CINXE.COM
Two-mirror telescope aberrations
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Two-mirror telescope aberrations</title> <meta name="keywords" content="two-mirror telescope aberrations, two-mirror reflecting telescope, optics, aberrations"> <meta name="description" content="General optical aberrations of two-mirror telescopes, illustrations and formulae."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p style="text-indent: 0" align="center"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> </font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font face="Verdana" size="2"> <span style="font-weight: 400"><a href="two-mirror.htm">8.2. Two-mirror telescopes</a></span> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font face="Verdana" size="2"> <a href="classical_and_aplanatic.htm">8.2.2/3. Classical and aplanatic</a> </font> <font face="Arial" size="2" color="#336699">►</font><br> </p> <h1 align="center" style="text-indent: 0"> <b> <font face="Trebuchet MS" color="#336699" size="3"> <span style="text-transform: uppercase; "> 8.2.1. </span>Two-mirror telescope aberrations</font></b></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0"> PAGE HIGHLIGHTS<br> • <a href="#General_aberration">Zero spherical aberration condition</a> • <a href="#Off-axis">Coma and astigmatism</a> • <a href="#coma">Field curvature</a><br> • <a href="#general">Magnification of incident angle at the secondary</a> • <a href="#are">Effect of baffle obstruction on off axis imaging</a></div> <p align="justify" style="line-height: 150%"><font face="Verdana" size="2"> The basic concept used for more detailed presentation of two-mirror aberrations is that given in "Astronomical Optics" from Daniel J. Schroeder. It requires only two parameters for computing system aberrations: one is secondary magnification <b>m</b> and the other, alternatively, either relative back focal distance <b>η</b>, or the height of marginal ray at the secondary (i.e. minimum relative secondary size) <b>k</b> (<b>FIG. 122</b>).<b> </b> The former is<b> </b>defined as the primary-to-final focus separation in units of the primary focal length, or η=B/</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=</font><font face="Arial" size="2">(m+1)k-1</font>, where <b>B</b>, <b>f</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font> and <b>m</b> are the back focal length in units of the primary mirror's focal length, primary's focal length and secondary's magnification, respectively, and the latter<font face="Verdana" size="2"> by k=1-s/</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">., with <b>s</b> being the primary-to-secondary separation (both </font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2"> and <b>s</b> numerically negative according to the <a href="terms_and_conventions.htm">sign convention</a>). </font> <p align="justify" style="line-height: 150%"><font face="Verdana" size="2">Use of parameters in their relative ("dimensionless") form generally simplifies the relations, also making calculation quicker and more convenient by leaving out large numbers (focal length, radii, etc.). </font> <div style="padding-left: 4px; padding-right: 4px; background-color:#FFFFFF"> <p align="center" style="text-indent: 0"> <img border="0" src="images/2mirror.PNG" width="733" height="333"> <b> <font face="Arial" size="2"><br> FIGURE </font><font face="Arial">122</font></b><font face="Arial" size="2">:Two-mirror system in the right-hand Cartesian coordinate system. The main system parameters are the primary mirror focal length </font><b> <font size="2" face="Arial">f</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Arial" size="2">, mirror separation <b>s</b>, system focal length </font><b> <font size="2" face="Arial">f</font></b><font face="Arial" size="2"> (numerically negative for the Gregorian, positive for Cassegrain) and back focus distance <b>B</b> or <b>η</b>, when expressed in units of the primary's focal length. These three parameters determine relative height of marginal ray at the secondary <b>k, </b>in units of the aperture radius, secondary-to-prime-focus separation <b>i</b>, secondary focal length </font><b> <font size="2" face="Arial">f</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Arial" size="2"> and magnification <b>m</b>, as well as secondary-to-final-focus separation <b>i'</b>. With the radii and separations known, mirror conics needed to correct aberrations can be determined; the relation bottom right determines primary (<b>K</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Arial" size="2">) and secondary conic (<b>K</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Arial" size="2">) needed to cancel spherical aberration. Sign of the linear parameters is determined by their direction: it is positive for left-to-right and upward from the axis, negative for the opposite directions. The negative