CINXE.COM
Conics and aberrations
<html xmlns="http://www.w3.org/TR/REC-html40" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:v="urn:schemas-microsoft-com:vml"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"><meta http-equiv="Content-Language" content="en-us"> <title>Conics and aberrations</title> <meta name="keywords" content="conic sections, conic surface of revolution, ellipse, parabola, hyperbola"><meta name="description" content="Properties of conic sections and conic surfaces of revolution: sphere, ellipsoid, paraboloid and hyperboloid."> <style fprolloverstyle="" type="text/css">A:hover {color: #FF8204} </style> </head> <body alink="#FF0000" bgcolor="#F4F4DF" link="#0000FF" style="font-family: Verdana; font-size: 10px" vlink="#993399"> <div align="center"> <table bgcolor="#FFE066" border="0" cellpadding="0" cellspacing="0" height="770" width="800"><!-- MSTableType="layout" --> <tbody> <tr> <td height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px" valign="top"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"><b><font color="#518FBD" face="Verdana" size="3">telescope</font></b><font color="#518FBD" face="Microsoft Sans Serif" size="5">Ѳ</font><b><font color="#518FBD" face="Verdana" size="3">ptics.net</font><font color="#95AAA6" face="Verdana" size="3"> </font></b> <font color="#95AAA6" size="1">▪</font><font color="#95AAA6"><b> </b> </font><b><font color="#95AAA6" face="Verdana" size="3"> </font></b> <font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font> <font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana"><b><font size="2"> </font></b><font size="1"> </font></font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪▪▪▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#95AAA6" size="1">▪</font><font color="#95AAA6" face="Verdana" size="1"> </font><font color="#518FBD" face="Verdana"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><br /> <font size="2"><span style="font-weight: 400"><font face="Arial" size="2"> </font></span></font></p> <p align="center" style="text-indent: 0"><font size="2"><span style="font-weight: 400"><font color="#336699" face="Arial" size="2">◄</font></span><font face="Verdana" size="2"> <a href="ray_geometric_aberrations.htm">3.2. Ray (geometric) aberrations</a> </font><font face="Arial" size="2"><font color="#C0C0C0"> ▐</font> </font><font face="Verdana" size="2"> <a href="conic_surface_aberrations.htm">3.3.2. Aberrations of the conic surface</a> </font> <font color="#336699" face="Arial" size="2">►</font><br /> <font face="Verdana" size="2"> </font></font></p> <h1 align="center" style="text-indent: 0"><font size="2"><span style="font-weight: 400"><font color="#336699" face="Trebuchet MS" size="3"> <span style="text-transform: uppercase"><b>3.3. CONICS AND optical ABERRATIONS</b></span></font></span></font></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0"><font size="2">PAGE HIGHLIGHTS<br /> • <a href="#prolate_ellipsoid">Types of conic surfaces</a> • <a href="#In_terms">Eccentricity</a> • <a href="#focus"> Schwarzschild constant (conic)</a></font></p> </div> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Telescope aberrations can be divided in two main groups: (1) those <b><font color="#000080">intrinsic</font></b> to optical elements in their proper alignment, and (2) aberrations <b><font color="#000080"> induced</font></b> by some external factor. This division is not exclusive; most major aberrations can be caused by both, intrinsic surface properties and misalignment or thermal factors. Rather, its purpose is to identify and relate aberrations according to their origin.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><img align="left" border="0" height="333" src="images/conic-section.PNG" width="188" />Among the aberrations caused by <i> intrinsic</i> properties of optical elements, most important are those characteristic of a conic surface of revolution in monochromatic (single wavelength) light. This surface is formed by rotation of a conic section around its axis of symmetry. Conic section is a curved line formed by the intersection points of a cone surface and a plane, as illustrated to the left. Following text describes conic surfaces in the context of their optical properties. </font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">While all conic surfaces of revolution have perfect radial symmetry, that alone does not enable them to form perfect wavefronts. For this to happen, a surface must have specific form determined by both, its optical properties (index of reflection or refraction) and form of the incoming wavefront.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">For instance, spherical reflecting surface will form a perfect spherical wavefront if the object is placed at the mirror center of curvature (obviously, the emitted wavefront, the surface and the reflected wavefront all coincide at the surface). However, as the object distance increases and the wavefront flattens, spherical surface advances wavefront points toward the edges more than those toward the center. As a result, the reflected wavefront is aberrated, curving in more strongly toward the edges than its perfect reference sphere. For object at infinity, the incoming wavefront is practically flat, and the extent of aberration reaches its maximum. Thus, a surface curving less toward the edges - a paraboloid - is needed to form a perfect spherical <a name="wavefront">wavefront</a>. For intermediate object distances, the "perfect" surface is an appropriate <a name="prolate_ellipsoid">prolate ellipsoid</a>.