CINXE.COM

Classical and aplanatic two-mirror telescopes

<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Classical and aplanatic two-mirror telescopes</title> <meta name="keywords" content="two-mirror telescopes, Ritchey-Chretien, classical Cassegrain, Cassegrain telescope, Gregorian telescope, two-mirror telescope aberrations"> <meta name="description" content="Properties and optical aberrations of classical and aplanatic two-mirror telescopes: classical Cassegrain and Ritchey-Chretien, classical and aplanatic Gregorian telescope."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">&#1138;</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3">&nbsp;&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3">&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font> <font size="1" color="#95AAA6">&#9642;</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1">&nbsp;</font></font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;&#9642;&#9642;&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</font><font face="Verdana" color="#518FBD"><b><font size="2">&nbsp;</font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> &nbsp;</font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">&#9668;</font></span><font face="Verdana" size="2"> <a href="two_mirror_telescope_aberrations.htm">8.2.1. General aberrations</a>&nbsp;</font><font size="2" face="Arial"><font color="#C0C0C0">&nbsp; &#9616;</font>&nbsp;&nbsp;&nbsp; </font><font face="Verdana" size="2"> <a href="dall_kirkham_telescope.htm">8.2.4. Dall-Kirkham telescope</a> </font> <font face="Arial" size="2" color="#336699">&#9658;</font><br> &nbsp;</p> </font> <h1 align="center" style="text-indent: 0"> <b> <font face="Trebuchet MS" color="#336699" size="3">8.2.2. CLASSICAL TWO-MIRROR TELESCOPES</font></b></h1> <font size="2"> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">&nbsp;While spherical aberration, according to <a href="two_mirror_telescope_aberrations.htm#General_aberration">Eq. 81</a>, can be corrected for any appropriate combination of the primary and secondary mirror conic, the aberration coefficients for coma and astigmatism for two-mirror system show that coma and astigmatism do vary, potentially significantly, with the choice of <a href="conics_and_aberrations.htm">conics</a>. The coma aberration coefficient (<a href="two_mirror_telescope_aberrations.htm#This_relation">Eq. 82</a>) indicates that a system with spherical primary will have stronger coma than one with paraboloidal primary. A particular value of <b>K</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2"> resulting in the zero sum in the brackets, would result in corrected Seidel coma, with needed value for the secondary conic for corrected spherical aberration obtained from <b>Eq. 80</b>. </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">In the early days of telescopes, limitations in both, calculation and mirror-making and testing skills would not allow to determine precisely the coma-free conic combination. However, it was determined that paraboloidal primary significantly reduces coma, compared to spherical (<a href="two_mirror_telescope_aberrations.htm#Off-axis">Eq. 82.1</a> shows that astigmatism with paraboloidal primary actually increases, but insignificantly in comparison with the reduction in coma). Thus, the choice for primary conic was, for quite some time, paraboloid and, for that reason, this arrangement is known as the <i>classical </i>two-mirror telescope.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">With paraboloidal primary (K</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=-1), which is corrected for spherical aberration, zero system spherical aberration requires zero secondary spherical aberration, for which the needed secondary mirror conic is, from <b>Eq. 80</b>:</font><p style="text-indent: 0" align="center"> <img border="0" src="images/eq97n.PNG" width="180" height="34"><p align="justify" style="text-indent: 0; line-height:150%"><font face="Verdana" size="2"> which makes it a hyperboloid. Since the requirement in the classical two-mirror system is that either mirror has zero spherical aberration, mirror conic can be alternatively determined from the fact that the object for each has to be located at one of its <a href="conics_and_aberrations.htm#wavefront">geometric foci</a>. For the paraboloidal primary, the object is at its infinity focus. For the secondary, the object is the image formed by the primary, thus it has to coincide with secondary mirror's near geometric focus (at the far focus location, the final image wouldn't be real, that is, the rays would be diverging from the secondary). Equaling the near focus separation for the secondary given by R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">/(1+</font><font face="Lucida Console" size="2">&#949;</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">), </font> <b><font face="Lucida Console" size="2">&#949;</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Verdana" size="2"> being the surface eccentricity, with the secondary-to-primary's-image separation <b>i</b> (<a href="two-mirror.htm#The_concept">FIG. 121</a>), requires secondary mirror eccentricity </font><font face="Lucida Console" size="2">&#949;</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=(R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">/i)-1, or