sign in the relation for secondary magnification is due to magnification being defined as the ratio of image vs. object height. Since the object for the secondary is the image formed by the primary - reversed below the axis - secondary located inside the focus of the primary (Cassegrain arrangement), which forms reversed image below the axis, has positive magnification, while secondary located outside the focus (Gregorian), forming an erect image above the axis, has, by definition, negative magnification of the primary's image. </font></div> </div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">According to the sign convention, secondary magnification <b>m</b> is positive for the Cassegrain, and negative for the Gregorian, while the relative back focal distance <b>η</b> is positive for the final focus to the right from the primary mirror, and negative for the final focus to the left. </font> <p align="justify" style="line-height: 150%"> Following table details<font face="Verdana" size="2"> two-mirror system parameters determining its geometric and optical properties.<br> </font><table border="1" width="100%" cellspacing="0" bordercolor="#C0C0C0"> <tr> <td rowspan="2" bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"> <font face="Tahoma" size="2">PARAMETER</font></td> <td colspan="2" bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"> <font face="Tahoma" size="2">RELATIONS</font></td> </tr> <tr> <td bgcolor="#FFFFFF" width="166"> <p align="center" style="text-indent: 0"> <font face="Tahoma" size="2">Dimensionless</font></td> <td bgcolor="#FFFFFF" width="277"> <p align="center" style="text-indent: 0"> <font face="Tahoma" size="2">w/actual system values</font></td> </tr> <tr> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"> <font face="Verdana" size="2">▪ secondary magnification <b>m</b> <b> </b></font></td> <td bgcolor="#FFFFFF" width="166"> <p align="center" style="text-indent: 0"> <b> <font face="Verdana" size="2">m=ρ/(ρ-k)</font></b><font face="Verdana" size="2"><b>= 1/(1-k/ρ)</b></font></td> <td bgcolor="#FFFFFF" width="277"> <p align="center" style="text-indent: 0"><font size="2"> <font face="Verdana" size="2"><b>m=R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Verdana" size="2"><b>/(R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Verdana" size="2"><b>-R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">+2s)</font></b></font></td> </tr> <tr> <td bgcolor="#FFFFFF"><p align="center" style="text-indent: 0"> <font face="Verdana" size="2">▪ height of marginal ray at the secondary <br> in units of the aperture radius, <b>k</b></font></td> <td bgcolor="#FFFFFF" width="166"> <p align="center" style="text-indent: 0"><font size="2"> <font face="Verdana" size="2"> <b> k=(1+</b></font><b>η<font face="Verdana" size="2">)/(m+1)</font></b></font></td> <td bgcolor="#FFFFFF" width="277"> <p align="center" style="text-indent: 0"><font size="2"><b> <font face="Verdana" size="2">k=1-(s/</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">)=1-(2s/R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">)</font></b></font></td> </tr> <tr> <td bgcolor="#FFFFFF"><p align="center" style="text-indent: 0"> <font face="Verdana" size="2">▪ secondary to primary radius of curvature ratio, <b>ρ</b></font><font size="2"><b><font face="Verdana" size="2">=</font></b><font face="Verdana" size="2"><b>R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Verdana" size="2"><b>/R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b></font><font face="Verdana" size="2"> </font></td> <td bgcolor="#FFFFFF" width="166"> <p align="center" style="text-indent: 0"><font size="2"><b><font face="Verdana" size="2"> ρ=mk/(m-1)</font></b></font></td> <td bgcolor="#FFFFFF" width="277"> <p align="center" style="text-indent: 0"><font size="2"><b><font face="Verdana" size="2"> ρ=(</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">-s)m/(m-1)</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b></font></td> </tr> <tr> <td bgcolor="#FFFFFF"><p align="center" style="text-indent: 0"> <font size="2"> <font face="Verdana" size="2">▪ secondary radius, <b>R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b></font></td> <td bgcolor="#FFFFFF" width="166"> <p align="center" style="text-indent: 0"><font size="2"> <font face="Verdana" size="2"> <b>R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=ρR</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=mk</font></b><font face="Verdana" size="2"><b>R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">/(m-1)</font></b></font></td> <td bgcolor="#FFFFFF" width="277"> <p align="center" style="text-indent: 0"><font size="2"> <font face="Verdana" size="2"> <b>R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=(R</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">-2s)m/(m-1)</font></b></font></td> </tr> <tr> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">back focus