<br /> </font></font></p> <h1 align="center" style="text-indent:0; line-height:150%"><font size="2"><font color="#336699" face="Trebuchet MS" size="3">3.3.1. Conic sections, geometric properties</font></font></h1> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">In other words, for any reflecting conic surface there is a single pair of conjugate points (i.e. object and image locations) that will produce perfect axial image (such surface is called <i>Cartesian reflecting surface)</i>. We'll call these two points (conic) <span style="background-color: #FFFFCC"> <i> specific conjugates</i></span>, or <span style="background-color: #FFFFCC"> <i>specific/geometric foci</i></span>. This pair of points is, in fact, what optically defines the conic curve, as a set of points for which a sum of the geometric (straight line) separation from the two specific conjugates (foci) is constant. Obviously, that is the condition for zero aberrations, since this geometric separation, assuming homogeneous medium, is proportional to the optical path length (OPL).</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Note that geometric focus of a conic surface is different from its <a href="gaussian_approximation.htm">Gaussian focus</a>, which is determined by the focal length - i.e. radius of curvature - of a surface, and independent of the conic. </font></font></p> <p align="justify" style="text-indent:22px; line-height:150%"> <font size="2"><!--[if !vml]--><!--[endif]--><font face="Verdana" size="2">For the <b><font color="#000080">sphere</font></b>, the geometric foci coincide at its center of curvature; for <b> <font color="#000080">parabola</font></b>, one is at the Gaussian focus, and the other at infinity; for <b><font color="#000080">hyperbola</font></b>, one is on the opposite side of surface and the other one is inside the focal point (this merely means that it is free from spherical aberration for object distance smaller than its focal length, or for converging incoming beam).</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">For <b><font color="#000080">prolate ellipse</font></b> - the one with horizontal axis longer than vertical axis - specific foci lie at the longer (horizontal axis), equally separated from the center point (<b>F</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2"> and <b>F</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Terminal" size="2"> </font><font face="Verdana" size="2"> in <b>FIG. 23</b>). And for <b><font color="#000080">oblate ellipse</font></b>, the two spherical aberration-free conjugates, or foci, are also on the longer axis, which is this time vertical (note that the ellipse here is categorized as oblate or prolate based on its form around the optical axis, which is horizontal; when placed in a coordinate system and categorized with respect to the vertical axis, ellipse is oblate <a name="when">when</a> flattened vertically, and prolate when vertically <a name="extended">extended</a>).<br /> </font></font></p> <div style="padding-left: 3px; padding-right: 3px; background-color:#FFFFFF"> <p align="center" style="text-indent:0"><font size="2"><img border="0" height="381" src="images/conics.PNG" width="722" /> <font face="Arial" size="2"><b>FIGURE 23</b>: <b><font color="#000080">Conic sections</font></b> are curves formed at the intersection of a plane and the surface of a circular cone. A cross-section parallel with the cone base produces a circle, symmetrical around its center point (<b>O</b>), while other cross-section angles produce ellipses, parabola and hyperbolas. The later group of conic sections is defined by their two specific conjugates, or geometric foci (</font><font face="Verdana" size="2"><b>F</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Arial" size="2">, </font> <font face="Verdana" size="2"><b>F</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Arial" size="2">, with the near focus for parabola coinciding with the Gaussian infinity focus common to all conics with a given vertex<br /> radius </font> <font face="Verdana" size="2"><b>R</b></font><font face="Arial" size="2">). All rays coming from one specific focus pass through the other after reflection from a conic. The foci are positioned symmetrically around the center point (<b>O, O</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">P</span></font><font face="Arial" size="2"> for the sphere and prolate ellipse shown, respectively). Deviation of a particular conic from the circular form is numerically expressed as <font color="#000080"><b>eccentricity</b></font> </font><b> <font face="Lucida Console" size="2">ε</font></b><font face="Arial" size="2">, which can by defined as a ratio of the inter-focus separation 2<b>s=S</b> and optical path length (<b>OPL</b>) between the foci via conic point </font> <font face="Verdana" size="2"> <b>C</b></font><font face="Arial" size="2">. The alternative - and more commonly used - measure is the <b><font color="#000080"> conic constant</font></b> K=-</font><font