CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 57 results for author: <span class="mathjax">Busto, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Busto%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Busto, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Busto%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Busto, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Busto%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Busto%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Busto%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03722">arXiv:2411.03722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03722">pdf</a>, <a href="https://arxiv.org/format/2411.03722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performances of a radial TPC for the detection of neutrinoless double beta decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bouet%2C+R">R. Bouet</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cadiou%2C+A">A. Cadiou</a>, <a href="/search/physics?searchtype=author&amp;query=Charpentier%2C+P">P. Charpentier</a>, <a href="/search/physics?searchtype=author&amp;query=Charrier%2C+D">D. Charrier</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Dastgheibi-Fard%2C+A">A. Dastgheibi-Fard</a>, <a href="/search/physics?searchtype=author&amp;query=Druillole%2C+F">F. Druillole</a>, <a href="/search/physics?searchtype=author&amp;query=Hellmuth%2C+P">P. Hellmuth</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Kaizer%2C+J">J. Kaizer</a>, <a href="/search/physics?searchtype=author&amp;query=Kontul%2C+I">I. Kontul</a>, <a href="/search/physics?searchtype=author&amp;query=Ray%2C+P+L">P. Le Ray</a>, <a href="/search/physics?searchtype=author&amp;query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&amp;query=Lautridou%2C+P">P. Lautridou</a>, <a href="/search/physics?searchtype=author&amp;query=Macko%2C+M">M. Macko</a>, <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">A. Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Povinec%2C+P">P. Povinec</a>, <a href="/search/physics?searchtype=author&amp;query=Roche%2C+M">M. Roche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03722v1-abstract-short" style="display: inline;"> To search for $尾\beta0谓$ decay with unprecedented sensitivity, the R2D2 collaboration is developing a radial time projection chamber with a fiducial mass of half a ton of 136Xe at high pressure. The various approaches implemented to eliminate the radioactive background are presented in terms of detector design, topological recognition of interactions, and event energy reconstruction. The developed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03722v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03722v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03722v1-abstract-full" style="display: none;"> To search for $尾\beta0谓$ decay with unprecedented sensitivity, the R2D2 collaboration is developing a radial time projection chamber with a fiducial mass of half a ton of 136Xe at high pressure. The various approaches implemented to eliminate the radioactive background are presented in terms of detector design, topological recognition of interactions, and event energy reconstruction. The developed tools allow for the disentangling of the sought-after signal from the background, and the projected sensitivity after ten years of data taking yields a half-life limit exceeding $10^{27}$ years, along with a constraint on the effective neutrino mass $m_{尾尾}$, sufficient to exclude the inverted mass hierarchy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03722v1-abstract-full').style.display = 'none'; document.getElementById('2411.03722v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24115">arXiv:2410.24115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.24115">pdf</a>, <a href="https://arxiv.org/format/2410.24115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> gSeaGen code by KM3NeT: an efficient tool to propagate muons simulated with CORSIKA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Alhebsi%2C+A+R">A. R. Alhebsi</a>, <a href="/search/physics?searchtype=author&amp;query=Alshamsi%2C+M">M. Alshamsi</a>, <a href="/search/physics?searchtype=author&amp;query=Garre%2C+S+A">S. Alves Garre</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrosone%2C+A">A. Ambrosone</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Aphecetche%2C+L">L. Aphecetche</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+S">S. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Atmani%2C+H">H. Atmani</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Badaracco%2C+F">F. Badaracco</a>, <a href="/search/physics?searchtype=author&amp;query=Bailly-Salins%2C+L">L. Bailly-Salins</a>, <a href="/search/physics?searchtype=author&amp;query=Barda%C4%8Dov%C3%A1%2C+Z">Z. Barda膷ov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Bariego-Quintana%2C+A">A. Bariego-Quintana</a>, <a href="/search/physics?searchtype=author&amp;query=Becherini%2C+Y">Y. Becherini</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">M. Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Benfenati%2C+F">F. Benfenati</a>, <a href="/search/physics?searchtype=author&amp;query=Benhassi%2C+M">M. Benhassi</a>, <a href="/search/physics?searchtype=author&amp;query=Bennani%2C+M">M. Bennani</a>, <a href="/search/physics?searchtype=author&amp;query=Benoit%2C+D+M">D. M. Benoit</a>, <a href="/search/physics?searchtype=author&amp;query=Berbee%2C+E">E. Berbee</a> , et al. (238 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24115v4-abstract-short" style="display: inline;"> The KM3NeT Collaboration has tackled a common challenge faced by the astroparticle physics community, namely adapting the experiment-specific simulation software to work with the CORSIKA air shower simulation output. The proposed solution is an extension of the open-source code gSeaGen, allowing for the transport of muons generated by CORSIKA to a detector of any size at an arbitrary depth. The gS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24115v4-abstract-full').style.display = 'inline'; document.getElementById('2410.24115v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24115v4-abstract-full" style="display: none;"> The KM3NeT Collaboration has tackled a common challenge faced by the astroparticle physics community, namely adapting the experiment-specific simulation software to work with the CORSIKA air shower simulation output. The proposed solution is an extension of the open-source code gSeaGen, allowing for the transport of muons generated by CORSIKA to a detector of any size at an arbitrary depth. The gSeaGen code was not only extended in terms of functionalities but also underwent a thorough redesign of the muon propagation routine, resulting in a more accurate and efficient simulation. This paper presents the capabilities of the new gSeaGen code as well as prospects for further developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24115v4-abstract-full').style.display = 'none'; document.getElementById('2410.24115v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 13 figures, submitted to Computer Physics Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14071">arXiv:2408.14071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14071">pdf</a>, <a href="https://arxiv.org/format/2408.14071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&amp;query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&amp;query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&amp;query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&amp;query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&amp;query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (294 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14071v1-abstract-short" style="display: inline;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14071v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14071v1-abstract-full" style="display: none;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment&#39;s lifetime of &gt;10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of &gt;8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser&#39;s working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within $\pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit&#39;s flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'none'; document.getElementById('2408.14071v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07230">arXiv:2405.07230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07230">pdf</a>, <a href="https://arxiv.org/format/2405.07230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Acoustic Positioning for Deep Sea Neutrino Telescopes with a System of Piezo Sensors Integrated into Glass Spheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+S">S. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+S">S. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Becherini%2C+Y">Y. Becherini</a>, <a href="/search/physics?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">M. Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Benfenati%2C+F">F. Benfenati</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Boumaaza%2C+J">J. Boumaaza</a>, <a href="/search/physics?searchtype=author&amp;query=Bouta%2C+M">M. Bouta</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A2nza%C5%9F%2C+H">H. Br芒nza艧</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caiffi%2C+B">B. Caiffi</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo%2C+D">D. Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Campion%2C+S">S. Campion</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07230v1-abstract-short" style="display: inline;"> Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infras&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07230v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07230v1-abstract-full" style="display: none;"> Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding 2000m. It comprised nearly 900 glass spheres with 432mm diameter and 15mm thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such - otherwise empty - glass spheres. These sensors recorded signals from acoustic emitters with frequencies from 46545 to 60235Hz. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with $v_e \approx 5$mm/$渭$s and a slow (late) one with $v_\ell \approx 2$mm/$渭$s. Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07230v1-abstract-full').style.display = 'none'; document.getElementById('2405.07230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to &#34;Experimental Astronomy&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19374">arXiv:2404.19374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.19374">pdf</a>, <a href="https://arxiv.org/format/2404.19374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Perspectives of a single-anode cylindrical chamber operating in ionization mode and high gas pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bouet%2C+R">R. Bouet</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+V">V. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Charpentier%2C+P">P. Charpentier</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Dastgheibi-Fard%2C+A">A. Dastgheibi-Fard</a>, <a href="/search/physics?searchtype=author&amp;query=Druillole%2C+F">F. Druillole</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Hellmuth%2C+P">P. Hellmuth</a>, <a href="/search/physics?searchtype=author&amp;query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&amp;query=Lautridou%2C+P">P. Lautridou</a>, <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">A. Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Navick%2C+X+F">X. F. Navick</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Roche%2C+M">M. Roche</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+B">B. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19374v1-abstract-short" style="display: inline;"> As part of the R2D2 (Rare Decays with Radial Detector) R&amp;D, the use of a gas detector with a spherical or cylindrical cathode, equipped with a single anode and operating at high pressure, was studied for the search of rare phenomena such as neutrinoless double-beta decay. The presented measurements were obtained with a cylindrical detector, covering gas pressures ranging from 1 to 10 bar in argon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19374v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19374v1-abstract-full" style="display: none;"> As part of the R2D2 (Rare Decays with Radial Detector) R&amp;D, the use of a gas detector with a spherical or cylindrical cathode, equipped with a single anode and operating at high pressure, was studied for the search of rare phenomena such as neutrinoless double-beta decay. The presented measurements were obtained with a cylindrical detector, covering gas pressures ranging from 1 to 10 bar in argon and 1 to 6 bar in xenon, using both a point-like source of $^{210}$Po (5.3 MeV $伪$ ) and a diffuse source of $^{222}$Rn (5.5 MeV $伪$). Analysis and interpretation of the data were developed using the anodic current waveform. Similar detection performances were achieved with both gases, and comparable energy resolutions were measured with both sources. As long as the purity of the gas was sufficient, no significant degradation of the measured energy was observed by increasing the pressure. At the highest operating pressure, an energy resolution better than 1.5% full-width at half-maximum (FWHM) was obtained for both gaseous media, although optimal noise conditions were not reached. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19374v1-abstract-full').style.display = 'none'; document.getElementById('2404.19374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18492">arXiv:2404.18492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18492">pdf</a>, <a href="https://arxiv.org/format/2404.18492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/09/P09021">10.1088/1748-0221/19/09/P09021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&amp;query=Albuquerque%2C+I+F">I. F. Albuquerque</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&amp;query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&amp;query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&amp;query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&amp;query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&amp;query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18492v1-abstract-short" style="display: inline;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surround&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18492v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18492v1-abstract-full" style="display: none;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&amp;D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&amp;Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'none'; document.getElementById('2404.18492v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P09021 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14872">arXiv:2311.14872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14872">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Garre%2C+S+A">S. Alves Garre</a>, <a href="/search/physics?searchtype=author&amp;query=Aly%2C+Z">Z. Aly</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrosone%2C+A">A. Ambrosone</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Androutsou%2C+E">E. Androutsou</a>, <a href="/search/physics?searchtype=author&amp;query=Anguita%2C+M">M. Anguita</a>, <a href="/search/physics?searchtype=author&amp;query=Aphecetche%2C+L">L. Aphecetche</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+S">S. