CINXE.COM

Search results for: inundation duration

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inundation duration</title> <meta name="description" content="Search results for: inundation duration"> <meta name="keywords" content="inundation duration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inundation duration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inundation duration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1613</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inundation duration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1613</span> Simulation of Flood Inundation in Kedukan River Using HEC-RAS and GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reini%20S.%20Ilmiaty">Reini S. Ilmiaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Al%20Amin"> Muhammad B. Al Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarino"> Sarino</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzamil%20Jariski"> Muzamil Jariski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kedukan River is an artificial river which serves as a Watershed Boang drainage channel in Palembang. The river has upstream and downstream connected to Musi River, that often overflowing and flooding caused by the huge runoff discharge and high tide water level of Musi River. This study aimed to analyze the flood water surface profile on Kedukan River continued with flood inundation simulation to determine flooding prone areas in research area. The analysis starts from the peak runoff discharge calculations using rational method followed by water surface profile analysis using HEC-RAS program controlled by manual calculations using standard stages. The analysis followed by running flood inundation simulation using ArcGIS program that has been integrated with HEC-GeoRAS. Flood inundation simulation on Kedukan River creates inundation characteristic maps with depth, area, and circumference of inundation as the parameters. The inundation maps are very useful in providing an overview of flood prone areas in Kedukan River. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modelling" title="flood modelling">flood modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-GeoRAS" title=" HEC-GeoRAS"> HEC-GeoRAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20map" title=" inundation map"> inundation map</a> </p> <a href="https://publications.waset.org/abstracts/36622/simulation-of-flood-inundation-in-kedukan-river-using-hec-ras-and-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1612</span> Impact of Global Warming on the Total Flood Duration and Flood Recession Time in the Meghna Basin Using Hydrodynamic Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Gupta">Karan Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The floods cause huge loos each year, and their impact gets manifold with the increase of total duration of flood as well as recession time. Moreover, floods have increased in recent years due to climate change in floodplains. In the context of global climate change, the agreement in Paris convention (2015) stated to keep the increase in global average temperature well below 2°C and keep it at the limit of 1.5°C. Thus, this study investigates the impact of increasing temperature on the stage, discharge as well as total flood duration and recession time in the Meghna River basin in Bangladesh. This study considers the 100-year return period flood flows in the Meghna river under the specific warming levels (SWLs) of 1.5°C, 2°C, and 4°C. The results showed that the rate of increase of duration of flood is nearly 50% lesser at ∆T = 1.5°C as compared to ∆T = 2°C, whereas the rate of increase of duration of recession is 75% lower at ∆T = 1.5°C as compared to ∆T = 2°C. Understanding the change of total duration of flood as well as recession time of the flood gives a better insight to effectively plan for flood mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20convention" title=" Paris convention"> Paris convention</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20duration" title=" inundation duration"> inundation duration</a>, <a href="https://publications.waset.org/abstracts/search?q=recession%20duration" title=" recession duration"> recession duration</a> </p> <a href="https://publications.waset.org/abstracts/135260/impact-of-global-warming-on-the-total-flood-duration-and-flood-recession-time-in-the-meghna-basin-using-hydrodynamic-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1611</span> Vulnerability Assessment for Protection of Ghardaia City to the Inundation of M’zabWadi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Kamel%20Mihoubi">Mustapha Kamel Mihoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Madi"> Reda Madi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of natural disasters in general and flooding in particular is a topic which marks a memorable action in the world and specifically in cities and large urban areas. Torrential floods and faster flows pose a major problem in urban area. Indeed, a better management of risks of floods becomes a growing necessity that must mobilize technical and scientific means to curb the adverse consequences of this phenomenon, especially in the Saharan cities in arid climate. The aim of this study is to deploy a basic calculation approach based on a hydrologic and hydraulic quantification for locating the black spots in urban areas generated by the flooding and to locate the areas that are vulnerable to flooding. The principle of flooding method is applied to the city of Ghardaia to identify vulnerable areas to inundation and to establish maps management and prevention against the risks of flooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alea" title="Alea">Alea</a>, <a href="https://publications.waset.org/abstracts/search?q=Beni%20Mzab" title=" Beni Mzab"> Beni Mzab</a>, <a href="https://publications.waset.org/abstracts/search?q=cartography" title=" cartography"> cartography</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation" title=" inundation"> inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=torrential" title=" torrential"> torrential</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=wadi" title=" wadi"> wadi</a> </p> <a href="https://publications.waset.org/abstracts/36481/vulnerability-assessment-for-protection-of-ghardaia-city-to-the-inundation-of-mzabwadi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1610</span> Flood Hazard Impact Based on Simulation Model of Potential Flood Inundation in Lamong River, Gresik Regency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunita%20Ratih%20Wijayanti">Yunita Ratih Wijayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Rahmawati"> Dwi Rahmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Turniningtyas%20Ayu%20Rahmawati"> Turniningtyas Ayu Rahmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gresik is one of the districts in East Java Province, Indonesia. Gresik Regency has three major rivers, namely Bengawan Solo River, Brantas River, and Lamong River. Lamong River is a tributary of Bengawan Solo River. Flood disasters that occur in Gresik Regency are often caused by the overflow of the Lamong River. The losses caused by the flood were very large and certainly detrimental to the affected people. Therefore, to be able to minimize the impact caused by the flood, it is necessary to take preventive action. However, before taking preventive action, it is necessary to have information regarding potential inundation areas and water levels at various points. For this reason, a flood simulation model is needed. In this study, the simulation was carried out using the Geographic Information System (GIS) method with the help of Global Mapper software. The approach used in this simulation is to use a topographical approach with Digital Elevation Models (DEMs) data. DEMs data have been widely used for various researches to analyze hydrology. The results obtained from this flood simulation are the distribution of flood inundation and water level. The location of the inundation serves to determine the extent of the flooding that occurs by referring to the 50-100 year flood plan, while the water level serves to provide early warning information. Both will be very useful to find out how much loss will be caused in the future due to flooding in Gresik Regency so that the Gresik Regency Regional Disaster Management Agency can take precautions before the flood disaster strikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title="flood hazard">flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20inundation" title=" potential inundation"> potential inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20mapper" title=" global mapper"> global mapper</a>, <a href="https://publications.waset.org/abstracts/search?q=Gresik%20Regency" title=" Gresik Regency"> Gresik Regency</a> </p> <a href="https://publications.waset.org/abstracts/155596/flood-hazard-impact-based-on-simulation-model-of-potential-flood-inundation-in-lamong-river-gresik-regency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1609</span> Assessing Flood Risk and Mapping Inundation Zones in the Kelantan River Basin: A Hydrodynamic Modeling Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemehsadat%20Mortazavizadeh">Fatemehsadat Mortazavizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Dehghani"> Amin Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mirzaei"> Majid Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurulhuda%20Binti%20Mohammad%20Ramli"> Nurulhuda Binti Mohammad Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Dehghani"> Adnan Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood is Malaysia's most common and serious natural disaster. Kelantan River Basin is a tropical basin that experiences a rainy season during North-East Monsoon from November to March. It is also one of the hardest hit areas in Peninsular Malaysia during the heavy monsoon rainfall. Considering the consequences of the flood events, it is essential to develop the flood inundation map as part of the mitigation approach. In this study, the delineation of flood inundation zone in the area of Kelantan River basin using a hydrodynamic model is done by HEC-RAS, QGIS and ArcMap. The streamflow data has been generated with the weather generator based on the observation data. Then, the data is statistically analyzed with the Extreme Value (EV1) method for 2-, 5-, 25-, 50- and 100-year return periods. The minimum depth, maximum depth, mean depth, and the standard deviation of all the scenarios, including the OBS, are observed and analyzed. Based on the results, generally, the value of the data increases with the return period for all the scenarios. However, there are certain scenarios that have different results, which not all the data obtained are increasing with the return period. Besides, OBS data resulted in the middle range within Scenario 1 to Scenario 40. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20inundation" title="flood inundation">flood inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=kelantan%20river%20basin" title=" kelantan river basin"> kelantan river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20value%20analysis" title=" extreme value analysis"> extreme value analysis</a> </p> <a href="https://publications.waset.org/abstracts/175709/assessing-flood-risk-and-mapping-inundation-zones-in-the-kelantan-river-basin-a-hydrodynamic-modeling-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1608</span> Assessment Using Copulas of Simultaneous Damage to Multiple Buildings Due to Tsunamis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yo%20Fukutani">Yo Fukutani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuji%20Moriguchi"> Shuji Moriguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuma%20Kotani"> Takuma Kotani</a>, <a href="https://publications.waset.org/abstracts/search?q=Terada%20Kenjiro"> Terada Kenjiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If risk management of the assets owned by companies, risk assessment of real estate portfolio, and risk identification of the entire region are to be implemented, it is necessary to consider simultaneous damage to multiple buildings. In this research, the Sagami Trough earthquake tsunami that could have a significant effect on the Japanese capital region is focused on, and a method is proposed for simultaneous damage assessment using copulas that can take into consideration the correlation of tsunami depths and building damage between two sites. First, the tsunami inundation depths at two sites were simulated by using a nonlinear long-wave equation. The tsunamis were simulated by varying the slip amount (five cases) and the depths (five cases) for each of 10 sources of the Sagami Trough. For each source, the frequency distributions of the tsunami inundation depth were evaluated by using the response surface method. Then, Monte-Carlo simulation was conducted, and frequency distributions of tsunami inundation depth were evaluated at the target sites for all sources of the Sagami Trough. These are marginal distributions. Kendall’s tau for the tsunami inundation simulation at two sites was 0.83. Based on this value, the Gaussian copula, t-copula, Clayton copula, and Gumbel copula (n = 10,000) were generated. Then, the simultaneous distributions of the damage rate were evaluated using the marginal distributions