CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–26 of 26 results for author: <span class="mathjax">Boulay, M G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Boulay%2C+M+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Boulay, M G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Boulay%2C+M+G&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Boulay, M G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14071">arXiv:2408.14071</a> <span> [<a href="https://arxiv.org/pdf/2408.14071">pdf</a>, <a href="https://arxiv.org/format/2408.14071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (294 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14071v1-abstract-short" style="display: inline;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14071v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14071v1-abstract-full" style="display: none;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within $\pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'none'; document.getElementById('2408.14071v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18597">arXiv:2406.18597</a> <span> [<a href="https://arxiv.org/pdf/2406.18597">pdf</a>, <a href="https://arxiv.org/format/2406.18597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Relative Measurement and Extrapolation of the Scintillation Quenching Factor of $伪$-Particles in Liquid Argon using DEAP-3600 Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+Collaboration"> The DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+M">M. Dunford</a>, <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a> , et al. (79 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18597v2-abstract-short" style="display: inline;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18597v2-abstract-full" style="display: none;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace amounts in the DEAP-3600 detector and quantified the uncertainty of extrapolating the quenching factor to the low-energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'none'; document.getElementById('2406.18597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures (added 1 figure, revised 3 figures), 2 tables, revised sections 3, 4, 5. Accepted in Eur. Phys. J. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18492">arXiv:2404.18492</a> <span> [<a href="https://arxiv.org/pdf/2404.18492">pdf</a>, <a href="https://arxiv.org/format/2404.18492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/09/P09021">10.1088/1748-0221/19/09/P09021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F">I. F. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18492v1-abstract-short" style="display: inline;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surround… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18492v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18492v1-abstract-full" style="display: none;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'none'; document.getElementById('2404.18492v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P09021 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15454">arXiv:2307.15454</a> <span> [<a href="https://arxiv.org/pdf/2307.15454">pdf</a>, <a href="https://arxiv.org/format/2307.15454">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Directionality of nuclear recoils in a liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+D">The DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barrado-Olmedo%2C+A">A. Barrado-Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a> , et al. (243 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15454v1-abstract-short" style="display: inline;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scint… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15454v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15454v1-abstract-full" style="display: none;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R < 1.072 with 90% confidence level <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'none'; document.getElementById('2307.15454v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, submitted to Eur. Phys. J. C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84:24 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14639">arXiv:2302.14639</a> <span> [<a href="https://arxiv.org/pdf/2302.14639">pdf</a>, <a href="https://arxiv.org/format/2302.14639">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11678-6">10.1140/epjc/s10052-023-11678-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Measurement of the Specific Activity of $^{39}$Ar in Atmospheric Argon with the DEAP-3600 Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Baldwin%2C+M">M. Baldwin</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Benmansour%2C+H">H. Benmansour</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Burghardt%2C+P+M">P. M. Burghardt</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Cavuoti%2C+S">S. Cavuoti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14639v2-abstract-short" style="display: inline;"> The specific activity of the beta decay of $^{39}$Ar in atmospheric argon is measured using the DEAP-3600 detector. DEAP-3600, located 2 km underground at SNOLAB, uses a total of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere to search for dark matter. This detector with very low background uses pulseshape discrimination to differentiate between nuclear recoils and electron recoi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14639v2-abstract-full').style.display = 'inline'; document.getElementById('2302.14639v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14639v2-abstract-full" style="display: none;"> The specific activity of the beta decay of $^{39}$Ar in atmospheric argon is measured using the DEAP-3600 detector. DEAP-3600, located 2 km underground at SNOLAB, uses a total of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere to search for dark matter. This detector with very low background uses pulseshape discrimination to differentiate between nuclear recoils and electron recoils and is well-suited to measure the decay of $^{39}$Ar. With 167 live-days of data, the measured specific activity at the time of atmospheric extraction is [0.964 $\pm$ 0.001 (stat) $\pm$ 0.024 (sys)] Bq/kg$_{\rm atmAr}$ which is consistent with results from other experiments. A cross-check analysis using different event selection criteria provides a consistent result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14639v2-abstract-full').style.display = 'none'; document.getElementById('2302.14639v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 642 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01177">arXiv:2209.01177</a> <span> [<a href="https://arxiv.org/pdf/2209.01177">pdf</a>, <a href="https://arxiv.org/format/2209.01177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.112006">10.1103/PhysRevD.107.112006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Berzin%2C+E">E. Berzin</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+E">E. Borisova</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a> , et al. (274 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01177v2-abstract-short" style="display: inline;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'inline'; document.getElementById('2209.01177v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01177v2-abstract-full" style="display: none;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c$^2$ considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'none'; document.getElementById('2209.01177v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 112006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01632">arXiv:2201.01632</a> <span> [<a href="https://arxiv.org/pdf/2201.01632">pdf</a>, <a href="https://arxiv.org/format/2201.01632">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphy.2023.1181400">10.3389/fphy.2023.1181400 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SiPM cross-talk in liquid argon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Camillo%2C+V">V. Camillo</a>, <a href="/search/physics?searchtype=author&query=Canci%2C+N">N. Canci</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Consiglio%2C+L">L. Consiglio</a>, <a href="/search/physics?searchtype=author&query=Flammini%2C+A">A. Flammini</a>, <a href="/search/physics?searchtype=author&query=Galbiati%2C+C">C. Galbiati</a>, <a href="/search/physics?searchtype=author&query=Ghiano%2C+C">C. Ghiano</a>, <a href="/search/physics?searchtype=author&query=Gola%2C+A">A. Gola</a>, <a href="/search/physics?searchtype=author&query=Horikawa%2C+S">S. Horikawa</a>, <a href="/search/physics?searchtype=author&query=Kachru%2C+P">P. Kachru</a>, <a href="/search/physics?searchtype=author&query=Kochanek%2C+I">I. Kochanek</a>, <a href="/search/physics?searchtype=author&query=Kondo%2C+K">K. Kondo</a>, <a href="/search/physics?searchtype=author&query=Korga%2C+G">G. Korga</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Mazzi%2C+A">A. Mazzi</a>, <a href="/search/physics?searchtype=author&query=Moharana%2C+A">A. Moharana</a>, <a href="/search/physics?searchtype=author&query=Nieradka%2C+G">G. Nieradka</a>, <a href="/search/physics?searchtype=author&query=Paternoster%2C+G">G. Paternoster</a>, <a href="/search/physics?searchtype=author&query=Razeto%2C+A">A. Razeto</a>, <a href="/search/physics?searchtype=author&query=Sablone%2C+D">D. Sablone</a>, <a href="/search/physics?searchtype=author&query=Thorpe%2C+T+N">T. N. Thorpe</a>, <a href="/search/physics?searchtype=author&query=T%C3%BCrko%C4%9Flu%2C+C">C. T眉rko臒lu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&query=Rescigno%2C+M">M. Rescigno</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01632v2-abstract-short" style="display: inline;"> SiPM-based readouts are becoming the standard for light detection in particle detectors given their superior resolution and ease of use with respect to vacuum tube photo-multipliers. However, the contributions of detection noise such as the dark rate, cross-talk, and after-pulsing may impact significantly their performance. In this work, we present the development of highly reflective single-phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01632v2-abstract-full').style.display = 'inline'; document.getElementById('2201.01632v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01632v2-abstract-full" style="display: none;"> SiPM-based readouts are becoming the standard for light detection in particle detectors given their superior resolution and ease of use with respect to vacuum tube photo-multipliers. However, the contributions of detection noise such as the dark rate, cross-talk, and after-pulsing may impact significantly their performance. In this work, we present the development of highly reflective single-phase argon chambers capable of light yields up to 32 photo-electrons per keV, with roughly 12 being primary photo-electrons generated by the argon scintillation, while the rest are accounted by optical cross-talk. Furthermore, the presence of compound processes results in a generalized Fano factor larger than 2 already at an over-voltage of 5 V. Finally, we present a parametrization of the optical cross-talk for the FBK NUV-HD-Cryo SiPMs at 87 K that can be extended to future detectors with tailored optical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01632v2-abstract-full').style.display = 'none'; document.getElementById('2201.01632v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 11, 1181400 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11581">arXiv:2112.11581</a> <span> [<a href="https://arxiv.org/pdf/2112.11581">pdf</a>, <a href="https://arxiv.org/format/2112.11581">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167119">10.1016/j.nima.2022.167119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultraviolet-induced fluorescence of poly(methyl methacrylate) compared to 1,1,4,4-tetraphenyl-1,3-butadiene down to 4 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a>, <a href="/search/physics?searchtype=author&query=Benmansour%2C+H">H. Benmansour</a>, <a href="/search/physics?searchtype=author&query=Hars%2C+Q">Q. Hars</a>, <a href="/search/physics?searchtype=author&query=Hucker%2C+J">J. Hucker</a>, <a href="/search/physics?searchtype=author&query=Pereimak%2C+V">V. Pereimak</a>, <a href="/search/physics?searchtype=author&query=Corning%2C+J+M">J. M. Corning</a>, <a href="/search/physics?searchtype=author&query=Perrin%2C+P">P. Perrin</a>, <a href="/search/physics?searchtype=author&query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P+C+F">P. C. F. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Pollmann%2C+T+R">T. R. Pollmann</a>, <a href="/search/physics?searchtype=author&query=Hamel%2C+M">M. Hamel</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Gallacher%2C+D">D. Gallacher</a>, <a href="/search/physics?searchtype=author&query=Kemp%2C+A">A. Kemp</a>, <a href="/search/physics?searchtype=author&query=Mason%2C+J">J. Mason</a>, <a href="/search/physics?searchtype=author&query=Skensved%2C+P">P. Skensved</a>, <a href="/search/physics?searchtype=author&query=Stringer%2C+M">M. Stringer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11581v1-abstract-short" style="display: inline;"> Several particle-physics experiments use poly(methyl methacrylate) (a.k.a. PMMA or acrylic) vessels to contain liquid scintillators. Superluminal charged particles emitted from radioactive impurities in or near the acrylic can emit Cherenkov radiation in the ultraviolet (UV) spectra range. If acrylic fluoresces in the visible range due to this UV light, it could be a source of background in experi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11581v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11581v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11581v1-abstract-full" style="display: none;"> Several particle-physics experiments use poly(methyl methacrylate) (a.k.a. PMMA or acrylic) vessels to contain liquid scintillators. Superluminal charged particles emitted from radioactive impurities in or near the acrylic can emit Cherenkov radiation in the ultraviolet (UV) spectra range. If acrylic fluoresces in the visible range due to this UV light, it could be a source of background in experiments where the main signal is visible scintillation light, or UV scintillation light that is absorbed and re-emitted at visible wavelengths by a wavelength shifter. Some of these experiments operate at low temperature. The fluorescence of these materials could change with temperature so we have studied the fluorescence of the acrylic used in the DEAP-3600 experiment down to a temperature of 4 K, and compared it to the common wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB). The light yield and wavelength spectra of these materials were characterized by exciting the sample with 285 nm UV light which acted as a proxy for Cherenkov light in the detector. Spectral measurements indicate at least part of the fluorescence of the acrylic is due to additives. Time-resolved measurements show the