the secondary conic constant K</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=-[(R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">/i)-1]</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2"> where, according to the <a href="terms_and_conventions.htm#conveniently,">sign convention</a>, for the primary oriented to the left, both secondary mirror radius of curvature <b>R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Verdana" size="2"> and image separation <b>i</b> are negative in the Cassegrain and positive in the Gregorian. </font> <p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2">With the object at its near focus, secondary mirror will form the final image at its far focus, at a distance equal to R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">/(1-</font><font face="Lucida Console" size="2">&#949;</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">).</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">After spherical aberration is corrected, remaining Seidel <font color="#000080"><b>coma</b></font> and <font color="#000080"><b>astigmatism</b></font>, as the P-V wavefront error at diffraction focus for object at infinity are given by:</font><p style="text-indent: 0" align="center"> <img border="0" src="images/eq98n.PNG" width="194" height="38"><p style="text-indent: 0" align="center"> <img border="0" src="images/eq99.PNG" width="248" height="44"><p align="left" style="text-indent: 0; line-height:150%"><font face="Verdana" size="2">respectively, with </font> <b><font face="Lucida Sans Unicode" size="2">&#945;</font></b><font face="Verdana" size="2"> being the field angle in radians, <b>D</b> the aperture diameter, <b>F</b> the system F-number and </font><b> <font size="2" face="Georgia">f</font></b><font face="Verdana" size="2"> the system focal length. The coma RMS wavefront error is related to the P-V error as: </font> <p align="center" style="text-indent: 0; "></font><b> <font face="Verdana">&#969;</font></b><font face="Comic Sans MS"> = W</font><b><font size="1" face="Terminal"><span style="vertical-align: sub">c</span></font></b><font face="Comic Sans MS">/32</font><font face="Verdana" size="2">&nbsp;</font><font face="Comic Sans MS">=</font><font face="Lucida Sans Unicode" size="2"> </font> <font face="Lucida Sans Unicode"> &#945;</font><font face="Comic Sans MS">D/272F</font><font size="2"><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">2</span></font></b></font><font face="Comic Sans MS"> = h/272F</font><font size="2"><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">3</span></font></b><font face="Verdana" size="2">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font> <font face="Comic Sans MS" size="2">(84.3)</font><p align="justify" style="text-indent: 0; "> <font face="Verdana" size="2">and for astigmatism:</font><p align="center" style="text-indent: 0; "> </font> <b><font face="Verdana">&#969;</font><font size="1" face="Terminal"><span style="vertical-align: sub">a</span></font></b><font face="Comic Sans MS">=W</font><b><font size="1" face="Terminal"><span style="vertical-align: sub">a</span></font></b><font face="Comic Sans MS">/24</font><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">1/2</span></font><font size="2" face="Verdana">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp; </font></b> <font size="2"> <font face="Comic Sans MS" size="2"> (84.4)</font><p align="justify" style="text-indent: 0; line-height:150%"> <font face="Verdana" size="2">&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="images/two_mirror_ca.PNG" width="277" height="488" align="left"><br> &nbsp;&nbsp;&nbsp;&nbsp; Plots at left show the P-V wavefront error (WFE, in units of 550nm wavelength) for the two aberrations, based on <b>Eq. 84.1</b> and <b>84.2</b>. Coma only depends on the system F-ratio and aperture diameter, while the astigmatism also depends on secondary magnification and weakly on the back focal length (BFL, assumed to be 0.25, or one quarter of the primary's focal length). Astigmatism is nearly proportional to secondary magnification, while inversely proportional to the system F-ratio. In other words, for given focal ratio, it increases with faster primary. The combined RMS wavefront error is a square root of their respective squared RMS errors (the P-V/RMS ratio for coma is <b> &#8730;</b><span style="text-decoration: overline">32</span>, and for astigmatism <b>&#8730;</b><span style="text-decoration: overline">24</span>).</font><p align="justify" style="text-indent: 0; line-height:150%"> <font face="Verdana" size="2">&nbsp;&nbsp;&nbsp;&nbsp; Evidently, coma is identical to that of a paraboloid of the same F-number, while the astigmatism exceeds that of a paraboloid by a factor (m</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">+&#951;)/(1+&#951;)m. Sign of astigmatism in the Gregorian and Cassegrain is identical (both. <b>m</b> and </font><b> <font size="2" face="Tahoma">f</font></b><font face="Verdana" size="2"> are numerically negative in the Gregorian, while positive in the Cassegrain). Therefore, related geometric (ray) aberrations can be determined from those given for a paraboloid in <a href="coma.htm#Coma_transverse">2.2. Coma</a> and <a href="astigmatism1.htm#Transverse_astigmatism">2.3 Astigmatism</a>.