face="Lucida Console" size="2">ε</font><font face="Arial" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">. Numerical values of the conic constant are K=0 for sphere, -1<K<0 prolate ellipsoids, K=-1 paraboloid, K<-1 hyperboloids and 0<K for oblate ellipsoids. Each conic produces perfect axial wavefront for object located at one of its two geometric foci. Note that the eccentricity value shown for the oblate ellipse </font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Lucida Console" size="2">=</font><font face="Arial" size="2">0.5 is its actual eccentricity, derived from its center-to-focus separation vs. longer (vertical) semi-axis, and identical to its directrix-defined eccentricity. Commonly used eccentricity value </font><font face="Lucida Console" size="2"> <b>ε </b></font><font face="Arial" size="2">for oblate ellipse</font><font face="Verdana" size="2"> </font> <font face="Arial" size="2">is derived using its shorter (horizontal) semi-axis in the denominator, thus larger by a factor 1/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Arial" size="2"> nominally; hence, </font><font face="Lucida Console" size="2">ε</font><font face="Arial" size="2">=</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Arial" size="2">/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Arial" size="2">, and </font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">=</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">/(1+</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">). The common eccentricity form </font><b><font face="Lucida Console" size="2">ε</font></b><font face="Arial" size="2"> of the prolate ellipse - which we will term <i>relative eccentricity</i> - is needed for the ellipse equation, defining the conic's line, and the relations defining the length of their semi-axes <b>a</b> and <b>b</b>, but it is not a true, directrix-defined eccentricity of the oblate ellipse.</font></font></p> </div> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Rotating conic section 360° around its axis of symmetry produces a conic surface of revolution centered around its vertex: rotating the circle produces <b> <font color="#000080">sphere</font></b>, oblate ellipse produces <b> <font color="#000080">oblate ellipsoid</font></b>, prolate ellipse produces <font color="#000080"><b>prolate ellipsoid</b></font>, parabola <b><font color="#000080">paraboloid</font></b>, and hyperbola <font color="#000080"><b>hyperboloid</b></font>.</font></font><br /> <br /> <font size="2"><img border="0" height="577" src="images/conics_rotational0.png" width="735" /> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">The main parameters of these surfaces are given in the table below, followed by more detailed description.<br /> </font></font></p> <table border="1" bordercolor="#C0C0C0" cellspacing="0" style="font-family: Tahoma; font-size: 10pt" width="100%"> <tbody> <tr> <td bgcolor="#FFFF99"> <p align="center" style="text-indent: 0"><font size="2"><font face="Trebuchet MS" size="2"><b>CONIC</b></font></font></p> </td> <td bgcolor="#FFFF99"> <p align="center" style="text-indent: 0"><font size="2"><b><font face="Trebuchet MS" size="2">ECCENTRICITY</font> </b>(<b><font face="Lucida Console" size="2">ε</font></b>)</font></p> </td> <td bgcolor="#FFFF99" width="22"> <p align="center" style="text-indent: 0"><font size="2"><b><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font></b></font></p> </td> <td bgcolor="#FFFF99"> <p align="center" style="text-indent: 0"><font size="2"><b><font face="Trebuchet MS" size="2">CONIC CONSTANT</font><br /> <font face="Trebuchet MS">K</font>=-<font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font></b></font></p> </td> <td bgcolor="#FFFF99"> <p align="center" style="text-indent: 0"><font size="2"><b><font face="Trebuchet MS" size="2">NEAR FOCUS LOCATION</font></b><br /> <font face="Verdana" size="2"> </font><font face="Verdana">@<b> </b> </font><b>R/(1+<font face="Lucida Console" size="2">ε</font>) </b>from vertex,</font></p> </td> <td bgcolor="#FFFF99"> <p align="center" style="text-indent: 0"><font size="2"><b><font face="Trebuchet MS" size="2">FAR FOCUS LOCATION</font></b><br /> <font face="Verdana">@ </font><b>R/(1-<font face="Lucida Console" size="2">ε</font>) </b> from vertex</font></p> </td> </tr> <tr> <td bgcolor="#F9FBFA"> <p align="center" style="text-indent: 0"><font size="2"><font color="#333333" face="Trebuchet MS"><b>Circle</b></font><font color="#666666">,</font><b> </b> a=b=R</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF" width="22"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF" colspan="2"> <p align="center" style="text-indent: 0"><font size="2">coinciding at the center of curvature (COC)</font></p> </td> </tr> <tr> <td bgcolor="#F9FBFA"> <p align="center" style="text-indent: 0"><font size="2"><b><font color="#333333" face="Trebuchet MS">Oblate ellipsoid</font>*</b>, a<b</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"> >0 (0<<font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><1)</font></p> </td> <td bgcolor="#FFFFFF" width="22"> <p align="center" style="text-indent: 0"><font size="2">-</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"> >1 (0<<font face="Trebuchet MS"><b>K</b></font><1)</font></p> </td> <td