-id=77711668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77711668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77711668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77711668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb9c8a1eb469db7419e2705b5d97a9c3" } } $('.js-work-strip[data-work-id=77711668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77711668,"title":"Amenability and Kunze-Stein property for groups acting on a tree","translated_title":"","metadata":{"publisher":"Mathematical Sciences Publishers","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Pacific Journal of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77711668/Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_internal_url":"","created_at":"2022-04-26T13:47:54.392-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85007265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007265/thumbnails/1.jpg","file_name":"1102688299.pdf","download_url":"https://www.academia.edu/attachments/85007265/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amenability_and_Kunze_Stein_property_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007265/1102688299-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DAmenability_and_Kunze_Stein_property_for.pdf\u0026Expires=1732784386\u0026Signature=RgCuGfj3UHUbn5Y0FKg4wg7M7n~rgotCFk4ySBbYMY6uJwQnUv6t6rK~PkfFSOATpDTeDkAqhzgI29BJLJAUsUnhpFLDOWsOwH8VANc9zRlMj62vuc1cS0UejTq8FES9kNTp4iUKQK2YXnmXit3TOlm~gq2PYlCNwxsoPXsPzhYOj3pXmpJOnluc~eLsesL1pDYkgyW34pIIFOH9Av3onFHxxs0Z5NpqUTybz~pNACkU7y375rHI3-Zvj2VJnE-MCqajkq1z5nG7e1GhdHNK70U-PtRKzZVDhQe9nurB5tsVYgmXQbL7osnTuy-bmt499Rzf7XM105RTb-SPTV1KuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":85007265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85007265/thumbnails/1.jpg","file_name":"1102688299.pdf","download_url":"https://www.academia.edu/attachments/85007265/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amenability_and_Kunze_Stein_property_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85007265/1102688299-libre.pdf?1651006469=\u0026response-content-disposition=attachment%3B+filename%3DAmenability_and_Kunze_Stein_property_for.pdf\u0026Expires=1732784386\u0026Signature=RgCuGfj3UHUbn5Y0FKg4wg7M7n~rgotCFk4ySBbYMY6uJwQnUv6t6rK~PkfFSOATpDTeDkAqhzgI29BJLJAUsUnhpFLDOWsOwH8VANc9zRlMj62vuc1cS0UejTq8FES9kNTp4iUKQK2YXnmXit3TOlm~gq2PYlCNwxsoPXsPzhYOj3pXmpJOnluc~eLsesL1pDYkgyW34pIIFOH9Av3onFHxxs0Z5NpqUTybz~pNACkU7y375rHI3-Zvj2VJnE-MCqajkq1z5nG7e1GhdHNK70U-PtRKzZVDhQe9nurB5tsVYgmXQbL7osnTuy-bmt499Rzf7XM105RTb-SPTV1KuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71367582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71367582/On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree"><img alt="Research paper thumbnail of On the amenability and Kunze–Stein property for groups acting on a tree" class="work-thumbnail" src="https://attachments.academia-assets.com/80740322/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71367582/On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree">On the amenability and Kunze–Stein property for groups acting on a tree</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We characterize the amenable groups acting on a locally finite tree. In particular if the tree is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We characterize the amenable groups acting on a locally finite tree. In particular if the tree is homogeneous and the group G acts transitively on the vertices then we prove that G is amenable iff G fixes one point of the boundary of the tree. Moreover we prove that a group G which acts transitively on the vertices and on an open subset of the boundary is either amenable or a Kunze-Stein group. 1. Introduction and notations. Let X b e a locally finite tree, that is, a connected graph without circuits such that every vertex belongs to a finite set of edges. Let V be the set of vertices and E the set of edges. If V \ and v2 are in V, let [^1,^2] be the unique geodesic connecting v \ to v2; the distance d(v\, v2) is defined as the length of</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7784641e74de941aa696507af8fa607b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80740322,&quot;asset_id&quot;:71367582,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80740322/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71367582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71367582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71367582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71367582]").text(description); $(".js-view-count[data-work-id=71367582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71367582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71367582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71367582, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7784641e74de941aa696507af8fa607b" } } $('.js-work-strip[data-work-id=71367582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71367582,"title":"On the amenability and Kunze–Stein property for groups acting on a tree","translated_title":"","metadata":{"abstract":"We characterize the amenable groups acting on a locally finite tree. In particular if the tree is homogeneous and the group G acts transitively on the vertices then we prove that G is amenable iff G fixes one point of the boundary of the tree. Moreover we prove that a group G which acts transitively on the vertices and on an open subset of the boundary is either amenable or a Kunze-Stein group. 