distance (from the primary), <b>η</b></font></td> <td bgcolor="#FFFFFF" width="166"> <p align="center" style="text-indent: 0"><b><font size="2"> η</font></b><font size="2"><b><font face="Verdana" size="2">=(m+1)k-1</font></b></font></td> <td bgcolor="#FFFFFF" width="277"> <p align="center" style="text-indent: 0"><b><font size="2"> η=[(R</font></b><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b></font><b><font size="2">-2s)R</font></b><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b></font><b><font size="2">/(R</font></b><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b></font><b><font size="2">-R</font></b><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b></font><b><font size="2">+2s)R</font></b><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b></font><b><font size="2">]-(2s/R</font></b><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b></font><b><font size="2">)</font></b></td> </tr> </table> <p style="line-height: 150%"> <font face="Verdana" size="2">Note that <b>k</b> and </font><b> <font face="Verdana" size="2">ρ</font></b><font face="Verdana" size="2"> are also positive for the Cassegrain and negative for the Gregorian. With the Cassegrain, the secondary will form real image with ρ>k; for ρ=k, the secondary will produce collimated beams, and for ρ<k reflected beams will be diverging (i.e. magnification is numerically negative). Likewise, with the Gregorian, the condition for the secondary to form real image is |k|>|ρ|, with positive magnification values indicating secondary too weak to form a real image. </font> <p style="line-height: 150%"> <font face="Verdana" size="2"> Two-mirror system parameters , with respect to their sign, are summarized in the following table. <br> </font><table border="1" width="100%" cellspacing="0" style="text-align: center; font-family: Tahoma; font-size: 10pt" bgcolor="#FFFFFF" bordercolor="#C0C0C0"> <tr> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b>System</b></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><font size="2"><b>R<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b>,<b> f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b></font></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"> <font size="2"> <b>R<font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b></font>, <b> <font size="2">f</font></b><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b></font></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><font size="2"> <b> f</b></font></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b>s</b></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b><font size="2">i</font></b></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b><font size="2">i'</font></b></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><font size="2"><b>B</b></font></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b><font size="2">k</font></b></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b><font face="Verdana" size="2">ρ</font></b></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b><font size="2">m</font></b></td> <td bgcolor="#FFFFCC"> <p style="text-indent: 0"><b><font face="Verdana" size="2">η</font></b></td> </tr> <tr> <td> <p style="text-indent: 0"> <span style="text-transform: uppercase"><font size="2"> Cassegrain</font></span></td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0"><b>+</b></td> <td> <p style="text-indent: 0">-</td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">+</font></b></td> <td> <p style="text-indent: 0"><font size="2"><b>"+"</b> for m>(1/k)-1 <b>"-"</b> for m<(1/k)-1</font></td> <td> <p style="text-indent: 0"><b><font size="2">+</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">+</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">+</font></b></td> <td> <p style="text-indent: 0"><font size="2"><b>"+"</b> for m>(1/k)-1 <b>"-"</b> for m<(1/k)-1</font></td> </tr> <tr> <td> <p style="text-indent: 0"> <span style="text-transform: uppercase"><font size="2"> Gregorian</font></span></td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">+</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0">-</td> <td> <p style="text-indent: 0"><b><font size="2">+</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">+</font></b></td> <td> <p style="text-indent: 0"><font size="2"><b>"+"</b> for m<(1/k)-1 <b>"-"</b> for m>(1/k)-1</font></td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0"><b><font size="2">-</font></b></td> <td> <p style="text-indent: 0"><font size="2"><b>"+"</b> for m<(1/k)-1 <b>"-"</b> for m>(1/k)-1</font></td> </tr> </table> <p align="center" style="text-indent: 0"> <b><font face="Tahoma">TABLE 9: Numerical sign for main parameters of the Cassegrain and Gregorian two-mirror systems.