bgcolor="#FFFFFF" colspan="2"> <p align="center" style="text-indent: 0"><font size="2">foci symmetrical around line perpendicular to axis,<br /> the line being inside COC at <font face="Verdana" size="2"> R/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2 </span></font> from vertex</font></p> </td> </tr> <tr> <td bgcolor="#F9FBFA"> <p align="center" style="text-indent: 0"><font size="2"><font color="#333333" face="Trebuchet MS"><b>Prolate ellipsoid</b></font>, a>b</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0<<b><font face="Lucida Console" size="2">ε</font></b><1</font></p> </td> <td bgcolor="#FFFFFF" width="22"> <p align="center" style="text-indent: 0"><font size="2">+</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">-1<<font face="Trebuchet MS"><b>K</b></font><0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">between COC and Gaussian focus</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">outside COC</font></p> </td> </tr> <tr> <td bgcolor="#F9FBFA"> <p align="center" style="text-indent: 0"><font size="2"><font color="#333333" face="Trebuchet MS"><b>Paraboloid</b></font>, a,b=<font face="Verdana">∞</font></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#FFFFFF" width="22"> <p align="center" style="text-indent: 0"><font size="2">+</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">-1</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">Gaussian focus</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">infinity</font></p> </td> </tr> <tr> <td bgcolor="#F9FBFA"> <p align="center" style="text-indent: 0"><font size="2"><font color="#333333" face="Trebuchet MS"><b>Hyperboloid</b></font>,<br /> |a|>|b| for <font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><2<br /> |a|=|b| for <font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font>=2<br /> |a|<|b| for <font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font>>2</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">>1</font></p> </td> <td bgcolor="#FFFFFF" width="22"> <p align="center" style="text-indent: 0"><font size="2">+</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><-1</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">inside Gaussian focus</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">opposite to surface orientation</font></p> </td> </tr> </tbody> </table> <div style="padding-left: 22px; padding-right: 22px"> <p align="justify" style="text-indent: 0"><font size="2"><b><font face="Tahoma" size="2"> TABLE 1: Characteristics of the five main types of conic surfaces.<br /> *</font><font face="Tahoma" size="1">True eccentricity/conic is in brackets; conic constant is given as positive, to differentiate between the two types of ellipsoidal surface; oblate ellipse's eccentricity value </font></b><font face="Lucida Console" size="1"> <b>ε </b> </font><b><font face="Tahoma" size="1">used in the ellipse function (not a true eccentricity </font> <font face="Lucida Console" size="1">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Tahoma" size="1">), derived from the conic function based center-to-focus value</font><font face="Verdana" size="1"> c</font></b><font face="Terminal" size="1"><span style="vertical-align: super; ">2</span></font><b><font face="Verdana" size="1">=a</font></b><font face="Terminal" size="1"><span style="vertical-align: super; ">2</span></font><b><font face="Verdana" size="1">-b</font></b><font face="Terminal" size="1"><span style="vertical-align: super; ">2</span></font><b><font face="Tahoma" size="1">, is an imaginary number of the negative sign when squared.)</font></b></font></p> </div> <div style="padding-left: 14px; padding-right: 14px; padding-top:1px; padding-bottom:4px; background-color:#FFFFFF; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-bottom-style:solid; border-bottom-width:0px"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2"><b>EXAMPLE</b>: Conic parameters for selected eccentricity values </font><b><font face="Lucida Console" size="2"> ε</font></b><font face="Tahoma" size="2"> (</font><b><font face="Lucida Console" size="2">ε</font></b><font face="Lucida Console" size="1"><span style="vertical-align: sub">t</span></font><font face="Tahoma" size="2"> and </font><b><font face="Lucida Console" size="2">ε</font></b><font face="Tahoma" size="2"> for oblate ellipse) for a concave mirror of radius <b>R</b>.<br /> </font></font></p> <div align="center"> <table border="1" bordercolor="#C0C0C0" cellspacing="0" width="600"> <tbody> <tr> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2"> </font></font></p> </td> <td align="center" bgcolor="#FFFF99" colspan="2"> <p style="text-indent:0"><font size="2"><font size="2"><font face="Tahoma" size="2">OBLATE ELLIPSE, </font><font face="Lucida Console" size="2">ε</font><font face="Tahoma" size="2">(</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Tahoma" size="2">)</font></font></font></p> </td> <td align="center" bgcolor="#FFFF99"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">CIRCLE</font></font></p> </td> <td align="center" bgcolor="#FFFF99" colspan="2"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">PROLATE ELLIPSE</font></font></p> </td> <td align="center" bgcolor="#FFFF99"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">PARABOLA </font> </font></p> </td> <td