1. Introduction and notations. Let X b e a locally finite tree, that is, a connected graph without circuits such that every vertex belongs to a finite set of edges. Let V be the set of vertices and E the set of edges. If V \\ and v2 are in V, let [^1,^2] be the unique geodesic connecting v \\ to v2; the distance d(v\\, v2) is defined as the length of","publication_date":{"day":null,"month":null,"year":1988,"errors":{}}},"translated_abstract":"We characterize the amenable groups acting on a locally finite tree. In particular if the tree is homogeneous and the group G acts transitively on the vertices then we prove that G is amenable iff G fixes one point of the boundary of the tree. Moreover we prove that a group G which acts transitively on the vertices and on an open subset of the boundary is either amenable or a Kunze-Stein group. 1. Introduction and notations. Let X b e a locally finite tree, that is, a connected graph without circuits such that every vertex belongs to a finite set of edges. Let V be the set of vertices and E the set of edges. If V \\ and v2 are in V, let [^1,^2] be the unique geodesic connecting v \\ to v2; the distance d(v\\, v2) is defined as the length of","internal_url":"https://www.academia.edu/71367582/On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_internal_url":"","created_at":"2022-02-13T11:05:37.092-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80740322,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80740322/thumbnails/1.jpg","file_name":"pjm-v135-n2-p11-s.pdf","download_url":"https://www.academia.edu/attachments/80740322/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_amenability_and_Kunze_Stein_prope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80740322/pjm-v135-n2-p11-s-libre.pdf?1644779408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_amenability_and_Kunze_Stein_prope.pdf\u0026Expires=1732784386\u0026Signature=LWH3Bg~5z-b4apNJGJoEYkVCf-0w9QLdlTpmvbX16lGuH5RlOf8SQ2K~nfDNxSPI~KuVK8skPwLYkw7KKkfa-2PwRQ9IQRMnMzD61UV8~qTYFloZmSG0EY3ClcHZfT0w8TZTY4JhUDkylawX1PVoWMmEVXOD9kDkM8mvrwiCe0hEx5sAM2WnRAjuI04h7pvo1T0iUWjLRB2CZpeBi4Lk3mAPQ8j5QRHo-eSgNjRaIpHpBZDLj6CHLnG550X44KmwtAl4n52nOO5ZsUMjxFqcTdKM8CosaLKSRmakkBRUkvy~3xaJQJq9Oe1MCkgUZZic9y4-AxpybnfKSL6P-oQH4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_amenability_and_Kunze_Stein_property_for_groups_acting_on_a_tree","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":80740322,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80740322/thumbnails/1.jpg","file_name":"pjm-v135-n2-p11-s.pdf","download_url":"https://www.academia.edu/attachments/80740322/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_amenability_and_Kunze_Stein_prope.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80740322/pjm-v135-n2-p11-s-libre.pdf?1644779408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_amenability_and_Kunze_Stein_prope.pdf\u0026Expires=1732784386\u0026Signature=LWH3Bg~5z-b4apNJGJoEYkVCf-0w9QLdlTpmvbX16lGuH5RlOf8SQ2K~nfDNxSPI~KuVK8skPwLYkw7KKkfa-2PwRQ9IQRMnMzD61UV8~qTYFloZmSG0EY3ClcHZfT0w8TZTY4JhUDkylawX1PVoWMmEVXOD9kDkM8mvrwiCe0hEx5sAM2WnRAjuI04h7pvo1T0iUWjLRB2CZpeBi4Lk3mAPQ8j5QRHo-eSgNjRaIpHpBZDLj6CHLnG550X44KmwtAl4n52nOO5ZsUMjxFqcTdKM8CosaLKSRmakkBRUkvy~3xaJQJq9Oe1MCkgUZZic9y4-AxpybnfKSL6P-oQH4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":17619831,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.849.8478\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66348485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66348485/Minimally_almost_periodic_totally_disconnected_groups"><img alt="Research paper thumbnail of Minimally almost periodic totally disconnected groups" class="work-thumbnail" src="https://attachments.academia-assets.com/77576412/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66348485/Minimally_almost_periodic_totally_disconnected_groups">Minimally almost periodic totally disconnected groups</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup G′ which is minimally almost periodic. Moreover we prove that G′ is a topologically simple group.