</font></b><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"><a name="General_aberration">General aberration</a> coefficients for the two-mirror telescope are obtained as a sum of aberration coefficients for the primary (with the stop at the surface) and secondary mirror (with the stop at the primary). For cancelled <b> <font color="#000080"> lower-order spherical aberration</font></b> in a two-mirror system, for object at infinity, primary and secondary mirror conics - <b>K</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2"> and <b>K</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Verdana" size="2">, respectively - have to relate as:</font><p style="text-indent: 0" align="center"> <img border="0" src="images/eq87nn.PNG" width="422" height="48"><p align="center"> <img border="0" src="images/eq88nn.PNG" width="173" height="44"><p align="center"> <img border="0" src="images/eq89n.PNG" width="266" height="44"><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> <a name="This_relation">This relation</a> is derived by setting a sum of the spherical aberration coefficients for the primary (<a href="lower_order_spherical.htm#Fortunately">Eq. 9.2</a>) and secondary mirror (<a href="lower_order_spherical.htm#Fortunately">Eq. 9</a>), equal to zero. The sum itself, from <a href="lower_order_spherical.htm#Wave_aberration_function">Eq. 7</a>, determines expression for the system P-V wavefront error of spherical aberration at the best focus for two-mirror systems in general as:</font><p style="text-indent: 0" align="center"> <img border="0" src="images/eq90.PNG" width="333" height="52"><p align="center" style="text-indent: 0"> <img border="0" src="images/eq91n.PNG" width="217" height="53"><p align="justify" style="text-indent: 0; line-height:150%"><b> <font face="Verdana" size="2"> </font></b> <font face="Verdana" size="2">With values for </font><b> <font face="Verdana" size="2">K</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2"> and </font><b> <font face="Verdana" size="2">K</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2"> satisfying <b>Eq. 80,</b> the result is zero value for </font><b> <font face="Verdana" size="2">W</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">s</span></font><font face="Verdana" size="2">. In <b>Eq. 81</b>, the (K</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">+1) factor inside the main brackets is the aberration contribution <a name="of_the_primary">of the primary</a>, while the complex right-hand factor is the aberration contribution of the secondary. Deviations from values needed for a zero-sum in the four contributing elements shown in bottom relation - mirror conics, secondary location and radius of curvature - can either add up or partly offset one another. For instance, it is evident that change in the minimum relative secondary size <b>k</b> (i.e. change in its separation from the primary) will be mainly offset by a similar relative change in <b>ρ</b> (i.e. the secondary radius of curvature). But that will change secondary magnification.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> <a name="Off-axis">Off-axis</a> aberrations in two-mirror systems are coma, astigmatism and field curvature (distortion is usually negligible). General two-mirror system aberration coefficient for <b> <font color="#000080">lower-order coma</font></b> is a sum of the aberration contributions of the primary (<a href="coma.htm#For_mirror_surface">Eq. 15.1</a>) and secondary mirror (<a href="coma.htm#As_mentioned">Eq. 15.2</a>). After substitutions for the secondary's conic, stop (i.e. the primary) separation <b>σ</b> (<a href="two-mirror.htm#arrangement">FIG. 76</a>, bottom) and the object (i.e. primary's image) distance factor </font><b>Ω</b><font face="Verdana" size="2">, in terms of the selected dimensionless parameters it can be written as:</font><p align="center" style="text-indent: 0"> <img border="0" src="images/eq92n.PNG" width="235" height="53"><p align="justify" style="text-indent: 22px"> <font face="Verdana" size="2">Similarly, the two-mirror system aberration coefficient for <b><font color="#000080"> lower-order astigmatism</font></b> is:</font><p align="center" style="text-indent: 0"> <img border="0" src="images/eq93n.PNG" width="280" height="53"><p align="justify" style="text-indent: 0; line-height:150%"> <font size="2" face="Verdana">with </font><b> <font size="2" face="Comic Sans MS">f</font></b><font face="Verdana" size="2"> being the system focal length. The P-V wavefront error at the best focus is, from <a href="coma.htm#Aberration_function">Eq. 12</a> and <a href="astigmatism1.htm#Aberration_function">Eq. 18</a>, given by W</font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Verdana" size="2">=c</font><font face="Terminal" size="1"><span style="vertical-align: sub">s</span></font><font face="Lucida Sans Unicode" size="2">α</font><font face="Verdana" size="2">D</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">/12 and W</font><font face="Terminal" size="1"><span style="vertical-align: sub">a</span></font><font face="Verdana" size="2">=a</font><font face="Terminal" size="1"><span style="vertical-align: sub">s</span></font><font face="Verdana" size="2">(</font><font face="Lucida Sans Unicode" size="2">α</font><font face="Verdana" size="2">D)</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">/4, respectively, with </font><b><font face="Lucida Sans Unicode" size="2">α</font></b><font face="Verdana" size="2"> being the field angle in radians.