align="center" bgcolor="#FFFF99" colspan="2"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">HYPERBOLA</font></font></p> </td> </tr> <tr> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Lucida Console" size="2"><b>ε</b></font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">2.065(0.9)</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.577(0.5) </font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.5</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.9</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">1</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">1.5</font></font></p> </td> <td align="center"> <p style="text-indent: 0"><font size="2"><font face="Tahoma" size="2">2</font></font></p> </td> </tr> <tr> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2"><b>K</b></font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">4.26 </font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.33</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">-0.25</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">-0.81</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">-1</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">-2.25 </font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent: 0"><font size="2"><font face="Tahoma" size="2">- 4</font></font></p> </td> </tr> <tr> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2"><b>a</b></font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.19R* </font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.75R*</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">R</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">1.33R</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">5.26R</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">∞</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.8R</font></font></p> </td> <td align="center"> <p style="text-indent: 0"><font size="2"><font face="Tahoma" size="2">0.33R</font></font></p> </td> </tr> <tr> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2"><b>b/a</b></font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">1.345*</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">1.118*</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">1</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.87</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.44 </font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">1.12</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent: 0"><font size="2"><font face="Tahoma" size="2">1.73</font></font></p> </td> </tr> <tr> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2"><b>near focus</b> </font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.55R**</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.8R**</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">R</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.67R </font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.53R</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">R/2</font></font></p> </td> <td align="center"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">R/2.5</font></font></p> </td> <td align="center"> <p style="text-indent: 0"><font size="2"><font face="Tahoma" size="2">R/3</font></font></p> </td> </tr> <tr> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2"><b>far focus </b> </font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.55R**</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">0.8R** </font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">R</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">2R</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">10R</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">∞</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent:0"><font size="2"><font face="Tahoma" size="2">-2R</font></font></p> </td> <td align="center" bgcolor="#EFEFEF"> <p style="text-indent: 0"><font size="2"><font face="Tahoma" size="2">-R</font></font></p> </td> </tr> <tr> <td align="center" colspan="9"><font size="2"><font size="2"><b><font face="Tahoma" size="2">*</font><font size="1">uses</font><font face="Tahoma" size="1"> </font> </b> <font face="Lucida Console" size="2">ε</font><b><font face="Tahoma" size="2">, </font></b><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Tahoma" size="2"><0</font><font face="Tahoma" size="1"><b> for oblate ellipse ** to the foci-containing vertical line</b></font></font></font></td> </tr> </tbody> </table> </div> </div> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><a name="In_terms">In terms</a> of conics' shape, for given vertex radius, oblate ellipses are most strongly curving away from the vertex (center). As their vertical foci converge closer, oblate ellipse becomes less strongly curved, converging to a circle when its foci merge in a single point. As the center of a circle separates into a pair of points on horizontal axis, they define the next less strongly curved conic, prolate ellipse. Further increase in separation of the two foci results in still less strongly curved conics: parabola, for which the farther away focus lies at infinity, and hyperbola, whose far focus is beyond infinity - at the opposite side of conic's vertex.