and the copulas. For the correlation of the tsunami inundation depth at the two sites, the expected value hardly changed compared with the case of no correlation, but the damage rate of the ninety-ninth percentile value was approximately 2%, and the maximum value was approximately 6% when using the Gumbel copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copulas" title="copulas">copulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte-Carlo%20simulation" title=" Monte-Carlo simulation"> Monte-Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunamis" title=" tsunamis"> tsunamis</a> </p> <a href="https://publications.waset.org/abstracts/103724/assessment-using-copulas-of-simultaneous-damage-to-multiple-buildings-due-to-tsunamis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1607</span> Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun-Taek%20Sin">Eun-Taek Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Ju%20Jang"> Hyun-Ju Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Geun%20Song"> Chang Geun Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sik%20Han"> Yong-Sik Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flooding%20analysis" title="flooding analysis">flooding analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20inundation" title=" river inundation"> river inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=inland%20flooding" title=" inland flooding"> inland flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20hydrodynamic%20model" title=" 2D hydrodynamic model"> 2D hydrodynamic model</a> </p> <a href="https://publications.waset.org/abstracts/77116/development-of-coastal-inundation-inland-and-river-flow-interface-module-based-on-2d-hydrodynamic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1606</span> Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shayeq%20Azizi">Ahmad Shayeq Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Toda"> Yuji Toda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20hydrological%20model" title="distributed hydrological model">distributed hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20inundation" title=" flood inundation"> flood inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=ungauged%20basins" title=" ungauged basins"> ungauged basins</a> </p> <a href="https://publications.waset.org/abstracts/91132/application-of-public-access-two-dimensional-hydrodynamic-and-distributed-hydrological-models-for-flood-forecasting-in-ungauged-basins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1605</span> Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhanesh%20Sing%20Das">Dhanesh Sing Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Tadikonda%20Venkata"> Bharat Tadikonda Venkata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapse%20behavior" title="collapse behavior">collapse behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20pressure" title=" inundation pressure"> inundation pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolin" title=" kaolin"> kaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/133193/wetting-induced-collapse-behavior-of-loosely-compacted-kaolin-soil-a-microstructural-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1604</span> Flood Mapping and Inoudation on Weira River Watershed (in the Case of Hadiya Zone, Shashogo Woreda)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alilu%20Getahun%20Sulito">Alilu Getahun Sulito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exceptional floods are now prevalent in many places in Ethiopia, resulting in a large number of human deaths and property destruction. Lake Boyo watershed, in particular, had also traditionally been vulnerable to flash floods throughout the Boyo watershed. The goal of this research is to create flood and inundation maps for the Boyo Catchment. The integration of Geographic information system(GIS) technology and the hydraulic model (HEC-RAS) were utilized as methods to attain the objective. The peak discharge was determined using Fuller empirical methodology for intervals of 5, 10, 15, and 25 years, and the results were 103.2 m3/s, 158 m3/s, 222 m3/s, and 252 m3/s, respectively. River geometry, boundary conditions, manning's n value of varying land cover, and peak discharge at various return periods were all entered into HEC-RAS, and then an unsteady flow study was performed. The results of the unsteady flow study demonstrate that the water surface elevation in the longitudinal profile rises as the different periods increase. The flood inundation charts clearly show that regions on the right and left sides of the river with the greatest flood coverage were 15.418 km2 and 5.29 km2, respectively, flooded by 10,20,30, and 50 years. High water depths typically occur along the main channel and progressively spread to the floodplains. The latest study also found that flood-prone areas were disproportionately affected on the river's right bank. As a result, combining GIS with hydraulic modelling to create a flood inundation map is a viable solution. The findings of this study can be used to care again for the right bank of a Boyo River catchment near the Boyo Lake kebeles, according to the conclusion. Furthermore, it is critical to promote an early warning system in the kebeles so that people can be evacuated before a flood calamity happens. Keywords: Flood, Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weira%20River" title="Weira River">Weira River</a>, <a href="https://publications.waset.org/abstracts/search?q=Boyo" title=" Boyo"> Boyo</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-%20GEORAS" title=" HEC- GEORAS"> HEC- GEORAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-%20RAS" title=" HEC- RAS"> HEC- RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Inundation%20Mapping" title=" Inundation Mapping"> Inundation Mapping</a> </p> <a href="https://publications.waset.org/abstracts/183130/flood-mapping-and-inoudation-on-weira-river-watershed-in-the-case-of-hadiya-zone-shashogo-woreda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1603</span> Sundarban as a Buffer against Storm Surge Flooding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohiuddin%20Sakib">Mohiuddin Sakib</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatin%20Nihal"> Fatin Nihal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anisul%20Haque"> Anisul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Munsur%20Rahman"> Munsur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Ali"> Mansur Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sundarban, the largest mangrove forest in the world, is known to act as a buffer against the cyclone and storm surge. Theoretically, Sundarban absorbs the initial thrust