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Good approximation for the level of coma in a two-mirror system from <b>Eq. 82</b> gives system coma approximately changing in proportion to [2+(K</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">+1)m</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">/(1+η)]/2F</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">, <b>F</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2"> being the primary mirror focal number F=</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">/D. For K</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=-1 (paraboloidal primary), the coma changes as 1/F</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">, inversely to the square of the primary mirror F-number. For an aplanatic (coma-free) two-mirror system, needed primary mirror conic is approximated by K</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">~-1-2(1+η)/m</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2"> (of course, coma of the primary is conic-independent as long as the stop is at its surface; the indication is indirect, due to primary's conic actually compensating for spherical aberration induced by aspherizing the secondary as needed to offset primary's <a name="coma">coma</a>).</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Two-mirror system Petzval and best (median) image <b><font color="#000080">field curvature</font></b> are:</font><p align="center" style="text-indent: 0"> <font face="Verdana" size="2"> <img border="0" src="images/eq94.PNG" width="522" height="48"> </font> <p align="center" style="text-indent: 0"> <img border="0" src="images/eq95n.PNG" width="399" height="55"> <p align="left" style="text-indent: 0; line-height:150%"> <font face="Verdana" size="2">respectively, </font>with the system focal length <b>f</b> being, as mentioned in the beginning, numerically positive for the Cassegrain and negative for Gregorian. For K<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>~-1, good approximation of the median field curvature, for <font face="Verdana" size="2"><b>η</b> set to zero</font> in the denominator, is given by:<p align="center" style="text-indent: 0"> <b><font face="Verdana" size="2"> <img border="0" src="images/eq96.PNG" width="313" height="48"></font></b><p align="justify" style="text-indent: 22px; line-height:150%"> T<font face="Verdana" size="2">he sign of <b>R</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font><font face="Verdana" size="2"> is negative for the Cassegrain, and positive for the Gregorian, indicating that median field curvature is concave toward secondary for the former, and convex for the <a name="latter">latter</a>.</font><p align="justify" style="text-indent: 22px; line-height:150%"> <font face="Verdana" size="2"> Graph below shows Petzval and median field curvature for classical Cassegrain and Gregorian (</font>K<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Verdana" size="2">=-1), for back focal length η=0.25 (note that the system focal length is positive for the Cassegrain and negative for the Gregorian, thus the sign of field curvature is as appears for the former, but opposite to it for the latter). </font> <p align="justify" style="text-indent: 0; line-height:150%"> <font face="Verdana" size="2"> <img border="0" src="images/field_curvature.PNG" width="799" height="530"><br> <br> </b> Classical Cassegrain can have a flat Petzval surface, for m~1.8, but can't have a flat best astigmatic surface. When the Petzval is flat, the actual astigmatic best surface has curvature radius of 0.3</font>f<font face="Verdana" size="2">, </font> <b>f</b><font face="Verdana" size="2"> being the system focal length. For m=1 (flat secondary) Petzval and median curvature are those of the primary, hence of the same magnitude but opposite in sign, equal in their absolute value to the system focal length. </font> <p align="justify" style="text-indent: 0; line-height:150%"> <font face="Verdana" size="2"> On the other hand, Gregorian can't have flat Petzval (obviously, since employing two concave mirrors), but can have flat best astigmatic surface, for m~-1.6. However, such system is not practical, since the corresponding secondary is, from k=(1+η)/(m+1)=-2.083, more than twice the diameter of the primary. Practical Gregorian systems have m<-3.5, i.e. secondary's minimum size not larger than about 50% of the primary. For the same criterion, the