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Atmani%2C+H">H. Atmani</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Badaracco%2C+F">F. Badaracco</a>, <a href="/search/physics?searchtype=author&amp;query=Bailly-Salins%2C+L">L. Bailly-Salins</a>, <a href="/search/physics?searchtype=author&amp;query=Bardacova%2C+Z">Z. Bardacova</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Quintana%2C+A+B">A. Bariego Quintana</a>, <a href="/search/physics?searchtype=author&amp;query=Pree%2C+S+B+d">S. Basegmez du Pree</a>, <a href="/search/physics?searchtype=author&amp;query=Becherini%2C+Y">Y. Becherini</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">M. Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Benfenati%2C+F">F. Benfenati</a>, <a href="/search/physics?searchtype=author&amp;query=Benhassi%2C+M">M. Benhassi</a>, <a href="/search/physics?searchtype=author&amp;query=Benoit%2C+D+M">D. M. Benoit</a> , et al. (259 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14872v1-abstract-short" style="display: inline;"> The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant gl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14872v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14872v1-abstract-full" style="display: none;"> The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory&#39;s lifespan <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14872v1-abstract-full').style.display = 'none'; document.getElementById('2311.14872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13637">arXiv:2309.13637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.13637">pdf</a>, <a href="https://arxiv.org/format/2309.13637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> R2D2 TPC: first Xenon results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bouet%2C+R">R. Bouet</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+V">V. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Charpentier%2C+P">P. Charpentier</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Dastgheibi-Fard%2C+A">A. Dastgheibi-Fard</a>, <a href="/search/physics?searchtype=author&amp;query=Druillole%2C+F">F. Druillole</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Hellmuth%2C+P">P. Hellmuth</a>, <a href="/search/physics?searchtype=author&amp;query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&amp;query=Lautridou%2C+P">P. Lautridou</a>, <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">A. Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Navick%2C+X+F">X. F. Navick</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Popieul%2C+F">F. Popieul</a>, <a href="/search/physics?searchtype=author&amp;query=Roche%2C+M">M. Roche</a>, <a href="/search/physics?searchtype=author&amp;query=Savvidis%2C+I">I. Savvidis</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+B">B. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13637v1-abstract-short" style="display: inline;"> Radial time projection chambers (TPC), already employed in the search for rare phenomena such as light Dark Matter candidate, could provide a new detection approach for the search of neutrinoless double beta decay ($尾\beta0谓$). The assessment of the performances of such a detector for $尾\beta0谓$ search is indeed the goal of the Rare Decays with Radial Detector (R2D2) R\&amp;D. Promising results operat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13637v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13637v1-abstract-full" style="display: none;"> Radial time projection chambers (TPC), already employed in the search for rare phenomena such as light Dark Matter candidate, could provide a new detection approach for the search of neutrinoless double beta decay ($尾\beta0谓$). The assessment of the performances of such a detector for $尾\beta0谓$ search is indeed the goal of the Rare Decays with Radial Detector (R2D2) R\&amp;D. Promising results operating a spherical TPC with argon up to 1~bar have been published in 2021. Supplementary measurements were recently taken extending the gas pressure range up to 3~bar. In addition, a comparison between two detector geometries, namely spherical (SPC for spherical proportional counter) and cylindrical (CPC for cylindrical proportional counter), was performed. Using a relatively simple gas purification system the CPC detector was also operated with xenon at 1~bar: an energy resolution of 1.4\% full-width at half-maximum was achieved for drift distances up to 17~cm. Much lower resolution was observed with the SPC. These results are presented in this article. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13637v1-abstract-full').style.display = 'none'; document.getElementById('2309.13637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04154">arXiv:2308.04154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04154">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Probing Earth&#39;s Missing Potassium using the Unique Antimatter Signature of Geoneutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Consortium%2C+L">LiquidO Consortium</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Cabrera%2C+A">A. Cabrera</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">F. Mantovani</a>, <a href="/search/physics?searchtype=author&amp;query=Serafini%2C+A">A. Serafini</a>, <a href="/search/physics?searchtype=author&amp;query=Strati%2C+V">V. Strati</a>, <a href="/search/physics?searchtype=author&amp;query=Apilluelo%2C+J">J. Apilluelo</a>, <a href="/search/physics?searchtype=author&amp;query=Asquith%2C+L">L. Asquith</a>, <a href="/search/physics?searchtype=author&amp;query=Beney%2C+J+L">J. L. Beney</a>, <a href="/search/physics?searchtype=author&amp;query=Bezerra%2C+T+J+C">T. J. C. Bezerra</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">C. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Breton%2C+D">D. Breton</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+M">M. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cadiou%2C+A">A. Cadiou</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo%2C+E">E. Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Chaumat%2C+V">V. Chaumat</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Cattermole%2C+B+J">B. J. Cattermole</a>, <a href="/search/physics?searchtype=author&amp;query=Chimenti%2C+P">P. Chimenti</a>, <a href="/search/physics?searchtype=author&amp;query=Delafosse%2C+C">C. Delafosse</a>, <a href="/search/physics?searchtype=author&amp;query=de+Kerret%2C+H">H. de Kerret</a>, <a href="/search/physics?searchtype=author&amp;query=Dusini%2C+S">S. Dusini</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04154v2-abstract-short" style="display: inline;"> The formation of the Earth remains an epoch with mysterious puzzles extending to our still incomplete understanding of the planet&#39;s potential origin and bulk composition. Direct confirmation of the Earth&#39;s internal heat engine was accomplished by the successful observation of geoneutrinos originating from uranium (U) and thorium (Th) progenies, manifestations of the planet&#39;s natural radioactivity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04154v2-abstract-full').style.display = 'inline'; document.getElementById('2308.04154v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04154v2-abstract-full" style="display: none;"> The formation of the Earth remains an epoch with mysterious puzzles extending to our still incomplete understanding of the planet&#39;s potential origin and bulk composition. Direct confirmation of the Earth&#39;s internal heat engine was accomplished by the successful observation of geoneutrinos originating from uranium (U) and thorium (Th) progenies, manifestations of the planet&#39;s natural radioactivity dominated by potassium (40K) and the decay chains of uranium (238U) and thorium (232Th). This radiogenic energy output is critical to planetary dynamics and must be accurately measured for a complete understanding of the overall heat budget and thermal history of the Earth. Detecting geoneutrinos remains the only direct probe to do so and constitutes a challenging objective in modern neutrino physics. In particular, the intriguing potassium geoneutrinos have never been observed and thus far have been considered impractical to measure. We propose here a novel approach for potassium geoneutrino detection using the unique antimatter signature of antineutrinos to reduce the otherwise overwhelming backgrounds to observing this rarest signal. The proposed detection framework relies on the innovative LiquidO detection technique to enable positron (e+) identification and antineutrino interactions with ideal isotope targets identified here for the first time. We also provide the complete experimental methodology to yield the first potassium geoneutrino discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04154v2-abstract-full').style.display = 'none'; document.getElementById('2308.04154v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15454">arXiv:2307.15454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15454">pdf</a>, <a href="https://arxiv.org/format/2307.15454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Directionality of nuclear recoils in a liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+T+D">The DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&amp;query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&amp;query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&amp;query=Barrado-Olmedo%2C+A">A. Barrado-Olmedo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&amp;query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&amp;query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&amp;query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&amp;query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&amp;query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&amp;query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cadeddu%2C+M">M. Cadeddu</a> , et al. (243 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15454v1-abstract-short" style="display: inline;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scint&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15454v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15454v1-abstract-full" style="display: none;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R &lt; 1.072 with 90% confidence level <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'none'; document.getElementById('2307.15454v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, submitted to Eur. Phys. J. C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84:24 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08508">arXiv:2303.08508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08508">pdf</a>, <a href="https://arxiv.org/format/2303.08508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/03/P03031">10.1088/1748-0221/18/03/P03031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of a spherical high pressure gas TPC for neutrino magnetic moment measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bouet%2C+R">R. Bouet</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+V">V. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Charpentier%2C+P">P. Charpentier</a>, <a href="/search/physics?searchtype=author&amp;query=Dastgheibi-Fard%2C+A">A. Dastgheibi-Fard</a>, <a href="/search/physics?searchtype=author&amp;query=Druillole%2C+F">F. Druillole</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Hellmuth%2C+P">P. Hellmuth</a>, <a href="/search/physics?searchtype=author&amp;query=Katsioulas%2C+I">I. Katsioulas</a>, <a href="/search/physics?searchtype=author&amp;query=Knights%2C+P">P. Knights</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&amp;query=Lautridou%2C+P">P. Lautridou</a>, <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">A. Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Navick%2C+X+F">X. F. Navick</a>, <a href="/search/physics?searchtype=author&amp;query=Neep%2C+T">T. Neep</a>, <a href="/search/physics?searchtype=author&amp;query=Nikolopoulos%2C+K">K. Nikolopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Perrot%2C+F">F. Perrot</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Roche%2C+M">M. Roche</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+B">B. Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+R">R. Ward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08508v1-abstract-short" style="display: inline;"> The measurement of neutrino magnetic moment larger than $10^{-19}渭_B$ would be a clear signature of physics beyond the standard model other than the existence of massive Dirac neutrinos. The use of a spherical proportional counter detector filled with gas at 40 bar located near a nuclear reactor would be a simple way to perform such a measurement exploiting the developments made on such a technolo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08508v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08508v1-abstract-full" style="display: none;"> The measurement of neutrino magnetic moment larger than $10^{-19}渭_B$ would be a clear signature of physics beyond the standard model other than the existence of massive Dirac neutrinos. The use of a spherical proportional counter detector filled with gas at 40 bar located near a nuclear reactor would be a simple way to perform such a measurement exploiting the developments made on such a technology for the search of dark matter and neutrinoless double beta decay. Different targets can be used just by replacing the gas: xenon, CF$_4$ and argon were compared and the sensitivity in one year of data taking could reach the level of $4.3 \times 10^{-12} 渭_B$, $6.5 \times 10^{-12} 渭_B$, and $8.5 \times 10^{-12} 渭_B$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08508v1-abstract-full').style.display = 'none'; document.getElementById('2303.08508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023_JINST_18_P03031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01177">arXiv:2209.01177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01177">pdf</a>, <a href="https://arxiv.org/format/2209.01177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.112006">10.1103/PhysRevD.107.112006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&amp;query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&amp;query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&amp;query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&amp;query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&amp;query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&amp;query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&amp;query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&amp;query=Berzin%2C+E">E. Berzin</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&amp;query=Borisova%2C+E">E. Borisova</a>, <a href="/search/physics?searchtype=author&amp;query=Bottino%2C+B">B. Bottino</a> , et al. (274 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01177v2-abstract-short" style="display: inline;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'inline'; document.getElementById('2209.01177v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01177v2-abstract-full" style="display: none;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c$^2$ considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector&#39;s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'none'; document.getElementById('2209.01177v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 112006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08830">arXiv:2205.08830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08830">pdf</a>, <a href="https://arxiv.org/format/2205.08830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/10/033">10.1088/1475-7516/2022/10/033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (577 