of the wind and acts to ‘resist’ the storm surge flooding. The role of Sundarban was evident during the cyclone Sidr when the Sundarban solely defended the initial thrust of the cyclonic wind and the resulting storm surge inundation. In doing this, Sundarban sacrificed 30% of its plant habitats. Although no scientific study has yet been conducted, it is generally believed that Sundarban will continuously play its role as a buffer against the cyclone when landfall of the cyclone is at or close to the Sundarban. Considering these facts, the present study mainly focused on a scientific insight into the role of Sundarban as a buffer against the present-day cyclone and storm surge and also its probable role on the impacts of future storms of similar nature but with different landfall locations. The Delft 3D dashboard and flow model are applied to compute the resulting inundation due to cyclone induced storm surge. The results show that Sundarban indeed acts as a buffer against the storm surge inundation when cyclone landfall is at or close to Sundarban. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffer" title="buffer">buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangrove%20forest" title=" Mangrove forest"> Mangrove forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidr" title=" Sidr"> Sidr</a>, <a href="https://publications.waset.org/abstracts/search?q=landfall" title=" landfall"> landfall</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/37352/sundarban-as-a-buffer-against-storm-surge-flooding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1602</span> Ecosystem Services and Excess Water Management: Analysis of Ecosystem Services in Areas Exposed to Excess Water Inundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalma%20Varga">Dalma Varga</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Hubayne%20H."> Nora Hubayne H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, among the measures taken to offset the consequences of climate change, water resources management is one of the key tools, which can include excess water management. As a result of climate change’s effects and as a result of the frequent inappropriate landuse, more and more areas are affected by the excess water inundation. Hungary is located in the deepest part of the Pannonian Basin, which is exposed to water damage – especially lowland areas that are endangered by floods or excess waters. The periodical presence of excess water creates specific habitats in a given area, which have ecological, functional, and aesthetic values. Excess water inundation affects approximately 74% of Hungary’s lowland areas, of which about 46% is also under nature protection (such as national parks, protected landscape areas, nature conservation areas, Natura 2000 sites, etc.). These data prove that areas exposed to excess water inundation – which are predominantly characterized by agricultural land uses – have an important ecological role. Other research works have confirmed the presence of numerous rare and endangered plant species in drainage canals, on grasslands exposed to excess water, and on special agricultural fields with mud vegetation. The goal of this research is to define and analyze ecosystem services of areas exposed to excess water inundation. In addition to this, it is also important to determine the quantified indicators of these areas’ natural and landscape values besides the presence of protected species and the naturalness of habitats, so all in all, to analyze the various nature protections related to excess water. As a result, a practice-orientated assessment method has been developed that provides the ecological water demand, assimilates to ecological and habitat aspects, contributes to adaptive excess water management, and last but not least, increases or maintains the share of the green infrastructure network. In this way, it also contributes to reduce and mitigate the negative effects of climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title="ecosystem services">ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20architecture" title="landscape architecture">landscape architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20water%20management" title="excess water management">excess water management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure%20planning" title="green infrastructure planning">green infrastructure planning</a> </p> <a href="https://publications.waset.org/abstracts/141102/ecosystem-services-and-excess-water-management-analysis-of-ecosystem-services-in-areas-exposed-to-excess-water-inundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1601</span> Developing High-Definition Flood Inundation Maps (HD-Fims) Using Raster Adjustment with Scenario Profiles (RASPTM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Jacobsen">Robert Jacobsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood inundation maps (FIMs) are an essential tool in communicating flood threat scenarios to the public as well as in floodplain governance. With an increasing demand for online raster FIMs, the FIM State-of-the-Practice (SOP) is rapidly advancing to meet the dual requirements for high-resolution and high-accuracy—or High-Definition. Importantly, today’s technology also enables the resolution of problems of local—neighborhood-scale—bias errors that often occur in FIMs, even with the use of SOP two-dimensional flood modeling. To facilitate the development of HD-FIMs, a new GIS method--Raster Adjustment with Scenario Profiles, RASPTM—is described for adjusting kernel raster FIMs to match refined scenario profiles. With RASPTM, flood professionals can prepare HD-FIMs for a wide range of scenarios with available kernel rasters, including kernel rasters prepared from vector FIMs. The paper provides detailed procedures for RASPTM, along with an example of applying RASPTM to prepare an HD-FIM for the August 2016 Flood in Louisiana using both an SOP kernel raster and a kernel raster derived from an older vector-based flood insurance rate map. The accuracy of the HD-FIMs achieved with the application of RASPTM to the two kernel rasters is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrology" title="hydrology">hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=high-definition" title=" high-definition"> high-definition</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation" title=" inundation"> inundation</a> </p> <a href="https://publications.waset.org/abstracts/181568/developing-high-definition-flood-inundation-maps-hd-fims-using-raster-adjustment-with-scenario-profiles-rasptm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1600</span> The Effect of Arms Embargoes on Ongoing Armed Conflict: Are They Really Reducing Conflict Duration?