CINXE.COM

Bartosz Zajaczkowski - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Bartosz Zajaczkowski - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="IRK/qEDygTXoP+0gUwnv1ZmHN/COBztWMEo0aURJaSbkLQQMWpRWD+ln64QtOzxQ46eyou/q2kIWPb8IeH84dA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="bartosz zajaczkowski" /> <meta name="description" content="Bartosz Zajaczkowski: 11 Followers, 1 Following, 36 Research papers. Research interests: Interdisciplinary Engineering, Materials Science, and Applied Thermal…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113458213,"monthly_visitor_count_in_millions":113,"user_count":277556383,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732827193000); window.Aedu.timeDifference = new Date().getTime() - 1732827193000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/BartoszZajaczkowski" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":641466,"name":"Applied Thermal Engineering","url":"https://www.academia.edu/Documents/in/Applied_Thermal_Engineering"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/BartoszZajaczkowski&quot;,&quot;location&quot;:&quot;/BartoszZajaczkowski&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BartoszZajaczkowski&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-d5acd235-8379-4eb8-9859-751f4ba41750"></div> <div id="ProfileCheckPaperUpdate-react-component-d5acd235-8379-4eb8-9859-751f4ba41750"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Bartosz Zajaczkowski</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Bartosz" data-follow-user-id="240164373" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="240164373"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">11</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="240164373" href="https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/BartoszZajaczkowski&quot;,&quot;location&quot;:&quot;/BartoszZajaczkowski&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BartoszZajaczkowski&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Interdisciplinary Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-7f178f48-2da8-4fe9-9f32-fce7865208d2"></div> <div id="Pill-react-component-7f178f48-2da8-4fe9-9f32-fce7865208d2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="240164373" href="https://www.academia.edu/Documents/in/Materials_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Materials Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-68f45853-c4ca-4d6e-ac94-b1e5b5bff190"></div> <div id="Pill-react-component-68f45853-c4ca-4d6e-ac94-b1e5b5bff190"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="240164373" href="https://www.academia.edu/Documents/in/Applied_Thermal_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Applied Thermal Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-08d2038c-3fc0-49fd-a6a4-68d55df421d5"></div> <div id="Pill-react-component-08d2038c-3fc0-49fd-a6a4-68d55df421d5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="240164373" href="https://www.academia.edu/Documents/in/Heat_Transfer"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Heat Transfer&quot;]}" data-trace="false" data-dom-id="Pill-react-component-0491e765-825e-429a-a5cd-685dec4ff274"></div> <div id="Pill-react-component-0491e765-825e-429a-a5cd-685dec4ff274"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="240164373" href="https://www.academia.edu/Documents/in/Nanofluid"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Nanofluid&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1e0234e0-5827-4c2c-aa8e-3bb896cfaff1"></div> <div id="Pill-react-component-1e0234e0-5827-4c2c-aa8e-3bb896cfaff1"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Bartosz Zajaczkowski</h3></div><div class="js-work-strip profile--work_container" data-work-id="88404057"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404057/Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method"><img alt="Research paper thumbnail of Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method" class="work-thumbnail" src="https://attachments.academia-assets.com/92381941/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404057/Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method">Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method</a></div><div class="wp-workCard_item"><span>Energies</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper details an experimental study that was performed to investigate the specific heat of m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper details an experimental study that was performed to investigate the specific heat of microencapsulated phase change material (mPCM) slurry and its heat of fusion at the PCM phase change transition temperature. Six samples (mPCM slurry concentrate with the water solution of propylene glycol used as a main base liquid) were prepared. As the concentrate contains 43.0% mPCM, the actual mass fraction amounts to 8.6, 12.9, 17.2, 21.5, 25.8, and 30.1 wt%, respectively. The thermal delay method was used. Samples were cooled from 50 °C to 10 °C. A higher concentration of microcapsules caused a proportional increase in the specific heat of slurry at the main peak melting temperature. The maximum value of the specific heat changed from 9.2 to 33.7 kJ/kg for 8.6 wt%, and 30.1 wt%, respectively. The specific heat of the mPCM slurry is a constant quantity and depends on the concentration of the microcapsules. The specific heat of the slurry (PCM inside microcapsules in a liquid form) d...