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08830v2-abstract-short" style="display: inline;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08830v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08830v2-abstract-full" style="display: none;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced neutral current (NC) background turns out to be the most critical background, whose uncertainty is carefully evaluated from both the spread of model predictions and an envisaged \textit{in situ} measurement. We also make a careful study on the background suppression with the pulse shape discrimination (PSD) and triple coincidence (TC) cuts. With latest DSNB signal predictions, more realistic background evaluation and PSD efficiency optimization, and additional TC cut, JUNO can reach the significance of 3$蟽$ for 3 years of data taking, and achieve better than 5$蟽$ after 10 years for a reference DSNB model. In the pessimistic scenario of non-observation, JUNO would strongly improve the limits and exclude a significant region of the model parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'none'; document.getElementById('2205.08830v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures, final published version in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2022) 033 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08629">arXiv:2205.08629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08629">pdf</a>, <a href="https://arxiv.org/format/2205.08629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-11002-8">10.1140/epjc/s10052-022-11002-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass Testing and Characterization of 20-inch PMTs for JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andre%2C+J+P+A+M">Joao Pedro Athayde Marcondes de Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a> , et al. (541 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08629v2-abstract-short" style="display: inline;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08629v2-abstract-full" style="display: none;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'none'; document.getElementById('2205.08629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12621">arXiv:2201.12621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.12621">pdf</a>, <a href="https://arxiv.org/format/2201.12621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166382">10.1016/j.nima.2022.166382 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous scintillation light and charge readout of a pure argon filled Spherical Proportional Counter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bouet%2C+R">R. Bouet</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+V">V. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Dastgheibi-Fard%2C+A">A. Dastgheibi-Fard</a>, <a href="/search/physics?searchtype=author&amp;query=Druillole%2C+F">F. Druillole</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Hellmuth%2C+P">P. Hellmuth</a>, <a href="/search/physics?searchtype=author&amp;query=Katsioulas%2C+I">I. Katsioulas</a>, <a href="/search/physics?searchtype=author&amp;query=Knights%2C+P">P. Knights</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&amp;query=Lautridou%2C+P">P. Lautridou</a>, <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">A. Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Navick%2C+X+F">X. F. Navick</a>, <a href="/search/physics?searchtype=author&amp;query=Neep%2C+T">T. Neep</a>, <a href="/search/physics?searchtype=author&amp;query=Nikolopoulos%2C+K">K. Nikolopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Perrot%2C+F">F. Perrot</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Roche%2C+M">M. Roche</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+B">B. Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+R">R. Ward</a>, <a href="/search/physics?searchtype=author&amp;query=Zampaolo%2C+M">M. Zampaolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12621v1-abstract-short" style="display: inline;"> The possible use of a Spherical Proportional Counter for the search of neutrinoless double beta decay is investigated in the R2D2 R&amp;D project. Dual charge and scintillation light readout may improve the detector performance. Tests were carried out with pure argon at 1.1 bar using a 6x6 mm2 silicon photomultiplier. Scintillation light was used for the first time to trigger in a spherical proportion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12621v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12621v1-abstract-full" style="display: none;"> The possible use of a Spherical Proportional Counter for the search of neutrinoless double beta decay is investigated in the R2D2 R&amp;D project. Dual charge and scintillation light readout may improve the detector performance. Tests were carried out with pure argon at 1.1 bar using a 6x6 mm2 silicon photomultiplier. Scintillation light was used for the first time to trigger in a spherical proportional counter. The measured drift time is in excellent agreement with the expectations from simulations. Furthermore the light signal emitted during the avalanche development exhibits features that could be exploited for event characterisation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12621v1-abstract-full').style.display = 'none'; document.getElementById('2201.12621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00223">arXiv:2111.00223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00223">pdf</a>, <a href="https://arxiv.org/format/2111.00223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167132">10.1016/j.nima.2022.167132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanobeacon: A time calibration device for the KM3NeT neutrino telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Alshamsi%2C+M">M. Alshamsi</a>, <a href="/search/physics?searchtype=author&amp;query=Garre%2C+S+A">S. Alves Garre</a>, <a href="/search/physics?searchtype=author&amp;query=Aly%2C+Z">Z. Aly</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrosone%2C+A">A. Ambrosone</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Androulakis%2C+G">G. Androulakis</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anguita%2C+M">M. Anguita</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+S">S. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Bagatelas%2C+C">C. Bagatelas</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Pree%2C+S+B+d">S. Basegmez du Pree</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">M. Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Benfenati%2C+F">F. Benfenati</a>, <a href="/search/physics?searchtype=author&amp;query=Berbee%2C+E">E. Berbee</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+A+M+v+d">A. M. van den Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Bertine%2C+V">V. Bertine</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Boettcher%2C+M">M. Boettcher</a>, <a href="/search/physics?searchtype=author&amp;query=Cabo%2C+M+B">M. Bou Cabo</a> , et al. (216 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00223v1-abstract-short" style="display: inline;"> The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00223v1-abstract-full').style.display = 'inline'; document.getElementById('2111.00223v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00223v1-abstract-full" style="display: none;"> The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. Both extraterrestrial and atmospheric neutrinos are detected through the Cherenkov light induced in seawater by charged particles produced in neutrino interactions in the surrounding medium. A relative time synchronization between photomultipliers of the order of 1 ns is needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 Nanobeacons have been already produced. The characterization of the optical pulse and the wavelength emission profile of the devices are critical for the time calibration. In this paper, the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00223v1-abstract-full').style.display = 'none'; document.getElementById('2111.00223v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08063">arXiv:2107.08063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08063">pdf</a>, <a href="https://arxiv.org/format/2107.08063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> </div> <p class="title is-5 mathjax"> Studying Bioluminescence Flashes with the ANTARES Deep Sea Neutrino Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Reeb%2C+N">N. Reeb</a>, <a href="/search/physics?searchtype=author&amp;query=Hutschenreuter%2C+S">S. Hutschenreuter</a>, <a href="/search/physics?searchtype=author&amp;query=Zehetner%2C+P">P. Zehetner</a>, <a href="/search/physics?searchtype=author&amp;query=Ensslin%2C+T">T. Ensslin</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+S">S. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">M. Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bissinger%2C+M">M. Bissinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boumaaza%2C+J">J. Boumaaza</a>, <a href="/search/physics?searchtype=author&amp;query=Bouta%2C+M">M. Bouta</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A2nza%C5%9F%2C+H">H. Br芒nza艧</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a> , et al. (119 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08063v1-abstract-short" style="display: inline;"> We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emissio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08063v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08063v1-abstract-full" style="display: none;"> We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by the neutrino detectors. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can reliably model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first precise localizations of bioluminescent organisms using neutrino telescope data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08063v1-abstract-full').style.display = 'none'; document.getElementById('2107.08063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03669">arXiv:2107.03669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03669">pdf</a>, <a href="https://arxiv.org/format/2107.03669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2021)102">10.1007/JHEP11(2021)102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radioactivity control strategy for the JUNO detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (578 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03669v2-abstract-short" style="display: inline;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'inline'; document.getElementById('2107.03669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03669v2-abstract-full" style="display: none;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz in the default fiducial volume, above an energy threshold of 0.7 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'none'; document.getElementById('2107.03669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.16900">arXiv:2103.16900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.16900">pdf</a>, <a href="https://arxiv.org/format/2103.16900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Design and Sensitivity of JUNO&#39;s scintillator radiopurity pre-detector OSIRIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (582 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.16900v1-abstract-short" style="display: inline;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'inline'; document.getElementById('2103.16900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.16900v1-abstract-full" style="display: none;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of $^{238}$U and $^{232}$Th requires a large ($\sim$20 m$^3$) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'none'; document.getElementById('2103.16900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.14429">arXiv:2103.14429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.14429">pdf</a>, <a href="https://arxiv.org/format/2103.14429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/07/T07012">10.1088/1748-0221/16/07/T07012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the distribution of $^{207}$Bi depositions on calibration sources for SuperNEMO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+R">R. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Birdsall%2C+E">E. Birdsall</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+S">S. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Boursette%2C+D">D. Boursette</a>, <a href="/search/physics?searchtype=author&amp;query=Breier%2C+R">R. Breier</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Calvez%2C+S">S. Calvez</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+J+P">J. P. Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Ceschia%2C+M">M. Ceschia</a>, <a href="/search/physics?searchtype=author&amp;query=Chapon%2C+A">A. Chapon</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&amp;query=Dawson%2C+L">L. Dawson</a>, <a href="/search/physics?searchtype=author&amp;query=De+Capua%2C+S">S. De Capua</a>, <a href="/search/physics?searchtype=author&amp;query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&amp;query=Durand%2C+D">D. Durand</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J+J">J. J. Evans</a>, <a href="/search/physics?searchtype=author&amp;query=Filosofov%2C+D">D. Filosofov</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.14429v2-abstract-short" style="display: inline;"> The SuperNEMO experiment will search for neutrinoless double-beta decay ($0谓尾尾$), and study the Standard-Model double-beta decay process ($2谓尾尾$). The SuperNEMO technology can measure the energy of each of the electrons produced in a double-beta ($尾尾$) decay, and can reconstruct the topology of their individual tracks. The study of the double-beta decay spectrum requires very accurate energy calib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14429v2-abstract-full').style.display = 'inline'; document.getElementById('2103.14429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.14429v2-abstract-full" style="display: none;"> The SuperNEMO experiment will search for neutrinoless double-beta decay ($0谓尾尾$), and study the Standard-Model double-beta decay process ($2谓尾尾$). The SuperNEMO technology can measure the energy of each of the electrons produced in a double-beta ($尾尾$) decay, and can reconstruct the topology of their individual tracks. The study of the double-beta decay spectrum requires very accurate energy calibration to be carried out periodically. The SuperNEMO Demonstrator Module will be calibrated using 42 calibration sources, each consisting of a droplet of $^{207}$Bi within a frame assembly. The quality of these sources, which depends upon the entire $^{207}$Bi droplet being contained within the frame, is key for correctly calibrating SuperNEMO&#39;s energy response. In this paper, we present a novel method for precisely measuring the exact geometry of the deposition of $^{207}$Bi droplets within the frames, using Timepix pixel detectors. We studied 49 different sources and selected 42 high-quality sources with the most central source positioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14429v2-abstract-full').style.display = 'none'; document.getElementById('2103.14429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, submitted to JINST, response to reviewer comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08686">arXiv:2101.08686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08686">pdf</a>, <a href="https://arxiv.org/format/2101.08686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09121-9">10.1140/epjc/s10052-021-09121-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separating $^{39}$Ar from $^{40}$Ar by cryogenic distillation with Aria for dark matter searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DarkSide+Collaboration"> DarkSide Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&amp;query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Arba%2C+M">M. Arba</a>, <a href="/search/physics?searchtype=author&amp;query=Arpaia%2C+P">P. Arpaia</a>, <a href="/search/physics?searchtype=author&amp;query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&amp;query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&amp;query=Avetissov%2C+I+C">I. Ch. Avetissov</a>, <a href="/search/physics?searchtype=author&amp;query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&amp;query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&amp;query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&amp;query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&amp;query=Borisova%2C+E">E. Borisova</a> , et al. (287 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08686v2-abstract-short" style="display: inline;"> The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08686v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08686v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08686v2-abstract-full" style="display: none;"> The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopic abundance of $^{39}$Ar, a $尾$-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors, in the argon used for the dark-matter searches, the so-called Underground Argon (UAr). In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of isotopic cryogenic distillation of nitrogen with a prototype plant, operating the column at total reflux. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08686v2-abstract-full').style.display = 'none'; document.getElementById('2101.08686v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 81 (2021) 4, 359 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07819">arXiv:2011.07819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07819">pdf</a>, <a href="https://arxiv.org/format/2011.07819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/03/043">10.1088/1475-7516/2021/03/043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&amp;query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&amp;query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&amp;query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&amp;query=Avetissov%2C+I+C">I. Ch. Avetissov</a>, <a href="/search/physics?searchtype=author&amp;query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&amp;query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&amp;query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&amp;query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&amp;query=Borisova%2C+E">E. Borisova</a>, <a href="/search/physics?searchtype=author&amp;query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&amp;query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&amp;query=Buccino%2C+G">G. Buccino</a> , et al. (251 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07819v2-abstract-short" style="display: inline;"> Future liquid-argon DarkSide-20k and ARGO detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of $\sim$50~t and $\sim$360~t for DarkSide-20k and AR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07819v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07819v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07819v2-abstract-full" style="display: none;"> Future liquid-argon DarkSide-20k and ARGO detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of $\sim$50~t and $\sim$360~t for DarkSide-20k and ARGO, respectively. Thanks to the low-energy threshold of $\sim$0.5~keV$_{nr}$ achievable by exploiting the ionization channel, DarkSide-20k and ARGO have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M$_{\odot}$ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07819v2-abstract-full').style.display = 'none'; document.getElementById('2011.07819v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 03 (2021) 043 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06405">arXiv:2011.06405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06405">pdf</a>, <a href="https://arxiv.org/format/2011.06405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)004">10.1007/JHEP03(2021)004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration Strategy of the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (571 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06405v3-abstract-short" style="display: inline;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'inline'; document.getElementById('2011.06405v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06405v3-abstract-full" style="display: none;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'none'; document.getElementById('2011.06405v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.02570">arXiv:2007.02570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.02570">pdf</a>, <a href="https://arxiv.org/format/2007.02570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/03/P03012">10.1088/1748-0221/16/03/P03012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> R2D2 spherical TPC: first energy resolution results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bouet%2C+R">R. Bouet</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+V">V. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Dastgheibi-Fard%2C+A">A. Dastgheibi-Fard</a>, <a href="/search/physics?searchtype=author&amp;query=Druillole%2C+F">F. Druillole</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Hellmuth%2C+P">P. Hellmuth</a>, <a href="/search/physics?searchtype=author&amp;query=Katsioulas%2C+I">I. Katsioulas</a>, <a href="/search/physics?searchtype=author&amp;query=Knights%2C+P">P. Knights</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&amp;query=Lautridou%2C+P">P. Lautridou</a>, <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">A. Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Navick%2C+X+F">X. F. Navick</a>, <a href="/search/physics?searchtype=author&amp;query=Neep%2C+T">T. Neep</a>, <a href="/search/physics?searchtype=author&amp;query=Nikolopoulos%2C+K">K. Nikolopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Perrot%2C+F">F. Perrot</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Roche%2C+M">M. Roche</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+B">B. Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+R">R. Ward</a>, <a href="/search/physics?searchtype=author&amp;query=Zampaolo%2C+M">M. Zampaolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.02570v2-abstract-short" style="display: inline;"> Spherical time projection chambers (TPC), also known as spherical proportional counters, are employed in the search for rare phenomena, such as light Dark Matter candidates. The spherical TPC exhibits a number of essential features, making it a promising candidate for the search of neutrinoless double beta decay ($尾\beta0谓$). A tonne-scale spherical TPC experiment could cover a region of parameter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02570v2-abstract-full').style.display = 'inline'; document.getElementById('2007.02570v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.02570v2-abstract-full" style="display: none;"> Spherical time projection chambers (TPC), also known as spherical proportional counters, are employed in the search for rare phenomena, such as light Dark Matter candidates. The spherical TPC exhibits a number of essential features, making it a promising candidate for the search of neutrinoless double beta decay ($尾\beta0谓$). A tonne-scale spherical TPC experiment could cover a region of parameter space relevant for the inverted mass hierarchy with a few years of data taking. In this direction, the major R\&amp;D goal of the R2D2 effort is the demonstration of the required energy resolution. First results from an argon-filled prototype detector are reported, demonstrating an energy resolution of 1.1\% FWHM for 5.3~MeV $伪$ tracks in the 0.2 to 1.1~bar pressure range. This is a major milestone in terms of energy resolution, paving the way for further studies with xenon gas, and the possible use of this technology for $尾\beta0谓$ searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02570v2-abstract-full').style.display = 'none'; document.getElementById('2007.02570v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00314">arXiv:2007.00314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00314">pdf</a>, <a href="https://arxiv.org/format/2007.00314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bay%2C+D">Daya Bay</a>, <a href="/search/physics?searchtype=author&amp;query=collaborations%2C+J">JUNO collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">A. Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">T. Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">S. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">M. Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">N. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G+P">G. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">G. Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">V. Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">T. Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">B. Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">J. P. A. M. de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">A. Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">W. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">M. Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">E. Baussan</a> , et al. (642 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00314v1-abstract-short" style="display: inline;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'inline'; document.getElementById('2007.00314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00314v1-abstract-full" style="display: none;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and &lt;0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'none'; document.getElementById('2007.00314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11760">arXiv:2006.11760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11760">pdf</a>, <a href="https://arxiv.org/format/2006.11760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11760v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11760v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid scintillator detectors. In this paper we present a comprehensive assessment of JUNO&#39;s potential for detecting $^8$B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2~MeV threshold on the recoil electron energy is found to be achievable assuming the intrinsic radioactive background $^{238}$U and $^{232}$Th in the liquid scintillator can be controlled to 10$^{-17}$~g/g. With ten years of data taking, about 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the tension between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If $螖m^{2}_{21}=4.8\times10^{-5}~(7.5\times10^{-5})$~eV$^{2}$, JUNO can provide evidence of neutrino oscillation in the Earth at the about 3$蟽$~(2$蟽$) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moveover, JUNO can simultaneously measure $螖m^2_{21}$ using $^8$B solar neutrinos to a precision of 20\% or better depending on the central value and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help elucidate the current tension between the value of $螖m^2_{21}$ reported by solar neutrino experiments and the KamLAND experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'none'; document.getElementById('2006.11760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 plots, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08745">arXiv:2005.08745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.08745">pdf</a>, <a href="https://arxiv.org/format/2005.08745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08745v1-abstract-short" style="display: inline;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'inline'; document.getElementById('2005.08745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08745v1-abstract-full" style="display: none;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future reactor neutrino experiments, and to provide a benchmark measurement to test nuclear databases. A spherical acrylic vessel containing 2.8 ton gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon Photomultipliers (SiPMs) of &gt;50% photon detection efficiency with almost full coverage. The photoelectron yield is about 4500 per MeV, an order higher than any existing large-scale liquid scintillator detectors. The detector operates at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The detector will measure about 2000 reactor antineutrinos per day, and is designed to be well shielded from cosmogenic backgrounds and ambient radioactivities to have about 10% background-to-signal ratio. The experiment is expected to start operation in 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'none'; document.getElementById('2005.08745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">134 pages, 114 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.08254">arXiv:2004.08254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.08254">pdf</a>, <a href="https://arxiv.org/format/2004.08254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/10/P10005">10.1088/1748-0221/15/10/P10005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Event reconstruction for KM3NeT/ORCA using convolutional neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">Arnauld Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Garre%2C+S+A">Sergio Alves Garre</a>, <a href="/search/physics?searchtype=author&amp;query=Aly%2C+Z">Zineb Aly</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">Fabrizio Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">Michel Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Androulakis%2C+G">Giorgos Androulakis</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">Marco Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anguita%2C+M">Mancia Anguita</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">Gisela Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">Miquel Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">Julien Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Bagatelas%2C+C">Christos Bagatelas</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarino%2C+G">Giancarlo Barbarino</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">Bruny Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Pree%2C+S+B+d">Suzan Basegmez du Pree</a>, <a href="/search/physics?searchtype=author&amp;query=Bendahman%2C+M">Meriem Bendahman</a>, <a href="/search/physics?searchtype=author&amp;query=Berbee%2C+E">Edward Berbee</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">Vincent Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">Simone Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Biagioni%2C+A">Andrea Biagioni</a>, <a href="/search/physics?searchtype=author&amp;query=Bissinger%2C+M">Matthias Bissinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boettcher%2C+M">Markus Boettcher</a>, <a href="/search/physics?searchtype=author&amp;query=Boumaaza%2C+J">Jihad Boumaaza</a>, <a href="/search/physics?searchtype=author&amp;query=Bouta%2C+M">Mohammed Bouta</a> , et al. (207 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.08254v1-abstract-short" style="display: inline;"> The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08254v1-abstract-full').style.display = 'inline'; document.getElementById('2004.08254v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.08254v1-abstract-full" style="display: none;"> The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08254v1-abstract-full').style.display = 'none'; document.getElementById('2004.08254v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 15 P10005 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11812">arXiv:2003.11812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.11812">pdf</a>, <a href="https://arxiv.org/format/2003.11812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165412">10.1016/j.nima.2021.165412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Matter Directionality Detection performance of the Micromegas-based $渭$TPC-MIMAC detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tao%2C+Y">Y. Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Beaufort%2C+C">C. Beaufort</a>, <a href="/search/physics?searchtype=author&amp;query=Moric%2C+I">I. Moric</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+C">C. Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+D">D. Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Sauzet%2C+N">N. Sauzet</a>, <a href="/search/physics?searchtype=author&amp;query=Couturier%2C+C">C. Couturier</a>, <a href="/search/physics?searchtype=author&amp;query=Guillaudin%2C+O">O. Guillaudin</a>, <a href="/search/physics?searchtype=author&amp;query=Muraz%2C+J+F">J. F. Muraz</a>, <a href="/search/physics?searchtype=author&amp;query=Naraghi%2C+F">F. Naraghi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+N">N. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11812v2-abstract-short" style="display: inline;"> Directional Dark Matter Detection (DDMD) can open a new signature for Weakly Massive Interacting Particles (WIMPs) Dark Matter. The directional signature provides in addition, an unique way to overcome the neutron and neutrino backgrounds. In order to get the directional signature, the DDM detectors should be sensitive to low nuclear energy recoils in the keV range and have an angular resolution b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11812v2-abstract-full').style.display = 'inline'; document.getElementById('2003.11812v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11812v2-abstract-full" style="display: none;"> Directional Dark Matter Detection (DDMD) can open a new signature for Weakly Massive Interacting Particles (WIMPs) Dark Matter. The directional signature provides in addition, an unique way to overcome the neutron and neutrino backgrounds. In order to get the directional signature, the DDM detectors should be sensitive to low nuclear energy recoils in the keV range and have an angular resolution better than $20^{\circ}$. We have performed experiments with low energy ($&lt;30\,\mathrm{keV}$) ion beam facilities to measure the angular distribution of nuclear recoil tracks in a MIMAC detector prototype. In this paper, we study angular spreads with respect to the electron drift direction ($0^{\circ}$ incident angle) of Fluorine nuclear tracks in this low energy range, and show nuclear recoil angle reconstruction produced by a monoenergetic neutron field experiment. We find that a high-gain systematic effect leads to a high angular resolution along the electron drift direction. The measured angular distribution is impacted by diffusion, and space charge or ion feedback effects, which can be corrected for by an asymmetry factor observed in the flash-ADC profile. The estimated angular resolution of the $0^{\circ}$ incident ion is better than $15^{\circ}$ at $10$ keV kinetic energy and agrees with the simulations within $20$%. The distributions from the nuclear recoils have been compared with simulated results based on a modified Garfield++ code. Our study shows that protons would be a more adapted target than heavier nuclei for DDMD of light WIMPs. We demonstrate that directional signature from the Galactic halo origin of a Dark Matter WIMP signal is experimentally achievable, with a deep understanding of the operating conditions of a low pressure detector with its diffusion mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11812v2-abstract-full').style.display = 'none'; document.getElementById('2003.11812v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06388">arXiv:2001.06388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.06388">pdf</a>, <a href="https://arxiv.org/format/2001.06388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2020.121701">10.1016/j.nuclphysa.2020.121701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for the double-beta decay of 82Se to the excited states of 82Kr with NEMO-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+T+N+c+R">The NEMO-3 collaboration R. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+S">S. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Boursette%2C+D">D. Boursette</a>, <a href="/search/physics?searchtype=author&amp;query=Breier%2C+R">R. Breier</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caffrey%2C+A+J">A. J. Caffrey</a>, <a href="/search/physics?searchtype=author&amp;query=Calvez%2C+S">S. Calvez</a>, <a href="/search/physics?searchtype=author&amp;query=Cascella%2C+M">M. Cascella</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+J+P">J. P. Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Chapon%2C+A">A. Chapon</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&amp;query=Dawson%2C+L">L. Dawson</a>, <a href="/search/physics?searchtype=author&amp;query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&amp;query=Durand%2C+D">D. Durand</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J+J">J. J. Evans</a> , et al. (82 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06388v1-abstract-short" style="display: inline;"> The double-beta decay of 82Se to the 0+1 excited state of 82Kr has been studied with the NEMO-3 detector using 0.93 kg of enriched 82Se measured for 4.75 y, corresponding to an exposure of 4.42 kg y. A dedicated analysis to reconstruct the gamma-rays has been performed to search for events in the 2e2g channel. No evidence of a 2nbb decay to the 0+1 state has been observed and a limit of T2n 1/2(82&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06388v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06388v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06388v1-abstract-full" style="display: none;"> The double-beta decay of 82Se to the 0+1 excited state of 82Kr has been studied with the NEMO-3 detector using 0.93 kg of enriched 82Se measured for 4.75 y, corresponding to an exposure of 4.42 kg y. A dedicated analysis to reconstruct the gamma-rays has been performed to search for events in the 2e2g channel. No evidence of a 2nbb decay to the 0+1 state has been observed and a limit of T2n 1/2(82Se; 0+gs -&gt; 0+1) &gt; 1.3 1021 y at 90% CL has been set. Concerning the 0nbb decay to the 0+1 state, a limit for this decay has been obtained with T0n 1/2(82Se; 0+g s -&gt; 0+1) &gt; 2.3 1022 y at 90% CL, independently from the 2nbb decay process. These results are obtained for the first time with a tracko-calo detector, reconstructing every particle in the final state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06388v1-abstract-full').style.display = 'none'; document.getElementById('2001.06388v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Physics A Volume 996, April 2020, 121701 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.02859">arXiv:1908.02859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.02859">pdf</a>, <a href="https://arxiv.org/format/1908.02859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-021-00763-5">10.1038/s42005-021-00763-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Physics with an Opaque Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cabrera%2C+A">A. Cabrera</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">A. Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Anjos%2C+J+d">J. dos Anjos</a>, <a href="/search/physics?searchtype=author&amp;query=Bezerra%2C+T+J+C">T. J. C. Bezerra</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">C. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Breton%2C+D">D. Breton</a>, <a href="/search/physics?searchtype=author&amp;query=Buck%2C+C">C. Buck</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo%2C+E">E. Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chimenti%2C+P">P. Chimenti</a>, <a href="/search/physics?searchtype=author&amp;query=Corso%2C+F+D">F. Dal Corso</a>, <a href="/search/physics?searchtype=author&amp;query=De+Conto%2C+G">G. De Conto</a>, <a href="/search/physics?searchtype=author&amp;query=Dusini%2C+S">S. Dusini</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorentini%2C+G">G. Fiorentini</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+C+F">C. Frigerio Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Givaudan%2C+A">A. Givaudan</a>, <a href="/search/physics?searchtype=author&amp;query=Govoni%2C+P">P. Govoni</a>, <a href="/search/physics?searchtype=author&amp;query=Gramlich%2C+B">B. Gramlich</a>, <a href="/search/physics?searchtype=author&amp;query=Grassi%2C+M">M. Grassi</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y">Y. Han</a>, <a href="/search/physics?searchtype=author&amp;query=Hartnell%2C+J">J. Hartnell</a>, <a href="/search/physics?searchtype=author&amp;query=Hugon%2C+C">C. Hugon</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.02859v2-abstract-short" style="display: inline;"> In 1956 Reines &amp; Cowan discovered the neutrino using a liquid scintillator detector. The neutrinos interacted with the scintillator, producing light that propagated across transparent volumes to surrounding photo-sensors. This approach has remained one of the most widespread and successful neutrino detection technologies used since. This article introduces a concept that breaks with the convention&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02859v2-abstract-full').style.display = 'inline'; document.getElementById('1908.02859v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.02859v2-abstract-full" style="display: none;"> In 1956 Reines &amp; Cowan discovered the neutrino using a liquid scintillator detector. The neutrinos interacted with the scintillator, producing light that propagated across transparent volumes to surrounding photo-sensors. This approach has remained one of the most widespread and successful neutrino detection technologies used since. This article introduces a concept that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an opaque scintillator and a dense array of optical fibres. This technique, called LiquidO, can provide high-resolution imaging to enable efficient identification of individual particles event-by-event. A natural affinity for adding dopants at high concentrations is provided by the use of an opaque medium. With these and other capabilities, the potential of our detector concept to unlock opportunities in neutrino physics is presented here, alongside the results of the first experimental validation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02859v2-abstract-full').style.display = 'none'; document.getElementById('1908.02859v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 4, 273 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02704">arXiv:1906.02704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.02704">pdf</a>, <a href="https://arxiv.org/format/1906.02704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7629-z">10.1140/epjc/s10052-020-7629-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=KM3NeT+Collaboration"> KM3NeT Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Ageron%2C+M">M. Ageron</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Androulakis%2C+G">G. Androulakis</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aublin%2C+J">J. Aublin</a>, <a href="/search/physics?searchtype=author&amp;query=Bagatelas%2C+C">C. Bagatelas</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarino%2C+G">G. Barbarino</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Pree%2C+S+B+d">S. Basegmez du Pree</a>, <a href="/search/physics?searchtype=author&amp;query=Belias%2C+A">A. Belias</a>, <a href="/search/physics?searchtype=author&amp;query=Berbee%2C+E">E. Berbee</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+A+M+v+d">A. M. van den Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=van+Beveren%2C+V">V. van Beveren</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Biagioni%2C+A">A. Biagioni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianucci%2C+S">S. Bianucci</a>, <a href="/search/physics?searchtype=author&amp;query=Billault%2C+M">M. Billault</a>, <a href="/search/physics?searchtype=author&amp;query=Bissinger%2C+M">M. Bissinger</a>, <a href="/search/physics?searchtype=author&amp;query=de+Boer%2C+R">R. de Boer</a> , et al. (240 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02704v3-abstract-short" style="display: inline;"> KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV-PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The fir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02704v3-abstract-full').style.display = 'inline'; document.getElementById('1906.02704v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02704v3-abstract-full" style="display: none;"> KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV-PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232-3386 m seawater depth is obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02704v3-abstract-full').style.display = 'none'; document.getElementById('1906.02704v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 99 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.02159">arXiv:1903.02159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.02159">pdf</a>, <a href="https://arxiv.org/format/1903.02159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164569">10.1016/j.nima.2020.164569 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Track length measurement of $^{19}$F$^+$ ions with the MIMAC Dark Matter directional detector prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tao%2C+Y">Y. Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Beaufort%2C+C">C. Beaufort</a>, <a href="/search/physics?searchtype=author&amp;query=Moric%2C+I">I. Moric</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+C">C. Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+D">D. Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Sauzet%2C+N">N. Sauzet</a>, <a href="/search/physics?searchtype=author&amp;query=Couturier%2C+C">C. Couturier</a>, <a href="/search/physics?searchtype=author&amp;query=Guillaudin%2C+O">O. Guillaudin</a>, <a href="/search/physics?searchtype=author&amp;query=Muraz%2C+J+F">J. F. Muraz</a>, <a href="/search/physics?searchtype=author&amp;query=Naraghi%2C+F">F. Naraghi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+N">N. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.02159v3-abstract-short" style="display: inline;"> Weakly Interacting Massive Particles (WIMPs) are one of the most preferred candidate for Dark Matter. WIMPs should interact with the nuclei of detectors. If a robust signal is eventually observed in direct detection experiments, the best signature to confirm its Galactic origin would be the nuclear recoil track direction. The MIMAC collaboration has developed a low pressure gas detector providing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02159v3-abstract-full').style.display = 'inline'; document.getElementById('1903.02159v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.02159v3-abstract-full" style="display: none;"> Weakly Interacting Massive Particles (WIMPs) are one of the most preferred candidate for Dark Matter. WIMPs should interact with the nuclei of detectors. If a robust signal is eventually observed in direct detection experiments, the best signature to confirm its Galactic origin would be the nuclear recoil track direction. The MIMAC collaboration has developed a low pressure gas detector providing both the kinetic energy and three-dimensional track reconstruction of nuclear recoils. In this paper we report the first ever observations of $^{19}$F nuclei tracks in a $5$ cm drift prototype MIMAC detector, in the low kinetic energy range ($6$-$26$ keV), using specially developed ion beam facilities. We have measured the recoil track lengths and found significant differences between our measurements and standard simulations. In order to understand these differences, we have performed a series of complementary experiments and simulations to study the impact of the diffusion and eventual systematics. We show an unexpected dependence of the number of read-out corresponding to the track on the electric field applied to the $512\ \mathrm{渭m}$ gap of the Micromegas detector. We have introduced, based on the flash-ADC observable, corrections in order to reconstruct the physical 3D track length of the primary electron clouds proposing the physics behind these corrections. We show that diffusion and space charge effects need to be taken into account to explain the differences between measurements and standard simulations. These measurements and simulations may shed a new light on the high-gain TPC ionization signals in general and particularly at low energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02159v3-abstract-full').style.display = 'none'; document.getElementById('1903.02159v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 985, 1 January 2021, 164569 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.04536">arXiv:1710.04536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.04536">pdf</a>, <a href="https://arxiv.org/format/1710.04536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/01/P01009">10.1088/1748-0221/13/01/P01009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of a spherical Xenon gas TPC for neutrinoless double beta detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">A. Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+M">M. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Dastgheibi-Fard%2C+A">A. Dastgheibi-Fard</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Jullian%2C+S">S. Jullian</a>, <a href="/search/physics?searchtype=author&amp;query=Katsioulas%2C+I">I. Katsioulas</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&amp;query=Lautridou%2C+P">P. Lautridou</a>, <a href="/search/physics?searchtype=author&amp;query=Marquet%2C+C">C. Marquet</a>, <a href="/search/physics?searchtype=author&amp;query=Navick%2C+X+F">X. F. Navick</a>, <a href="/search/physics?searchtype=author&amp;query=Perrot%2C+F">F. Perrot</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Simard%2C+L">L. Simard</a>, <a href="/search/physics?searchtype=author&amp;query=Zampaolo%2C+M">M. Zampaolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.04536v2-abstract-short" style="display: inline;"> Several efforts are ongoing for the development of spherical gaseous time projection chamber detectors for the observation of rare phenomena such as weakly interacting massive particles or neutrino interactions. The proposed detector, thanks to its simplicity, low energy threshold and energy resolution, could be used to observe the $尾\beta0谓$ process i.e. the neutrinoless double beta decay. In thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04536v2-abstract-full').style.display = 'inline'; document.getElementById('1710.04536v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.04536v2-abstract-full" style="display: none;"> Several efforts are ongoing for the development of spherical gaseous time projection chamber detectors for the observation of rare phenomena such as weakly interacting massive particles or neutrino interactions. The proposed detector, thanks to its simplicity, low energy threshold and energy resolution, could be used to observe the $尾\beta0谓$ process i.e. the neutrinoless double beta decay. In this work, a specific setup is presented for the measurement of $尾\beta0谓$ on 50~kg of $^{136}$Xe. The different backgrounds are studied, demonstrating the possibility to reach a total background per year in the detector mass at the level of 2 events per year. The obtained results are competitive with the present generation of experiments and could represent the first step of a more ambitious roadmap including the $尾\beta0谓$ search with different gases with the same detector and therefore the same background sources. The constraints in terms of detector constructions and material purity are also addressed, showing that none of them represents a show stopper for the proposed experimental setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04536v2-abstract-full').style.display = 'none'; document.getElementById('1710.04536v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2018_JINST_13_P01009 https://doi.org/10.1088/1748-0221/13/01/P01009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03649">arXiv:1708.03649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03649">pdf</a>, <a href="https://arxiv.org/ps/1708.03649">ps</a>, <a href="https://arxiv.org/format/1708.03649">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> An algorithm for the reconstruction of neutrino-induced showers in the ANTARES neutrino telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Avgitas%2C+T">T. Avgitas</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Barrios-Mart%C3%AD%2C+J">J. Barrios-Mart铆</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bormuth%2C+R">R. Bormuth</a>, <a href="/search/physics?searchtype=author&amp;query=Bourret%2C+S">S. Bourret</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A2nza%C5%9F%2C+H">H. Br芒nza艧</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Capone%2C+A">A. Capone</a>, <a href="/search/physics?searchtype=author&amp;query=Caramete%2C+L">L. Caramete</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+J">J. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Celli%2C+S">S. Celli</a>, <a href="/search/physics?searchtype=author&amp;query=Moursli%2C+R+C+E">R. Cherkaoui El Moursli</a> , et al. (102 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03649v2-abstract-short" style="display: inline;"> Muons created by $谓_渭$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03649v2-abstract-full').style.display = 'inline'; document.getElementById('1708.03649v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03649v2-abstract-full" style="display: none;"> Muons created by $谓_渭$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a median angular resolution of about \unit{0.4}{\degree} for an $E^{-2}$ neutrino spectrum. In this paper, an algorithm optimised for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current (NC) interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in $谓_蟿$ CC interactions will in most cases lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about \unit{1}{\metre}, the neutrino direction is reconstructed with a median angular resolution between \unit{2}{\degree} and \unit{3}{\degree} in the energy range of \SIrange{1}{1000}{TeV}. In this energy interval, the uncertainty on the reconstructed neutrino energy is about \SIrange{5}{10}{\%}. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03649v2-abstract-full').style.display = 'none'; document.getElementById('1708.03649v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.06823">arXiv:1707.06823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.06823">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2017.06.044">10.1016/j.nima.2017.06.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calorimeter development for the SuperNEMO double beta decay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Breton%2C+D">D. Breton</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Bure%C5%A1ov%C3%A0%2C+H">H. Bure拧ov脿</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caffrey%2C+A+J">A. J. Caffrey</a>, <a href="/search/physics?searchtype=author&amp;query=Calvez%2C+S">S. Calvez</a>, <a href="/search/physics?searchtype=author&amp;query=Cascella%2C+M">M. Cascella</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+J+P">J. P. Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&amp;query=Claverie%2C+G">G. Claverie</a>, <a href="/search/physics?searchtype=author&amp;query=De+Capua%2C+S">S. De Capua</a>, <a href="/search/physics?searchtype=author&amp;query=Delalee%2C+F">F. Delalee</a>, <a href="/search/physics?searchtype=author&amp;query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J+J">J. J. Evans</a>, <a href="/search/physics?searchtype=author&amp;query=Fajt%2C+L">L. Fajt</a>, <a href="/search/physics?searchtype=author&amp;query=Filosofov%2C+D">D. Filosofov</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.06823v1-abstract-short" style="display: inline;"> SuperNEMO is a double-$尾$ decay experiment, which will employ the successful tracker-calorimeter technique used in the recently completed NEMO-3 experiment. SuperNEMO will implement 100 kg of double-$尾$ decay isotope, reaching a sensitivity to the neutrinoless double-$尾$ decay ($0谓尾尾$) half-life of the order of $10^{26}$ yr, corresponding to a Majorana neutrino mass of 50-100 meV. One of the main&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06823v1-abstract-full').style.display = 'inline'; document.getElementById('1707.06823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.06823v1-abstract-full" style="display: none;"> SuperNEMO is a double-$尾$ decay experiment, which will employ the successful tracker-calorimeter technique used in the recently completed NEMO-3 experiment. SuperNEMO will implement 100 kg of double-$尾$ decay isotope, reaching a sensitivity to the neutrinoless double-$尾$ decay ($0谓尾尾$) half-life of the order of $10^{26}$ yr, corresponding to a Majorana neutrino mass of 50-100 meV. One of the main goals and challenges of the SuperNEMO detector development programme has been to reach a calorimeter energy resolution, $螖$E/E, around 3%/$sqrt(E)$(MeV) $蟽$, or 7%/$sqrt(E)$(MeV) FWHM (full width at half maximum), using a calorimeter composed of large volume plastic scintillator blocks coupled to photomultiplier tubes. We describe the R\&amp;D programme and the final design of the SuperNEMO calorimeter that has met this challenging goal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06823v1-abstract-full').style.display = 'none'; document.getElementById('1707.06823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.07176">arXiv:1702.07176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.07176">pdf</a>, <a href="https://arxiv.org/format/1702.07176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/06/P06002">10.1088/1748-0221/12/06/P06002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Birdsall%2C+E">E. Birdsall</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+S">S. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Boursette%2C+D">D. Boursette</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caffrey%2C+A+J">A. J. Caffrey</a>, <a href="/search/physics?searchtype=author&amp;query=Calvez%2C+S">S. Calvez</a>, <a href="/search/physics?searchtype=author&amp;query=Cascella%2C+M">M. Cascella</a>, <a href="/search/physics?searchtype=author&amp;query=Cebri%C3%A1n%2C+S">S. Cebri谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+J+P">J. P Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&amp;query=Dafn%C3%AD%2C+T">T. Dafn铆</a>, <a href="/search/physics?searchtype=author&amp;query=De+Capua%2C+S">S. De Capua</a>, <a href="/search/physics?searchtype=author&amp;query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&amp;query=Durand%2C+D">D. Durand</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J+J">J. J. Evans</a>, <a href="/search/physics?searchtype=author&amp;query=Fajt%2C+L">L. Fajt</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.07176v2-abstract-short" style="display: inline;"> The BiPo-3 detector, running in the Canfranc Underground Laboratory (Laboratorio Subterr谩neo de Canfranc, LSC, Spain) since 2013, is a low-radioactivity detector dedicated to measuring ultra low natural radionuclide contaminations of $^{208}$Tl ($^{232}$Th chain) and $^{214}$Bi ($^{238}$U chain) in thin materials. The total sensitive surface area of the detector is 3.6 m$^2$. The detector has been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07176v2-abstract-full').style.display = 'inline'; document.getElementById('1702.07176v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.07176v2-abstract-full" style="display: none;"> The BiPo-3 detector, running in the Canfranc Underground Laboratory (Laboratorio Subterr谩neo de Canfranc, LSC, Spain) since 2013, is a low-radioactivity detector dedicated to measuring ultra low natural radionuclide contaminations of $^{208}$Tl ($^{232}$Th chain) and $^{214}$Bi ($^{238}$U chain) in thin materials. The total sensitive surface area of the detector is 3.6 m$^2$. The detector has been developed to measure radiopurity of the selenium double $尾$-decay source foils of the SuperNEMO experiment. In this paper the design and performance of the detector, and results of the background measurements in $^{208}$Tl and $^{214}$Bi, are presented, and validation of the BiPo-3 measurement with a calibrated aluminium foil is discussed. Results of the $^{208}$Tl and $^{214}$Bi activity measurements of the first enriched $^{82}$Se foils of the double $尾$-decay SuperNEMO experiment are reported. The sensitivity of the BiPo-3 detector for the measurement of the SuperNEMO $^{82}$Se foils is $\mathcal{A}$($^{208}$Tl) $&lt;2$ $渭$Bq/kg (90\% C.L.) and $\mathcal{A}$($^{214}$Bi) $&lt;140$ $渭$Bq/kg (90\% C.L.) after 6 months of measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07176v2-abstract-full').style.display = 'none'; document.getElementById('1702.07176v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 12 (2017) P06002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.05621">arXiv:1612.05621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.05621">pdf</a>, <a href="https://arxiv.org/format/1612.05621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2017)008">10.1007/JHEP05(2017)008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adri%C3%A1n-Mart%C3%ADnez%2C+S">S. Adri谩n-Mart铆nez</a>, <a href="/search/physics?searchtype=author&amp;query=Ageron%2C+M">M. Ageron</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Anassontzis%2C+E+G">E. G. Anassontzis</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Androulakis%2C+G">G. Androulakis</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Avgitas%2C+T">T. Avgitas</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarino%2C+G">G. Barbarino</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarito%2C+E">E. Barbarito</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Barrios-Mart%C3%AD%2C+J">J. Barrios-Mart铆</a>, <a href="/search/physics?searchtype=author&amp;query=Belias%2C+A">A. Belias</a>, <a href="/search/physics?searchtype=author&amp;query=Berbee%2C+E">E. Berbee</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+A+v+d">A. van den Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Beurthey%2C+S">S. Beurthey</a>, <a href="/search/physics?searchtype=author&amp;query=van+Beveren%2C+V">V. van Beveren</a>, <a href="/search/physics?searchtype=author&amp;query=Beverini%2C+N">N. Beverini</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Biagioni%2C+A">A. Biagioni</a> , et al. (228 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.05621v2-abstract-short" style="display: inline;"> Studying atmospheric neutrino oscillations in the few-GeV range with a multimegaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05621v2-abstract-full').style.display = 'inline'; document.getElementById('1612.05621v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.05621v2-abstract-full" style="display: none;"> Studying atmospheric neutrino oscillations in the few-GeV range with a multimegaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1 - 20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05621v2-abstract-full').style.display = 'none'; document.getElementById('1612.05621v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 28 figures, JHEP published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The KM3NeT collaboration, Adri{谩}n-Mart{\&#39;谋}nez, S., Ageron, M. et al. J. High Energ. Phys. (2017) 2017: 8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.03226">arXiv:1610.03226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.03226">pdf</a>, <a href="https://arxiv.org/format/1610.03226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.012007">10.1103/PhysRevD.95.012007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the $2谓尾尾$ Decay Half-Life and Search for the $0谓尾尾$ Decay of $^{116}$Cd with the NEMO-3 Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+N">NEMO-3 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+R">R. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+J+D">J. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+S">S. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Boursette%2C+D">D. Boursette</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caffrey%2C+A+J">A. J. Caffrey</a>, <a href="/search/physics?searchtype=author&amp;query=Calvez%2C+S">S. Calvez</a>, <a href="/search/physics?searchtype=author&amp;query=Cascella%2C+M">M. Cascella</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+J+P">J. P. Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Chapon%2C+A">A. Chapon</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&amp;query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&amp;query=Durand%2C+D">D. Durand</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.03226v2-abstract-short" style="display: inline;"> The NEMO-3 experiment measured the half-life of the $2谓尾尾$ decay and searched for the $0谓尾尾$ decay of $^{116}$Cd. Using $410$ g of $^{116}$Cd installed in the detector with an exposure of $5.26$ y, ($4968\pm74$) events corresponding to the $2谓尾尾$ decay of $^{116}$Cd to the ground state of $^{116}$Sn have been observed with a signal to background ratio of about $12$. The half-life of the $2谓尾尾$ dec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.03226v2-abstract-full').style.display = 'inline'; document.getElementById('1610.03226v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.03226v2-abstract-full" style="display: none;"> The NEMO-3 experiment measured the half-life of the $2谓尾尾$ decay and searched for the $0谓尾尾$ decay of $^{116}$Cd. Using $410$ g of $^{116}$Cd installed in the detector with an exposure of $5.26$ y, ($4968\pm74$) events corresponding to the $2谓尾尾$ decay of $^{116}$Cd to the ground state of $^{116}$Sn have been observed with a signal to background ratio of about $12$. The half-life of the $2谓尾尾$ decay has been measured to be $ T_{1/2}^{2谓}=[2.74\pm0.04\mbox{(stat.)}\pm0.18\mbox{(syst.)}]\times10^{19}$ y. No events have been observed above the expected background while searching for $0谓尾尾$ decay. The corresponding limit on the half-life is determined to be $T_{1/2}^{0谓} \ge 1.0 \times 10^{23}$ y at the $90$ % C.L. which corresponds to an upper limit on the effective Majorana neutrino mass of $\langle m_谓 \rangle \le 1.4-2.5$ eV depending on the nuclear matrix elements considered. Limits on other mechanisms generating $0谓尾尾$ decay such as the exchange of R-parity violating supersymmetric particles, right-handed currents and majoron emission are also obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.03226v2-abstract-full').style.display = 'none'; document.getElementById('1610.03226v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 012007 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.08765">arXiv:1607.08765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.08765">pdf</a>, <a href="https://arxiv.org/format/1607.08765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Directional detection of Dark Matter with the MIcro-tpc MAtrix of Chambers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Couturier%2C+C">C. Couturier</a>, <a href="/search/physics?searchtype=author&amp;query=Guillaudin%2C+O">O. Guillaudin</a>, <a href="/search/physics?searchtype=author&amp;query=Naraghi%2C+F">F. Naraghi</a>, <a href="/search/physics?searchtype=author&amp;query=Riffard%2C+Q">Q. Riffard</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+D">D. Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Sauzet%2C+N">N. Sauzet</a>, <a href="/search/physics?searchtype=author&amp;query=Colas%2C+P">P. Colas</a>, <a href="/search/physics?searchtype=author&amp;query=Ribas%2C+E+F">E. Ferrer Ribas</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Fouchez%2C+D">D. Fouchez</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+C">C. Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+N">N. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.08765v1-abstract-short" style="display: inline;"> Particles weakly interacting with ordinary matter, with an associated mass of the order of an atomic nucleus (WIMPs), are plausible candidates for Dark Matter. The direct detection of an elastic collision of a target nuclei induced by one of these WIMPs has to be discriminated from the signal produced by the neutrons, which leaves the same signal in a detector. The MIMAC (MIcro-tpc MAtrix of Chamb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.08765v1-abstract-full').style.display = 'inline'; document.getElementById('1607.08765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.08765v1-abstract-full" style="display: none;"> Particles weakly interacting with ordinary matter, with an associated mass of the order of an atomic nucleus (WIMPs), are plausible candidates for Dark Matter. The direct detection of an elastic collision of a target nuclei induced by one of these WIMPs has to be discriminated from the signal produced by the neutrons, which leaves the same signal in a detector. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed an original prototype detector which combines a large pixelated Micromegas coupled with a fast, self-triggering, electronics. Aspects of the two-chamber module in operation in the Modane Underground Laboratory are presented: calibration, characterization of the $^{222}$Rn progeny. A new test bench combining a MIMAC chamber with the COMIMAC portable quenching line has been set up to characterize the 3D tracks of low energy ions in the MIMAC gas mixture: the preliminary results thereof are presented. Future steps are briefly discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.08765v1-abstract-full').style.display = 'none'; document.getElementById('1607.08765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure. Proceedings of the 51st Rencontres de Moriond: Cosmology, March 19-26, 2016, La Thuile, Italy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.08494">arXiv:1606.08494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.08494">pdf</a>, <a href="https://arxiv.org/format/1606.08494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.072003">10.1103/PhysRevD.94.072003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the 2$谓尾尾$ decay half-life of $^{150}$Nd and a search for 0$谓尾尾$ decay processes with the full exposure from the NEMO-3 detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+N">NEMO-3 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+R">R. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+J+D">J. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+S">S. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caffrey%2C+A+J">A. J. Caffrey</a>, <a href="/search/physics?searchtype=author&amp;query=Calvez%2C+S">S. Calvez</a>, <a href="/search/physics?searchtype=author&amp;query=Cascell%2C+M">M. Cascell</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+J+P">J. P. Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Chapon%2C+A">A. Chapon</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&amp;query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&amp;query=Durand%2C+D">D. Durand</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+J+J">J. J. Evans</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.08494v2-abstract-short" style="display: inline;"> We present results from a search for neutrinoless double-$尾$ ($0谓尾尾$) decay using 36.6 g of the isotope $^{150}$Nd with data corresponding to a live time of 5.25 y recorded with the NEMO-3 detector. We construct a complete background model for this isotope, including a measurement of the two-neutrino double-$尾$ decay half-life of $T^{2谓}_{1/2}=$[9.34 $\pm$ 0.22 (stat.) $^{+0.62}_{-0.60}$ (syst.)]&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08494v2-abstract-full').style.display = 'inline'; document.getElementById('1606.08494v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.08494v2-abstract-full" style="display: none;"> We present results from a search for neutrinoless double-$尾$ ($0谓尾尾$) decay using 36.6 g of the isotope $^{150}$Nd with data corresponding to a live time of 5.25 y recorded with the NEMO-3 detector. We construct a complete background model for this isotope, including a measurement of the two-neutrino double-$尾$ decay half-life of $T^{2谓}_{1/2}=$[9.34 $\pm$ 0.22 (stat.) $^{+0.62}_{-0.60}$ (syst.)]$\times 10^{18}$ y for the ground state transition, which represents the most precise result to date for this isotope. We perform a multivariate analysis to search for \zeronu decays in order to improve the sensitivity and, in the case of observation, disentangle the possible underlying decay mechanisms. As no evidence for \zeronu decay is observed, we derive lower limits on half-lives for several mechanisms involving physics beyond the Standard Model. The observed lower limit, assuming light Majorana neutrino exchange mediates the decay, is $T^{0谓}_{1/2} &gt;$ 2.0 $\times 10^{22}$ y at the 90% C.L., corresponding to an upper limit on the effective neutrino mass of $\langle m_谓 \rangle$ $&lt;$ 1.6 - 5.3 eV.. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08494v2-abstract-full').style.display = 'none'; document.getElementById('1606.08494v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, Final journal version after peer review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 072003 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.01710">arXiv:1604.01710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.01710">pdf</a>, <a href="https://arxiv.org/format/1604.01710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.112008">10.1103/PhysRevD.93.112008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of $^{48}{\rm Ca}$ with the NEMO-3 detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+N">NEMO-3 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+R">R. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A+M">A. M. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+J+D">J. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+S">S. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Caffrey%2C+A+J">A. J. Caffrey</a>, <a href="/search/physics?searchtype=author&amp;query=Calvez%2C+S">S. Calvez</a>, <a href="/search/physics?searchtype=author&amp;query=Cascella%2C+M">M. Cascella</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+J+P">J. P. Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Chapon%2C+A">A. Chapon</a>, <a href="/search/physics?searchtype=author&amp;query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&amp;query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&amp;query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&amp;query=Durand%2C+D">D. Durand</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+V">V. Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.01710v3-abstract-short" style="display: inline;"> The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$尾$ decay of $^{48}{\rm Ca}$. Using $5.25$ yr of data recorded with a $6.99\,{\rm g}$ sample of $^{48}{\rm Ca}$, approximately $150$ double-$尾$ decay candidate events have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$尾$ decay of $^{48}{\rm Ca}$ has&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01710v3-abstract-full').style.display = 'inline'; document.getElementById('1604.01710v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.01710v3-abstract-full" style="display: none;"> The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$尾$ decay of $^{48}{\rm Ca}$. Using $5.25$ yr of data recorded with a $6.99\,{\rm g}$ sample of $^{48}{\rm Ca}$, approximately $150$ double-$尾$ decay candidate events have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$尾$ decay of $^{48}{\rm Ca}$ has been measured to be $T^{2谓}_{1/2}\,=\,[6.4\, ^{+0.7}_{-0.6}{\rm (stat.)} \, ^{+1.2}_{-0.9}{\rm (syst.)}] \times 10^{19}\,{\rm yr}$. A search for neutrinoless double-$尾$ decay of $^{48}{\rm Ca}$ yields a null result and a corresponding lower limit on the half-life is found to be $T^{0谓}_{1/2} &gt; 2.0 \times 10^{22}\,{\rm yr}$ at $90\%$ confidence level, translating into an upper limit on the effective Majorana neutrino mass of $&lt; m_{尾尾} &gt; &lt; 6.0 - 26$ ${\rm eV}$, with the range reflecting different nuclear matrix element calculations. Limits are also set on models involving Majoron emission and right-handed currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01710v3-abstract-full').style.display = 'none'; document.getElementById('1604.01710v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, 3 tables. Final journal version after peer review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 112008 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01738">arXiv:1602.01738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01738">pdf</a>, <a href="https://arxiv.org/format/1602.01738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/11/08/P08011">10.1088/1748-0221/11/08/P08011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIMAC low energy electron-recoil discrimination measured with fast neutrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Riffard%2C+Q">Q. Riffard</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+D">D. Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Guillaudin%2C+O">O. Guillaudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bosson%2C+G">G. Bosson</a>, <a href="/search/physics?searchtype=author&amp;query=Bourrion%2C+O">O. Bourrion</a>, <a href="/search/physics?searchtype=author&amp;query=Bouvier%2C+J">J. Bouvier</a>, <a href="/search/physics?searchtype=author&amp;query=Descombes%2C+T">T. Descombes</a>, <a href="/search/physics?searchtype=author&amp;query=Muraz%2C+J+-">J. -F. Muraz</a>, <a href="/search/physics?searchtype=author&amp;query=Lebreton%2C+L">L. Lebreton</a>, <a href="/search/physics?searchtype=author&amp;query=Maire%2C+D">D. Maire</a>, <a href="/search/physics?searchtype=author&amp;query=Colas%2C+P">P. Colas</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Fouchez%2C+D">D. Fouchez</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+C">C. Tao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01738v4-abstract-short" style="display: inline;"> MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01738v4-abstract-full').style.display = 'inline'; document.getElementById('1602.01738v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01738v4-abstract-full" style="display: none;"> MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. This analysis shows that a $10^5$ rejection power is reachable for electron/recoil discrimination. Moreover, the efficiency was estimated by a Monte-Carlo simulation showing that a 105 electron rejection power is reached with a $86.49\pm 0.17$\% nuclear recoil efficiency considering the full energy range and $94.67\pm0.19$\% considering a 5~keV lower threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01738v4-abstract-full').style.display = 'none'; document.getElementById('1602.01738v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.07459">arXiv:1601.07459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.07459">pdf</a>, <a href="https://arxiv.org/format/1601.07459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/43/8/084001">10.1088/0954-3899/43/8/084001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Letter of Intent for KM3NeT 2.0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adri%C3%A1n-Mart%C3%ADnez%2C+S">S. Adri谩n-Mart铆nez</a>, <a href="/search/physics?searchtype=author&amp;query=Ageron%2C+M">M. Ageron</a>, <a href="/search/physics?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Anassontzis%2C+E">E. Anassontzis</a>, <a href="/search/physics?searchtype=author&amp;query=Andre%2C+M">M. Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Androulakis%2C+G">G. Androulakis</a>, <a href="/search/physics?searchtype=author&amp;query=Anghinolfi%2C+M">M. Anghinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Avgitas%2C+T">T. Avgitas</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarino%2C+G">G. Barbarino</a>, <a href="/search/physics?searchtype=author&amp;query=Barbarito%2C+E">E. Barbarito</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Barrios-Mart%C3%AD%2C+J">J. Barrios-Mart铆</a>, <a href="/search/physics?searchtype=author&amp;query=Belhorma%2C+B">B. Belhorma</a>, <a href="/search/physics?searchtype=author&amp;query=Belias%2C+A">A. Belias</a>, <a href="/search/physics?searchtype=author&amp;query=Berbee%2C+E">E. Berbee</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+A+v+d">A. van den Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Beurthey%2C+S">S. Beurthey</a>, <a href="/search/physics?searchtype=author&amp;query=van+Beveren%2C+V">V. van Beveren</a>, <a href="/search/physics?searchtype=author&amp;query=Beverini%2C+N">N. Beverini</a> , et al. (222 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.07459v2-abstract-short" style="display: inline;"> The main objectives of the KM3NeT Collaboration are i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: 1) The high-energy astrophysical neutrino signal reported by IceCube and 2) the sizable contribution of elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.07459v2-abstract-full').style.display = 'inline'; document.getElementById('1601.07459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.07459v2-abstract-full" style="display: none;"> The main objectives of the KM3NeT Collaboration are i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: 1) The high-energy astrophysical neutrino signal reported by IceCube and 2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergetic opportunities for the earth and sea sciences community. Three suitable deep-sea sites are identified, namely off-shore Toulon (France), Capo Passero (Italy) and Pylos (Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a 3-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be configured to fully explore the IceCube signal with different methodology, improved resolution and complementary field of view, including the Galactic plane. One building block will be configured to precisely measure atmospheric neutrino oscillations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.07459v2-abstract-full').style.display = 'none'; document.getElementById('1601.07459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">119 pages, published version, revised Eq. 6, 7</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics G: Nuclear and Particle Physics, 43 (8), 084001, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.07166">arXiv:1508.07166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.07166">pdf</a>, <a href="https://arxiv.org/format/1508.07166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> JUNO Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">T. Adam</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">F. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">G. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">V. Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Baccolo%2C+G">G. Baccolo</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">M. Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">E. Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">M. Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">D. Bick</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Boarin%2C+S">S. Boarin</a>, <a href="/search/physics?searchtype=author&amp;query=Brigatti%2C+A">A. Brigatti</a>, <a href="/search/physics?searchtype=author&amp;query=Brugi%C3%A8re%2C+T">T. Brugi猫re</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">R. Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Avanzini%2C+M+B">M. Buizza Avanzini</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cabrera%2C+A">A. Cabrera</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">X. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cammi%2C+A">A. Cammi</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G">G. Cao</a> , et al. (372 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.07166v2-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the dete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07166v2-abstract-full').style.display = 'inline'; document.getElementById('1508.07166v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.07166v2-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4$蟽$, and determine neutrino oscillation parameters $\sin^2胃_{12}$, $螖m^2_{21}$, and $|螖m^2_{ee}|$ to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. $\sim$17,000 508-mm diameter PMTs with high quantum efficiency provide $\sim$75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07166v2-abstract-full').style.display = 'none'; document.getElementById('1508.07166v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">328 pages, 211 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.05613">arXiv:1507.05613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.05613">pdf</a>, <a href="https://arxiv.org/ps/1507.05613">ps</a>, <a href="https://arxiv.org/format/1507.05613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/43/3/030401">10.1088/0954-3899/43/3/030401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Physics with JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Beacom%2C+J">John Beacom</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">Leonid Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">Simon Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">Riccardo Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Avanzini%2C+M+B">Margherita Buizza Avanzini</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">Jose Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cabrera%2C+A">Anatael Cabrera</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hao Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">Xiao Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cammi%2C+A">Antonio Cammi</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G">Guofu Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Yun Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shaomin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shenjian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yixue Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">Davide Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">Massimiliano Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Clerbaux%2C+B">Barbara Clerbaux</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">Janet Conrad</a> , et al. (203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.05613v2-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmosp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05613v2-abstract-full').style.display = 'inline'; document.getElementById('1507.05613v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.05613v2-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\to K^++\bar谓$ decay channel. The JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05613v2-abstract-full').style.display = 'none'; document.getElementById('1507.05613v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version submitted to Journal of Physics G, with minor typo corrections. 222 Pages, 147 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G 43 (2016) 030401 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04182">arXiv:1507.04182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.04182">pdf</a>, <a href="https://arxiv.org/ps/1507.04182">ps</a>, <a href="https://arxiv.org/format/1507.04182">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2016.02.001">10.1016/j.astropartphys.2016.02.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adri%C3%A1n-Mart%C3%ADnez%2C+S">S. Adri谩n-Mart铆nez</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+A">A. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Andr%C3%A9%2C+M">M. Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Ardid%2C+M">M. Ardid</a>, <a href="/search/physics?searchtype=author&amp;query=Aubert%2C+J+-">J. -J. Aubert</a>, <a href="/search/physics?searchtype=author&amp;query=Baret%2C+B">B. Baret</a>, <a href="/search/physics?searchtype=author&amp;query=Barrios-Mart%C3%AD%2C+J">J. Barrios-Mart铆</a>, <a href="/search/physics?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/physics?searchtype=author&amp;query=Bertin%2C+V">V. Bertin</a>, <a href="/search/physics?searchtype=author&amp;query=Biagi%2C+S">S. Biagi</a>, <a href="/search/physics?searchtype=author&amp;query=Bogazzi%2C+C">C. Bogazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bormuth%2C+R">R. Bormuth</a>, <a href="/search/physics?searchtype=author&amp;query=Bou-Cabo%2C+M">M. Bou-Cabo</a>, <a href="/search/physics?searchtype=author&amp;query=Bouwhuis%2C+M+C">M. C. Bouwhuis</a>, <a href="/search/physics?searchtype=author&amp;query=Bruijn%2C+R">R. Bruijn</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Capone%2C+A">A. Capone</a>, <a href="/search/physics?searchtype=author&amp;query=Caramete%2C+L">L. Caramete</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+J">J. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Chiarusi%2C+T">T. Chiarusi</a>, <a href="/search/physics?searchtype=author&amp;query=Circella%2C+M">M. Circella</a>, <a href="/search/physics?searchtype=author&amp;query=Coniglione%2C+R">R. Coniglione</a>, <a href="/search/physics?searchtype=author&amp;query=Costantini%2C+H">H. Costantini</a> , et al. (105 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04182v1-abstract-short" style="display: inline;"> The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\sim$10 TeV the muon and the incident neutrino are almost c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04182v1-abstract-full').style.display = 'inline'; document.getElementById('1507.04182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04182v1-abstract-full" style="display: none;"> The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04182v1-abstract-full').style.display = 'none'; document.getElementById('1507.04182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Astroparticle Physics (17 pages, 11 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.03216">arXiv:1507.03216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.03216">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Reference material for natural radionuclides in glass designed for underground experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Povinec%2C+P+P">P. P. Povinec</a>, <a href="/search/physics?searchtype=author&amp;query=Pham%2C+M+K">M. K. Pham</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&amp;query=Degering%2C+D">D. Degering</a>, <a href="/search/physics?searchtype=author&amp;query=Hamajima%2C+Y">Y. Hamajima</a>, <a href="/search/physics?searchtype=author&amp;query=Holy%2C+K">K. Holy</a>, <a href="/search/physics?searchtype=author&amp;query=Hult%2C+M">M. Hult</a>, <a href="/search/physics?searchtype=author&amp;query=Jeskovsky%2C+M">M. Jeskovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Koehler%2C+M">M. Koehler</a>, <a href="/search/physics?searchtype=author&amp;query=Kovacik%2C+A">A. Kovacik</a>, <a href="/search/physics?searchtype=author&amp;query=Laubenstein%2C+M">M. Laubenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&amp;query=Mamedov%2C+F">F. Mamedov</a>, <a href="/search/physics?searchtype=author&amp;query=Marquet%2C+C">C. Marquet</a>, <a href="/search/physics?searchtype=author&amp;query=Mott%2C+J">J. Mott</a>, <a href="/search/physics?searchtype=author&amp;query=Mullerova%2C+M">M. Mullerova</a>, <a href="/search/physics?searchtype=author&amp;query=Perrot%2C+F">F. Perrot</a>, <a href="/search/physics?searchtype=author&amp;query=Piquemal%2C+F">F. Piquemal</a>, <a href="/search/physics?searchtype=author&amp;query=Reyss%2C+J+-">J. -L. Reyss</a>, <a href="/search/physics?searchtype=author&amp;query=Saakyan%2C+R">R. Saakyan</a>, <a href="/search/physics?searchtype=author&amp;query=Simgen%2C+H">H. Simgen</a>, <a href="/search/physics?searchtype=author&amp;query=Soule%2C+B">B. Soule</a>, <a href="/search/physics?searchtype=author&amp;query=Stanicek%2C+J">J. Stanicek</a>, <a href="/search/physics?searchtype=author&amp;query=Sykora%2C+I">I. Sykora</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.03216v1-abstract-short" style="display: inline;"> A reference material designed for the determination of natural radionuclides in solid samples (glass pellets) is described and the results of certification are presented. The material has been certified for 7 natural radionuclides (40K, 226Ra, 228Ra, 228Th, 232Th, 235U and 238U). An information value is given for 210Pb. Radon (222Rn) emanation experiments showed results comparable within participa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03216v1-abstract-full').style.display = 'inline'; document.getElementById('1507.03216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.03216v1-abstract-full" style="display: none;"> A reference material designed for the determination of natural radionuclides in solid samples (glass pellets) is described and the results of certification are presented. The material has been certified for 7 natural radionuclides (40K, 226Ra, 228Ra, 228Th, 232Th, 235U and 238U). An information value is given for 210Pb. Radon (222Rn) emanation experiments showed results comparable within participating laboratories, however, the number of data and precision was too low to carry out a certification process. The reference material may be used for quality management of analytical laboratories engaged in the high-sensitive analysis of radionuclides in the construction materials of detectors placed in ultra low background underground laboratories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03216v1-abstract-full').style.display = 'none'; document.getElementById('1507.03216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages 6 tables, 3 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Busto%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Busto%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Busto%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10