</font><p align="justify" style="text-indent: 0; line-height:150%"> &nbsp;&nbsp;&nbsp;&nbsp; From <b>Eq. 84.1-84.4</b>, the coma-to-astigmatism RMS wavefront error ratio in a classical Cassegrain is closely approximated by D/5.5mh. This implies that, for given linear height in image space, the relative astigmatism increases with secondary magnification. For given angular height, it increases with the square of secondary magnification.<p align="justify" style="line-height: 150%"><font face="Verdana" size="2"> <a href="curvature.htm">Petzval field curvature</a> of any two-mirror system is given by <b>1/R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">p</span></font><font face="Verdana" size="2">=2[(1/R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">)-(1/R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">)]</font></b><font face="Verdana" size="2">, R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2"> and R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2"> being the radius of curvature of primary and secondary mirror, respectively. However, due to the presence of astigmatism, <a href="curvature.htm#As_mentioned">best image surface curvature</a> varies. With the primary mirror astigmatism independent of the conic (for the stop at the surface), it is the secondary mirror conic and shape (convex/concave) that induces variations in the system astigmatism. For classical two-mirror systems, median field curvature is given by:</font><p align="center" style="text-indent: 0"> <img border="0" src="images/eq100.PNG" width="322" height="48"><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">The relation shows that, for given primary f-ratio and secondary magnification, best (median) image surface is somewhat less curved in the Gregorian (see <a href="two_mirror_telescope_aberrations.htm#latter">graph</a>). This is despite its considerably stronger Petzval surface curvature, due to its astigmatism, opposite in sign to its Petzval, resulting in the astigmatic surfaces forming on the convex side of the Petzval, thus less curved relative to it. In the Cassegrain, astigmatic surfaces form on the concave side of its Petzval surface, with their curvatures consequently stronger (note that Petzval surface is concave toward secondary in the Cassegrain, and convex in the Gregorian).<br> &nbsp;</font><div style="padding-left: 14px; padding-right: 14px; padding-top:1px; padding-bottom:6px; background-color:#FFFFFF; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-bottom-style:solid; border-bottom-width:0px"> <p align="center" style="text-indent:0"> <font face="Arial" size="2"><b> <img border="0" src="images/cc16.PNG" width="321" height="88" align="left">EXAMPLE</b>: 300mm </font> <font face="Tahoma" size="2">f</font><font face="Arial" size="2">/4/16 Classical Cassegrain, thus with numerically positive secondary magnification <b>m</b>=4; opting for the back focal distance in units of the primary's focal length <b>&#951;</b>=0.2 (240mm), the height of marginal ray at the secondary, in units of the aperture radius, <b>k</b>=(1+&#951;)/(m+1)=0.24. With the paraboloidal primary (<b>K</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=-1), the secondary conic for corrected spherical aberration is <b><br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; K</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-[(m+1)/(m-1)]</font><font face="Tahoma" size="1"><span style="vertical-align: super">2</span></font><font face="Tahoma" size="2">=-2.777</font><font face="Arial" size="2">. </font> <p align="center" style="text-indent:0"> <font face="Arial" size="2">Alternatively, secondary conic can be found from </font><b> <font face="Arial" size="2"> K</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-[(R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma" size="2">/i</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma" size="2">)-1]</font><font face="Tahoma" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2"> which, for the secondary mirror radius <br> R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-mkR</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Tahoma" size="2">/(m-1)=-768</font><font face="Arial" size="2">mm, and the secondary-mirror-to-primary's-image separation i</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=k</font><font face="Tahoma">f</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-288</font><font face="Arial" size="2">, also gives K</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-2.777</font><font face="Arial" size="2">.