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d3e0b853fe5dba330a71ba70eb68351c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92381941,&quot;asset_id&quot;:88404057,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92381941/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404057"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404057"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404057; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404057]").text(description); $(".js-view-count[data-work-id=88404057]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404057; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404057']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404057, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d3e0b853fe5dba330a71ba70eb68351c" } } $('.js-work-strip[data-work-id=88404057]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404057,"title":"Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method","translated_title":"","metadata":{"abstract":"This paper details an experimental study that was performed to investigate the specific heat of microencapsulated phase change material (mPCM) slurry and its heat of fusion at the PCM phase change transition temperature. Six samples (mPCM slurry concentrate with the water solution of propylene glycol used as a main base liquid) were prepared. As the concentrate contains 43.0% mPCM, the actual mass fraction amounts to 8.6, 12.9, 17.2, 21.5, 25.8, and 30.1 wt%, respectively. The thermal delay method was used. Samples were cooled from 50 °C to 10 °C. A higher concentration of microcapsules caused a proportional increase in the specific heat of slurry at the main peak melting temperature. The maximum value of the specific heat changed from 9.2 to 33.7 kJ/kg for 8.6 wt%, and 30.1 wt%, respectively. The specific heat of the mPCM slurry is a constant quantity and depends on the concentration of the microcapsules. The specific heat of the slurry (PCM inside microcapsules in a liquid form) d...","publisher":"MDPI AG","publication_name":"Energies"},"translated_abstract":"This paper details an experimental study that was performed to investigate the specific heat of microencapsulated phase change material (mPCM) slurry and its heat of fusion at the PCM phase change transition temperature. Six samples (mPCM slurry concentrate with the water solution of propylene glycol used as a main base liquid) were prepared. As the concentrate contains 43.0% mPCM, the actual mass fraction amounts to 8.6, 12.9, 17.2, 21.5, 25.8, and 30.1 wt%, respectively. The thermal delay method was used. Samples were cooled from 50 °C to 10 °C. A higher concentration of microcapsules caused a proportional increase in the specific heat of slurry at the main peak melting temperature. The maximum value of the specific heat changed from 9.2 to 33.7 kJ/kg for 8.6 wt%, and 30.1 wt%, respectively. The specific heat of the mPCM slurry is a constant quantity and depends on the concentration of the microcapsules. The specific heat of the slurry (PCM inside microcapsules in a liquid form) d...","internal_url":"https://www.academia.edu/88404057/Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method","translated_internal_url":"","created_at":"2022-10-13T05:03:33.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92381941,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381941/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92381941/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determining_the_Heat_of_Fusion_and_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381941/pdf-libre.pdf?1665662762=\u0026response-content-disposition=attachment%3B+filename%3DDetermining_the_Heat_of_Fusion_and_Speci.pdf\u0026Expires=1732830792\u0026Signature=HP0Rr0ctkNjdTKgUVvHAa8RW37E0p3SjZMhynSxEOnTv-MNgl9VftYqhoa5alGBCBUb1H5~bVH34lAHLqw-Ug3obOw3vuHd2v9ItdkCXlliAYpn5DS0EiMbg4peCXwp3RhhURPxXBTTFfiPct3HHRUePcpzspqm2-kInrQh-x6Xu7S9zX6S84UsxRvsyDHH51TxIGg48YGDv8Ju5mVO~J3giEQmyCZ9xR49h4gFjxd5mCdwDXTI48eP2Mqpx3HS8i93NOzOUmLdaijjLzFYpL-ZEXXzuc92Hs3ixOgTJEiJ-bnNHdAqKliAfV7KO4~ljVktF-V1gzMTdO1xvPUKVNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92381941,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381941/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92381941/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determining_the_Heat_of_Fusion_and_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381941/pdf-libre.pdf?1665662762=\u0026response-content-disposition=attachment%3B+filename%3DDetermining_the_Heat_of_Fusion_and_Speci.pdf\u0026Expires=1732830792\u0026Signature=HP0Rr0ctkNjdTKgUVvHAa8RW37E0p3SjZMhynSxEOnTv-MNgl9VftYqhoa5alGBCBUb1H5~bVH34lAHLqw-Ug3obOw3vuHd2v9ItdkCXlliAYpn5DS0EiMbg4peCXwp3RhhURPxXBTTFfiPct3HHRUePcpzspqm2-kInrQh-x6Xu7S9zX6S84UsxRvsyDHH51TxIGg48YGDv8Ju5mVO~J3giEQmyCZ9xR49h4gFjxd5mCdwDXTI48eP2Mqpx3HS8i93NOzOUmLdaijjLzFYpL-ZEXXzuc92Hs3ixOgTJEiJ-bnNHdAqKliAfV7KO4~ljVktF-V1gzMTdO1xvPUKVNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1290065,"name":"ENERGIES","url":"https://www.academia.edu/Documents/in/ENERGIES-1"}],"urls":[{"id":24729257,"url":"https://www.mdpi.com/1996-1073/14/1/179/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404056"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404056/Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems"><img alt="Research paper thumbnail of Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404056/Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems">Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems</a></div><div class="wp-workCard_item"><span>Applied Thermal Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404056"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404056]").text(description); $(".js-view-count[data-work-id=88404056]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404056']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404056, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404056]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404056,"title":"Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Applied Thermal Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404056/Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems","translated_internal_url":"","created_at":"2022-10-13T05:03:32.