CINXE.COM
Ruxandra Tonea - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ruxandra Tonea - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Dxx48QleA9AOqR8L9G-86D-7pDBbFS7H4X7Ox7fmnrscvp1qmDTbksII4iSugcriTM2WYouq7KTYc7L1_KHxDA" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR","image":"https://0.academia-photos.com/314912081/158022766/147665720/s200_ruxandra.tonea.jpeg","sameAs":[]},"dateCreated":"2024-05-25T21:30:38-07:00","dateModified":"2024-05-25T21:31:40-07:00","name":"Ruxandra Tonea","description":"","image":"https://0.academia-photos.com/314912081/158022766/147665720/s200_ruxandra.tonea.jpeg","thumbnailUrl":"https://0.academia-photos.com/314912081/158022766/147665720/s65_ruxandra.tonea.jpeg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/314912081/158022766/147665720/s200_ruxandra.tonea.jpeg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/123793839/Abstract_164_Genetic_elimination_of_%CE%B2_catenin_using_a_doxycycline_regulated_GEM_model_fails_to_restore_checkpoint_blockade_efficacy_due_to_persistent_M2_like_macrophages"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="ruxandra tonea" /> <meta name="description" content="Ruxandra Tonea: 1 Following, 7 Research papers. Research interests: New Right, Radical Orthodoxy (Theology), and Traditionalism." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '1c8f2629124142ea28c916500798e0fe19205797'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13945,"monthly_visitors":"143 million","monthly_visitor_count":143959625,"monthly_visitor_count_in_millions":143,"user_count":285874084,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743094750000); window.Aedu.timeDifference = new Date().getTime() - 1743094750000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a16f2f63712f47da129db801247ecab11f5858a61d732c9434f2ae62a03a9458.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-08f4d2761301896e0b81ad24c59c899a459c9b72383f67316154df2737176402.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/ToneaR" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-b94460767d572c2cdb82b120dcc6a5b9ddb80bf47276962990758b2685a0da74.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR","photo":"https://0.academia-photos.com/314912081/158022766/147665720/s65_ruxandra.tonea.jpeg","has_photo":true,"is_analytics_public":false,"interests":[{"id":39199,"name":"New Right","url":"https://www.academia.edu/Documents/in/New_Right"},{"id":5966,"name":"Radical Orthodoxy (Theology)","url":"https://www.academia.edu/Documents/in/Radical_Orthodoxy_Theology_"},{"id":14357,"name":"Traditionalism","url":"https://www.academia.edu/Documents/in/Traditionalism"},{"id":5782,"name":"Neo-Fascism","url":"https://www.academia.edu/Documents/in/Neo-Fascism"},{"id":5958,"name":"Perennial Philosophy","url":"https://www.academia.edu/Documents/in/Perennial_Philosophy"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/ToneaR","location":"/ToneaR","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/ToneaR","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-4f628219-f16e-43a2-8b3d-2e76be745e31"></div> <div id="ProfileCheckPaperUpdate-react-component-4f628219-f16e-43a2-8b3d-2e76be745e31"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Ruxandra Tonea" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/314912081/158022766/147665720/s200_ruxandra.tonea.jpeg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ruxandra Tonea</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ruxandra" data-follow-user-id="314912081" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="314912081"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">0</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://univie.academia.edu/AntonShekhovtsov"><img class="profile-avatar u-positionAbsolute" alt="Anton Shekhovtsov related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/25327/8201/92818420/s200_anton.shekhovtsov.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://univie.academia.edu/AntonShekhovtsov">Anton Shekhovtsov</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Vienna</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ukma.academia.edu/AndreasUmland"><img class="profile-avatar u-positionAbsolute" alt="Andreas Umland related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/25359/8207/35842203/s200_andreas.umland.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ukma.academia.edu/AndreasUmland">Andreas Umland</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">National University of "Kyiv-Mohyla Academy"</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://fu-berlin.academia.edu/GrzegorzRossolinskiLiebe"><img class="profile-avatar u-positionAbsolute" alt="Grzegorz Rossoliński-Liebe related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/118866/31935/4301079/s200_grzegorz.rossolinski-liebe.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://fu-berlin.academia.edu/GrzegorzRossolinskiLiebe">Grzegorz Rossoliński-Liebe</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Freie Universität Berlin</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://bg.academia.edu/AleksandarDjakovac%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D0%82%D0%B0%D0%BA%D0%BE%D0%B2%D0%B0%D1%86"><img class="profile-avatar u-positionAbsolute" alt="Aleksandar Djakovac (Александар Ђаковац) related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1084945/4333864/5034328/s200_aleksandar.djakovac.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bg.academia.edu/AleksandarDjakovac%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D0%82%D0%B0%D0%BA%D0%BE%D0%B2%D0%B0%D1%86">Aleksandar Djakovac (Александар Ђаковац)</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Belgrade</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://augustana.academia.edu/KhalilAndani"><img class="profile-avatar u-positionAbsolute" alt="Khalil Andani related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1650421/573459/35118166/s200_khalil.andani.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://augustana.academia.edu/KhalilAndani">Khalil Andani</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Augustana College at Rock Island</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://hu-berlin.academia.edu/IlyaKalinin"><img class="profile-avatar u-positionAbsolute" alt="Ilya Kalinin related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/2973849/981872/1228703/s200__._.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://hu-berlin.academia.edu/IlyaKalinin">Ilya Kalinin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Humboldt Universität zu Berlin</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uibk.academia.edu/JohannesHoff"><img class="profile-avatar u-positionAbsolute" alt="Johannes Hoff related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/5180195/2281130/10666980/s200_johannes.hoff.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uibk.academia.edu/JohannesHoff">Johannes Hoff</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Innsbruck</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://torun-pl.academia.edu/PiotrRoszak"><img class="profile-avatar u-positionAbsolute" alt="Piotr Roszak related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/6365976/2590963/4261719/s200_piotr.roszak.