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">The measure of how strongly curved is a conic section is its <b><font color="#000080">eccentricity </font></b>(</font><b><font face="Lucida Console" size="2">ε</font></b><font face="Verdana" size="2">). In optical terms, it can be expressed as the ratio of its inter-focal separation to the optical path length (OPL) from one specific focus to another, via any point of a conic (any ray originating at one of the two foci is reflected to the other one). Since both parameters are constant for given conic shape, so is its eccentricity (note that eccentricity of conic sections is usually expressed in geometric terms - as the ratio of a conic's point distance from its near focus to that point's distance to a fixed straight line, called <i>directrix</i> - but defining it in optical terms is more appropriate here). </font> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">For <b><font color="#000080">oblate ellipse</font></b>, the inter-focus separation is finite, and ranges from approaching zero to approaching the optical path length between the foci, via point belonging to a conic section. Thus, its true eccentricity range is 0<</font><font face="Lucida Console" size="2">ε</font><font face="Lucida Console" size="1"><span style="vertical-align: sub">t</span></font><font face="Lucida Console" size="2"><1, </font> <font face="Verdana" size="2">same as in prolate ellipse. Note that the use of true eccentricity figure, given as a ratio of inter-focus separation vs. ellipse axis that contains them, is uncommon; usually, the eccentricity of oblate ellipse is expressed in the same manner as for prolate ellipse, that is, as the ratio of its inter-focus separation vs. horizontal axis. This, relative eccentricity, doesn't reflect true, directrix defined value, thus oblate ellipse with identical relative (commonly used) eccentricity value doesn't have identical axial proportions to those of prolate ellipse of the same eccentricity value. Relative eccentricity </font><b><font face="Lucida Console" size="2">ε</font></b><font face="Verdana" size="2"> of the oblate ellipse is merely the one determined by the ellipse function (<b>Eq. 4</b>) as the value describing it as a line in a coordinate system that is rotated by 90° (with the center shifted to the vertex of its short axis) with respect to its directrix.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">On the other hand, true eccentricity of oblate ellipse identical to the eccentricity value of prolate ellipse implies identical axial proportions of the two: their longer vs. shorter axis ratio is identical, with the oblate ellipse only being smaller for given vertex radius, by a ratio (1-</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">o</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Verdana" size="2">/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">p</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">), where </font><b><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">o</span></font></b><font face="Verdana" size="2"> is the oblate ellipse eccentricity </font><b><font face="Lucida Console" size="2">ε</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">o</span></font><font face="Verdana" size="2">=</font><b><font face="Lucida Console" size="2">ε </font></b> <font face="Verdana" size="2"> (</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">o</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2"><0) and </font><b><font face="Lucida Console" size="2">ε</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">o</span></font><font face="Terminal" size="2"> </font><font face="Verdana" size="2"> the prolate ellipse eccentricity.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Thus, to convert from the true oblate ellipse eccentricity </font><b><font face="Lucida Console" size="2">ε</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="2"> to the relative eccentricity </font> <b><font face="Lucida Console" size="2">ε</font></b><font face="Verdana" size="2">, the former is to be multiplied by the ratio of longer vs. shorter axis of the oblate ellipse. This ratio is given by (1-</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Verdana" size="2">/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">), or 1/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Verdana" size="2">. For instance, a common eccentricity equivalent for true oblate ellipse eccentricity value </font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="2">=0.95 would be </font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="2">=1.93. Conversely, </font><font face="Lucida Console" size="2">ε</font><font face="Terminal" size="1"><span style="vertical-align: sub">t</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">=</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">/(1+</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Arial" size="2">).