light yields of our acrylic sample, TPB sample, and the relative light between both samples, all increase when cooling down. At room temperature, the light yield of our acrylic sample relative to the TPB sample is 0.3 %, while it reaches 0.5 % at 4 K. The main fluorescence time constant of the acrylic is less than a few nanoseconds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11581v1-abstract-full').style.display = 'none'; document.getElementById('2112.11581v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08103">arXiv:2110.08103</a> <span> [<a href="https://arxiv.org/pdf/2110.08103">pdf</a>, <a href="https://arxiv.org/format/2110.08103">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/12/P12029">10.1088/1748-0221/16/12/P12029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluorescence of pyrene-doped polystyrene films from room temperature down to 4 K for wavelength-shifting applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Benmansour%2C+H">H. Benmansour</a>, <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a>, <a href="/search/physics?searchtype=author&query=Hars%2C+Q">Q. Hars</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P+C+F">P. C. F. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Gallacher%2C+D">D. Gallacher</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Pereimak%2C+V">V. Pereimak</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Garg%2C+S">S. Garg</a>, <a href="/search/physics?searchtype=author&query=Kemp%2C+A">A. Kemp</a>, <a href="/search/physics?searchtype=author&query=Mason%2C+J">J. Mason</a>, <a href="/search/physics?searchtype=author&query=Skensved%2C+P">P. Skensved</a>, <a href="/search/physics?searchtype=author&query=Strickland%2C+V">V. Strickland</a>, <a href="/search/physics?searchtype=author&query=Stringer%2C+M">M. Stringer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08103v1-abstract-short" style="display: inline;"> In liquid argon-based particle detectors, slow wavelength shifters (WLSs) could be used alongside the common, nanosecond scale, WLS tetraphenyl butadiene (TPB) for background mitigation purposes. At room temperature, pyrene has a moderate fluorescence light yield (LY) and a time constant of the order of hundreds of nanoseconds. In this work, four pyrene-doped polystyrene films with various puritie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08103v1-abstract-full').style.display = 'inline'; document.getElementById('2110.08103v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08103v1-abstract-full" style="display: none;"> In liquid argon-based particle detectors, slow wavelength shifters (WLSs) could be used alongside the common, nanosecond scale, WLS tetraphenyl butadiene (TPB) for background mitigation purposes. At room temperature, pyrene has a moderate fluorescence light yield (LY) and a time constant of the order of hundreds of nanoseconds. In this work, four pyrene-doped polystyrene films with various purities and concentrations were characterized in terms of LY and decay time constants in a range of temperature between 4 K and 300 K under ultraviolet excitation. These films were found to have a LY between 35 and 50% of that of evaporated TPB. All light yields increase when cooling down, while the decays slow down. At room temperature, we observed that pyrene purity is strongly correlated with emission lifetime: highest obtainable purity samples were dominated by decays with emission time constants of $\sim$ 250-280 ns, and lower purity samples were dominated by an $\sim$ 80 ns component. One sample was investigated further to better understand the monomer and excimer emissions of pyrene. The excimer-over-monomer intensity ratio decreases when the temperature goes down, with the monomer emission dominating below $\sim$ 87 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08103v1-abstract-full').style.display = 'none'; document.getElementById('2110.08103v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16, P12029 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06819">arXiv:2109.06819</a> <span> [<a href="https://arxiv.org/pdf/2109.06819">pdf</a>, <a href="https://arxiv.org/format/2109.06819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166683">10.1016/j.nima.2022.166683 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development and characterization of a slow wavelength shifting coating for background rejection in liquid argon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gallacher%2C+D">D. Gallacher</a>, <a href="/search/physics?searchtype=author&query=Leonhardt%2C+A">A. Leonhardt</a>, <a href="/search/physics?searchtype=author&query=Benmansour%2C+H">H. Benmansour</a>, <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a>, <a href="/search/physics?searchtype=author&query=Hars%2C+Q">Q. Hars</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Bondzior%2C+B">B. Bondzior</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Dere%C5%84%2C+P+J">P. J. Dere艅</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P+C+F">P. C. F. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Garg%2C+S">S. Garg</a>, <a href="/search/physics?searchtype=author&query=Mason%2C+J">J. Mason</a>, <a href="/search/physics?searchtype=author&query=Pollmann%2C+T+R">T. R. Pollmann</a>, <a href="/search/physics?searchtype=author&query=Skensved%2C+P">P. Skensved</a>, <a href="/search/physics?searchtype=author&query=Strickland%2C+V">V. Strickland</a>, <a href="/search/physics?searchtype=author&query=Stringer%2C+M">M. Stringer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06819v2-abstract-short" style="display: inline;"> We describe a technique, applicable to liquid-argon-based dark matter detectors, allowing for discrimination of alpha-decays in detector regions with incomplete light collection from nuclear-recoil-like events. Nuclear recoils and alpha events preferentially excite the liquid argon (LAr) singlet state, which has a decay time of ~6 ns. The wavelength-shifter TPB, which is typically applied to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06819v2-abstract-full').style.display = 'inline'; document.getElementById('2109.06819v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06819v2-abstract-full" style="display: none;"> We describe a technique, applicable to liquid-argon-based dark matter detectors, allowing for discrimination of alpha-decays in detector regions with incomplete light collection from nuclear-recoil-like events. Nuclear recoils and alpha events preferentially excite the liquid argon (LAr) singlet state, which has a decay time of ~6 ns. The wavelength-shifter TPB, which is typically applied to the inside of the active detector volume to make the LAr scintillation photons visible, has a short re-emission time that preserves the LAr scintillation timing. We developed a wavelength-shifting polymeric film - pyrene-doped polystyrene - for the DEAP-3600 detector and describe the production method and characterization. At liquid argon temperature, the film's re-emission timing is dominated by a modified exponential decay with time constant of 279(14) ns and has a wavelength-shifting efficiency of 46.4(2.9) % relative to TPB, measured at room temperature. By coating the detector neck (a region outside the active volume where the scintillation light collection efficiency is low) with this film, the visible energy and the scintillation pulse shape of alpha events in the neck region are modified, and we predict that through pulse shape discrimination, the coating will afford a suppression