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kirisci">Mustafa Kirisci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arms embargoes have not been adequately examined in terms of their effects on conflict duration. Prior research on arms embargoes has generally investigated the effect of arms embargoes on arms import/export practices and violations in arms embargoes, but it says little about the effect on conflict duration. This paper attempts to fill this gap and aims to investigate the effect of arms embargoes on conflict duration throughout the world. More precisely, the purpose of the paper is to understand how arms embargoes affect the duration of both internal and interstate conflicts. Given the theoretical framework, the main hypothesis of the paper is arms embargoes will have no reduction effect on conflict duration when arms transfer and region are controlled. This hypothesis is tested by using OLS regression. Results indicate that arms embargoes have no effect on both internal and interstate conflict duration. Another crucial result is that both small and major arms transfers made by the embargoed countries during the internal conflict increase the duration of the conflict, but no effect on interstate conflict duration. The final part concludes and provide explanations on what these results imply for finishing the conflict and bringing the peace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arms%20embargo" title="arms embargo">arms embargo</a>, <a href="https://publications.waset.org/abstracts/search?q=arms%20transfer" title=" arms transfer"> arms transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20conflict" title=" internal conflict"> internal conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20conflict" title=" international conflict"> international conflict</a> </p> <a href="https://publications.waset.org/abstracts/33849/the-effect-of-arms-embargoes-on-ongoing-armed-conflict-are-they-really-reducing-conflict-duration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1599</span> Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20K.%20Ghansah">Benjamin K. Ghansah</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20K.%20Appoh"> Richard K. Appoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Iliya%20Nababa"> Iliya Nababa</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20K.%20Forkuo"> Eric K. Forkuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km². <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title="digital elevation model">digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=floodplain" title=" floodplain"> floodplain</a>, <a href="https://publications.waset.org/abstracts/search?q=HAND%20contour" title=" HAND contour"> HAND contour</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20extent" title=" inundation extent"> inundation extent</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasia%20River" title=" Nasia River"> Nasia River</a> </p> <a href="https://publications.waset.org/abstracts/68869/delineating-floodplain-along-the-nasia-river-in-northern-ghana-using-hand-contour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1598</span> Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ashaque%20Meah">M. Ashaque Meah</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Fazlul%20Karim"> Md. Fazlul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shah%20Noor"> M. Shah Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazmun%20Nahar%20Papri"> Nazmun Nahar Papri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid%20Hossen"> M. Khalid Hossen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ismoen"> M. Ismoen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20boundary%20condition" title="open boundary condition">open boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20boundary%20condition" title=" moving boundary condition"> moving boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary-fitted%20curvilinear%20grids" title=" boundary-fitted curvilinear grids"> boundary-fitted curvilinear grids</a>, <a href="https://publications.waset.org/abstracts/search?q=far-field%20tsunami" title=" far-field tsunami"> far-field tsunami</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami%20source" title=" tsunami source"> tsunami source</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesian%20tsunami%20of%202004" title=" Indonesian tsunami of 2004"> Indonesian tsunami of 2004</a> </p> <a href="https://publications.waset.org/abstracts/38523/combined-effect-of-moving-and-open-boundary-conditions-in-the-simulation-of-inland-inundation-due-to-far-field-tsunami" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1597</span> Assessment of Agricultural Damage under Different Simulated Flood Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Kadir">M. N. Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20H.%20Oliver"> M. M. H. Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Naher"> T. Naher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study assesses the areal extent of riverine flood in the flood-prone area of Faridpur District of Bangladesh using hydrological model and Geographic Information System (GIS). In the context of preparing the inundation map, flood frequency analysis was carried out to assess flooding for different flood magnitudes. Flood inundation maps were prepared based on DEM, and discharge at the river using Delft-3D model. LANDSAT satellite images have been used to develop a land cover map in the study area. The land cover map was used for mapping of cropland area. By incorporating the inundation maps on the land cover map, agricultural damage was assessed. Present monetary values of crop damage were collected through field survey from actual flood of the study area. Two different inundation maps were produced from the model for the year 2000 and 2016. In the year 2000, the floods began in the month of July, whereas in the case of the year 2016 is started in August. Under both cases, most of the areas were found to have been flooded in the month of September followed by flood recession. In order to prepare the land cover maps, four categories of LCs were considered viz., cropland, water body, trees, and rivers. Among the 755791 acres area of Faridpur District, the croplands were categorized to be 334,589 acres, followed by water bodies (279900 acres), trees (101930 acres) and rivers 39372 (acres). Damage assessment data revealed that 40% of the total cropland area had been affected by the flood in the year 2000, whereas only 19% area was affected by the 2016 flood. The study concluded that September is the critical month for cropland protection since the highest flood is expected at this time of the year in Faridpur. The northwestern and the southwestern part of the district was categorized as most vulnerable to flooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20damage" title="agricultural damage">agricultural damage</a>, <a href="https://publications.waset.org/abstracts/search?q=Delft-3d" title=" Delft-3d"> Delft-3d</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20map" title=" land cover map"> land cover map</a> </p> <a href="https://publications.waset.org/abstracts/108556/assessment-of-agricultural-damage-under-different-simulated-flood-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1596</span> Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haslinda%20Nahazanan">Haslinda Nahazanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Asadi"> Afshin Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainuddin%20Md.