CINXE.COM
Search results for: regression
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: regression</title> <meta name="description" content="Search results for: regression"> <meta name="keywords" content="regression"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="regression" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="regression"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3221</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: regression</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3221</span> Behind Fuzzy Regression Approach: An Exploration Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavinia%20B.%20Dulla">Lavinia B. Dulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach" title="fuzzy regression approach">fuzzy regression approach</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20fuzziness%20criterion" title=" minimum fuzziness criterion"> minimum fuzziness criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20regression" title=" interval regression"> interval regression</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20interval" title=" prediction interval"> prediction interval</a> </p> <a href="https://publications.waset.org/abstracts/139364/behind-fuzzy-regression-approach-an-exploration-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3220</span> Optimization of Machine Learning Regression Results: An Application on Health Expenditures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Songul%20Cinaroglu">Songul Cinaroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=lasso%20regression" title=" lasso regression"> lasso regression</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20regression" title=" random forest regression"> random forest regression</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression" title=" support vector regression"> support vector regression</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameter%20tuning" title=" hyperparameter tuning"> hyperparameter tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20expenditure" title=" health expenditure"> health expenditure</a> </p> <a href="https://publications.waset.org/abstracts/97629/optimization-of-machine-learning-regression-results-an-application-on-health-expenditures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3219</span> A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Autcha%20Araveeporn">Autcha Araveeporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20regression%20model" title="nonparametric regression model">nonparametric regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=penalized%20spline%20regression%20method" title=" penalized spline regression method"> penalized spline regression method</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothing%20spline%20method" title=" smoothing spline method"> smoothing spline method</a>, <a href="https://publications.waset.org/abstracts/search?q=Stock%20Exchange%20of%20Thailand%20%28SET%29" title=" Stock Exchange of Thailand (SET)"> Stock Exchange of Thailand (SET)</a> </p> <a href="https://publications.waset.org/abstracts/2974/a-comparison-of-smoothing-spline-method-and-penalized-spline-regression-method-based-on-nonparametric-regression-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3218</span> Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasiia%20Yu.%20Timofeeva">Anastasiia Yu. Timofeeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grade%20point%20average" title="grade point average">grade point average</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20regression" title=" orthogonal regression"> orthogonal regression</a>, <a href="https://publications.waset.org/abstracts/search?q=penalized%20regression%20spline" title=" penalized regression spline"> penalized regression spline</a>, <a href="https://publications.waset.org/abstracts/search?q=locally%20weighted%20regression" title=" locally weighted regression"> locally weighted regression</a> </p> <a href="https://publications.waset.org/abstracts/11927/orthogonal-regression-for-nonparametric-estimation-of-errors-in-variables-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3217</span> A Learning-Based EM Mixture Regression Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Cheng%20Tian">Yi-Cheng Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miin-Shen%20Yang"> Miin-Shen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model" title=" Gaussian mixture model"> Gaussian mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20regression%20model" title=" mixture regression model"> mixture regression model</a> </p> <a href="https://publications.waset.org/abstracts/25163/a-learning-based-em-mixture-regression-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3216</span> Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kisan%20Sarda">Kisan Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Shingote"> Bhavika Shingote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi%20parametric%20regression" title="semi parametric regression">semi parametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29%20system" title=" photovoltaic (PV) system"> photovoltaic (PV) system</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20modelling" title=" regression modelling"> regression modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a> </p> <a href="https://publications.waset.org/abstracts/65373/prediction-of-energy-storage-areas-for-static-photovoltaic-system-using-irradiation-and-regression-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3215</span> New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman">Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regression" title="regression">regression</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise" title=" piecewise"> piecewise</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20Jump%20MCMC" title=" reversible Jump MCMC"> reversible Jump MCMC</a> </p> <a href="https://publications.waset.org/abstracts/31651/new-segmentation-of-piecewise-linear-regression-models-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3214</span> Application Difference between Cox and Logistic Regression Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idrissa%20Kayijuka">Idrissa Kayijuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression%20model" title="logistic regression model">logistic regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=Cox%20regression%20model" title=" Cox regression model"> Cox regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20ratio" title=" hazard ratio"> hazard ratio</a> </p> <a href="https://publications.waset.org/abstracts/66111/application-difference-between-cox-and-logistic-regression-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3213</span> Stock Market Prediction by Regression Model with Social Moods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Ohmura">Masahiro Ohmura</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Kakusho"> Koh Kakusho</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Okadome"> Takeshi Okadome</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stock%20market%20prediction" title="stock market prediction">stock market prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20moods" title=" social moods"> social moods</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=DJIA" title=" DJIA"> DJIA</a> </p> <a href="https://publications.waset.org/abstracts/8713/stock-market-prediction-by-regression-model-with-social-moods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3212</span> Model-Based Software Regression Test Suite Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiwei%20Deng">Shiwei Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Bao"> Yang Bao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dependence%20analysis" title="dependence analysis">dependence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EFSM%20model" title=" EFSM model"> EFSM model</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20algorithm" title=" greedy algorithm"> greedy algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20test" title=" regression test"> regression test</a> </p> <a href="https://publications.waset.org/abstracts/31318/model-based-software-regression-test-suite-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3211</span> Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman">Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piecewise%20regression" title="piecewise regression">piecewise regression</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20jump%20MCMC" title=" reversible jump MCMC"> reversible jump MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/46201/segmentation-of-piecewise-polynomial-regression-model-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3210</span> A Fuzzy Linear Regression Model Based on Dissemblance Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Pin%20Chen">Shih-Pin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Syuan%20You"> Shih-Syuan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissemblance%20index" title="dissemblance index">dissemblance index</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20linear%20regression" title=" fuzzy linear regression"> fuzzy linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=graded%20mean%20integration" title=" graded mean integration"> graded mean integration</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming" title=" mathematical programming"> mathematical programming</a> </p> <a href="https://publications.waset.org/abstracts/9968/a-fuzzy-linear-regression-model-based-on-dissemblance-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3209</span> The Theory behind Logistic Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Henrik%20Wosnitza">Jan Henrik Wosnitza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20risk%20estimation" title=" credit risk estimation"> credit risk estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=default%20correlation" title=" default correlation"> default correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=homoscedasticity" title=" homoscedasticity"> homoscedasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20logistic%20regression" title=" nonlinear logistic regression"> nonlinear logistic regression</a> </p> <a href="https://publications.waset.org/abstracts/14339/the-theory-behind-logistic-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3208</span> Model Averaging for Poisson Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Jianhong">Zhou Jianhong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20averaging" title="model averaging">model averaging</a>, <a href="https://publications.waset.org/abstracts/search?q=poission%20regression" title=" poission regression"> poission regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Kullback-Leibler%20distance" title=" Kullback-Leibler distance"> Kullback-Leibler distance</a>, <a href="https://publications.waset.org/abstracts/search?q=statistics" title=" statistics"> statistics</a> </p> <a href="https://publications.waset.org/abstracts/5501/model-averaging-for-poisson-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3207</span> Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Q.%20Yuan">L. Q. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang"> J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siddiqui"> A. Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CHF%20experiment" title="CHF experiment">CHF experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=CHF%20correlation" title=" CHF correlation"> CHF correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20uncertainty" title=" regression uncertainty"> regression uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20Method" title=" Monte Carlo Method"> Monte Carlo Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20Series%20Method" title=" Taylor Series Method"> Taylor Series Method</a> </p> <a href="https://publications.waset.org/abstracts/77556/establishment-of-the-regression-uncertainty-of-the-critical-heat-flux-power-correlation-for-an-advanced-fuel-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3206</span> Non-Parametric Regression over Its Parametric Couterparts with Large Sample Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jude%20Opara">Jude Opara</a>, <a href="https://publications.waset.org/abstracts/search?q=Esemokumo%20Perewarebo%20Akpos"> Esemokumo Perewarebo Akpos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is on non-parametric linear regression over its parametric