</font><p align="center" style="text-indent:0"> <font face="Arial" size="2">The wavefront error of coma is identical to that of a 300mm </font><font face="Tahoma" size="2">f</font><font face="Arial" size="2">/16 paraboloid; at 0.25&deg; (21mm, 0.00436 radians) off-axis, it is </font><b> <font face="Arial" size="2">W</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><b><font face="Arial" size="2">=</font></b><font face="Lucida Sans Unicode" size="2">&#945;</font><font face="Arial" size="2">D/48F</font><font face="Arial" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">=0.0001065, or 0.194 wave P-V in units of 550nm wavelength. The RMS wavefront error of coma is smaller by a factor of 1/<b>&#8730;</b><span style="text-decoration: overline">32</span>, or 0.034 wave. At the same distance off-axis, astigmatism is </font><b> <font face="Arial" size="2">W</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">a</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-(m</font><font face="Tahoma" size="1"><span style="vertical-align: super">2</span></font><font face="Tahoma" size="2">+h)D</font><font face="Lucida Sans Unicode" size="2">&#945;</font><font face="Tahoma" size="1"><span style="vertical-align: super">2</span></font><font face="Tahoma" size="2">/8(1+h)mF=0.00015mm</font><font face="Arial" size="2">, or 0.27 wave P-V in units of 550nm wavelength; the corresponding RMS wavefront error is 0.056.</font><p align="center" style="text-indent:0"> <font face="Arial" size="2">With R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-2400</font><font face="Arial" size="2">mm and R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=&#961;R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=mkR</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">/</font><font face="Tahoma" size="2">(m-1)=0.32R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-768</font><font face="Arial" size="2">mm, the Petzval curvature is <b>R</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">p</span></font><font face="Tahoma" size="2">=-565mm</font><font face="Arial" size="2">, and the best (median) field curvature is <b>R</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font><font face="Tahoma" size="2">=</font><a name="-315mm."><font face="Tahoma" size="2">-315mm</font><font face="Arial" size="2">. </font></a></div> <p align="justify" style="line-height:150%"> Above applies to a perfectly collimated system. Less than perfectly aligned mirrors will induce additional aberrations, axial and abaxial. Taking the above system, effect of secondary tilt and/or decenter is illustrated below. <p><img border="0" src="images/cc_collimation.png" width="739" height="727"> <p align="justify" style="line-height:150%"> The effect of 1&deg; secondary tilt (about 0.5mm tilt at the edge, counterclockwise, top and right) is very obvious. Part of it is the consequence of the axial ray bouncing far off the physical field center - as the raytracing scheme shows - bringing into the physical center uncorrected portions of field. Also, tilt of the secondary vs. converging beam creates at its surface all-field coma, i.e. coma of even magnitude imposed over entire field. Here, tilting the secondary 1&deg; counterclockwise throws the optical axis - and optical field center - nearly 0.5&deg; off the physical system ais, i.e. physical field center. Near optical field center the aberration is nearly eclusively the all-field coma, while astigmatism creeps in going farther off. As the astigmatism plots shows, image field is also tilted, which is of little significance considering the magnitude of field aberrations. <p align="justify" style="line-height:150%"> Even this much of misalignment can be nearly cancelled out by inducing offsetting misalignment - in this case 3.5mm decenter (left, above). However, the cancelling takes place at the optical axis, which is still 0.3&deg; off the physical axis, i.e. physical field center. Decenter of 1mm alone induces all field coma, with the physical field center located about 0.06&deg; above the optical axis. In general, magnitude of aberration induced by element tilt/decenter is in proportion to the numerical deviation from perfect. <p align="justify" style="line-height:150%"> Change in the mirror spacing induces spherical aberration. Every mm of spacing reduction extends back focus by little over 15mm, inducing about 0.014 wave P-V of undercorrection. <h1 align="center" style="text-indent: 0"> <b> <font color="#000080" face="Verdana" size="2"><br> </font> <font color="#336699" face="Trebuchet MS" size="3">8.2.3. Aplanatic two-mirror telescopes</font></b></h1> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> &nbsp;It wasn't until 1910, when Ritchey in the U.S. and Chretien in France arrived at needed conics for a coma-free two-mirror (Cassegrain) system, that the &quot;classical&quot; two-mirror telescope finally was upgraded to its optimal version. It took another 17 years before the very first such telescope was successfully made (Ritchey, 1927). </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> Correction of coma in a two-mirror system requires an additional, relatively small modification of both optical surfaces. In the Cassegrain configuration, secondary needs to be more strongly aspherised in order to correct for the coma. So does the primary, in order to compensate for additional spherical under-correction induced by the more strongly aspherised, aplanatic secondary. In the Gregorian, however, both mirrors need to be less strongly aspherised than in the classical arrangement. Needed conics for an aplanatic two-mirror telescope are:</font><p align="center" style="text-indent: 0"> <img border="0" src="images/eq101n.PNG" width="322" height="44"><p align="center" style="text-indent: 0"> <img border="0" src="images/eq102n.PNG" width="473" height="44"><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Alternatively, the conics can be expressed in terms of the primary focal length </font><b> <font