lower magnification limit for the Cassegrain is m~1.5. Thus, while for given system </font>f<font face="Verdana" size="2">-ratio the Gregorian will have flatter best image surface (and larger secondary) - its median curvature is nearly identical to the Petzval of the Cassegrain, and its Petzval is fairly similar to the Cassegrain's median curvature - for given primary's </font>f<font face="Verdana" size="2">-ratio it is the Cassegrain that can reach faster system </font>f<font face="Verdana" size="2">-ratio and have a flatter best image surface not only in terms of the system focal length, but in absolute terms as well. For instance, with an </font>f<font face="Verdana" size="2">/3 primary the fastest that the Gregorian can go with the minimum 50% linear obstruction is ~</font>f<font face="Verdana" size="2">/11, vs. ~</font>f<font face="Verdana" size="2">/4.7 for the Cassegrain; the former has the best image surface radius ~0.15</font>f<font face="Verdana" size="2">, and the latter ~0.45</font>f<font face="Verdana" size="2">, or nearly 30% weaker.</font><p align="justify" style="text-indent: 0; line-height:150%"> Variations in the back focal length from 0.25 are relatively small for practical systems (even in the Nasmyth arrangement and <font face="Verdana" size="2"> η</font>~0 there is no significant change in the median field curvature), which means that these plots are representative of the two systems in <a name="general">general</a>. </font><p align="center" style="text-indent: 0"> <font face="Trebuchet MS" color="#336699"><b>Incident ray angle and the final image</b></font><font size="2"> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Incident ray angle at any off-axis point in the final image of a two-mirror telescope is significantly larger than the corresponding incident angle at the aperture (primary mirror). This is a consequence of the ray reflected from the secondary appearing as if coming from the center of the exit pupil - image of the primary - projected by the secondary. Larger image forming angles are not an aberration factor in the final image itself, but are an aberration factor for the eyepiece, or other optical element following the image. Given system focal ratio, eyepiece field aberrations in <a name="a_two-mirror_">a two-mirror </a>system are larger than in a Newtonian, or a refractor.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Secondary mirror in a two-mirror system forms the <b><font color="#000080">system exit pupil</font></b> (i.e. virtual image of the primary mirror) in front of the primary, at a distance <b>E</b></font><b><font face="Verdana" size="2">=-(1-k)ρ/(1-k+ρ)</b> from the secondary, in units of the primary's focal length, with <b>k</b> being the height of marginal ray at the secondary (i.e. minimum secondary size) in units of the aperture radius, and <b>ρ</b> the secondary radius of curvature in units of the primary's (the negative value of <b>E</b> inicating it is at left from the secondary, for the primary oriented to the left). </font> <p align="justify" style="line-height: 150%"> <font size="2" face="Verdana">Since the chief ray appears as if coming from the center of the exit pupil, the incident angle at the off-axis image point is given by h/(E-s), <b>h</b> being its linear height in the image plane and <b>s</b> the secondary-to-final-focus separation (positive in sign). At the same time, incident angle at the aperture is defined by h/</font>f<font size="2" face="Verdana">, with </font>f<font size="2" face="Verdana">=-m</font>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font size="2" face="Verdana"> being the system focal length and </font><b>f<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font size="2" face="Verdana"> the primary f.l. Consequently, magnification factor of the incident angle at the final image is given by -</font>f<font size="2" face="Verdana">/(E-s), with the minus sign to make it positive. If expressing all in units of primary's focal length, it is m/(E+s), <b>m</b> being the secondary magnification (since the primary f.l. is negative, <b>E</b> turns positive, and since <b>s</b> is positive too, sign in the brackets is a plus).</font> <p align="justify" style="line-height: 150%"> <font size="2" face="Verdana"> Thus, for average values of k~0.25 and m~4, the effective incident ray angle at the final image is over 3 times larger than the actual incident angle at the primary. It is greater for the Gregorian, since both, secondary magnification <b>m</b> and relative size <b>k</b> <a name="are">are</a> numerically negative.