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://torun-pl.academia.edu/PiotrRoszak">Piotr Roszak</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Nicolaus Copernicus University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://gwu.academia.edu/SeyyedHosseinNasr"><img class="profile-avatar u-positionAbsolute" alt="Seyyed Hossein Nasr related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/43958137/11723163/13225046/s200_seyyed_hossein.nasr.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://gwu.academia.edu/SeyyedHosseinNasr">Seyyed Hossein Nasr</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The George Washington University</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="314912081" href="https://www.academia.edu/Documents/in/New_Right"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/ToneaR","location":"/ToneaR","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/ToneaR","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["New Right"]}" data-trace="false" data-dom-id="Pill-react-component-cc7ef6e0-6c29-4284-a03d-4e4cd49cb245"></div> <div id="Pill-react-component-cc7ef6e0-6c29-4284-a03d-4e4cd49cb245"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="314912081" href="https://www.academia.edu/Documents/in/Radical_Orthodoxy_Theology_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Radical Orthodoxy (Theology)"]}" data-trace="false" data-dom-id="Pill-react-component-ea8c7712-5f97-4bb5-9c63-487865fbcd98"></div> <div id="Pill-react-component-ea8c7712-5f97-4bb5-9c63-487865fbcd98"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="314912081" href="https://www.academia.edu/Documents/in/Perennial_Philosophy"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Perennial Philosophy"]}" data-trace="false" data-dom-id="Pill-react-component-996cf7b2-ecb0-4b37-acdb-bdee2ae724fc"></div> <div id="Pill-react-component-996cf7b2-ecb0-4b37-acdb-bdee2ae724fc"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ruxandra Tonea</h3></div><div class="js-work-strip profile--work_container" data-work-id="123793839"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793839/Abstract_164_Genetic_elimination_of_%CE%B2_catenin_using_a_doxycycline_regulated_GEM_model_fails_to_restore_checkpoint_blockade_efficacy_due_to_persistent_M2_like_macrophages"><img alt="Research paper thumbnail of Abstract 164: Genetic elimination of β-catenin using a doxycycline-regulated GEM model fails to restore checkpoint blockade efficacy due to persistent M2-like macrophages" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Abstract 164: Genetic elimination of β-catenin using a doxycycline-regulated GEM model fails to restore checkpoint blockade efficacy due to persistent M2-like macrophages</div><div class="wp-workCard_item"><span>Cancer research</span><span>, Mar 22, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793839"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793839"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793839; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793839]").text(description); $(".js-view-count[data-work-id=123793839]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793839; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793839']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793839]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793839,"title":"Abstract 164: Genetic elimination of β-catenin using a doxycycline-regulated GEM model fails to restore checkpoint blockade efficacy due to persistent M2-like macrophages","translated_title":"","metadata":{"publication_date":{"day":22,"month":3,"year":2024,"errors":{}},"publication_name":"Cancer research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793839/Abstract_164_Genetic_elimination_of_%CE%B2_catenin_using_a_doxycycline_regulated_GEM_model_fails_to_restore_checkpoint_blockade_efficacy_due_to_persistent_M2_like_macrophages","translated_internal_url":"","created_at":"2024-09-11T17:46:10.628-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Abstract_164_Genetic_elimination_of_β_catenin_using_a_doxycycline_regulated_GEM_model_fails_to_restore_checkpoint_blockade_efficacy_due_to_persistent_M2_like_macrophages","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":521903,"name":"Doxycycline","url":"https://www.academia.edu/Documents/in/Doxycycline"},{"id":1392719,"name":"Blockade","url":"https://www.academia.edu/Documents/in/Blockade"}],"urls":[{"id":44618612,"url":"https://doi.org/10.1158/1538-7445.am2024-164"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793838"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793838/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS"><img alt="Research paper thumbnail of Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS</div><div class="wp-workCard_item"><span>Gastroenterology</span><span>, May 1, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793838"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793838"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793838; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793838]").text(description); $(".js-view-count[data-work-id=123793838]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793838; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793838']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793838]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793838,"title":"Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":5,"year":2022,"errors":{}},"publication_name":"Gastroenterology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793838/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_internal_url":"","created_at":"2024-09-11T17:46:10.164-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology"},{"id":38676,"name":"Anxiety","url":"https://www.academia.edu/Documents/in/Anxiety"},{"id":51565,"name":"Serotonin","url":"https://www.academia.edu/Documents/in/Serotonin"},{"id":71471,"name":"Intestinal Mucosa","url":"https://www.academia.edu/Documents/in/Intestinal_Mucosa"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":623821,"name":"ANXIETY","url":"https://www.academia.edu/Documents/in/ANXIETY-1"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":3789883,"name":"Paediatrics and reproductive medicine","url":"https://www.academia.edu/Documents/in/Paediatrics_and_reproductive_medicine"}],"urls":[{"id":44618611,"url":"https://doi.org/10.1016/s0016-5085(22)61803-1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793837"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123793837/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs"><img alt="Research paper thumbnail of Engineered bacterial swarm patterns as spatial records of environmental inputs" class="work-thumbnail" src="https://attachments.academia-assets.com/118143857/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123793837/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs">Engineered