factor of O($10^{5}$) against these events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06819v2-abstract-full').style.display = 'none'; document.getElementById('2109.06819v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages,10 figures, Submitted to NIMA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15506">arXiv:2106.15506</a> <span> [<a href="https://arxiv.org/pdf/2106.15506">pdf</a>, <a href="https://arxiv.org/format/2106.15506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09870-7">10.1140/epjc/s10052-021-09870-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct comparison of PEN and TPB wavelength shifters in a liquid argon detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Camillo%2C+V">V. Camillo</a>, <a href="/search/physics?searchtype=author&query=Canci%2C+N">N. Canci</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Consiglio%2C+L">L. Consiglio</a>, <a href="/search/physics?searchtype=author&query=Flammini%2C+A">A. Flammini</a>, <a href="/search/physics?searchtype=author&query=Galbiati%2C+C">C. Galbiati</a>, <a href="/search/physics?searchtype=author&query=Ghiano%2C+C">C. Ghiano</a>, <a href="/search/physics?searchtype=author&query=Gola%2C+A">A. Gola</a>, <a href="/search/physics?searchtype=author&query=Horikawa%2C+S">S. Horikawa</a>, <a href="/search/physics?searchtype=author&query=Kachru%2C+P">P. Kachru</a>, <a href="/search/physics?searchtype=author&query=Kochanek%2C+I">I. Kochanek</a>, <a href="/search/physics?searchtype=author&query=Kondo%2C+K">K. Kondo</a>, <a href="/search/physics?searchtype=author&query=Korga%2C+G">G. Korga</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAwa%2C+M">M. Ku藕wa</a>, <a href="/search/physics?searchtype=author&query=Leonhardt%2C+A">A. Leonhardt</a>, <a href="/search/physics?searchtype=author&query=%C5%81%C4%99cki%2C+T">T. 艁臋cki</a>, <a href="/search/physics?searchtype=author&query=Mazzi%2C+A">A. Mazzi</a>, <a href="/search/physics?searchtype=author&query=Moharana%2C+A">A. Moharana</a>, <a href="/search/physics?searchtype=author&query=Nieradka%2C+G">G. Nieradka</a>, <a href="/search/physics?searchtype=author&query=Paternoster%2C+G">G. Paternoster</a>, <a href="/search/physics?searchtype=author&query=Pollmann%2C+T+R">T. R. Pollmann</a>, <a href="/search/physics?searchtype=author&query=Razeto%2C+A">A. Razeto</a>, <a href="/search/physics?searchtype=author&query=Sablone%2C+D">D. Sablone</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15506v3-abstract-short" style="display: inline;"> A large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge over large distances. Scintillation light from argon is peaked at 128 nm and a wavelength shifter is required for its efficient detection. In this work, we directly compare the light yield achieved in two identical liquid argon chambers,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15506v3-abstract-full').style.display = 'inline'; document.getElementById('2106.15506v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15506v3-abstract-full" style="display: none;"> A large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge over large distances. Scintillation light from argon is peaked at 128 nm and a wavelength shifter is required for its efficient detection. In this work, we directly compare the light yield achieved in two identical liquid argon chambers, one of which is equipped with PolyEthylene Naphthalate (PEN) and the other with TetraPhenyl Butadiene (TPB) wavelength shifter. Both chambers are lined with enhanced specular reflectors and instrumented with SiPMs with a coverage fraction of approximately 1%, which represents a geometry comparable to the future large scale detectors. We measured the light yield of the PEN chamber to be 39.4$\pm$0.4(stat)$\pm$1.9(syst)% of the yield of the TPB chamber. Using a Monte Carlo simulation this result is used to extract the wavelength shifting efficiency of PEN relative to TPB equal to 47.2$\pm$5.7%. This result paves the way for the use of easily available PEN foils as a wavelength shifter, which can substantially simplify the construction of future liquid argon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15506v3-abstract-full').style.display = 'none'; document.getElementById('2106.15506v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 1099 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12202">arXiv:2103.12202</a> <span> [<a href="https://arxiv.org/pdf/2103.12202">pdf</a>, <a href="https://arxiv.org/format/2103.12202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09514-w">10.1140/epjc/s10052-021-09514-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulseshape discrimination against low-energy Ar-39 beta decays in liquid argon with 4.5 tonne-years of DEAP-3600 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+Collaboration"> The DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Benmansour%2C+H">H. Benmansour</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Burghardt%2C+P+M">P. M. Burghardt</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Cavuoti%2C+S">S. Cavuoti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Corning%2C+J+M">J. M. Corning</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12202v2-abstract-short" style="display: inline;"> The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $^{39}$Ar beta decays and is suppressed using pulseshape discrimination (PSD). We use two types of PSD algorithm: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12202v2-abstract-full').style.display = 'inline'; document.getElementById('2103.12202v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12202v2-abstract-full" style="display: none;"> The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $^{39}$Ar beta decays and is suppressed using pulseshape discrimination (PSD). We use two types of PSD algorithm: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the charge of a single photoelectron, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulseshape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12202v2-abstract-full').style.display = 'none'; document.getElementById('2103.12202v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 823 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08686">arXiv:2101.08686</a> <span> [<a href="https://arxiv.org/pdf/2101.08686">pdf</a>, <a href="https://arxiv.org/format/2101.08686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09121-9">10.1140/epjc/s10052-021-09121-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separating $^{39}$Ar from $^{40}$Ar by cryogenic distillation with Aria for dark matter searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DarkSide+Collaboration"> DarkSide Collaboration</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Arba%2C+M">M. Arba</a>, <a href="/search/physics?searchtype=author&query=Arpaia%2C+P">P. Arpaia</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetissov%2C+I+C">I. Ch. Avetissov</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+E">E. Borisova</a> , et al. (287 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08686v2-abstract-short" style="display: inline;"> The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08686v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08686v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08686v2-abstract-full" style="display: none;"> The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopic abundance of $^{39}$Ar, a $尾$-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors, in the argon used for the dark-matter searches, the so-called Underground Argon (UAr). In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of isotopic cryogenic distillation of nitrogen with a prototype plant, operating the column at total reflux. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08686v2-abstract-full').style.display = 'none'; document.getElementById('2101.08686v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 81 (2021) 4, 359 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07819">arXiv:2011.07819</a> <span> [<a href="https://arxiv.org/pdf/2011.07819">pdf</a>, <a href="https://arxiv.org/format/2011.07819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/03/043">10.1088/1475-7516/2021/03/043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetissov%2C+I+C">I. Ch. Avetissov</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+E">E. Borisova</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Buccino%2C+G">G. Buccino</a> , et al. (251 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07819v2-abstract-short" style="display: inline;"> Future liquid-argon DarkSide-20k and ARGO detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of $\sim$50~t and $\sim$360~t for DarkSide-20k and AR… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07819v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07819v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07819v2-abstract-full" style="display: none;"> Future liquid-argon DarkSide-20k and ARGO detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of $\sim$50~t and $\sim$360~t for DarkSide-20k and ARGO, respectively. Thanks to the low-energy threshold of $\sim$0.5~keV$_{nr}$ achievable by exploiting the ionization channel, DarkSide-20k and ARGO have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M$_{\odot}$ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07819v2-abstract-full').style.display = 'none'; document.getElementById('2011.07819v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 03 (2021) 043 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02024">arXiv:2004.02024</a> <span> [<a href="https://arxiv.org/pdf/2004.02024">pdf</a>, <a href="https://arxiv.org/format/2004.02024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08801-2">10.1140/epjc/s10052-020-08801-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DarkSide+collaboration"> The DarkSide collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalseth%2C+C+E">C. E. Aalseth</a>, <a href="/search/physics?searchtype=author&query=Abdelhakim%2C+S">S. Abdelhakim</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Arba%2C+M">M. Arba</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Arpaia%2C+P">P. Arpaia</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&query=Asunskis%2C+A">A. Asunskis</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Barbaryan%2C+V">V. Barbaryan</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02024v2-abstract-short" style="display: inline;"> Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The "standard" EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02024v2-abstract-full').style.display = 'inline'; document.getElementById('2004.02024v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02024v2-abstract-full" style="display: none;"> Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The "standard" EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms ("neutral bremsstrahlung", NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02024v2-abstract-full').style.display = 'none'; document.getElementById('2004.02024v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 22 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2021) 81: 153 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09855">arXiv:2001.09855</a> <span> [<a href="https://arxiv.org/pdf/2001.09855">pdf</a>, <a href="https://arxiv.org/format/2001.09855">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7789-x">10.1140/epjc/s10052-020-7789-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The liquid-argon scintillation pulseshape in DEAP-3600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+collaboration"> The DEAP collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+G+R+A+M">G. R. Araujoand M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Cavuoti%2C+S">S. Cavuoti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Corning%2C+J+M">J. M. Corning</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+S+J+D+K">S. J. Daughertyand K. Dering</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+F+A+D+a">F. A. Duncan andM. Dunford</a>, <a href="/search/physics?searchtype=author&query=Erlandson%2C+A">A. Erlandson</a>, <a href="/search/physics?searchtype=author&query=Fatemighomi%2C+N">N. Fatemighomi</a>, <a href="/search/physics?searchtype=author&query=Fiorillo%2C+G">G. Fiorillo</a>, <a href="/search/physics?searchtype=author&query=Flower%2C+A">A. Flower</a>, <a href="/search/physics?searchtype=author&query=Ford%2C+R+J">R. J. Ford</a>, <a href="/search/physics?searchtype=author&query=Gagnon%2C+R">R. Gagnon</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09855v2-abstract-short" style="display: inline;"> DEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09855v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09855v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09855v2-abstract-full" style="display: none;"> DEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of a) LAr scintillation physics, including the so-called intermediate component, b) the time response of the TPB wavelength shifter, including delayed TPB emission at $\mathcal O$(ms) time-scales, and c) PMT response. TPB is the wavelength shifter of choice in most LAr detectors. We find that approximately 10\% of the intensity of the wavelength-shifted light is in a long-lived state of TPB. This causes light from an event to spill into subsequent events to an extent not usually accounted for in the design and data analysis of LAr-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09855v2-abstract-full').style.display = 'none'; document.getElementById('2001.09855v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 303 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.08106">arXiv:2001.08106</a> <span> [<a href="https://arxiv.org/pdf/2001.08106">pdf</a>, <a href="https://arxiv.org/format/2001.08106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/02/P02024">10.1088/1748-0221/15/02/P02024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DarkSide+Collaboration"> The DarkSide Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalseth%2C+C+E">C. E. Aalseth</a>, <a href="/search/physics?searchtype=author&query=Abdelhakim%2C+S">S. Abdelhakim</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Arba%2C+M">M. Arba</a>, <a href="/search/physics?searchtype=author&query=Arcelli%2C+S">S. Arcelli</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Arpaia%2C+P">P. Arpaia</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&query=Asunskis%2C+A">A. Asunskis</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a> , et al. (306 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.08106v1-abstract-short" style="display: inline;"> Large liquid argon detectors offer one of the best avenues for the detection of galactic weakly interacting massive particles (WIMPs) via their scattering on atomic nuclei. The liquid argon target allows exquisite discrimination between nuclear and electron recoil signals via pulse-shape discrimination of the scintillation signals. Atmospheric argon (AAr), however, has a