%20Yusoff"> Zainuddin Md. Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Nor%20Syahariati%20Nik%20Daud"> Nik Nor Syahariati Nik Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mudrocks" title="mudrocks">mudrocks</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20rocks" title=" sedimentary rocks"> sedimentary rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation" title=" inundation"> inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/70946/understanding-mudrocks-and-their-shear-strength-deterioration-associated-with-inundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1595</span> A Dam Break Analysis Using MIKE11</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Derdous">Oussama Derdous</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Djemili"> Lakhdar Djemili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Bouchahed"> Hamza Bouchahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consequences of a dam breach can be devastating; both in terms of lives lost and damaged infrastructure and property. Hydraulic modeling provides a clear picture of the possible consequences of partial or complete failure of a dam, which is the key to carry out emergency planning and conduct reliable risk assessments. In this paper, the MIKE11 model developed by the Danish Hydrologic Institute (DHI) was used to simulate the flood wave propagation associated with a potential failure analysis failure of Zardezas dam located in the city of Skikda in the North East of Algeria. MIKE11 results including inundation maps and the representative channel/valley cross-sections depicting flow depth and maximal flow velocities showed that Zardezas reservoir presents a significant risk to downstream areas in the event of a dam failure. These results can be used as the basis of the development of an Emergency Action Plan (EAP).The main objective of this plan is to predict the appropriate steps to avoid or at least decrease the consequences of unexpected failure of Zardezas dam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MIKE11" title="MIKE11">MIKE11</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20break" title=" dam break"> dam break</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20maps" title=" inundation maps"> inundation maps</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20action%20plan" title=" emergency action plan"> emergency action plan</a> </p> <a href="https://publications.waset.org/abstracts/9525/a-dam-break-analysis-using-mike11" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1594</span> 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahmanpour">A. Bahmanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Eames"> I. Eames</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Klettner"> C. Klettner</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dimakopoulos"> A. Dimakopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20events" title=" extreme events"> extreme events</a>, <a href="https://publications.waset.org/abstracts/search?q=loading" title=" loading"> loading</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami" title=" tsunami"> tsunami</a> </p> <a href="https://publications.waset.org/abstracts/81707/3d-numerical-study-of-tsunami-loading-and-inundation-in-a-model-urban-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1593</span> Dambreak Flood Analysis Using HEC-RAS and GIS Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Derdous">Oussama Derdous</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Djemili"> Lakhdar Djemili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Bouchehed"> Hamza Bouchehed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential risks associated with dam break flooding could be considerable and result in major damage, including loss of life and property destruction. In the past, Algeria experienced such flood disasters; let’s recall the failure of Fergoug dam in 1881, this accident cost 200 lives, many houses and bridges were destroyed by the flooding. Recently the Algerian government have obligated to dam owners the development of detailed dam break Emergency Action Plans for its 64 major dams. The research presented here was conducted within this framework, Zardezas dam which is located in the city of Skikda in the North East of Algeria was the case of study. The model HEC-RAS was used for the hydrodynamic routing of the dam break flood wave. In addition, Geographic Information System (GIS) was used to create inundation maps and produce a visualization of the flood propagation in the Saf-Saf River.The simulation results that demonstrate the significance of Zardezas dam break flooding; constitute a real tool for developing emergency response plans and assisting territorial communities in land use planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20break" title="dam break">dam break</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20maps" title=" inundation maps"> inundation maps</a>, <a href="https://publications.waset.org/abstracts/search?q=Emergency%20Action%20Plan" title=" Emergency Action Plan "> Emergency Action Plan </a> </p> <a href="https://publications.waset.org/abstracts/9527/dambreak-flood-analysis-using-hec-ras-and-gis-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> Geomorphology and Flood Analysis Using Light Detection and Ranging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20R.%20Puno">George R. Puno</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20N.