bacterial swarm patterns as spatial records of environmental inputs</a></div><div class="wp-workCard_item"><span>bioRxiv (Cold Spring Harbor Laboratory)</span><span>, Jan 21, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated, rapid movement of bacteria powered by flagella 1-5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to "write" external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from endpoint images using a segmentation model. This work creates an approach for building a macroscale bacterial recorder and expands the framework for engineering emergent microbial behaviors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a54e6398c8bdcb69ffa3926e8576b08" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118143857,"asset_id":123793837,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118143857/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793837"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793837"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793837; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793837]").text(description); $(".js-view-count[data-work-id=123793837]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793837; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793837']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a54e6398c8bdcb69ffa3926e8576b08" } } $('.js-work-strip[data-work-id=123793837]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793837,"title":"Engineered bacterial swarm patterns as spatial records of environmental inputs","translated_title":"","metadata":{"publisher":"Cold Spring Harbor Laboratory","grobid_abstract":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated, rapid movement of bacteria powered by flagella 1-5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to \"write\" external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from endpoint images using a segmentation model. This work creates an approach for building a macroscale bacterial recorder and expands the framework for engineering emergent microbial behaviors.","publication_date":{"day":21,"month":1,"year":2022,"errors":{}},"publication_name":"bioRxiv (Cold Spring Harbor Laboratory)","grobid_abstract_attachment_id":118143857},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793837/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_internal_url":"","created_at":"2024-09-11T17:46:09.603-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118143857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143857/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143857/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143857/2022.01.20.477106.full-libre.pdf?1726105850=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=b8ftSEraGhgIY3JlmILcxDuHIR9-gWerdyPO~Ql722aGv~QpbKmbvjm5NQgVZ4YYHF5QJENb5JRJjUlMmaRnNUeRXu596t8D5CP9yN7LXlVKUvDw~2CfTLQhiqUjHb~nB3a1O27sZtAbvk0GXkRMy~No7DJ63c8~2Wqwff7uEy8bcUs7nMYLK5582FfJ6zj-ou6uhOuogFEfDeaCGTK1pQ12BnqiUJ8IJj0Kq2~-YBajqwKexp28uk9cL4PcJoqKnkHVChV~Rz9vwymRs3Cw13AOHERYQZGFzdk4jvkB~LHD5ZQcxaAxZObSHkA3gGv8fenEc25iotGEHlZc82wmZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated, rapid movement of bacteria powered by flagella 1-5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to \"write\" external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from endpoint images using a segmentation model. This work creates an approach for building a macroscale bacterial recorder and expands the framework for engineering emergent microbial behaviors.","owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[{"id":118143857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143857/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143857/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143857/2022.01.20.477106.full-libre.pdf?1726105850=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=b8ftSEraGhgIY3JlmILcxDuHIR9-gWerdyPO~Ql722aGv~QpbKmbvjm5NQgVZ4YYHF5QJENb5JRJjUlMmaRnNUeRXu596t8D5CP9yN7LXlVKUvDw~2CfTLQhiqUjHb~nB3a1O27sZtAbvk0GXkRMy~No7DJ63c8~2Wqwff7uEy8bcUs7nMYLK5582FfJ6zj-ou6uhOuogFEfDeaCGTK1pQ12BnqiUJ8IJj0Kq2~-YBajqwKexp28uk9cL4PcJoqKnkHVChV~Rz9vwymRs3Cw13AOHERYQZGFzdk4jvkB~LHD5ZQcxaAxZObSHkA3gGv8fenEc25iotGEHlZc82wmZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118143855,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143855/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143855/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143855/2022.01.20.477106.full-libre.pdf?1726105843=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=TnGfdoaZjLCbipce72k739Hg5G1hCwPd4wUOp1S1q-ZPtla4qNc6Ab9weQtgJL4583Bw5dWzh-nMq6X7ftCkRMSe5hEeqsE4ZDkhDiE-xTFFUohIz28heT1w1jfALwi6xi3MpX5-RwYYC83BwB~W~iJfgfEL7e0rwvG3T2Z7O-PX7IOoc99sHiPlcwLk8cGIp~a7-hLkDEe4mfzft1qX9H7gp4R5h9n0RqXMe13NZLEhIFs8sAV3An6vmtjXhyfoFHy3JxOf74~QfgSkR1NvwU8Acup4eAicRN18dPmDwR3DhMxzdrTJYDD-jxE59QJQ2RoE0htAQ026oRjAeqQbcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":210122,"name":"Robustness (evolution)","url":"https://www.academia.edu/Documents/in/Robustness_evolution_"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"},{"id":3801335,"name":"swarming motility","url":"https://www.academia.edu/Documents/in/swarming_motility"}],"urls":[{"id":44618610,"url":"https://www.biorxiv.org/content/biorxiv/early/2022/01/21/2022.01.20.477106.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793836"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793836/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS"><img alt="Research paper thumbnail of Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS</div><div class="wp-workCard_item"><span>Gastroenterology</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793836"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793836"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793836; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793836]").text(description); $(".js-view-count[data-work-id=123793836]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793836; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793836']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793836]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793836,"title":"Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Gastroenterology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793836/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_internal_url":"","created_at":"2024-09-11T17:46:09.282-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology"},{"id":38676,"name":"Anxiety","url":"https://www.academia.edu/Documents/in/Anxiety"},{"id":51565,"name":"Serotonin","url":"https://www.academia.edu/Documents/in/Serotonin"},{"id":71471,"name":"Intestinal Mucosa","url":"https://www.academia.edu/Documents/in/Intestinal_Mucosa"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":623821,"name":"ANXIETY","url":"https://www.academia.edu/Documents/in/ANXIETY-1"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":3789883,"name":"Paediatrics and reproductive medicine","url":"https://www.academia.edu/Documents/in/Paediatrics_and_reproductive_medicine"}],"urls":[{"id":44618609,"url":"https://api.elsevier.com/content/article/PII:S0016508522618031?