counterparts with large sample size. Data set on anthropometric measurement of primary school pupils was taken for the analysis. The study used 50 randomly selected pupils for the study. The set of data was subjected to normality test, and it was discovered that the residuals are not normally distributed (i.e. they do not follow a Gaussian distribution) for the commonly used least squares regression method for fitting an equation into a set of (x,y)-data points using the Anderson-Darling technique. The algorithms for the nonparametric Theil’s regression are stated in this paper as well as its parametric OLS counterpart. The use of a programming language software known as “R Development” was used in this paper. From the analysis, the result showed that there exists a significant relationship between the response and the explanatory variable for both the parametric and non-parametric regression. To know the efficiency of one method over the other, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are used, and it is discovered that the nonparametric regression performs better than its parametric regression counterparts due to their lower values in both the AIC and BIC. The study however recommends that future researchers should study a similar work by examining the presence of outliers in the data set, and probably expunge it if detected and re-analyze to compare results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theil%E2%80%99s%20regression" title="Theil’s regression">Theil’s regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20information%20criterion" title=" Bayesian information criterion"> Bayesian information criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=Akaike%20information%20criterion" title=" Akaike information criterion"> Akaike information criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=OLS" title=" OLS"> OLS</a> </p> <a href="https://publications.waset.org/abstracts/58536/non-parametric-regression-over-its-parametric-couterparts-with-large-sample-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3205</span> Use of Multistage Transition Regression Models for Credit Card Income Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denys%20Osipenko">Denys Osipenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Crook"> Jonathan Crook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multinomial%20regression" title="multinomial regression">multinomial regression</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20logistic%20regression" title=" conditional logistic regression"> conditional logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20account%20state" title=" credit account state"> credit account state</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20probability" title=" transition probability"> transition probability</a> </p> <a href="https://publications.waset.org/abstracts/19488/use-of-multistage-transition-regression-models-for-credit-card-income-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3204</span> Semiparametric Regression Of Truncated Spline Biresponse On Farmer Loyalty And Attachment Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adji%20Achmad%20Rinaldo%20Fernandes">Adji Achmad Rinaldo Fernandes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regression analysis is a statistical method that is able to describe and predict causal relationships between individuals. Not all relationships have a known curve shape; often, there are relationship patterns that cannot be known in the shape of the curve; besides that, a cause can have an impact on more than one effect, so that between effects can also have a close relationship in it. Regression analysis that can be done to find out the relationship can be brought closer to the semiparametric regression of truncated spline biresponse. The purpose of this study is to examine the function estimator and determine the best model of truncated spline biresponse semiparametric regression. The results of the secondary data study showed that the best model with the highest order of quadratic and a maximum of two knots with a Goodness of fit value in the form of Adjusted R2 of 88.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biresponse" title="biresponse">biresponse</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20attachment" title=" farmer attachment"> farmer attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20loyalty" title=" farmer loyalty"> farmer loyalty</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20spline" title=" truncated spline"> truncated spline</a> </p> <a href="https://publications.waset.org/abstracts/186759/semiparametric-regression-of-truncated-spline-biresponse-on-farmer-loyalty-and-attachment-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3203</span> Internet Purchases in European Union Countries: Multiple Linear Regression Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ksenija%20Dumi%C4%8Di%C4%87">Ksenija Dumičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20%C4%8Ceh%20%C4%8Casni"> Anita Čeh Časni</a>, <a href="https://publications.waset.org/abstracts/search?q=Irena%20Pali%C4%87"> Irena Palić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analysed EU countries is positively correlated with statistically significant variable Gross Domestic Product per capita (GDPpc). Also, analysed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=European%20union" title="European union">European union</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20purchases" title=" Internet purchases"> Internet purchases</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression%20model" title=" multiple linear regression model"> multiple linear regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a> </p> <a href="https://publications.waset.org/abstracts/2650/internet-purchases-in-european-union-countries-multiple-linear-regression-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3202</span> Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Ali">Alam Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Pathak"> Ashok Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path analysis is a statistical technique used to evaluate the direct and indirect effects of variables in path models. One or more structural regression