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a94234341786302456773969df0d7ecb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77576412,&quot;asset_id&quot;:66348485,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77576412/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66348485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66348485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66348485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66348485]").text(description); $(".js-view-count[data-work-id=66348485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66348485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66348485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66348485, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a94234341786302456773969df0d7ecb" } } $('.js-work-strip[data-work-id=66348485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66348485,"title":"Minimally almost periodic totally disconnected groups","translated_title":"","metadata":{"abstract":"In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup G′ which is minimally almost periodic. Moreover we prove that G′ is a topologically simple group.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}}},"translated_abstract":"In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup G′ which is minimally almost periodic. Moreover we prove that G′ is a topologically simple group.","internal_url":"https://www.academia.edu/66348485/Minimally_almost_periodic_totally_disconnected_groups","translated_internal_url":"","created_at":"2021-12-29T03:17:03.232-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77576412,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77576412/thumbnails/1.jpg","file_name":"S0002-9939-99-05027-3.pdf","download_url":"https://www.academia.edu/attachments/77576412/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minimally_almost_periodic_totally_discon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77576412/S0002-9939-99-05027-3-libre.pdf?1640776775=\u0026response-content-disposition=attachment%3B+filename%3DMinimally_almost_periodic_totally_discon.pdf\u0026Expires=1732784386\u0026Signature=CuT-yp-Z1YOnlFJKYMrOE78w6RBzowKnhvWbbSVcWUaBFWvaf3hVL76JAKT-6LvQb5LT4eBSBYvZNtMVruwElVvl0U6KGCF9gn88EA6sa38ZGTaDWo2nXsNBuG~RD7p3SCBRdlPMkukmvoHjg5IPEogLW7pCcf2xjU-nLsq3kS25XTJazkmoRr3NX9pe2MzLaZTyF~N669afRzhiRsppDR18TRSKPzWLjOFQejXTINRx2BLmgMuFSuSfK7oYmYMeZFQma8uvaO7m8q079iwZAXhJWKUz12tM5XQCGQ5xjNwE4hyZ0zez3Z31glGr-ikhzkyYEr2DC9Tda3piUY6ltg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Minimally_almost_periodic_totally_disconnected_groups","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":77576412,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77576412/thumbnails/1.jpg","file_name":"S0002-9939-99-05027-3.pdf","download_url":"https://www.academia.edu/attachments/77576412/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minimally_almost_periodic_totally_discon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77576412/S0002-9939-99-05027-3-libre.pdf?1640776775=\u0026response-content-disposition=attachment%3B+filename%3DMinimally_almost_periodic_totally_discon.pdf\u0026Expires=1732784386\u0026Signature=CuT-yp-Z1YOnlFJKYMrOE78w6RBzowKnhvWbbSVcWUaBFWvaf3hVL76JAKT-6LvQb5LT4eBSBYvZNtMVruwElVvl0U6KGCF9gn88EA6sa38ZGTaDWo2nXsNBuG~RD7p3SCBRdlPMkukmvoHjg5IPEogLW7pCcf2xjU-nLsq3kS25XTJazkmoRr3NX9pe2MzLaZTyF~N669afRzhiRsppDR18TRSKPzWLjOFQejXTINRx2BLmgMuFSuSfK7oYmYMeZFQma8uvaO7m8q079iwZAXhJWKUz12tM5XQCGQ5xjNwE4hyZ0zez3Z31glGr-ikhzkyYEr2DC9Tda3piUY6ltg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":77576413,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77576413/thumbnails/1.jpg","file_name":"S0002-9939-99-05027-3.pdf","download_url":"https://www.academia.edu/attachments/77576413/download_file","bulk_download_file_name":"Minimally_almost_periodic_totally_discon.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77576413/S0002-9939-99-05027-3-libre.pdf?1640776775=\u0026response-content-disposition=attachment%3B+filename%3DMinimally_almost_periodic_totally_discon.pdf\u0026Expires=1732784386\u0026Signature=VgSq4wR8kl0sjMmXtE-lTX-1vNSqIFaXjNAa0nu7g6EvYizoNLgqJTVB35xRcOYtBZUglpIEKisku6oDQZI6YQg4LvixPMk2Er4LTiSSRpGXQWFfxKt-TQy9OjU-OZCtKFOlNj9iWpmTn5TXUWan2LZuNWCXIHW~JqryRGTnOrOPngxoVIOf799EpQ1LRAYrfO8--x2XIcB0MkAakEuwqtK5plZWZfjMgu1zwdm8pi7LHz3D8aCWrn7tezyRftw0fXo6c7T9ySeUtuSFPM6HLmpcV0VUUt0DfIZ3uXW~tpUUQgh8nSs-QvAMdjSFzlRlLF7fAdShsPj4qWNs3pvIvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":15814056,"url":"http://www.ams.org/journals/proc/2000-128-02/S0002-9939-99-05027-3/S0002-9939-99-05027-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="51438096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/51438096/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups"><img alt="Research paper thumbnail of Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/51438096/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups">Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51438096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51438096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51438096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51438096]").text(description); $(".js-view-count[data-work-id=51438096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51438096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51438096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 