%20Bruno"> Eric N. Bruno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flooding" title="flooding">flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=geomorphology" title=" geomorphology"> geomorphology</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/37315/geomorphology-and-flood-analysis-using-light-detection-and-ranging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> Intrathecal Fentanyl with 0.5% Bupivacaine Heavy in Chronic Opium Abusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suneet%20Kathuria">Suneet Kathuria</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Gupta"> Shikha Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapil%20Dev"> Kapil Dev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Katyal"> Sunil Katyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic use of opioids in opium abusers can cause poor pain control and increased analgaesic requirement. We compared the duration of spinal anaesthesia in chronic opium abusers and non-abusers. This prospective randomised study included 60 American Society of Anesthesiologists (ASA) Grade I or II adults undergoing surgery under spinal anaesthesia with 10 mg bupivacaine, and 25 μg fentanyl in non-opium abusers (Group A); and chronic opium abusers (Group B), and 40 μg fentanyl in chronic opium abusers (Group C). Patients were assessed for onset and duration of sensory and motor blockade and duration of effective analgesia. Mean time to onset of adequate analgesia in opium abusers was significantly longer in chronic opium abusers than in opium-naive patients. The duration of sensory block and motor block was significantly less in chronic opium abusers than in non-opium abusers. Duration of effective analgesia in groups A, B and C was 255.55 ± 26.84, 217.85 ± 15.15, and 268.20 ± 18.25 minutes, respectively; this difference was statistically significant. In chronic opium abusers, the duration of spinal anaesthesia is significantly shorter than that in opium nonabusers. The duration of spinal anaesthesia with bupivacaine and fentanyl in chronic opium abusers can be improved by increasing the intrathecal fentanyl dose from 25 μg to 40 μg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bupivacaine" title="bupivacaine">bupivacaine</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20opium%20abusers" title=" chronic opium abusers"> chronic opium abusers</a>, <a href="https://publications.waset.org/abstracts/search?q=fentanyl" title=" fentanyl"> fentanyl</a>, <a href="https://publications.waset.org/abstracts/search?q=intrathecal" title=" intrathecal"> intrathecal</a> </p> <a href="https://publications.waset.org/abstracts/25490/intrathecal-fentanyl-with-05-bupivacaine-heavy-in-chronic-opium-abusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> The Effect of Critical Activity on Critical Path and Project Duration in Precedence Diagram Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Nisar">J. Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Halim"> S. Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activity in Precedence Diagram Method (PDM) provides a more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in the PDM network will have an anomalous effect on the critical path and the project completion date. In this study, we classified the critical activities in two groups i.e., 1. activity on single critical path and 2. activity on multi-critical paths, and six classes i.e., normal, reverse, neutral, perverse, decrease-reverse and increase-normal, based on their effects on project duration in PDM. Furthermore, we determined the maximum float of time by which the duration each type of critical activities can be changed without effecting the project duration. This study would help the project manager to clearly understand the behavior of each critical activity on critical path, and he/she would be able to change the project duration by shortening or lengthening activities based on project budget and project deadline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title="construction management">construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20path%20method" title=" critical path method"> critical path method</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20scheduling%20network" title=" project scheduling network"> project scheduling network</a>, <a href="https://publications.waset.org/abstracts/search?q=precedence%20diagram%20method" title=" precedence diagram method"> precedence diagram method</a> </p> <a href="https://publications.waset.org/abstracts/97001/the-effect-of-critical-activity-on-critical-path-and-project-duration-in-precedence-diagram-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Issam%20Aouari">Issam Aouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Abdelhamid"> Abdelmalek Abdelhamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duration" title="duration">duration</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/101853/a-stochastic-model-to-predict-earthquake-ground-motion-duration-recorded-in-soft-soils-based-on-nonlinear-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Relationship of Sleep Duration with Obesity and Dietary Intake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ahmad%20Hosseini">Seyed Ahmad Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Makan%20Cheraghpour"> Makan Cheraghpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Shirali"> Saeed Shirali</a>, <a href="https://publications.waset.org/abstracts/search?q=Roya%20Rafie"> Roya Rafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Matin%20Ghanavati"> Matin Ghanavati</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezoo%20Amjadi"> Arezoo Amjadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Alipour"> Meysam Alipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: There is a mutual relationship between sleep duration and obesity. We studied the relationship between sleep duration with obesity and dietary Intake. Methods: This cross-sectional study was conducted on 444 male students in Ahvaz Jundishapur University of Medical Science. Dietary intake was analyzed by food frequency questionnaire (FFQ). Anthropometric indices were analyzed. Participants were being asked about their sleep duration and they were categorized into three groups according to their responses (less than six hours, between six and eight hours, and more than eight hours). Results: Macronutrient, micronutrient, and antioxidant intake did not show significant difference between three groups. Moreover, we did not observe any significant difference between anthropometric indices (weight, body mass index, waist circumference, and percentage body fat). Conclusions: Our study results show no significant relationship between sleep duration, nutrition pattern, and obesity. Further study is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sleep%20duration" title="sleep duration">sleep duration</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20intake" title=" dietary intake"> dietary