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793835"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123793835/A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns"><img alt="Research paper thumbnail of A deep learning pipeline for segmentation of Proteus mirabilis colony patterns" class="work-thumbnail" src="https://attachments.academia-assets.com/118143872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123793835/A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns">A deep learning pipeline for segmentation of Proteus mirabilis colony patterns</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2792d011ec1894cdbce7b6a7bcb14c07" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118143872,"asset_id":123793835,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118143872/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793835"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793835"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793835; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793835]").text(description); $(".js-view-count[data-work-id=123793835]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793835; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793835']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2792d011ec1894cdbce7b6a7bcb14c07" } } $('.js-work-strip[data-work-id=123793835]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793835,"title":"A deep learning pipeline for segmentation of Proteus mirabilis colony patterns","translated_title":"","metadata":{"abstract":"ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...","publisher":"Cold Spring Harbor Laboratory","ai_title_tag":"Deep Learning for Proteus mirabilis Colony Segmentation","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...","internal_url":"https://www.academia.edu/123793835/A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns","translated_internal_url":"","created_at":"2024-09-11T17:46:08.941-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118143872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143872/thumbnails/1.jpg","file_name":"Doshi_biorxiv_2022.pdf","download_url":"https://www.academia.edu/attachments/118143872/download_file","bulk_download_file_name":"A_deep_learning_pipeline_for_segmentatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143872/Doshi_biorxiv_2022-libre.pdf?1726105798=\u0026response-content-disposition=attachment%3B+filename%3DA_deep_learning_pipeline_for_segmentatio.pdf\u0026Expires=1743087235\u0026Signature=GdXEGvLuceYm3ALqr-I42FQcGWhqIZM-VxgAnaJf4TrQ0kJMZMMekm5IKw5A0PKH9aoXT3IuPdYkvcsExilvyZlJPlMpI3TU9ea9aooE09331KE1t53t9V69ZZjgNLeEYksxj~rKBv3kpYLOnpjLezfpfQJYyENyogCfrqWAXvwDikSftZWyuc1LB98qJknwbT~hWF-q8Jeu0cEzFxdANxWfnPf4ikLr~pVNkjpxyDhQplOWf4ea5RdlsWrfJgKpz~Rv~iCULqSwWUHLFvhrmo2RSU6hi8282Szq4JWOm9Y5r-vkObdfL2UQCGamT5v~~TIVo0ChBoviIXf-4L16Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...","owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[{"id":118143872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143872/thumbnails/1.jpg","file_name":"Doshi_biorxiv_2022.pdf","download_url":"https://www.academia.edu/attachments/118143872/download_file","bulk_download_file_name":"A_deep_learning_pipeline_for_segmentatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143872/Doshi_biorxiv_2022-libre.pdf?1726105798=\u0026response-content-disposition=attachment%3B+filename%3DA_deep_learning_pipeline_for_segmentatio.pdf\u0026Expires=1743087235\u0026Signature=GdXEGvLuceYm3ALqr-I42FQcGWhqIZM-VxgAnaJf4TrQ0kJMZMMekm5IKw5A0PKH9aoXT3IuPdYkvcsExilvyZlJPlMpI3TU9ea9aooE09331KE1t53t9V69ZZjgNLeEYksxj~rKBv3kpYLOnpjLezfpfQJYyENyogCfrqWAXvwDikSftZWyuc1LB98qJknwbT~hWF-q8Jeu0cEzFxdANxWfnPf4ikLr~pVNkjpxyDhQplOWf4ea5RdlsWrfJgKpz~Rv~iCULqSwWUHLFvhrmo2RSU6hi8282Szq4JWOm9Y5r-vkObdfL2UQCGamT5v~~TIVo0ChBoviIXf-4L16Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":93217,"name":"Segmentation","url":"https://www.academia.edu/Documents/in/Segmentation"},{"id":1463687,"name":"Proteus Mirabilis","url":"https://www.academia.edu/Documents/in/Proteus_Mirabilis"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"}],"urls":[{"id":44618608,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.01.17.475672"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793833"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123793833/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs"><img alt="Research paper thumbnail of Engineered bacterial swarm patterns as spatial records of environmental inputs" class="work-thumbnail" src="https://attachments.academia-assets.com/118143873/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123793833/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs">Engineered bacterial swarm patterns as spatial records of environmental inputs</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8faef3aad3ded4718223f679d2dc1448" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118143873,"asset_id":123793833,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118143873/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793833"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793833"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793833; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793833]").text(description); $(".js-view-count[data-work-id=123793833]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793833; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793833']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8faef3aad3ded4718223f679d2dc1448" } } $('.js-work-strip[data-work-id=123793833]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793833,"title":"Engineered bacterial swarm patterns as spatial records of environmental inputs","translated_title":"","metadata":{"abstract":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...","publisher":"Cold Spring Harbor Laboratory","ai_title_tag":"Bacterial Swarm Patterns as Environmental Sensors","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...","internal_url":"https://www.academia.edu/123793833/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_internal_url":"","created_at":"2024-09-11T17:46:07.689-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118143873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143873/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143873/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143873/2022.01.20.477106.full-libre.pdf?1726105839=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=M79Oo7GIV3sbRweiVCf5gUXNY~4pjWsVlkV3TDSWL13G7ugZb7NLOByXyQwa4T-qYOKLciHc7QXNI2aY3RLYRa38N73-aCwcLywdD-aKXapOeC7OAc4dlMk3gZd-ifTgsCQ0VuQ24ywmMp7ErVw0MfvtwvDWrW67XmP6p2wUttWvlOvAby5-2Hj1LNfPzKEWQMisuW0nt9saBLEx775s2XCI5tbneC5PSRCM5WpK~3LjogF-arm~KYaiCGCopluk0RLn5ZdFkQl2bN-1RGFOG8Lk5L05gyzbrEE~4J5PAEOTLIvDPV3HDYDpY-fC4EnsBVo5t1Ar5ClOJ3zBtWctgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...","owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[{"id":118143873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143873/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143873/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143873/2022.01.20.477106.full-libre.pdf?1726105839=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=M79Oo7GIV3sbRweiVCf5gUXNY~4pjWsVlkV3TDSWL13G7ugZb7NLOByXyQwa4T-qYOKLciHc7QXNI2aY3RLYRa38N73-aCwcLywdD-aKXapOeC7OAc4dlMk3gZd-ifTgsCQ0VuQ24ywmMp7ErVw0MfvtwvDWrW67XmP6p2wUttWvlOvAby5-2Hj1LNfPzKEWQMisuW0nt9saBLEx775s2XCI5tbneC5PSRCM5WpK~3LjogF-arm~KYaiCGCopluk0RLn5ZdFkQl2bN-1RGFOG8Lk5L05gyzbrEE~4J5PAEOTLIvDPV3HDYDpY-fC4EnsBVo5t1Ar5ClOJ3zBtWctgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":210122,"name":"Robustness (evolution)","url":"https://www.academia.edu/Documents/in/Robustness_evolution_"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"},{"id":3801335,"name":"swarming motility","url":"https://www.academia.edu/Documents/in/swarming_motility"}],"urls":[{"id":44618607,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.01.20.477106"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793831"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793831/Immunotherapy_activated_T_cells_recruit_and_skewlate_stage_activated_M1_like_macrophagesthat_are_critical_for_therapeutic_efficacy"><img alt="Research paper thumbnail of Immunotherapy-activated T cells recruit and skewlate-stage activated M1-like macrophagesthat are critical for therapeutic efficacy" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Immunotherapy-activated T cells recruit and skewlate-stage activated M1-like macrophagesthat are critical for therapeutic efficacy</div><div class="wp-workCard_item"><span>Cancer cell</span><span>, May 1, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793831"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793831"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793831; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793831]").text(description); $(".js-view-count[data-work-id=123793831]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793831; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793831']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793831]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793831,"title":"Immunotherapy-activated T cells recruit and skewlate-stage activated M1-like macrophagesthat are critical for therapeutic efficacy","translated_title":"","metadata":{"publication_date":{"day":1,"month":5,"year":2024,"errors":{}},"publication_name":"Cancer cell"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793831/Immunotherapy_activated_T_cells_recruit_and_skewlate_stage_activated_M1_like_macrophagesthat_are_critical_for_therapeutic_efficacy","translated_internal_url":"","created_at":"2024-09-11T17:45:28.202-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Immunotherapy_activated_T_cells_recruit_and_skewlate_stage_activated_M1_like_macrophagesthat_are_critical_for_therapeutic_efficacy","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":126863,"name":"Immunotherapy","url":"https://www.academia.edu/Documents/in/Immunotherapy"},{"id":506082,"name":"Cancer Cell","url":"https://www.academia.edu/Documents/in/Cancer_Cell"}],"urls":[{"id":44618605,"url":"https://doi.org/10.1016/j.ccell.2024.04.011"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="19994676" id="papers"><div class="js-work-strip profile--work_container" data-work-id="123793839"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793839/Abstract_164_Genetic_elimination_of_%CE%B2_catenin_using_a_doxycycline_regulated_GEM_model_fails_to_restore_checkpoint_blockade_efficacy_due_to_persistent_M2_like_macrophages"><img alt="Research paper thumbnail of Abstract 164: Genetic elimination of β-catenin using a doxycycline-regulated GEM model fails to restore checkpoint blockade efficacy due to persistent M2-like macrophages" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Abstract 164: Genetic elimination of β-catenin using a doxycycline-regulated GEM model fails to restore checkpoint blockade efficacy due to persistent M2-like macrophages</div><div class="wp-workCard_item"><span>Cancer research</span><span>, Mar 22, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793839"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793839"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793839; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793839]").text(description); $(".js-view-count[data-work-id=123793839]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793839; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793839']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793839]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793839,"title":"Abstract 164: Genetic elimination of β-catenin using a doxycycline-regulated GEM model fails to restore checkpoint blockade efficacy due to persistent M2-like macrophages","translated_title":"","metadata":{"publication_date":{"day":22,"month":3,"year":2024,"errors":{}},"publication_name":"Cancer research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793839/Abstract_164_Genetic_elimination_of_%CE%B2_catenin_using_a_doxycycline_regulated_GEM_model_fails_to_restore_checkpoint_blockade_efficacy_due_to_persistent_M2_like_macrophages","translated_internal_url":"","created_at":"2024-09-11T17:46:10.628-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Abstract_164_Genetic_elimination_of_β_catenin_using_a_doxycycline_regulated_GEM_model_fails_to_restore_checkpoint_blockade_efficacy_due_to_persistent_M2_like_macrophages","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":521903,"name":"Doxycycline","url":"https://www.academia.edu/Documents/in/Doxycycline"},{"id":1392719,"name":"Blockade","url":"https://www.academia.edu/Documents/in/Blockade"}],"urls":[{"id":44618612,"url":"https://doi.org/10.1158/1538-7445.am2024-164"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793838"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793838/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS"><img alt="Research paper thumbnail of Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS</div><div class="wp-workCard_item"><span>Gastroenterology</span><span>, May 1, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793838"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793838"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793838; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793838]").text(description); $(".js-view-count[data-work-id=123793838]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793838; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793838']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793838]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793838,"title":"Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":5,"year":2022,"errors":{}},"publication_name":"Gastroenterology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793838/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_internal_url":"","created_at":"2024-09-11T17:46:10.164-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology"},{"id":38676,"name":"Anxiety","url":"https://www.academia.edu/Documents/in/Anxiety"},{"id":51565,"name":"Serotonin","url":"https://www.academia.edu/Documents/in/Serotonin"},{"id":71471,"name":"Intestinal