</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">For the <b><font color="#000080">circle</font></b>, the inter-focus separation is zero, and so is its eccentricity. </font> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">For <b><font color="#000080">prolate ellipse</font></b>, the inter-focus separation is finite, always smaller than the OPL; thus, its eccentricity range is 0<</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="2"><1. </font> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Inter-focus separation for <b><font color="#000080">parabola</font></b>, with one specific focus at infinity is infinity, and so is the OPL; thus its eccentricity equals 1. </font> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Finally, for <b><font color="#000080"> hyperbola</font></b>, with one specific conjugate (focus) located inside its Gaussian focus, and the other, imaginary, on the opposite (positive) side of the conic's vertex, the inter-focus separation, which is positive, is always greater than the OPL. Here, the inter-focus separation is identical to the OPL geometrically, but is numerically smaller, being given by a sum of the larger, positive portion measured from the surface to the imaginary specific focus to the right, and smaller negative portion measured from the surface to the real specific focus located to the left of the vertex, inside the Gaussian <a name="focus">focus</a>.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Conic shape is commonly expressed as the conic, or <b><font color="#000080">Schwarzschild constant</font></b>, defined as K=-e</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">. Since the eccentricity <b>e</b> is a positive number for all conics but oblate ellipses, the corresponding conic is negative for prolate ellipses, parabola, and hyperbolas. It is positive for oblate ellipses (this originates from mathematical formalism, defining ellipse center-to-focus separation <b>s</b> with s</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">=a</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">-b</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">, <b>a</b> and<b> b</b> being the horizontal and vertical <a name="semi-axis">semi-axis</a>, respectively; since in oblate ellipses the latter is longer, their <b>s</b></font><b><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font></b><font face="Verdana" size="2"> is a negative value, and </font> <font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">= s</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">/a</font><span style="vertical-align: super"><font face="Verdana" size="1">2</font></span><font face="Verdana" size="2">.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Denoting the inter-focus separation as <b> S</b>, and the optical path length from one specific focus to a conic point and to the other specific focus as <b>OPL</b>, the eccentricity is given by </font> <font face="Lucida Console" size="2">ε</font><font face="Verdana" size="2">=S/OPL. It defines the conic section as:</font></font></p> <p align="center" style="text-indent: 0"><font size="2"><img border="0" height="26" src="images/eq15n.PNG" width="250" /></font></p> <p align="justify" style="text-indent:0; line-height:150%"><font size="2"><font face="Verdana" size="2">or (1+K)x</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">-2Rx+y</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">=0, with <b>R</b> being the vertex radius of curvature, and <b>x</b> and <b>y</b> being the horizontal and vertical coordinate, respectively. This relation defines the sag <b>x</b> of a conic surface as:</font></font></p> <p align="center" style="text-indent:0"><font size="2"><img border="0" height="45" src="images/eq14n.PNG" width="260" /></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">Specific<b><font color="#000080"> near focus distance</font></b> from the conic's vertex, in terms of the vertex radius of curvature <b>R</b>, is given by:</font></font></p> <p align="center" style="text-indent: 0"><font size="2"><img border="0" height="44" src="images/eq16n.PNG" width="277" /></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">That gives L</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=R for sphere, L</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=R/2 for parabola, and intermediate values for prolate ellipses. For hyperbolas, L</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=R/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="2">). Near focus distance is smaller than R/2 for hyperbolas and oblate ellipses. Note that the latter are a special case, in that their specific foci are not located on the axis, rather on a straight line perpendicular to it. Separation from the axis, and the conic vertex here is equal for both foci. The vertex-to-perpendicular-line separation is R/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">), with </font><b> <font face="Lucida Console" size="2">ε</font></b><font face="Verdana" size="1"><span style="vertical-align: super"><b>2</b> </span></font><font face="Verdana" size="2">being, by definition, negative for oblate ellipses, and the vertex-to-focus separation is R/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Verdana" size="2">.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><b><font color="#000080">Far focus distance</font></b> from the vertex, also not applying to oblate ellipses and hyperbolas, is: </font> </font> <b> <font face="Verdana"> </font></b></p> <p align="center" style="text-indent: 0"><font size="2"><img border="0" height="44" src="images/eq17n.PNG" width="277" /></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">For hyperbolas, it is L</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=R/(1+</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="2">).