equations are used to estimate a series of parameters in path models to find the better fit of data. However, sometimes the assumptions of classical regression models, such as ordinary least squares (OLS), are violated by the nature of the data, resulting in insignificant direct and indirect effects of exogenous variables. This article aims to explore the effectiveness of a copula-based regression approach as an alternative to classical regression, specifically when variables are linked through an elliptical copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title="path analysis">path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=copula-based%20regression%20models" title=" copula-based regression models"> copula-based regression models</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20effects" title=" direct and indirect effects"> direct and indirect effects</a>, <a href="https://publications.waset.org/abstracts/search?q=k-fold%20cross%20validation%20technique" title=" k-fold cross validation technique"> k-fold cross validation technique</a> </p> <a href="https://publications.waset.org/abstracts/186900/copula-based-estimation-of-direct-and-indirect-effects-in-path-analysis-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3201</span> Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galal%20Elkobrosy">Galal Elkobrosy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20Abdelrazek"> Amr M. Abdelrazek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassuny%20M.%20Elsouhily"> Bassuny M. Elsouhily</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Khidr"> Mohamed E. Khidr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3<sup>rd</sup> degree to 1<sup>st </sup>degree and suggested valid predictions and stable explanations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SI%20engine" title=" SI engine"> SI engine</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title=" statistical modeling"> statistical modeling</a> </p> <a href="https://publications.waset.org/abstracts/90228/optimization-of-slider-crank-mechanism-using-design-of-experiments-and-multi-linear-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3200</span> An Epsilon Hierarchical Fuzzy Twin Support Vector Regression </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Chaudhuri">Arindam Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research presents epsilon- hierarchical fuzzy twin support vector regression (epsilon-HFTSVR) based on epsilon-fuzzy twin support vector regression (epsilon-FTSVR) and epsilon-twin support vector regression (epsilon-TSVR). Epsilon-FTSVR is achieved by incorporating trapezoidal fuzzy numbers to epsilon-TSVR which takes care of uncertainty existing in forecasting problems. Epsilon-FTSVR determines a pair of epsilon-insensitive proximal functions by solving two related quadratic programming problems. The structural risk minimization principle is implemented by introducing regularization term in primal problems of epsilon-FTSVR. This yields dual stable positive definite problems which improves regression performance. Epsilon-FTSVR is then reformulated as epsilon-HFTSVR consisting of a set of hierarchical layers each containing epsilon-FTSVR. Experimental results on both synthetic and real datasets reveal that epsilon-HFTSVR has remarkable generalization performance with minimum training time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regression" title="regression">regression</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-TSVR" title=" epsilon-TSVR"> epsilon-TSVR</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-FTSVR" title=" epsilon-FTSVR"> epsilon-FTSVR</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-HFTSVR" title=" epsilon-HFTSVR"> epsilon-HFTSVR</a> </p> <a href="https://publications.waset.org/abstracts/20236/an-epsilon-hierarchical-fuzzy-twin-support-vector-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3199</span> Nonparametric Truncated Spline Regression Model on the Data of Human Development Index in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kornelius%20Ronald%20Demu">Kornelius Ronald Demu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Retno%20Sari%20Saputro"> Dewi Retno Sari Saputro</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnami%20Widyaningsih"> Purnami Widyaningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Development Index (HDI) is a standard measurement for a country's human development. Several factors may have influenced it, such as life expectancy, gross domestic product (GDP) based on the province's annual expenditure, the number of poor people, and the percentage of an illiterate people. The scatter plot between HDI and the influenced factors show that the plot does not follow a specific pattern or form. Therefore, the HDI's data in Indonesia can be applied with a nonparametric regression model. The estimation of the regression curve in the nonparametric regression model is flexible because it follows the shape of the data pattern. One of the nonparametric regression's method is a truncated spline. Truncated spline regression is one of the nonparametric approach, which is a modification of the segmented polynomial functions. The estimator of a truncated spline regression model was affected by the selection of the optimal knots point. Knot points is a focus point of spline truncated functions. The optimal knots point was determined by the minimum value of generalized cross validation (GCV). In this article were applied the data of Human Development Index with a truncated spline nonparametric regression model. The results of this research were obtained the best-truncated spline regression model to the HDI's data in Indonesia with the combination of optimal knots point 5-5-5-4. Life expectancy and the percentage of an illiterate people were the significant factors depend to the HDI in Indonesia. The coefficient of determination is 94.54%. This means the regression model is good enough to applied on the data of HDI in Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20cross%20validation%20%28GCV%29" title="generalized cross validation (GCV)">generalized cross validation (GCV)</a>, <a href="https://publications.waset.org/abstracts/search?q=Human%20Development%20Index%20%28HDI%29" title=" Human