Mucosa","url":"https://www.academia.edu/Documents/in/Intestinal_Mucosa"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":623821,"name":"ANXIETY","url":"https://www.academia.edu/Documents/in/ANXIETY-1"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":3789883,"name":"Paediatrics and reproductive medicine","url":"https://www.academia.edu/Documents/in/Paediatrics_and_reproductive_medicine"}],"urls":[{"id":44618611,"url":"https://doi.org/10.1016/s0016-5085(22)61803-1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793837"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123793837/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs"><img alt="Research paper thumbnail of Engineered bacterial swarm patterns as spatial records of environmental inputs" class="work-thumbnail" src="https://attachments.academia-assets.com/118143857/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123793837/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs">Engineered bacterial swarm patterns as spatial records of environmental inputs</a></div><div class="wp-workCard_item"><span>bioRxiv (Cold Spring Harbor Laboratory)</span><span>, Jan 21, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated, rapid movement of bacteria powered by flagella 1-5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to "write" external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from endpoint images using a segmentation model. This work creates an approach for building a macroscale bacterial recorder and expands the framework for engineering emergent microbial behaviors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a54e6398c8bdcb69ffa3926e8576b08" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118143857,"asset_id":123793837,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118143857/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793837"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793837"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793837; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793837]").text(description); $(".js-view-count[data-work-id=123793837]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793837; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793837']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a54e6398c8bdcb69ffa3926e8576b08" } } $('.js-work-strip[data-work-id=123793837]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793837,"title":"Engineered bacterial swarm patterns as spatial records of environmental inputs","translated_title":"","metadata":{"publisher":"Cold Spring Harbor Laboratory","grobid_abstract":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated, rapid movement of bacteria powered by flagella 1-5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to \"write\" external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from endpoint images using a segmentation model. This work creates an approach for building a macroscale bacterial recorder and expands the framework for engineering emergent microbial behaviors.","publication_date":{"day":21,"month":1,"year":2022,"errors":{}},"publication_name":"bioRxiv (Cold Spring Harbor Laboratory)","grobid_abstract_attachment_id":118143857},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793837/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_internal_url":"","created_at":"2024-09-11T17:46:09.603-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118143857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143857/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143857/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143857/2022.01.20.477106.full-libre.pdf?1726105850=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=b8ftSEraGhgIY3JlmILcxDuHIR9-gWerdyPO~Ql722aGv~QpbKmbvjm5NQgVZ4YYHF5QJENb5JRJjUlMmaRnNUeRXu596t8D5CP9yN7LXlVKUvDw~2CfTLQhiqUjHb~nB3a1O27sZtAbvk0GXkRMy~No7DJ63c8~2Wqwff7uEy8bcUs7nMYLK5582FfJ6zj-ou6uhOuogFEfDeaCGTK1pQ12BnqiUJ8IJj0Kq2~-YBajqwKexp28uk9cL4PcJoqKnkHVChV~Rz9vwymRs3Cw13AOHERYQZGFzdk4jvkB~LHD5ZQcxaAxZObSHkA3gGv8fenEc25iotGEHlZc82wmZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated, rapid movement of bacteria powered by flagella 1-5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to \"write\" external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from endpoint images using a segmentation model. This work creates an approach for building a macroscale bacterial recorder and expands the framework for engineering emergent microbial behaviors.","owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[{"id":118143857,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143857/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143857/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143857/2022.01.20.477106.full-libre.pdf?1726105850=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=b8ftSEraGhgIY3JlmILcxDuHIR9-gWerdyPO~Ql722aGv~QpbKmbvjm5NQgVZ4YYHF5QJENb5JRJjUlMmaRnNUeRXu596t8D5CP9yN7LXlVKUvDw~2CfTLQhiqUjHb~nB3a1O27sZtAbvk0GXkRMy~No7DJ63c8~2Wqwff7uEy8bcUs7nMYLK5582FfJ6zj-ou6uhOuogFEfDeaCGTK1pQ12BnqiUJ8IJj0Kq2~-YBajqwKexp28uk9cL4PcJoqKnkHVChV~Rz9vwymRs3Cw13AOHERYQZGFzdk4jvkB~LHD5ZQcxaAxZObSHkA3gGv8fenEc25iotGEHlZc82wmZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118143855,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143855/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143855/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143855/2022.01.20.477106.full-libre.pdf?1726105843=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=TnGfdoaZjLCbipce72k739Hg5G1hCwPd4wUOp1S1q-ZPtla4qNc6Ab9weQtgJL4583Bw5dWzh-nMq6X7ftCkRMSe5hEeqsE4ZDkhDiE-xTFFUohIz28heT1w1jfALwi6xi3MpX5-RwYYC83BwB~W~iJfgfEL7e0rwvG3T2Z7O-PX7IOoc99sHiPlcwLk8cGIp~a7-hLkDEe4mfzft1qX9H7gp4R5h9n0RqXMe13NZLEhIFs8sAV3An6vmtjXhyfoFHy3JxOf74~QfgSkR1NvwU8Acup4eAicRN18dPmDwR3DhMxzdrTJYDD-jxE59QJQ2RoE0htAQ026oRjAeqQbcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":210122,"name":"Robustness (evolution)","url":"https://www.academia.edu/Documents/in/Robustness_evolution_"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"},{"id":3801335,"name":"swarming motility","url":"https://www.academia.edu/Documents/in/swarming_motility"}],"urls":[{"id":44618610,"url":"https://www.biorxiv.org/content/biorxiv/early/2022/01/21/2022.01.20.477106.