CINXE.COM

Solid State Phenomena Vol. 344 | p. 2 | Scientific.Net

<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The special edition includes articles that represented the latest research results and engineering solutions in the area of silicon carbide wafer manufacturing for power electronics, functional polymer and composite materials for various applications and special microwave absorption materials for defence from electromagnetic radiation. This special edition will be interesting to semiconductor power device production specialists and many branches of applied materials science." /> <link rel="canonical" href="https://www.scientific.net/SSP.344/2" /> <meta property="og:title" content="Solid State Phenomena Vol. 344 | p. 2 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/SSP.344/2" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Solid State Phenomena Vol. 344 | p. 2 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=cDLnZ3YA6cfiZP7BySDRmdCXis5ooi759DeeBZ1J5CM" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.344%2F2" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.344%2F2" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/SSP.350" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 350</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.349" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 349</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.348" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 348</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.347" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 347</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.346" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 346</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.345" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 345</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.344" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 344</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.343" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 343</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.342" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 342</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.341" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 341</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.340" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 340</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.339" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 339</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.338" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 338</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/SSP">Solid State Phenomena</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Solid State Phenomena Vol. 344</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Solid State Phenomena Vol. 344</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-9mep5w">https://doi.org/10.4028/v-9mep5w</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.344/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.344_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="PagedList-skipToPrevious"><a href="/SSP.344" rel="prev"><</a></li><li><a href="/SSP.344">1</a></li><li class="active"><span>2</span></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.61">PVA Nanofibers Embedded with Different Concentration of ZnO Prepared by Electrospinning Method</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Muhammad Alhadi Zulkefle, Rohanieza Abdul Rahman, Wan Fazlida Hanim Abdullah, Zurita Zulkifli, Sukreen Hana Herman </div> </div> <div id="abstractTextBlock590181" class="volume-info volume-info-text volume-info-description"> Abstract: Polyvinyl alcohol (PVA) nanofibers were fabricated using the electrospinning method. The nanofibers were embedded with zinc oxide (ZnO) particles by mixing PVA liquid with the ZnO powders during the solution preparation stage. The FESEM images showed an increase in the amount of ZnO particles embedded in the PVA nanofibers as the powder content was increased. Other than that, there are no significant changes in other physical properties of the nanofibers caused by the increasing number of ZnO particle content. This means that ZnO nanopowders (with concentration in the range of 1.63 wt% - 8.14 wt%) can be effectively integrated and embedded into PVA nanofibers without negative consequences on the fibers formation and structure. This will facilitate the fabrication of ZnO embedded PVA nanofibers in some applications that may require it such as drug delivery, filtration, and biomedical application. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590181', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 61 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.67">Dielectric Properties of Epoxy Composites Containing Silver Nanoparticle and Carbon Nanotube over the X-Band Frequency</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Noor Amieza Mohamad, Raja Nor Izawati Raja Othman, Nur Fazlin Abdul Jamilr </div> </div> <div id="abstractTextBlock590234" class="volume-info volume-info-text volume-info-description"> Abstract: Materials with high dielectric properties have become interested due to their important applications, mainly in electronics and energy storage. This study assesses the dielectric properties of epoxy composites containing silver nanoparticles (AgNPs) and carbon nanotube (CNT) composite materials. These samples' permittivity and reflective properties were measured using Vector Network Analyser (VNA) within the X-band frequency (8.2 – 12.4 GHz). Samples were prepared at various loading (0.1-5 wt.%), with various thickness of (0.5, 1.0, 1.5 and 2.0 mm). Regardless of the fillers loading and sample thickness, it was found that the values of real permittivity, er', remain constant along the frequency range. At the same sample thickness, it was found that the values of both er' and er'' increase as loading increases, indicating the function of AgNPs and CNT in enhancing the dielectric and electrical conductivity properties of epoxy composites, respectively. The highest value of er' is recorded as 5 F/m (at f = 8.2 GHz), measured at 5 wt.% loadings and 0.5 mm sample thickness. Measurement on S<sub>11</sub> parameters at f = 8.2 GHz indicated that the SE<sub>R</sub> values are between 9 dB and 15 dB, with no obvious pattern observed, regardless of the fillers loading and sample thickness. This study highlights the dielectric properties improvement of epoxy composites by incorporating dual fillers. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590234', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 67 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.75">Thermomechanical and Dielectric Properties Relationship of Hybrid Carbon Black and Nano Silica Epoxy Composites</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Raja Nor Izawati Raja Othman, Fatim Atira, Noor Amieza Mohamad </div> </div> <div id="abstractTextBlock590597" class="volume-info volume-info-text volume-info-description"> Abstract: Multifunctional materials refer to the types of materials that possess enhanced mechanical, electrical, and thermal properties. In this work, nano silica and Carbon Black (CB) are added to epoxy polymer as an effort to improve the thermomechanical and dielectric properties of the composites. Filler loadings are varied from 0.1 wt.%, up till 5 wt.%. The thermomechanical properties are measured from Dynamic Mechanical Thermal Analysis (DMTA) while the dielectric properties are measured from Vector Network Analyser (VNA). The synergistic effects of combining both fillers (keeping them at 1:1 wt.% ratio) are also assessed. It was found that the value of glass transition temperature (T<sub>g</sub>) increased from 56.85°C (neat epoxy) to 59.8°C (5 wt.% CB). The T<sub>q </sub>values further increased to 64.7°C, for 5 wt.% hybrid fillers (2.5 wt.% silica + 2.5 wt.% CB), demonstrating the synergistic effects by employing dual fillers. By adding single and dual fillers, the values of storage Modulus, E’ remains almost constant for both glassy (40°C) and rubbery region (100°C), regardless of the loadings employed. The values of real permittivity, e<sub>r</sub>’ was also measured for dual fillers in the frequency range between 300 kHz to 18 GHz. The highest value of e<sub>r</sub>’ was 5.5 F/m, which was measured for both 1.5 mm and 2.0 mm sample thickness of 5 wt.% hybrid fillers (2.5 wt.% silica + 2.5 wt.% CB). This study highlights the thermomechanical and dielectric properties improvement of epoxy composites by incorporating dual fillers. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590597', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 75 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.81">Selective Etch for Micromachining Process in Manufacturing Hybrid Microdevices composed of Ni-Mn-Ga and Silicon Layers</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Hao Hu, Kari Ullakko </div> </div> <div id="abstractTextBlock593410" class="volume-info volume-info-text volume-info-description"> Abstract: The goal of this study is to make selective etch possible for the next generation of MEMS(microelectromechanical systems) devices that are composed Ni-Mn-Ga and silicon layers. Due tothe large magnetic-field-induced strains of Ni-Mn-Ga, sensing and actuating components can be fab-ricated in the Ni-Mn-Ga layers. Other functional components can be manufactured in the silicon layer.Single crystalline Ni-Mn-Ga alloys that are grown by using the Bridgman vertical growth techniquehave so far obtained the largest magnetic field-induced strain (MFIS), a magnetic shape memory(MSM) effect. Similar to silicon wafers, Ni-Mn-Ga wafers are also sliced from crystal-oriented singlecrystalline ingots. To fabricate hybrid MEMS devices such as micromanipulators and robots, lab-on-chip containing micropump manifolds and valves, or vibration energy harvesters, the fabricationprocesses used for MEMS devices will be also used to fabricate components in the Ni-Mn-Ga layer ofthe hybrid MEMS devices. One of the most important processes for MEMS fabrication is the structur-ing of materials by chemical etching. The main goal of this study is to obtain evidence that the etchantetches silicon but not Ni-Mn-Ga and to identify an etchant that etches Ni-Mn-Ga but not silicon. Thepresent paper reports on a novel experiment in dissolving Ni-Mn-Ga alloys. An etchant compositionof 69% HNO3, 98% H2SO4, and CuSO4•5H2O is proposed for dissolving Ni-Mn-Ga alloys and thevariation in the dissolution rate by adjusting the concentrations of HNO3 and ultrapure water (UPW)is demonstrated. This etchant was demonstrated to etch Ni-Mn-Ga but not silicon. The HF+HNO3acidic solution commonly used for etching silicon does not dissolve Ni-Mn-Ga alloys. </div> <div> <a data-readmore="{ block: '#abstractTextBlock593410', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 81 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.89">Impedance and Dielectric Characterization of Epoxy Composites Containing Carbon Black and Carbon Nanotubes</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Raja Nor Izawati Raja Othman, Afham Zaim Ghani, Nurul Huda Osman, Noor Amieza Mohamad </div> </div> <div id="abstractTextBlock590596" class="volume-info volume-info-text volume-info-description"> Abstract: Research in improving dielectric materials is rapidly becoming more intense as there are higher demands for novel materials with the ability to store charges. In this work, impedance characterisation and dielectric properties of epoxy composites containing Carbon Black (CB) and a mixture of CB and Carbon Nanotube (CNT), kept at 1:1 wt.% is conducted. For both cases, the total number of fillers are varied from 0.5 wt.% to 6 wt.%. At 20 Hz, the values of dielectric composites, <i>k</i> was recorded to be 2050 for 6 wt.% CB, compared to <i>k</i> = 600, for composites containing dual filler (3 wt.% CB + 3 wt.% CNT). Further analysis revealed that the 6 wt.% sample (CB + CNT) exhibited higher ac conductivity at lower frequency, compared to sample containing only 6 wt.% CB. This could be due to the reason that CNT has more conductivity effects while CB has more storage or capacitive effects. Nyquist plot of impedance for both fillers also revealed the formation of semi-circular shapes for 5 wt.% and 6 wt.%; for both CB and CB + CNT fillers. However, formation of smaller semi-circular shapes is observed for CB + CNT, compared to CB only, indicating formation of conductive network in dual filler composites. This study highlights the potential of CB in enhancing mainly the dielectric properties of epoxy composites. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590596', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 89 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.97">The Optimal Performance of a Geopolymer Hollow Pyramidal Microwave Absorber with Triangular Slotted</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mohamad Faisal Asmadi, Hasnain Abdullah, Mohd Nasir Taib, Mas Izzati Fazin, Azizah Ahmad, Nazirah Mohamat Kasim, Noor Azila Ismail, Mohd Muzafa Jumidali </div> </div> <div id="abstractTextBlock590227" class="volume-info volume-info-text volume-info-description"> Abstract: In recent year, the development of the electronic devices is rapidly growing and that was used in entire world but electronic devices generate the electromagnetic wave (EM) radiation. That radiation can affect the people’s health and interference normal operation of other electronic devices. Hence the researchers have conducted studies in the field of microwave absorption to reduce the risk of electromagnetic (EM) radiation. Microwave absorber comes with many form and material to enhance the absorption performance. This study aims to improve absorption performance of pyramidal geopolymer microwave absorber by using slotted design. The slotted design used on pyramidal geopolymer microwave absorber is triangular shape and that shape was isosceles triangle type. The hollow pyramidal was coated with a geopolymer absorbing material to form hollow pyramidal microwave absorber. Geopolymers are formed by a process called geopolymerization, which involves the chemical bonding of the ingredients together. This study used sodium silicate (Na<sub>2</sub>SiO<sub>3</sub>), sodium hydroxide (NaOH), and Powder Activated Carbon (PAC) to make geopolymer absorbing material. Measurement had been done successfully via far field measurement using arch method at 1 GHz to 12 GHz. The absorptivity of hollow pyramidal triangular slotted geopolymer microwave absorber is observed at each frequency band covering the L, S, C and X bands. The result is compared with their maximum absorption in each frequency band and also shows geopolymer material produces good absorption performance. The result shows triangular slotted design is capable of achieving very high absorption performance which is -26.32 dB. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590227', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 97 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.103">The Performance of Hollow Pyramidal Microwave Absorber Using Different Slot Size</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mas Izzati Fazin, Hasnain Abdullah@Idris, Mohamad Faisal Asmadi, Ahmad Rashidy Razali, Norhayati Mohamad Noor, Linda Mohd Kasim </div> </div> <div id="abstractTextBlock590229" class="volume-info volume-info-text volume-info-description"> Abstract: Microwave absorber is commonly used in defense, electromagnetic compatibility (EMC)/electromagnetic interference (EMI) reduction and anechoic chamber application. Conventional electromagnetic (EM) absorbers have some constraints in practical handling due to its heavy weight. In this paper, the research focuses on the development of high performance and lightweight microwave absorber. A lightweight and simple design configuration of different rectangular slot size array implemented on hollow pyramidal microwave absorber are carried out. There are two different designs of different slot size array calculated based on 3GHz, 6GHz and 9GHz frequency slot size. The two designs have an opposite slots size array arrangement namely different slot size 3GHz, 6GHz, 9GHz order design array and different slot size 9GHz, 6GHz, 3GHz order design array. The absorption is measured using the Naval Research Laboratory (NRL) arch free space method in the frequency range of 1GHz to 12GHz covering L, S, C and X band. In the measurement result, the maximum absorption performance is obtained by the different slot size 9GHz, 6GHz, 3GHz order design array which is up to -44.23dB at X-band. The measurement results for both designs array show good absorption performance which exhibit below than -20dB especially at high frequency band. The proposed designs have been identified as the new approach to increase absorption improvement over a broad frequency range application. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590229', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 103 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.344.109">Utilization of Carbon Biomass as an Absorbing Material in Anti-Microwave Brick Walls Manufacturing</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Nur Hashira Narudin, Hasnain Abdullah, Mohd Nasir Taib, Basharudin Abdul Hadi, Azizah Ahmad, Nazirah Mohamat Kasim, Noor Azila Ismail </div> </div> <div id="abstractTextBlock590881" class="volume-info volume-info-text volume-info-description"> Abstract: The developments in communications technology bring changes in human life, and the positive aspects of these technological innovations make life more accessible. However, the use of communications technology at a certain frequency will produce radiation that could negatively affect human health. Thus, various studies have been performed to obtain a corresponding material to reduce the levels of exposure to the pollution of the electromagnetic wave signal. This study aims to build anti-microwave brick walls and analyze the absorption performance of the anti-microwave brick walls by using carbon biomass as an absorbing material. Carbon biomass is a physically defined product obtained in a highly controlled process to produce specifically engineered aggregates of carbon particles and in this project, carbon biomass was used as an absorbing material in brick production. The absorption performance of the anti-microwave brick walls was measured by using Naval Research Laboratory (NRL) arch free-space method, and the frequency range of 1GHz to 12GHz is used. The result shows that brick containing the highest percentage of carbon biomass produces the best absorption performance at a high-frequency band (4-8GHz), with maximum absorption of -29.53dB. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590881', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 109 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 11 to 18 of 18 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="PagedList-skipToPrevious"><a href="/SSP.344" rel="prev"><</a></li><li><a href="/SSP.344">1</a></li><li class="active"><span>2</span></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=SSP&volumeBegin=344&volumeEnd=344', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10