intake</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional" title=" cross-sectional"> cross-sectional</a> </p> <a href="https://publications.waset.org/abstracts/58463/relationship-of-sleep-duration-with-obesity-and-dietary-intake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> Analysis of Gait Characteristics Using Dynamic Foot Scanner in Type 2 Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Shashi%20Kumar">C. G. Shashi Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Arun%20Maiya"> G. Arun Maiya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Manjunath%20Hande"> H. Manjunath Hande</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Rajagopal"> K. V. Rajagopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Diabetes mellitus (DM) is a metabolic disorder with involvement of neurovascular and muscular system. Studies have documented that the gait parameter is altered in type 2 diabetes mellitus with peripheral neuropathy. However, there is a dearth of literature regarding the gait characteristics in type 2 diabetes mellitus (T2DM) without peripheral neuropathy. Therefore, the present study is focused on identifying gait changes in early type 2 diabetes mellitus without peripheral neuropathy. Objective: To analyze the gait characteristics in Type 2 diabetes mellitus without peripheral neuropathy. Methods: After obtaining ethical clearance from Institutional Ethical Committee (IEC), 36 T2DM without peripheral neuropathy and 32 matched healthy subjects were recruited. Gait characteristics (step duration, gait cycle length, gait cycle duration, stride duration, step length, double stance duration) of all the subjects were analyzed using Windtrack dynamic foot scanner. Data were analyzed using Independent‘t’ test to find the difference between the groups (step duration, gait cycle length, gait cycle duration) and Mann-Whitney test was used to analyze the step length and double stance duration to find difference between the groups. Level of significance was kept at P<0.05. Results: Result analysis showed significant decrease in step duration, gait cycle length, gait cycle duration, step length, double stance duration in T2DM subjects as compared to healthy subjects. We also observed a mean increase in stride duration in T2DM subjects compared to healthy subjects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title="type 2 diabetes mellitus">type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20foot%20scan" title=" dynamic foot scan"> dynamic foot scan</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20characteristics" title=" gait characteristics"> gait characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20and%20health%20sciences" title=" medical and health sciences"> medical and health sciences</a> </p> <a href="https://publications.waset.org/abstracts/13512/analysis-of-gait-characteristics-using-dynamic-foot-scanner-in-type-2-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sulaiman">S. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Razak"> M. A. Razak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ibrahim"> M. R. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Khan"> A. A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allegheny%20ludlum%20D2%20tool%20steel" title="allegheny ludlum D2 tool steel">allegheny ludlum D2 tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM" title=" EDM"> EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20duration" title=" pulse duration"> pulse duration</a> </p> <a href="https://publications.waset.org/abstracts/7844/effect-of-pulse-duration-and-current-to-the-edm-process-on-allegheny-ludlum-d2-tool-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Can">Ibrahim Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Tosuno%C4%9Flu"> Fatih Tosunoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95 % of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARMA%20models" title="ARMA models">ARMA models</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87oruh%20basin" title=" Çoruh basin"> Çoruh basin</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/31172/synthetic-daily-flow-duration-curves-for-the-coruh-river-basin-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Integrated Risk Assessment of Storm Surge and Climate Change for the Coastal Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20V.%20Vinogradov">Sergey V. Vinogradov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal communities are presently facing increased vulnerabilities due to rising sea levels and shifts in global climate patterns, a trend expected to escalate in the long run. To address the needs of government entities, the public sector, and private enterprises, there is an urgent need to thoroughly investigate, assess, and manage the present and projected risks associated with coastal flooding, including storm surges, sea level rise, and nuisance flooding. In response to these challenges, a practical approach to evaluating storm surge inundation risks has been developed. This methodology offers an integrated assessment of potential flood risk in targeted coastal areas. The physical modeling framework involves simulating synthetic storms and utilizing hydrodynamic models that align with projected future climate and ocean conditions. Both publicly available and site-specific data form the basis for a risk assessment methodology designed to translate inundation model outputs into statistically significant projections of expected financial and operational consequences. This integrated approach produces measurable indicators of impacts stemming from floods, encompassing economic and other dimensions. By establishing connections between the frequency of modeled flood events and their consequences across a spectrum of potential future climate conditions, our methodology generates probabilistic risk assessments. These assessments not only account for future uncertainty but also yield comparable metrics, such as expected annual losses for each inundation event. These metrics furnish stakeholders with a dependable dataset to guide strategic planning and inform investments in mitigation. Importantly, the model's adaptability ensures its relevance across diverse coastal environments, even in instances where site-specific data for analysis may be limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal" title=" coastal"> coastal</a>, <a href="https://publications.waset.org/abstracts/search?q=surge" title=" surge"> surge</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/177880/integrated-risk-assessment-of-storm-surge-and-climate-change-for-the-coastal-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inundation%20duration&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10