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793836"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793836/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS"><img alt="Research paper thumbnail of Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS</div><div class="wp-workCard_item"><span>Gastroenterology</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793836"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793836"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793836; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793836]").text(description); $(".js-view-count[data-work-id=123793836]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793836; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793836']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793836]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793836,"title":"Mo1412: SEROTONIN OF THE INTESTINAL MUCOSA ALLEVIATES ANXIETY AND DEPRESSION INDEPENDENTLY OF GASTROINTESTINAL FUNCTION AND THE ENS","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Gastroenterology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793836/Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_internal_url":"","created_at":"2024-09-11T17:46:09.282-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mo1412_SEROTONIN_OF_THE_INTESTINAL_MUCOSA_ALLEVIATES_ANXIETY_AND_DEPRESSION_INDEPENDENTLY_OF_GASTROINTESTINAL_FUNCTION_AND_THE_ENS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology"},{"id":38676,"name":"Anxiety","url":"https://www.academia.edu/Documents/in/Anxiety"},{"id":51565,"name":"Serotonin","url":"https://www.academia.edu/Documents/in/Serotonin"},{"id":71471,"name":"Intestinal Mucosa","url":"https://www.academia.edu/Documents/in/Intestinal_Mucosa"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":623821,"name":"ANXIETY","url":"https://www.academia.edu/Documents/in/ANXIETY-1"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"},{"id":3789883,"name":"Paediatrics and reproductive medicine","url":"https://www.academia.edu/Documents/in/Paediatrics_and_reproductive_medicine"}],"urls":[{"id":44618609,"url":"https://api.elsevier.com/content/article/PII:S0016508522618031?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793835"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123793835/A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns"><img alt="Research paper thumbnail of A deep learning pipeline for segmentation of Proteus mirabilis colony patterns" class="work-thumbnail" src="https://attachments.academia-assets.com/118143872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123793835/A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns">A deep learning pipeline for segmentation of Proteus mirabilis colony patterns</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2792d011ec1894cdbce7b6a7bcb14c07" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118143872,"asset_id":123793835,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118143872/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793835"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793835"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793835; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793835]").text(description); $(".js-view-count[data-work-id=123793835]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793835; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793835']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2792d011ec1894cdbce7b6a7bcb14c07" } } $('.js-work-strip[data-work-id=123793835]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793835,"title":"A deep learning pipeline for segmentation of Proteus mirabilis colony patterns","translated_title":"","metadata":{"abstract":"ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...","publisher":"Cold Spring Harbor Laboratory","ai_title_tag":"Deep Learning for Proteus mirabilis Colony Segmentation","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...","internal_url":"https://www.academia.edu/123793835/A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns","translated_internal_url":"","created_at":"2024-09-11T17:46:08.941-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118143872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143872/thumbnails/1.jpg","file_name":"Doshi_biorxiv_2022.pdf","download_url":"https://www.academia.edu/attachments/118143872/download_file","bulk_download_file_name":"A_deep_learning_pipeline_for_segmentatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143872/Doshi_biorxiv_2022-libre.pdf?1726105798=\u0026response-content-disposition=attachment%3B+filename%3DA_deep_learning_pipeline_for_segmentatio.pdf\u0026Expires=1743087235\u0026Signature=GdXEGvLuceYm3ALqr-I42FQcGWhqIZM-VxgAnaJf4TrQ0kJMZMMekm5IKw5A0PKH9aoXT3IuPdYkvcsExilvyZlJPlMpI3TU9ea9aooE09331KE1t53t9V69ZZjgNLeEYksxj~rKBv3kpYLOnpjLezfpfQJYyENyogCfrqWAXvwDikSftZWyuc1LB98qJknwbT~hWF-q8Jeu0cEzFxdANxWfnPf4ikLr~pVNkjpxyDhQplOWf4ea5RdlsWrfJgKpz~Rv~iCULqSwWUHLFvhrmo2RSU6hi8282Szq4JWOm9Y5r-vkObdfL2UQCGamT5v~~TIVo0ChBoviIXf-4L16Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_deep_learning_pipeline_for_segmentation_of_Proteus_mirabilis_colony_patterns","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"ABSTRACTThe motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with a VGG-11 encoder for ring b...","owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[{"id":118143872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143872/thumbnails/1.jpg","file_name":"Doshi_biorxiv_2022.pdf","download_url":"https://www.academia.edu/attachments/118143872/download_file","bulk_download_file_name":"A_deep_learning_pipeline_for_segmentatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143872/Doshi_biorxiv_2022-libre.pdf?1726105798=\u0026response-content-disposition=attachment%3B+filename%3DA_deep_learning_pipeline_for_segmentatio.pdf\u0026Expires=1743087235\u0026Signature=GdXEGvLuceYm3ALqr-I42FQcGWhqIZM-VxgAnaJf4TrQ0kJMZMMekm5IKw5A0PKH9aoXT3IuPdYkvcsExilvyZlJPlMpI3TU9ea9aooE09331KE1t53t9V69ZZjgNLeEYksxj~rKBv3kpYLOnpjLezfpfQJYyENyogCfrqWAXvwDikSftZWyuc1LB98qJknwbT~hWF-q8Jeu0cEzFxdANxWfnPf4ikLr~pVNkjpxyDhQplOWf4ea5RdlsWrfJgKpz~Rv~iCULqSwWUHLFvhrmo2RSU6hi8282Szq4JWOm9Y5r-vkObdfL2UQCGamT5v~~TIVo0ChBoviIXf-4L16Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":93217,"name":"Segmentation","url":"https://www.academia.edu/Documents/in/Segmentation"},{"id":1463687,"name":"Proteus Mirabilis","url":"https://www.academia.edu/Documents/in/Proteus_Mirabilis"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"}],"urls":[{"id":44618608,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.01.17.475672"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793833"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123793833/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs"><img alt="Research paper thumbnail of Engineered bacterial swarm patterns as spatial records of environmental inputs" class="work-thumbnail" src="https://attachments.academia-assets.com/118143873/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123793833/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs">Engineered bacterial swarm patterns as spatial records of environmental inputs</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8faef3aad3ded4718223f679d2dc1448" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118143873,"asset_id":123793833,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118143873/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793833"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793833"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793833; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793833]").text(description); $(".js-view-count[data-work-id=123793833]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793833; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793833']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8faef3aad3ded4718223f679d2dc1448" } } $('.js-work-strip[data-work-id=123793833]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793833,"title":"Engineered