naturally occurring radioa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08106v1-abstract-full').style.display = 'inline'; document.getElementById('2001.08106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.08106v1-abstract-full" style="display: none;"> Large liquid argon detectors offer one of the best avenues for the detection of galactic weakly interacting massive particles (WIMPs) via their scattering on atomic nuclei. The liquid argon target allows exquisite discrimination between nuclear and electron recoil signals via pulse-shape discrimination of the scintillation signals. Atmospheric argon (AAr), however, has a naturally occurring radioactive isotope, $^{39}$Ar, a $尾$ emitter of cosmogenic origin. For large detectors, the atmospheric $^{39}$Ar activity poses pile-up concerns. The use of argon extracted from underground wells, deprived of $^{39}$Ar, is key to the physics potential of these experiments. The DarkSide-20k dark matter search experiment will operate a dual-phase time projection chamber with 50 tonnes of radio-pure underground argon (UAr), that was shown to be depleted of $^{39}$Ar with respect to AAr by a factor larger than 1400. Assessing the $^{39}$Ar content of the UAr during extraction is crucial for the success of DarkSide-20k, as well as for future experiments of the Global Argon Dark Matter Collaboration (GADMC). This will be carried out by the DArT in ArDM experiment, a small chamber made with extremely radio-pure materials that will be placed at the centre of the ArDM detector, in the Canfranc Underground Laboratory (LSC) in Spain. The ArDM LAr volume acts as an active veto for background radioactivity, mostly $纬$-rays from the ArDM detector materials and the surrounding rock. This article describes the DArT in ArDM project, including the chamber design and construction, and reviews the background required to achieve the expected performance of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08106v1-abstract-full').style.display = 'none'; document.getElementById('2001.08106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures. Corresponding author: E. S谩nchez Garc铆a</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00257">arXiv:1903.00257</a> <span> [<a href="https://arxiv.org/pdf/1903.00257">pdf</a>, <a href="https://arxiv.org/format/1903.00257">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.163631">10.1016/j.nima.2020.163631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Technique for Surface Background Rejection in Liquid Argon Dark Matter Detectors using Layered Wavelength-Shifting and Scintillating Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00257v2-abstract-short" style="display: inline;"> A technique using layered wavelength shifting, scintillating and non-scintillating films is presented to achieve discrimination of surface $伪$ events from low-energy nuclear recoils in liquid argon detectors. A discrimination power greater than $10^{8}$, similar to the discrimination possible for electronic recoils in argon, can be achieved by adding a 50 micron layer of scintillator with a suitab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00257v2-abstract-full').style.display = 'inline'; document.getElementById('1903.00257v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00257v2-abstract-full" style="display: none;"> A technique using layered wavelength shifting, scintillating and non-scintillating films is presented to achieve discrimination of surface $伪$ events from low-energy nuclear recoils in liquid argon detectors. A discrimination power greater than $10^{8}$, similar to the discrimination possible for electronic recoils in argon, can be achieved by adding a 50 micron layer of scintillator with a suitably slow decay time, approximately 300 ns or greater, to a wavelength-shifter coated surface. The technique would allow suppression of surface $伪$ events in a very large next-generation argon dark matter experiment (with hundreds of square meters of surface area) without the requirement for position reconstruction, thus allowing utilization of more of the instrumented mass in the dark matter search. The technique could also be used to suppress surface backgrounds in compact argon detectors of low-energy nuclear recoils, for example in measurements of coherent neutrino-nucleus scattering or for sensitive measurements of neutron fluxes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00257v2-abstract-full').style.display = 'none'; document.getElementById('1903.00257v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instr. Meth. Phys. Res. A 968, 163631 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10183">arXiv:1705.10183</a> <span> [<a href="https://arxiv.org/pdf/1705.10183">pdf</a>, <a href="https://arxiv.org/format/1705.10183">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.12.058">10.1016/j.nima.2018.12.058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DEAP+Collaboration"> DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bishop%2C+D">D. Bishop</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Boorman%2C+G">G. Boorman</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bromwich%2C+T">T. Bromwich</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+S">S. Chan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chouinard%2C+R">R. Chouinard</a>, <a href="/search/physics?searchtype=author&query=Churchwell%2C+S">S. Churchwell</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Cranshaw%2C+D">D. Cranshaw</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=Dittmeier%2C+S">S. Dittmeier</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+M">M. Dunford</a>, <a href="/search/physics?searchtype=author&query=Erlandson%2C+A">A. Erlandson</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10183v3-abstract-short" style="display: inline;"> The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detaile… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10183v3-abstract-full').style.display = 'inline'; document.getElementById('1705.10183v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10183v3-abstract-full" style="display: none;"> The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10183v3-abstract-full').style.display = 'none'; document.getElementById('1705.10183v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res. A 922, 373-384 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.00696">arXiv:1705.00696</a> <span> [<a href="https://arxiv.org/pdf/1705.00696">pdf</a>, <a href="https://arxiv.org/ps/1705.00696">ps</a>, <a href="https://arxiv.org/format/1705.00696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.092005">10.1103/PhysRevD.96.092005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The search for neutron-antineutron oscillations at the Sudbury Neutrino Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=SNO+Collaboration"> SNO Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aharmim%2C+B">B. Aharmim</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S+N">S. N. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+A+E">A. E. Anthony</a>, <a href="/search/physics?searchtype=author&query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/physics?searchtype=author&query=Bellerive%2C+A">A. Bellerive</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Biller%2C+S+D">S. D. Biller</a>, <a href="/search/physics?searchtype=author&query=Boudjemline%2C+K">K. Boudjemline</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+Y+D">Y. D. Chan</a>, <a href="/search/physics?searchtype=author&query=Chauhan%2C+D">D. Chauhan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Cox%2C+G+A">G. A. Cox</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">H. Deng</a>, <a href="/search/physics?searchtype=author&query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/physics?searchtype=author&query=Doe%2C+P+J">P. J. Doe</a>, <a href="/search/physics?searchtype=author&query=Doucas%2C+G">G. Doucas</a>, <a href="/search/physics?searchtype=author&query=Drouin%2C+P+-">P. -L. Drouin</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.00696v1-abstract-short" style="display: inline;"> Tests on $B-L$ symmetry breaking models are important probes to search for new physics. One proposed model with $螖(B-L)=2$ involves the oscillations of a neutron to an antineutron. In this paper a new limit on this process is derived for the data acquired from all three operational phases of the Sudbury Neutrino Observatory experiment. The search was concentrated in oscillations occurring within t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00696v1-abstract-full').style.display = 'inline'; document.getElementById('1705.00696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.00696v1-abstract-full" style="display: none;"> Tests on $B-L$ symmetry breaking models are important probes to search for new physics. One proposed model with $螖(B-L)=2$ involves the oscillations of a neutron to an antineutron. In this paper a new limit on this process is derived for the data acquired from all three operational phases of the Sudbury Neutrino Observatory experiment. The search was concentrated in oscillations occurring within the deuteron, and 23 events are observed against a background expectation of 30.5 events. These translate to a lower limit on the nuclear lifetime of $1.48\times 10^{31}$ years at 90% confidence level (CL) when no restriction is placed on the signal likelihood space (unbounded). Alternatively, a lower limit on the nuclear lifetime was found to be $1.18\times 10^{31}$ years at 90% CL when the signal was forced into a positive likelihood space (bounded). Values for the free oscillation time derived from various models are also provided in this article. This is the first search for neutron-antineutron oscillation with the deuteron as a target. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00696v1-abstract-full').style.display = 'none'; document.getElementById('1705.00696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 092005 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01882">arXiv:1704.01882</a> <span> [<a href="https://arxiv.org/pdf/1704.01882">pdf</a>, <a href="https://arxiv.org/format/1704.01882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/04/P04017">10.1088/1748-0221/12/04/P04017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application of the TPB Wavelength Shifter to the DEAP-3600 Spherical Acrylic Vessel Inner Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Cranshaw%2C+D">D. Cranshaw</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=Florian%2C+S">S. Florian</a>, <a href="/search/physics?searchtype=author&query=Gagnon%2C+R">R. Gagnon</a>, <a href="/search/physics?searchtype=author&query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&query=Gilmour%2C+C">C. Gilmour</a>, <a href="/search/physics?searchtype=author&query=Hearns%2C+C">C. Hearns</a>, <a href="/search/physics?searchtype=author&query=Kezwer%2C+J">J. Kezwer</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Pollmann%2C+T">T. Pollmann</a>, <a href="/search/physics?searchtype=author&query=Ward%2C+M">M. Ward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01882v1-abstract-short" style="display: inline;"> DEAP-3600 uses liquid argon contained in a spherical acrylic vessel as a target medium to perform a sensitive spin-independent dark matter search. Argon scintillates in the vacuum ultraviolet spectrum, which requires wavelength shifting to convert the VUV photons to visible so they can be transmitted through the acrylic light guides and detected by the surrounding photomultiplier tubes. The wavele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01882v1-abstract-full').style.display = 'inline'; document.getElementById('1704.01882v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01882v1-abstract-full" style="display: none;"> DEAP-3600 uses liquid argon contained in a spherical acrylic vessel as a target medium to perform a sensitive spin-independent dark matter search. Argon scintillates in the vacuum ultraviolet spectrum, which requires wavelength shifting to convert the VUV photons to visible so they can be transmitted through the acrylic light guides and detected by the surrounding photomultiplier tubes. The wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene was evaporatively deposited to the inner surface of the acrylic vessel under vacuum. Two evaporations were performed on the DEAP-3600 acrylic vessel with an estimated coating thickness of 3.00 $\pm$ 0.02 $渭$m which is successfully wavelength shifting with liquid argon in the detector. Details on the wavelength shifter coating requirements, deposition source, testing, and final performance are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01882v1-abstract-full').style.display = 'none'; document.getElementById('1704.01882v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures, to be published in JINST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2017 JINST 12 P04017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.08424">arXiv:1511.08424</a> <span> [<a href="https://arxiv.org/pdf/1511.08424">pdf</a>, <a href="https://arxiv.org/format/1511.08424">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/11/06/P06003">10.1088/1748-0221/11/06/P06003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependence of alpha-induced scintillation in the 1,1,4,4-tetraphenyl-1,3-butadiene wavelength shifter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Veloce%2C+L+M">L. M. Veloce</a>, <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P+C+F">P. C. F. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Noble%2C+A+J">A. J. Noble</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Nadeau%2C+P">P. Nadeau</a>, <a href="/search/physics?searchtype=author&query=Pollmann%2C+T">T. Pollmann</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+M">M. Clark</a>, <a href="/search/physics?searchtype=author&query=Piquemal%2C+M">M. Piquemal</a>, <a href="/search/physics?searchtype=author&query=Schreiner%2C+K">K. Schreiner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.08424v2-abstract-short" style="display: inline;"> Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4- tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08424v2-abstract-full').style.display = 'inline'; document.getElementById('1511.08424v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.08424v2-abstract-full" style="display: none;"> Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4- tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08424v2-abstract-full').style.display = 'none'; document.getElementById('1511.08424v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2016 JINST 11 P06003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.7673">arXiv:1410.7673</a> <span> [<a href="https://arxiv.org/pdf/1410.7673">pdf</a>, <a href="https://arxiv.org/format/1410.7673">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysbps.2015.09.048">10.1016/j.nuclphysbps.2015.09.048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DEAP-3600 Dark