size="2" face="MS Reference Serif">f</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2">, system focal length </font><b>f</b><font face="Verdana" size="2">, and mirror separation <b>s</b> as K</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=-1-2</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">(</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">-s)/s</font>f<font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2"> and K</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=-[(</font>f<font size="2" face="Verdana">-</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">)/(</font>f<font size="2" face="Verdana">+</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">)]</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">-2</font>f<font size="2" face="MS Reference Serif">[ </font> f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">/(</font>f<font face="Verdana" size="2">+</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">)]</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">/s. Note that </font><b>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2"> is always numerically negative, and </font><b>f</b><font face="Verdana" size="2"> is numerically negative in the Gregorian, a result of <a href="two-mirror.htm#important">Eq. 76</a>.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">With Seidel spherical aberration and coma corrected, the remaining aberrations are astigmatism, field curvature and distortion. The P-V wavefront error of Seidel astigmatism is given by:</font><p align="center" style="text-indent: 0"> <img border="0" src="images/eq103.PNG" width="277" height="48"><p align="justify" style="line-height: 150%"><font face="Verdana" size="2">This gives astigmatism in the aplanatic Cassegrain - also known as Ritchey-Chretien - greater, and in the aplanatic Gregorian smaller by a factor of (2m</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">+m+&#951;)/(2m</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">+&#951;) compared to the classical types. Neglecting distortion, the remaining aberration is best, or median field curvature, given as:</font><p style="text-indent: 0" align="center"> <font face="Verdana" size="2"> <img border="0" src="images/eq104n.PNG" width="262" height="46"> </font> <p style="line-height: 150%" align="justify"><font face="Verdana" size="2">Again, for an equal set of parameters, aplanatic Cassegrain has somewhat stronger best field curvature than aplanatic Gregorian. Graphs below illustrate the P-V error of astigmatism (left) and best image curvature (right) in the aplanatic two-mirror system. Note that the system focal length for the Gregorian is numerically negative, thus its median surface has positive sign, i.e. it is convex toward secondary; median surface in the Cassegrain has negative curvature, i.e. it is concave toward secondary. When expressed in units of primary's radius of curvature (R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">, dashed), which has a constant negative sign, plots for the two configurations are of opposite sign (since the system focal length </font>f<font face="Verdana" size="2">=mR</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">/2, the ratio of image curvature in units of <b>R</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2"> vs. that in units of the system f.l. is m/2).</font><p style="text-indent:0" align="justify"> <img border="0" src="images/aplanatic.PNG" width="755" height="441"><p style="line-height: 150%" align="justify"> Aplanatic Cassegrain has somewhat stronger, and aplanatic Gregorian somewhat weaker than classical arrangements, but the difference is small. Median field curvature of the aplanatic systems are nearly identical to those of the classical Cassegrain and Gregorian for the practical range of magnifications. <p style="line-height: 150%" align="justify"> <font face="Verdana" size="2">Till recent, most of large professional telescopes were of Ritchey-Chretien type. Probably the most famous, <i> Hubble Space Telescope</i>, has 2.4m </font>f<font face="Verdana" size="2">/2.3 primary mirror, at 4.9m from the convex secondary, and </font>f<font face="Verdana" size="2">/24 effective system focal ratio. This gives all the information needed to specify its inherent aberrations: secondary magnification m=24/2.3=10.435, relative minimum secondary size k=(5.52-4.9)/5.52=0.112, and back focal distance in units of the primary focal length &#951;=(m+1)k-1=0.28. This gives the primary mirror conic K</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=-1.0023, secondary conic K</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=-1.497, P-V wavefront error of astigmatism at the edge of its 9 arc minutes (0.15&deg;) &quot;data field&quot; radius of 1.3 waves (&#955;=550nm), and the best image surface curvature radius R</font><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font><font face="Verdana" size="2">=-633mm.