</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">The <b><font color="#000080">inter-focus separation</font></b> <b>S</b>, measured from the near focus with a conic oriented to the left, for all conics except oblate ellipses is given by:</font></font></p> <p align="center" style="text-indent: 0"><font size="2"><img border="0" height="45" src="images/eq18n.PNG" width="394" /></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">For oblate ellipses, the inter-focus separation, after substitutions in s</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">=a</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">-b</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2"> and taking absolute value for </font><b><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font></b><font face="Verdana" size="2"> under the square root, is given by:</font></font></p> <p align="center" style="text-indent: 0"><font size="2"><img border="0" height="44" src="images/eq19n.PNG" width="226" /></font></p> <p align="justify" style="text-indent:0; line-height:150%"><font size="2"><font face="Verdana" size="2">where the eccentricity </font><b> <font face="Lucida Console" size="2">ε</font></b><font face="Verdana" size="2"> is positive, and </font><b><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font></b><font face="Verdana" size="2">, as before, negative. This gives S=0 for the circle, S=-∞ for parabola, -∞<S<0 for prolate ellipse, 0<S<0.5R for oblate ellipse (inter-focal separation here reaches maximum of 0.5R for the eccentricity </font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="2">=1, decreasing for both, higher and lower values of </font><b><font face="Lucida Console" size="2">ε</font></b><font face="Verdana" size="2">), and 0>S>∞ for hyperbolas. </font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">The <font color="#000080"><b>optical path length</b></font> (OPL) between the two specific foci, via point on the conic, is given by: </font> </font></p> <p align="center" style="text-indent: 0"><font size="2"><img border="0" height="44" src="images/eq20n.PNG" width="220" /></font></p> <p align="justify" style="text-indent:0"><font size="2"><font face="Verdana" size="2">for all conics except oblate ellipse, for which <b>OPL</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">o</span></font><font face="Verdana" size="2"><b>=</b></font><b><font face="Verdana" size="2">2R/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font></b><font face="Verdana" size="2"><b>)</b></font><font face="Verdana" size="1"><span style="vertical-align: super; font-weight:700">1/2</span></font><font face="Verdana" size="2"><b> = 2R/(1+K)</b></font><font face="Verdana" size="1"><span style="vertical-align: super; font-weight:700">1/2</span></font><font face="Verdana" size="2">.<b> </b></font> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">This gives OPL=2R for a sphere, OPL=-∞ for parabola, -∞<OPL<2R for prolate ellipses, 2R<OPL<0 for oblate ellipses, and 0<OPL<∞ for hyperbolas (note that <b>Eq. 4.3</b> gives the geometric OPL; nominal OPL for hyperbolas, determining their eccentricity, is smaller - and of positive sign - given by the difference between the larger positive vertex-to-far and smaller negative vertex-to-near specific focus). </font> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">The eccentricity expressed as </font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="2">=S/OPL is, therefore, of a positive sign for all conic types (zero fo circle).</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">The OPL as given by <b>Eq. 4.4</b> is identical to the length of the longer axis of either prolate or oblate ellipses. </font> </font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2">An alternative set of relations for ellipses is based on the vertex radius of curvature <b>R</b>, horizontal semi-axis <b>a</b> and vertical semi-axis <b>b</b>, as shown in <b>FIG 23</b>. With a=R/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">) and b=R/(1-</font><font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Verdana" size="2">, the eccentricity is given by </font> <font face="Lucida Console" size="2">ε</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">=1-(b/a)</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">, and the vertex radius of curvature R=b</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">/a.</font></font></p> <p align="center"><font size="2"><font face="Verdana" size="2"> </font><br /> <span style="font-weight: 400"><font color="#336699" face="Arial" size="2">◄</font></span><font face="Verdana" size="2"> <a href="ray_geometric_aberrations.htm">3.2. Ray (geometric) aberrations</a> </font><font face="Arial" size="2"><font color="#C0C0C0"> ▐</font> </font><font face="Verdana" size="2"> <a href="conic_surface_aberrations.htm">3.3.2. Aberrations of the conic surface</a> </font> <font color="#336699" face="Arial" size="2">►</font><br /> </font></p> <p align="center" style="text-indent: 0"><font size="2"><a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a></font></p> <p><font size="2"> </font></p> </td> </tr> </tbody> </table> </div> </body> </html>