Matter Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DEAP+Collaboration"> DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bonatt%2C+J">J. Bonatt</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chouinard%2C+R">R. Chouinard</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=DiGioseffo%2C+J">J. DiGioseffo</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F">F. Duncan</a>, <a href="/search/physics?searchtype=author&query=Flower%2C+T">T. Flower</a>, <a href="/search/physics?searchtype=author&query=Ford%2C+R">R. Ford</a>, <a href="/search/physics?searchtype=author&query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&query=Gorel%2C+P">P. Gorel</a>, <a href="/search/physics?searchtype=author&query=Graham%2C+K">K. Graham</a>, <a href="/search/physics?searchtype=author&query=Grant%2C+D+R">D. R. Grant</a>, <a href="/search/physics?searchtype=author&query=Guliyev%2C+E">E. Guliyev</a>, <a href="/search/physics?searchtype=author&query=Hallin%2C+A+L">A. L. Hallin</a>, <a href="/search/physics?searchtype=author&query=Hamstra%2C+M">M. Hamstra</a> , et al. (32 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.7673v2-abstract-short" style="display: inline;"> The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $尾$/$纬$ backgrounds… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7673v2-abstract-full').style.display = 'inline'; document.getElementById('1410.7673v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.7673v2-abstract-full" style="display: none;"> The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $尾$/$纬$ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related $伪$ backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10$^{-46}$ cm$^2$ will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7673v2-abstract-full').style.display = 'none'; document.getElementById('1410.7673v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">International Conference on High Energy Physics (ICHEP 2014), Valencia, 2014</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear and Particle Physics Proceedings 273-275 (2016) 340-346 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.1914">arXiv:1408.1914</a> <span> [<a href="https://arxiv.org/pdf/1408.1914">pdf</a>, <a href="https://arxiv.org/format/1408.1914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2014.12.006">10.1016/j.astropartphys.2014.12.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akashi-Ronquest%2C+M">M. Akashi-Ronquest</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bodmer%2C+M">M. Bodmer</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Buck%2C+B">B. Buck</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+A">A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+T">T. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Coakley%2C+K">K. Coakley</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">J. A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Gagnon%2C+R">R. Gagnon</a>, <a href="/search/physics?searchtype=author&query=Gastler%2C+D">D. Gastler</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+F">F. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gold%2C+M">M. Gold</a>, <a href="/search/physics?searchtype=author&query=Golovko%2C+V+V">V. V. Golovko</a>, <a href="/search/physics?searchtype=author&query=Gorel%2C+P">P. Gorel</a>, <a href="/search/physics?searchtype=author&query=Graham%2C+K">K. Graham</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.1914v2-abstract-short" style="display: inline;"> Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1914v2-abstract-full').style.display = 'inline'; document.getElementById('1408.1914v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.1914v2-abstract-full" style="display: none;"> Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1914v2-abstract-full').style.display = 'none'; document.getElementById('1408.1914v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.1576">arXiv:1203.1576</a> <span> [<a href="https://arxiv.org/pdf/1203.1576">pdf</a>, <a href="https://arxiv.org/ps/1203.1576">ps</a>, <a href="https://arxiv.org/format/1203.1576">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2012.05.005">10.1016/j.astropartphys.2012.05.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface roughness interpretation of 730 kg days CRESST-II results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Pollmann%2C+T">T. Pollmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.1576v4-abstract-short" style="display: inline;"> The analysis presented in the recent publication of the CRESST-II results finds a statistically significant excess of registered events over known background contributions in the acceptance region and attributes the excess to a possible Dark Matter signal, caused by scattering of relatively light WIMPs. We propose a mechanism which explains the excess events with ion sputtering caused by 206Pb r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.1576v4-abstract-full').style.display = 'inline'; document.getElementById('1203.1576v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.1576v4-abstract-full" style="display: none;"> The analysis presented in the recent publication of the CRESST-II results finds a statistically significant excess of registered events over known background contributions in the acceptance region and attributes the excess to a possible Dark Matter signal, caused by scattering of relatively light WIMPs. We propose a mechanism which explains the excess events with ion sputtering caused by 206Pb recoils and alpha particles from 210Po decay, combined with realistic surface roughness effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.1576v4-abstract-full').style.display = 'none'; document.getElementById('1203.1576v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures. v2: corrected quenching factor discussion. v3: corrected references. v4: added references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astropart. Phys. 36, 77--82 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.0604">arXiv:1203.0604</a> <span> [<a href="https://arxiv.org/pdf/1203.0604">pdf</a>, <a href="https://arxiv.org/ps/1203.0604">ps</a>, <a href="https://arxiv.org/format/1203.0604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/375/1/012027">10.1088/1742-6596/375/1/012027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DEAP-3600 Dark Matter Search at SNOLAB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.0604v1-abstract-short" style="display: inline;"> The DEAP-3600 detector, currently under construction at SNOLAB, has been designed to achieve extremely low background rates from all sources, including 39Ar beta decays, neutron scatters (from internal and external sources), surface alpha contamination and radon. An overview of the detector and its sensitivity are presented. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.0604v1-abstract-full" style="display: none;"> The DEAP-3600 detector, currently under construction at SNOLAB, has been designed to achieve extremely low background rates from all sources, including 39Ar beta decays, neutron scatters (from internal and external sources), surface alpha contamination and radon. An overview of the detector and its sensitivity are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.0604v1-abstract-full').style.display = 'none'; document.getElementById('1203.0604v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for the 12th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2011)</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>