51438096, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51438096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51438096,"title":"Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1982,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/51438096/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_internal_url":"","created_at":"2021-09-07T10:59:54.564-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="51438095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/51438095/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups"><img alt="Research paper thumbnail of Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/51438095/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups">Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51438095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51438095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51438095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51438095]").text(description); $(".js-view-count[data-work-id=51438095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51438095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51438095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 51438095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51438095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51438095,"title":"Multipliers and asymtotic behaviour of the Fourier algebra of non-amenable groups","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1982,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/51438095/Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_internal_url":"","created_at":"2021-09-07T10:59:52.927-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multipliers_and_asymtotic_behaviour_of_the_Fourier_algebra_of_non_amenable_groups","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="48205047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48205047/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups"><img alt="Research paper thumbnail of Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups" class="work-thumbnail" src="https://attachments.academia-assets.com/66939009/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48205047/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups">Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1982</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="730dc0f8cc3a9036ca3a2061ff9ab9f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66939009,&quot;asset_id&quot;:48205047,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66939009/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48205047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48205047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48205047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48205047]").text(description); $(".js-view-count[data-work-id=48205047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48205047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48205047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 48205047, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "730dc0f8cc3a9036ca3a2061ff9ab9f4" } } $('.js-work-strip[data-work-id=48205047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48205047,"title":"Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups","translated_title":"","metadata":{"publisher":"American Mathematical Society (AMS)","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48205047/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_internal_url":"","created_at":"2021-05-04T04:53:52.810-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66939009,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66939009/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66939009/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66939009/S0002-9939-1982-0643747-3-libre.pdf?1620546263=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=LdHU2PI8xojE~hFfUM~W63hrl7SAK6FqjF5W4Khfo5dOKdffuz~bGwh1if2X9ZTaTXdm3CS7iu2oFEQHbv5azc6OEE~Ih-pGjFm9tYLRb9f9Uirit~JA8slOhlWzWMYYx72MIbdG~7n6UOel-uFkz8zN-geWjtGsMWWqzHlGQdFIdvtrfqyNkR4rTFME9FptdoEBQQuGi9dJ-lvKF5YxZxdVb0zU5-ajb-U5qjIQ4Y1X7ZK~tKUxUyIdmBYTMzLe4zBrhorbJBLt1J3s9rmpCKOvWp00S4Xl4cXRZ~TQWuEMk24Rtw2XmZFKL7bznTi0iRmRzdDfvS8rL0danckZKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":66939009,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66939009/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66939009/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66939009/S0002-9939-1982-0643747-3-libre.pdf?1620546263=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=LdHU2PI8xojE~hFfUM~W63hrl7SAK6FqjF5W4Khfo5dOKdffuz~bGwh1if2X9ZTaTXdm3CS7iu2oFEQHbv5azc6OEE~Ih-pGjFm9tYLRb9f9Uirit~JA8slOhlWzWMYYx72MIbdG~7n6UOel-uFkz8zN-geWjtGsMWWqzHlGQdFIdvtrfqyNkR4rTFME9FptdoEBQQuGi9dJ-lvKF5YxZxdVb0zU5-ajb-U5qjIQ4Y1X7ZK~tKUxUyIdmBYTMzLe4zBrhorbJBLt1J3s9rmpCKOvWp00S4Xl4cXRZ~TQWuEMk24Rtw2XmZFKL7bznTi0iRmRzdDfvS8rL0danckZKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1167854,"name":"Asymptotic