</font> <p align="center" style="text-indent:0"> <font face="Trebuchet MS" font size="3" color="#336699"> <b>Effect of the baffle system on off axis imaging</b></font> <p align="justify" style="line-height:150%"> <font face="Verdana" size="2"> One of the consequences of the above mentioned angle magnification by the secondary is more pronounced vignetting of off axis cones by the baffle tube. By obstructing the off axis converging cones, baffles in a two-mirror system are effectively reshaping the aperture for the corresponding image points. While it is not a wavefront aberration, it does affect diffraction image of these points and, in presence of aberrations, it alters their appearance. Below is shown a classical Cassegrain system with off axis light not affected by any obstruction (left) and altered by the baffling (right). Field angle is chosen so that it reaches field height near the 2-inch barrel limit, specifically 21mm. Central obstruction is 34% linearly. As the ray spot plots show, the off-axis aberration level is low, not much over "diffraction limited" at 21mm off. <p><img border="0" src="images/ccb.png" width="745" height="807"> <p align="justify" style="line-height:150%"> As the off axis angle increases, converging cone is increasingly obstructed by the baffle system, primarily the baffle tube. Consequently, area of the wavefront reaching image points is more and more reduced, affecting appearance of the diffraction image. The ray spot plot is also affected. Obstruction by the secondary baffle is near negligible, even for the field edge (the red area represents rays that will be obstructed later, by the baffle tube). Obstruction of off-axis cone is significant at the front baffle tube opening, but for the outer field (from about 3/4 field radius) it is the rear baffle tube opening that does most of the obstruction, and ultimately limits the illuminated field size. At the full field angle, the effective aperture, indicated by the shape of the wavefront, is significantly reduced in size and elongated horizontally. As a result, diffraction maxima is correspondingly larger, and elongated vertically (since the level of aberration is low, the deformation is very similar to that in aberration-free aperture). <p align="justify" style="line-height:150%"> Turning the same system into Dall-Kirkham illustartes the effect of baffle obstruction on aberrations of larger magnitude, in this case coma. <p><img border="0" src="images/dkb.png" width="745" height="513"> <p align="justify" style="line-height:150%"> At least roughly, baffle obstruction again begins to significantly alter diffraction image at the 3/4 field radius, with the field edge image enlarged, and not resembling coma anymore. Finally, taking a 200mm f/3/8 Ritchey-Chretien, shows the effect of baffle obstruction on its astigmatic off-axis image. The main difference is baffle tube width, which is significantly larger than in the previous two systems (48mm vs. 34mm, here identical to the central obstruction). <p><img border="0" src="images/rcb.png" width="745" height="861"> <p align="justify" style="line-height:150%"> With the same size field, baffle obstruction is significantly smaller. However, the symmetry of astigmatic image is disturbed already at the 0.7 field radius. In general, image side corresponding to the unobstructed side of the wavefront fades away and ultimately vanishes. And unlike the previous systems, most of the obstruction takes place at the front baffle tube opening, with none at the rear opening. <p align="justify" style="line-height:150%"> Standard <a href="SCT.htm#off">Schmidt-Cassegrain</a> have the relative baffle tube opening smaller than the Ritchey-Chretien, but larger than the Cassegrain. Hence, there is some deformation in the periferal field but not significant at the field radius considered here (it is significant toward edge of the field that fits into 2-inch barrel). Standard <a href="maksutov_cassegrain_telescope.htm#back">Maksutov-Cassegrain</a>, however, even with aspherized, relatively fast primary, is closer to the Cassegrain in this respect. In, for instance, 180mm f/15 Synta-like MC, the central maxima elongation at 21mm off axis for a relatively bright star is about 0.1mm, or 8 arc seconds. In order to recognize it as a shape, average eye needs it magnified at least to 3 arc minutes (preferably somewhat more). It would take x25 magnification, i.e. ~100mm f.l. eyepiece. Hence, in any eyepiece having field stop radius over 21mm it should be easily detectable, assuming it is not dwarfed by eyepiece astigmatism. <br> </font><p align="center" style="text-indent: 0"> <span style="font-weight: 400"><font size="2" face="Arial"> <font color="#336699">◄</font> </font></span><font face="Verdana" size="2"> <span style="font-weight: 400"><a href="two-mirror.htm">8.2. Two-mirror telescopes</a></span> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font face="Verdana" size="2"> <a href="classical_and_aplanatic.htm">8.2.2/3. Classical and aplanatic</a> </font> <font face="Arial" size="2"><font color="#336699">►</font></font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a><p> </font></td> </tr> </table> </div> </body> </html>