CINXE.COM

Solid State Phenomena Vol. 339 | Scientific.Net

<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The presented edition includes a series of scientific and engineering research results in materials science and processing technologies for modern production and biomedical goals. Readers will find these research results useful for their own activity in applied materials science and biomedical practice." /> <link rel="canonical" href="https://www.scientific.net/SSP.339" /> <meta property="og:title" content="Solid State Phenomena Vol. 339 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/SSP.339" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Solid State Phenomena Vol. 339 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=cDLnZ3YA6cfiZP7BySDRmdCXis5ooi759DeeBZ1J5CM" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.339" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.339" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/SSP.345" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 345</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.344" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 344</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.343" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 343</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.342" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 342</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.341" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 341</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.340" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 340</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.339" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 339</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.338" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 338</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.337" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 337</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.336" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 336</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.335" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 335</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.334" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 334</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.333" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 333</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/SSP">Solid State Phenomena</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Solid State Phenomena Vol. 339</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Solid State Phenomena Vol. 339</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-8n9423">https://doi.org/10.4028/v-8n9423</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.339/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.339_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.339/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.339/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.-5">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.3">Modification of Thermoresponsive Poly(<i>N</i>-Isopropylacrylamide) End-Group with Hydrophilic and/or Hydrophobic Compounds Tuned the LCST</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Adrina Zulkifli, Mohd Awis Abdullah, Nur Hanin Rasyidah Hashim, Fahmi Asyadi Md Yusof, Haniza Kahar, Noor Faizah Che Harun </div> </div> <div id="abstractTextBlock586740" class="volume-info volume-info-text volume-info-description"> Abstract: Poly (<i>N</i>-isopropylacrylamide) (PNIPAAm) is one of the most well-known thermoresponsive polymers that exhibits a reversible coil-to-globule transition in aqueous solution at lower critical solution temperature (LCST) (32°C). PNIPAAm behave as an extended coil form in an aqueous solution below the LCST, meanwhile, above the LCST, it shrinks into a globule form. The LCST of PNIPAAm could be tune when it is chemically modified with hydrophilic and/or hydrophobic compound. In this study, modifications of PNIPAAm end-group with maleimide or phenyl maleimide compounds were prepared and their LCST behaviours were investigated. One end-group of synthesized poly (<i>N</i>-isopropylacrylamide)-chain transfer agent (PNIPAAm-CTA) was modified with maleimide or phenyl maleimide compound through aminolysis reaction to form PNIPAAm-Maleimide (PNIPAAm-M) and PNIPAAm-Phenyl maleimide (PNIPAAm-PhM). Maleimide is a hydrophilic compound, and phenyl maleimide is a slight hydrophobic compound were used in this study. The modification with hydrophilic compound will higher the LCST of PNIPAAm. The slight hydrophobic of phenyl maleimide compound will decrease the LCST. In this study, the successfulness of aminolysis process of PNIPAAm-CTA were determined through the fourier transform infrared (FTIR). Moreover, the LCST behavior of PNIPAAm-CTA, PNIPAAm-M and PNIPAAm-PhM were determined through light scattering intensity analysis. The results indicated that upon heating the solutions of PNIPAAm-CTA, PNIPAAm-M and PNIPAAm-PhM in 10 mM HEPES solution pH 7.4 at 25°C–40°C, PNIPAAm-CTA, and PNIPAAm-PhM solutions started to increase their light intensities at 35°C and PNIPAAm-M at 36°C, respectively. To conclude, modification of PNIPAAm end-group with hydrophobic and/or hydrophilic compound could tune their LCST. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586740', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.11">One-Pot Synthesis and Characterization of Gold Nanoparticle-Embedded Natural Magnetic Particles/Chitosan Composite</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Annisa Afra Martha, Sutarno Sutarno, Nuryono Nuryono </div> </div> <div id="abstractTextBlock586744" class="volume-info volume-info-text volume-info-description"> Abstract: This research synthesized natural magnetic particles/chitosan/gold nanoparticles composites (NMP/Chi/AuNPs) using a green method. AuNPs were synthesized using chitosan as a reducing agent and stabilizer in one step. The obtained AuNPs were characterized using UV-Vis spectrophotometer and TEM. Results showed that AuNPs were spherical with an average of 14.9 nm and absorbed at visible light (~530 nm). Then, AuNPs were impregnated on NMP/Chi at room temperature. The impregnation results were characterized using FTIR, XRD, and TEM. In the IR spectra of NMP/Chi and NMP/Chi/AuNPs, the NH bending vibrations of NH<sub>2</sub> are shown at 1604 and 1631 cm<sup>-1</sup>. The NMP/Chi/AuNP showed a decrease in intensity and the peak shift to 1395 cm<sup>-1</sup>, stretching vibration of C-O from primary alcohol group. Fe-O vibrations of Fe<sub>3</sub>O<sub>4</sub> in NMP/Chi and NMP/Chi/AuNPs are shown at 566 and 583 cm<sup>-1</sup>. The intensity peak shift and decrease indicate an interaction between AuNPs and NMP/Chi. The results of the XRD NMP/Chi/AuNPs characterization showed that the diffraction peak at 2Ө 35.44° decreased in intensity, resulting in a decrease in crystallinity caused by impregnated AuNPs and the destruction of hydrogen bonds. The new diffraction peak at 2Ө 38.24° indicates the presence of AuNPs. TEM analysis showed an amorphous layer around the NMP, and the average size of AuNP in the NMP/Chi/AuNP composite was 23.01 nm. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586744', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 11 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.19">Green Synthesis and Characterization of Natural Magnetic Particles/Chitosan Composite Material Impregnated with Copper Nanoparticles</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Defia Indah Permatasari, Bambang Rusdiarso, Nuryono Nuryono </div> </div> <div id="abstractTextBlock586746" class="volume-info volume-info-text volume-info-description"> Abstract: Natural magnetic particles/chitosan/CuNPs (NMP/Chi/CuNPs) have been successfully synthesized in green chemistry by impregnation of copper nanoparticles (CuNPs) on the composite of natural magnetic particles/chitosan (NMP/Chi). Copper nanoparticles were prepared using Cu(II) solutions with varying concentrations (5, 10, 15, 20, and 25 mM). The synthesis of CuNPs was carried out by chemical reduction with ascorbic acid as a reducing agent and chitosan as a capping agent using microwave heating. The formation of copper nanoparticles was indicated with a peak at 580-590 nm, and the optimum absorbance was obtained at a precursor concentration of 20 mM using a UV-Vis spectrophotometer. The NMP/Chi/CuNP(20) composite material was characterized using Fourier Transform-Infra Red (FTIR) to confirm the interaction between NMP/Chi and CuNP(20). Crystal analysis by X-Ray Diffraction (XRD) showed the highest characteristic peak of Fe<sub>3</sub>O<sub>4</sub> at 2θ angle 35° where the peak intensity at NMP/Chi/CuNP(20) decreased compared to NMP and NMP/chi. The mean crystallite sizes of NMP and NMP/Chi were obtained at 8.33 nm and 64.95 nm, respectively. Morphology and elemental composition of composite materials with Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) showed that CuNP 20 was successfully impregnated in NMP/Chi and contained the main elements, namely C, N, O, Fe, and Cu. Using TEM analysis, the shape of the NMP/Chi/CuNP(20) particles is similar to that of CuNP(20), which is spherical, and the particle size was 32.95 nm. The material is potential as an easily separable antibacterial agent in water using an external magnet. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586746', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 19 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.29">Development and Characterization of Zinc Glutarate (ZNGA) and Double Metal Cyanide (DMC) Catalyst for Bio-Based Polycarbonate Application</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mohd Aizuddin Shahmi A&#x27;zim, Raja Nazrul Hakim, F.W. Shaarani, Mohd Amin Indok Nurul Hasyimah, Z.A. Mohd Yusof, A.N.D.Mohd Said </div> </div> <div id="abstractTextBlock586792" class="volume-info volume-info-text volume-info-description"> Abstract: Heterogeneous metal complex catalyst such as Zinc glutarate (ZnGA) and Zinc-Ferum Double Metal Cyanide (Zn-Fe DMC) have been shown to improve reactivity for alternating copolymerization using CO<sub>2</sub> and epoxides. However, there are not lot of studies that have been done to study the effect of different parameter such as time and temperature on the catalytic activities of ZnGA and Zn-Fe DMC. ZnGA was treated with toluene while Zn-Fe DMC catalyst was treated with (complexing agent) tert-butanol. The main focus of this study is to synthesize ZnGA and Zn-Fe DMC at different parameter where the catalysts were produced at a variety of temperatures (50,60,70 °C) and reaction times (3h &amp; 9h). Three different zinc-ferum ratios (1:4, 1:6, and 1:8) were developed for the Zn-Fe DMC catalyst to compare the effect of iron as metal and zinc on the active site. The catalyst was characterized using Fourier-transform infrared spectroscopy (FTIR) to determine their functional elements and Brunauer–Emmett–Teller analysis (BET) for surface characterization and pore size. The effects of reaction parameters such as time and reaction temperature were investigated using this catalyst in an auxiliary-batch reactor. FTIR result shows that GA was successful incorporation into ZnO and the production of ZnGA catalysts. The presence of typical functional groups in the Zn–Fe DMC catalysts was also confirmed. The surface area and pore volume of ZnGA increases as the temperature and reaction time increases while Zn-Fe DMC the surface area and pore volume decrease as the ratio increases. These surface-modified catalysts can generate high-molecular-weight polymers, which benefits both the environment and industry. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586792', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 29 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.35">Fabrication and Characterization Studies of Alginate Biocomposite Film for Potential Use in Food Sensing Application</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Nadirah Arifin, Zaida Rahayu Yet, Mohd Zulkhairi Abdul Rahim </div> </div> <div id="abstractTextBlock586817" class="volume-info volume-info-text volume-info-description"> Abstract: This research is about the fabrication and properties study of the alginate bio-composites film for potential use in food sensing applications. A response surface methodology (RSM) was employed to optimize the concentration of sodium alginate (1 to 5% w/v), glycerol (0.4 to 0.8% w/v), and maltodextrin (0.4 to 0.8% w/v) as a function of the tensile strength (TS) and elongation at break (EB) and toughness (T) of the biofilms. The <i>coefficient</i> <i>determination</i> (R<sup>2</sup>) result obtained for TS against alginate, glycerol and maltodextrin is 81.05%, while for EB and T are 32.07% and 64.70% respectively. It showed that the addition of sodium alginate, glycerol and maltodextrin at different concentrations had significantly affected the TS but no effect on EB and T was observed. The optimization study of the film produces two conditions which are conditions 1 and 2. The optimum conditions parameter for condition 1 is a film with 3.0% alginate concentration, 1.0g/g of glycerol content, and 1.50g/g of maltodextrin content while condition 2 was 1.0% of alginate concentration, 1.0g/g of glycerol content and 0.0g/g maltodextrin content. The values of the TS obtained at the optimized condition were 4.75 MPa and 22.99 MPa which is lower than the predicted value of condition 1 (7.0 MPa) or the maximized TS at condition 2 respectively. The thickness value of edible films in this study had an average of 0.54 mm which was higher than the maximum standard thickness of edible films according to the Japanese Industrial Standard (JIS) which is 0.25 mm. Water Vapour Permeability (WVTR) study indicated that all alginate films in this study had a value higher than the JIS 1975 standard of WVTR for edible films which is at a maximum of 10 g/m<sup>2</sup>/24 hours. The natural colour from <i>Clitoria Ternatea</i> was successfully immobilized into the alginate-based film and the film become dark purple. Based on the result obtained, prediction equations for responses studied are adequate to describe the experimental data on tensile strength, elongation at break, and toughness. However, further modifications are necessary for improvements in mechanical characteristics in the future. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586817', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 35 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.53">A Study of Thermal Stability and Degradation Kinetics of Microcrystalline Cellulose (MCC)/Sol-Gel Silica (SiO<sub>2</sub>) Hybrid Materials</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Fahmi Asyadi Md Yusof, Nur Shazwani Abd Somad, Zulhafiz Tajudin, Noor Faizah Che Harun, Siew Kooi Ong </div> </div> <div id="abstractTextBlock586854" class="volume-info volume-info-text volume-info-description"> Abstract: Microcrystalline cellulose (MCC) has been widely used in the production of composite materials because it is inexpensive, easy to process, good mechanical properties and environmentally friendly. Despite its advantages, MCC has disadvantages such as poor thermal stability, hygroscopic and poor compatibility with hydrophobic materials. Understanding the thermal behavior of MCC is important because thermal degradation occurs at different rates and directly affects the final product. In this study, the MCC/ SiO<sub>2</sub> hybrid materials were prepared using in-situ sol-gel synthesis, followed by the investigation of their thermal stability and degradation kinetics using thermogravimetric analysis (TGA). Degradation kinetics were analysed using two model-free analysis (i.e. Flynn-Wall-Ozawa, FWO and modified Coats-Redfern, CRm) to evaluate the degradation behaviour (conversion degree (α) of 0.1 to 0.8) and activation energies (E<sub>a</sub>) of MCC, MCC/ sol-gel silica (MCC/SiO<sub>2</sub>) and modified MCC (mMCC/SiO<sub>2</sub>) at heating rates (β) of 10, 20, 30 and 40 °C/min. Thermal stability results showed that the presence of silica on MCC had no influence on the degradation temperature of the hybrid material however, it slightly shifted the T<sub>onset</sub> to higher values. The presence of silica also increased the final residue of the hybrid, especially in mMCC/SiO2 samples. DTG curves clearly show that all samples exhibited one step degradation process. The kinetics study assumed that all samples has single reaction mechanism as the fitted line was parallel in almost all conversion degrees (α) in both FWO and CRm methods. E<sub>a</sub> calculated for MCC, MCC/SiO<sub>2</sub> and mMCC/SiO<sub>2</sub> are in good fit with both FWO and CRm model where the R<sup>2</sup> observed more than 0.97. E<sub>a</sub> was increased in both methods, MCC/SiO<sub>2</sub> and mMCC/SiO<sub>2</sub> as compared to MCC, which implied that the addition of sol-gel silica to MCC could promote a stepwise degradation. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586854', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 53 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.61">Cellulose Nanofibers from Palm Oil Empty Fruit Bunches as Reinforcement in Bioplastic</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Azmia Rizka Nafisah, Dian Rahmawati, Fadhil Muhammad Tarmidzi, Dinah Zhafirah, Dewi Anggraini </div> </div> <div id="abstractTextBlock586858" class="volume-info volume-info-text volume-info-description"> Abstract: Currently, packaging especially for food is a significant concern because made of plastic, which is difficult to degrade. Cellulose nanofibers (CNFs) as the composite reinforcement are chosen as a suitable replacement for the fiber. This nanocomposite is made with the main aim of making biodegradable food packaging with other capabilities such as antioxidant, antibacterial, etc. The food packaging was next referred to as bioplastic, consisting of several components. One of the major concerns is selecting cross-linking agents in nanocomposites production. The use of essential oil extracts from plants is widespread because it has an excellent binding ability and good chemical properties. The essential oil of orange peel can be extracted and used because it contains flavonoid compounds that act as antioxidants. The CNFs were made from palm oil empty fruit bunches (EFB) using the acid hydrolysis process in the previous research. The study of this nanocomposites production successfully makes transparent bioplastic. SEM results show a surface with fewer pores filled with cellulose fiber and protein. The addition of essential oil to the film increases the cross-linking bond in the matrix, improving its mechanical properties. The bioplastic was tested its endurance when buried in soil for 6 days and showed a promising results. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586858', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 61 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.69">Influence of Mechanical Activation on the Formation of Yttrium Aluminum Garnet (YAG) at Lower Temperature</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mudzakkir Dioktyanto, Alfian Noviyanto, Akhmad Herman Yuwono </div> </div> <div id="abstractTextBlock592198" class="volume-info volume-info-text volume-info-description"> Abstract: Yttrium aluminum garnet (YAG) is an important material which require high temperature of 1600°C in its solid-state reaction. To lower this temperature, mechanical activation process has applied to the system which make the crystal arrangement broken thus make it more reactive. This process results in homogeneous and fine particle distribution of Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> compared to manually mixed powders. Moreover, milling process also reduce the particle size of the Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> from 4694 nm and 349 nm down to 274 nm. This also lessen the crystallite size of Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> from 1010 and 164 Å to 310 and 50 Å respectively. Then, after calcination at 1100°C, the milled powders form YAG phase in the opposite of manually mixed powders which form YAM phase. YAG formed have nearly round shape with finer grain compared to manually mixed powders which still has large grain of Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub>. This formation temperature is much lower than the require conventional solid-state reaction. </div> <div> <a data-readmore="{ block: '#abstractTextBlock592198', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 69 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.339.79">Opening New Avenues for Bioceramics: Oscillatory Flow Reactors and Upcoming Technologies in Skin-Tissue Engineering</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Anabela Veiga, Filipa Castro, Fernando Rocha, Beatriz Bernardes, Marta M. Duarte, Ana Leite Oliveira </div> </div> <div id="abstractTextBlock593557" class="volume-info volume-info-text volume-info-description"> Abstract: An aging population and lifestyle-related practices increase the incidence of chronic diseases and consequently its costs. The increasing requests for efficient chronic wound care constitute an opportunity for the field of regenerative medicine but, at the same time, it represents a challenge due to the need to limit treatment costs. Calcium-based materials have enormous potential for skin applications, as calcium has an established role in the normal homeostasis of wounded skin and serves as a modulator in keratinocyte proliferation and differentiation. On the other hand, several natural biopolymers, as silk proteins are known for their antioxidant and moisturizing properties as well as a mitogenic influence on mammalian cells. In the present work, a cost-effective method using an oscillatory flow reactor to produce a calcium phosphate/sericin composite system with controlled properties is presented, to be applied in skin wound healing and regeneration. Future perspectives for the produced biomaterials are also addressed. </div> <div> <a data-readmore="{ block: '#abstractTextBlock593557', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 79 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 17 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.339/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.339/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=SSP&volumeBegin=339&volumeEnd=339', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10