Behaviour","url":"https://www.academia.edu/Documents/in/Asymptotic_Behaviour"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="48203912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/48203912/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups"><img alt="Research paper thumbnail of Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups" class="work-thumbnail" src="https://attachments.academia-assets.com/66938439/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/48203912/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups">Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1982</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8599e4543e18174d791d1b9771c2fca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66938439,&quot;asset_id&quot;:48203912,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66938439/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="48203912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="48203912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48203912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48203912]").text(description); $(".js-view-count[data-work-id=48203912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48203912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='48203912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 48203912, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8599e4543e18174d791d1b9771c2fca" } } $('.js-work-strip[data-work-id=48203912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":48203912,"title":"Multipliers and asymptotic behaviour of the Fourier algebra of nonamenable groups","translated_title":"","metadata":{"publisher":"American Mathematical Society (AMS)","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/48203912/Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_internal_url":"","created_at":"2021-05-04T04:51:27.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":177515951,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66938439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66938439/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66938439/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66938439/S0002-9939-1982-0643747-3-libre.pdf?1620138152=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=UFXUhPtodIxoX4Lectq2hcJgyt5YYWhzuzgGuvTGreC0tcP9sbFGLG~le~uKU3iHPVXu1MtRVZR4Ose8Dv9UJ2Db3pKvn4MGEVpdY-7j20Lckdl2k5RpfrI69LOX-V9ULpklNRIlvokueO0SPwPnRn1BmPG8qOz6PUR4p4Te1-wc9PiqazrVNgc0cZg0pLpQe-V700GBYfOcMJwStjtIdGVAYlOkNF9UGoWObcGyReSKNe2EE4Etu1IFT5eF1-sO2RZdgueSZd6nvH482twyvEypzTRYJEw47-PdECVZaism6-TGXv9UvJ3m9~8~AWD7SworKrKETqVNvmuoQLHwlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multipliers_and_asymptotic_behaviour_of_the_Fourier_algebra_of_nonamenable_groups","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":177515951,"first_name":"Claudio","middle_initials":null,"last_name":"Nebbia","page_name":"NebbiaClaudio","domain_name":"independent","created_at":"2020-11-07T03:19:16.592-08:00","display_name":"Claudio Nebbia","url":"https://independent.academia.edu/NebbiaClaudio"},"attachments":[{"id":66938439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66938439/thumbnails/1.jpg","file_name":"S0002-9939-1982-0643747-3.pdf","download_url":"https://www.academia.edu/attachments/66938439/download_file?st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&st=MTczMjc4MDc4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multipliers_and_asymptotic_behaviour_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66938439/S0002-9939-1982-0643747-3-libre.pdf?1620138152=\u0026response-content-disposition=attachment%3B+filename%3DMultipliers_and_asymptotic_behaviour_of.pdf\u0026Expires=1732784387\u0026Signature=UFXUhPtodIxoX4Lectq2hcJgyt5YYWhzuzgGuvTGreC0tcP9sbFGLG~le~uKU3iHPVXu1MtRVZR4Ose8Dv9UJ2Db3pKvn4MGEVpdY-7j20Lckdl2k5RpfrI69LOX-V9ULpklNRIlvokueO0SPwPnRn1BmPG8qOz6PUR4p4Te1-wc9PiqazrVNgc0cZg0pLpQe-V700GBYfOcMJwStjtIdGVAYlOkNF9UGoWObcGyReSKNe2EE4Etu1IFT5eF1-sO2RZdgueSZd6nvH482twyvEypzTRYJEw47-PdECVZaism6-TGXv9UvJ3m9~8~AWD7SworKrKETqVNvmuoQLHwlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1167854,"name":"Asymptotic Behaviour","url":"https://www.academia.edu/Documents/in/Asymptotic_Behaviour"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "5f925d480a80fa410ea5ca3e040789af58b798dacacecea908e101d5a153f1c7", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="GBq4vixO82pNFDmnvjgsTZ2c/Q1vjFDQvB0fKFDNe3izdpRJev0xIU3hk0a5EPrRH350tDC9cQ3VCcvOy9JLOw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/NebbiaClaudio" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Jw+tJ9ZqOLiXcZrKHDxzqHlAGmkc90MO4y0UUAk/Nq6MY4HQgNn685eEMCsbFKU0+6KT0EPGYtOKOcC2kiAG7Q==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10