bacterial swarm patterns as spatial records of environmental inputs","translated_title":"","metadata":{"abstract":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...","publisher":"Cold Spring Harbor Laboratory","ai_title_tag":"Bacterial Swarm Patterns as Environmental Sensors","publication_date":{"day":null,"month":null,"year":2022,"errors":{}}},"translated_abstract":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...","internal_url":"https://www.academia.edu/123793833/Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_internal_url":"","created_at":"2024-09-11T17:46:07.689-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118143873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143873/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143873/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143873/2022.01.20.477106.full-libre.pdf?1726105839=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=M79Oo7GIV3sbRweiVCf5gUXNY~4pjWsVlkV3TDSWL13G7ugZb7NLOByXyQwa4T-qYOKLciHc7QXNI2aY3RLYRa38N73-aCwcLywdD-aKXapOeC7OAc4dlMk3gZd-ifTgsCQ0VuQ24ywmMp7ErVw0MfvtwvDWrW67XmP6p2wUttWvlOvAby5-2Hj1LNfPzKEWQMisuW0nt9saBLEx775s2XCI5tbneC5PSRCM5WpK~3LjogF-arm~KYaiCGCopluk0RLn5ZdFkQl2bN-1RGFOG8Lk5L05gyzbrEE~4J5PAEOTLIvDPV3HDYDpY-fC4EnsBVo5t1Ar5ClOJ3zBtWctgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Engineered_bacterial_swarm_patterns_as_spatial_records_of_environmental_inputs","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered by flagella1–5. Engineering swarming behaviors is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” external inputs into a visible spatial record. Specifically, we engineer tunable expression of swarming-related genes that accordingly modify pattern features, and develop quantitative approaches to decode input conditions. Next, we develop a two-input system that modulates two swarming-related genes simultaneously, and show the resulting patterns can be interpreted using a deep learning classification model. Lastly, we show a growing colony can record dynamic environmental changes, which can be decoded from end...","owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[{"id":118143873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118143873/thumbnails/1.jpg","file_name":"2022.01.20.477106.full.pdf","download_url":"https://www.academia.edu/attachments/118143873/download_file","bulk_download_file_name":"Engineered_bacterial_swarm_patterns_as_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118143873/2022.01.20.477106.full-libre.pdf?1726105839=\u0026response-content-disposition=attachment%3B+filename%3DEngineered_bacterial_swarm_patterns_as_s.pdf\u0026Expires=1743087235\u0026Signature=M79Oo7GIV3sbRweiVCf5gUXNY~4pjWsVlkV3TDSWL13G7ugZb7NLOByXyQwa4T-qYOKLciHc7QXNI2aY3RLYRa38N73-aCwcLywdD-aKXapOeC7OAc4dlMk3gZd-ifTgsCQ0VuQ24ywmMp7ErVw0MfvtwvDWrW67XmP6p2wUttWvlOvAby5-2Hj1LNfPzKEWQMisuW0nt9saBLEx775s2XCI5tbneC5PSRCM5WpK~3LjogF-arm~KYaiCGCopluk0RLn5ZdFkQl2bN-1RGFOG8Lk5L05gyzbrEE~4J5PAEOTLIvDPV3HDYDpY-fC4EnsBVo5t1Ar5ClOJ3zBtWctgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":210122,"name":"Robustness (evolution)","url":"https://www.academia.edu/Documents/in/Robustness_evolution_"},{"id":2752141,"name":"Swarm Behaviour","url":"https://www.academia.edu/Documents/in/Swarm_Behaviour"},{"id":3801335,"name":"swarming motility","url":"https://www.academia.edu/Documents/in/swarming_motility"}],"urls":[{"id":44618607,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.01.20.477106"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123793831"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/123793831/Immunotherapy_activated_T_cells_recruit_and_skewlate_stage_activated_M1_like_macrophagesthat_are_critical_for_therapeutic_efficacy"><img alt="Research paper thumbnail of Immunotherapy-activated T cells recruit and skewlate-stage activated M1-like macrophagesthat are critical for therapeutic efficacy" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Immunotherapy-activated T cells recruit and skewlate-stage activated M1-like macrophagesthat are critical for therapeutic efficacy</div><div class="wp-workCard_item"><span>Cancer cell</span><span>, May 1, 2024</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123793831"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123793831"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123793831; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123793831]").text(description); $(".js-view-count[data-work-id=123793831]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123793831; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123793831']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=123793831]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123793831,"title":"Immunotherapy-activated T cells recruit and skewlate-stage activated M1-like macrophagesthat are critical for therapeutic efficacy","translated_title":"","metadata":{"publication_date":{"day":1,"month":5,"year":2024,"errors":{}},"publication_name":"Cancer cell"},"translated_abstract":null,"internal_url":"https://www.academia.edu/123793831/Immunotherapy_activated_T_cells_recruit_and_skewlate_stage_activated_M1_like_macrophagesthat_are_critical_for_therapeutic_efficacy","translated_internal_url":"","created_at":"2024-09-11T17:45:28.202-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":314912081,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Immunotherapy_activated_T_cells_recruit_and_skewlate_stage_activated_M1_like_macrophagesthat_are_critical_for_therapeutic_efficacy","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":314912081,"first_name":"Ruxandra","middle_initials":null,"last_name":"Tonea","page_name":"ToneaR","domain_name":"independent","created_at":"2024-05-25T21:30:38.751-07:00","display_name":"Ruxandra Tonea","url":"https://independent.academia.edu/ToneaR"},"attachments":[],"research_interests":[{"id":126863,"name":"Immunotherapy","url":"https://www.academia.edu/Documents/in/Immunotherapy"},{"id":506082,"name":"Cancer Cell","url":"https://www.academia.edu/Documents/in/Cancer_Cell"}],"urls":[{"id":44618605,"url":"https://doi.org/10.1016/j.ccell.2024.04.011"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "0fb675c10de0e0b2c481f45afe3439a180ca38dd0cd78f5d1e523b049b857b6e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="8BWSZpQ3EnOxU7LEhI5UXkZmHvdhQI22q5vjn9guyILjt3f9BV3KMX3yT-veYCJUNRAspbH_T9WSlp-tk2mnNQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/ToneaR" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="9Aiow_8WImZ9V5HQ9RG8H1Ae5MCPfgEaTnaFt73bZMvnqk1Ybnz6JLH2bP-v_8oVI2jWkl_Bw3l3e_mF9pwLfA" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>