<br> &nbsp;</font><div style="padding-left: 14px; padding-right: 14px; padding-top:1px; padding-bottom:6px; background-color:#FFFFFF; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-bottom-style:solid; border-bottom-width:0px"> <p style="text-indent:0" align="center"> <font face="Arial" size="2"><b> <img border="0" src="images/g12.PNG" width="323" height="88" align="left">EXAMPLE</b>: 300mm </font> <font face="Tahoma" size="2">f</font><font face="Arial" size="2">/3/12 aplanatic Gregorian, thus with numerically negative secondary magnification <b>m</b>=</font><font face="Tahoma" size="2">-4</font><font face="Arial" size="2">; opting for the back focal distance in units of the primary's focal length <b>&#951;</b>=0.25 (225mm), the height of marginal ray at the secondary, in units of the aperture radius, <b>k</b>=(1+&#951;)/(m+1)=</font><font face="Tahoma" size="2">-0.417, and the ratio of curvature radii for the two mirrors R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma" size="2">/R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Tahoma" size="2">=</font>&#961;<font face="Tahoma" size="2">=-0.3336</font><font face="Arial" size="2">. The aplanatic conic for the primary, compensating for spherical aberration induced by the aplanatic secondary <b>K</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-0.963</font><font face="Arial" size="2">, and the secondary conic for corrected coma is <b>K</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-0.405</font><font face="Arial" size="2">. </font> <p align="center" style="text-indent:0"> <font face="Arial" size="2">The only remaining point-image aberration is astigmatism, with the P-V wavefront error at 0.25&deg; off-axis of </font> <font face="Tahoma" size="2">-0.000165mm</font><font face="Arial" size="2">, giving </font> <font face="Tahoma" size="2">-0.3</font><font face="Arial" size="2"> wave in units of 550nm wavelength, with the corresponding RMS wavefront error of 0.061 wave (the P-V error is of opposite sign to that in a Cassegrain).</font><p align="center" style="text-indent:0"> <font face="Arial" size="2">With R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=</font><font face="Tahoma" size="2">-1800mm</font><font face="Arial" size="2"> and R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">=&#961;R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=mkR</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">/(m-1)=</font><font face="Tahoma" size="2">-0.334R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">=600mm, the Petzval curvature is <b>R</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">p</span></font><font face="Arial" size="2">=225mm, and the best (median) field curvature is <b>R</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font><font face="Arial" size="2">=349mm.</font></div> <p align="justify" style="line-height:150%"> As with classical Cassegrain, any misalignment of the mirrors will induce additional aberrations. The effect of the same 1&deg; tilt and 1mm secondary decenter is shown below. <p><img border="0" src="images/rc_miscollimation.png" width="739" height="846"> <p align="justify" style="line-height:150%"> Here, 1&deg; tilt is throwing optical axis as much as 0.75&deg; off the physical axis of the system. Ray spot plots (below right) show 0.5&deg; field around physical axis. Toward optical axis, astigmatism diminishes to zero in its proximity, but the magnitude of all-field coma remains only moderately lower than the aberration at the physical center. Similarly to misalignment in the classical Cassegrain, the tilt error can be nearly cancelled out by decentering secondary. However, best correctin is around optical axis, about 0.1 degree above the physical field center. <p align="justify" style="line-height:150%"> Secondary decenter of 1mm alone generates all-field coma as dominant aberration across 0.5&deg; field, with the optical field center about 0.1&deg; above the physical field center. Since the aberration induced is in proportion to the nominal misalignment, the tolerance for decenter alone - taking 0.80 Strehl or better, i.e. coma blur of 1.5 times the Airy disc or less, as the minimum - is 0.3mm. For the tilt, it is 0.1&deg;. Those two combined would effectivelly restore correction level of the perfect alignment, except for field asymmetry where the lower half has over 60% larger astigmatism. <p align="justify" style="line-height:150%"> Deviation from the optimal mirror separation induces spherical aberration, about 0.06 wave P-V per mm. Since the back focal length extends a little over 7mm for every mm of the spacing reduction, one inch of back focus extention would require about 3.5mm spacing reduction, inducing about 1/5 wave of undercorrection. The error is independent of the aperture, i.e. twice smaller instrument will need as much of spacing reduction for the same etention, which is twice as much relative to the focal length. <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699"><br> &#9668;</font></span><font face="Verdana" size="2"><span style="font-weight: 400"> </span> <a href="two_mirror_telescope_aberrations.htm">8.2.1. General aberrations</a>&nbsp;</font><font size="2" face="Arial"><font color="#C0C0C0">&nbsp; &#9616;</font>&nbsp;&nbsp;&nbsp; </font><font face="Verdana" size="2"> <a href="dall_kirkham_telescope.htm">8.2.4. Dall-Kirkham telescope</a> </font> <font face="Arial" size="2" color="#336699">&#9658;</font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a>&nbsp; |&nbsp; <a href="mailto:webpub@fastmail.com">Comments</a><p>&nbsp;</td> </tr> </table> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10