Development Index (HDI)"> Human Development Index (HDI)</a>, <a href="https://publications.waset.org/abstracts/search?q=knots%20point" title=" knots point"> knots point</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20regression" title=" nonparametric regression"> nonparametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20spline" title=" truncated spline"> truncated spline</a> </p> <a href="https://publications.waset.org/abstracts/73701/nonparametric-truncated-spline-regression-model-on-the-data-of-human-development-index-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3198</span> Regression Model Evaluation on Depth Camera Data for Gaze Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Purnama">James Purnama</a>, <a href="https://publications.waset.org/abstracts/search?q=Riri%20Fitri%20Sari"> Riri Fitri Sari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gaze%20estimation" title="gaze estimation">gaze estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=gaze%20tracking" title=" gaze tracking"> gaze tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20tracking" title=" eye tracking"> eye tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=kinect" title=" kinect"> kinect</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20python" title=" orange python"> orange python</a> </p> <a href="https://publications.waset.org/abstracts/17938/regression-model-evaluation-on-depth-camera-data-for-gaze-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3197</span> Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retius%20Chifurira">Retius Chifurira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20extreme%20value%20distribution" title="generalized extreme value distribution">generalized extreme value distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20linear%20model" title=" general linear model"> general linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20annual%20rainfall" title=" mean annual rainfall"> mean annual rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20drought%20probabilities" title=" meteorological drought probabilities"> meteorological drought probabilities</a> </p> <a href="https://publications.waset.org/abstracts/99321/generalized-extreme-value-regression-with-binary-dependent-variable-an-application-for-predicting-meteorological-drought-probabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3196</span> The Extended Skew Gaussian Process for Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Alodat">M. T. Alodat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20skew%20normal%20distribution" title="extended skew normal distribution">extended skew normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20for%20regression" title=" Gaussian process for regression"> Gaussian process for regression</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20distribution" title=" predictive distribution"> predictive distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ESGPr%20model" title=" ESGPr model"> ESGPr model</a> </p> <a href="https://publications.waset.org/abstracts/2233/the-extended-skew-gaussian-process-for-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3195</span> Integrated Nested Laplace Approximations For Quantile Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kajingulu%20Malandala">Kajingulu Malandala</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranganai%20Edmore"> Ranganai Edmore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title="quantile regression">quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Delaporte%20distribution" title=" Delaporte distribution"> Delaporte distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=count%20data" title=" count data"> count data</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20nested%20Laplace%20approximation" title=" integrated nested Laplace approximation"> integrated nested Laplace approximation</a> </p> <a href="https://publications.waset.org/abstracts/123306/integrated-nested-laplace-approximations-for-quantile-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3194</span> The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20Camelo">Ana Paula Camelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Keila%20Sanches"> Keila Sanches</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deforestation" title="deforestation">deforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=geographically%20weighted%20regression" title=" geographically weighted regression"> geographically weighted regression</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a> </p> <a href="https://publications.waset.org/abstracts/85043/the-use-of-geographically-weighted-regression-for-deforestation-analysis-case-study-in-brazilian-cerrado" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3193</span> Weighted Rank Regression with Adaptive Penalty Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Mo%20Jung">Kang-Mo Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20penalty%20function" title="adaptive penalty function">adaptive penalty function</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20penalized%20regression" title=" robust penalized regression"> robust penalized regression</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title=" variable selection"> variable selection</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20rank%20regression" title=" weighted rank regression"> weighted rank regression</a> </p> <a href="https://publications.waset.org/abstracts/79449/weighted-rank-regression-with-adaptive-penalty-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3192</span> MapReduce Logistic Regression Algorithms with RHadoop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byung%20Ho%20Jung">Byung Ho Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lim"> Dong Hoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=RHadoop" title=" RHadoop"> RHadoop</a> </p> <a href="https://publications.waset.org/abstracts/41569/mapreduce-logistic-regression-algorithms-with-rhadoop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=107">107</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=108">108</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regression&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>