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8065,"name":"Refrigeration","url":"https://www.academia.edu/Documents/in/Refrigeration"},{"id":123865,"name":"Global warming potential","url":"https://www.academia.edu/Documents/in/Global_warming_potential"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":589381,"name":"Flammability","url":"https://www.academia.edu/Documents/in/Flammability"},{"id":641466,"name":"Applied Thermal Engineering","url":"https://www.academia.edu/Documents/in/Applied_Thermal_Engineering"},{"id":1323179,"name":"Vapor Compression Refrigeration","url":"https://www.academia.edu/Documents/in/Vapor_Compression_Refrigeration"},{"id":1444222,"name":"Refrigerant","url":"https://www.academia.edu/Documents/in/Refrigerant"}],"urls":[{"id":24729256,"url":"https://api.elsevier.com/content/article/PII:S135943112200309X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404055"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404055/Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid"><img alt="Research paper thumbnail of Determination of geyser events in a thermosyphon working with graphene oxide nanofluid" class="work-thumbnail" src="https://attachments.academia-assets.com/92381944/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404055/Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid">Determination of geyser events in a thermosyphon working with graphene oxide nanofluid</a></div><div class="wp-workCard_item"><span>Machines. Technologies. Materials.</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ed1357a5dc10b1d2001b9433d1cb091c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92381944,&quot;asset_id&quot;:88404055,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92381944/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404055"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404055"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404055; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404055]").text(description); $(".js-view-count[data-work-id=88404055]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404055; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404055']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404055, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ed1357a5dc10b1d2001b9433d1cb091c" } } $('.js-work-strip[data-work-id=88404055]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404055,"title":"Determination of geyser events in a thermosyphon working with graphene oxide nanofluid","translated_title":"","metadata":{"publisher":"Scientific Technical Union of Mechanical Engineering *Industry 4.0*","grobid_abstract":"Two-phase closed thermosyphons are efficient passive devices with potential for using in many heat transfer applications. One of the boiling regimes that may occur is the geyser boiling. It is a repetitive irregular process of pushing liquid without its previous evaporation in the direction of condenser. Although it does not affect time-averaged thermal performance of the device, it causes additional mechanical load and shortens the lifetime of the device. Unfortunately, geysering is not well investigated, thus no precise definition exists. This paper focuses on the process of data reduction that leads to geyser boiling detection. It may be applied for various working fluids and operating conditions. Two parameters are crucial for recognizing geyser events from the background noise (pressure variations followed by the geyser): the minimum amplitude of pressure increase and waiting period between ensuing events. We compared two working fluids: water and graphene oxide nanofluid. In general, with increase of heat flux the frequency of geysers increases and their amplitude decreases.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Machines. Technologies. Materials.","grobid_abstract_attachment_id":92381944},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404055/Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid","translated_internal_url":"","created_at":"2022-10-13T05:03:32.648-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92381944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381944/thumbnails/1.jpg","file_name":"74.full.pdf","download_url":"https://www.academia.edu/attachments/92381944/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determination_of_geyser_events_in_a_ther.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381944/74.full-libre.pdf?1665662748=\u0026response-content-disposition=attachment%3B+filename%3DDetermination_of_geyser_events_in_a_ther.pdf\u0026Expires=1732830792\u0026Signature=eaNs2GQph~hYUhBmPPV~2Y618mE8lvyAHpNak1vBBM66RLF5zhxjrnItB7Mxql1VAs4pj5vEKF2goKAkY~Ft8V70XigOnLT5d3ZFToL7FFMFnTnD1e~vvJhwQyDsrwAYMwEWRXzljLCp5TCNxiUP-QIeLF1VeWIzMKVVypiQMZg-HKZXecJdXQW24Ni6Qi8-n9sqQTPq9ESMCctfs9WDKsdqakUsONTaSkN5YgZr6wnAMncz56xOwf6tR9l4-fF2bO-E1zAxyOcHFeY7lg0-JSVdwDlgZpgj1IzCyb8DuM4ti8942aYtVbWqxLI7tqFQMTQyWSdwrmroX~JT-5qgsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92381944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381944/thumbnails/1.jpg","file_name":"74.full.pdf","download_url":"https://www.academia.edu/attachments/92381944/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determination_of_geyser_events_in_a_ther.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381944/74.full-libre.pdf?1665662748=\u0026response-content-disposition=attachment%3B+filename%3DDetermination_of_geyser_events_in_a_ther.pdf\u0026Expires=1732830792\u0026Signature=eaNs2GQph~hYUhBmPPV~2Y618mE8lvyAHpNak1vBBM66RLF5zhxjrnItB7Mxql1VAs4pj5vEKF2goKAkY~Ft8V70XigOnLT5d3ZFToL7FFMFnTnD1e~vvJhwQyDsrwAYMwEWRXzljLCp5TCNxiUP-QIeLF1VeWIzMKVVypiQMZg-HKZXecJdXQW24Ni6Qi8-n9sqQTPq9ESMCctfs9WDKsdqakUsONTaSkN5YgZr6wnAMncz56xOwf6tR9l4-fF2bO-E1zAxyOcHFeY7lg0-JSVdwDlgZpgj1IzCyb8DuM4ti8942aYtVbWqxLI7tqFQMTQyWSdwrmroX~JT-5qgsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":92381943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381943/thumbnails/1.jpg","file_name":"74.full.pdf","download_url":"https://www.academia.edu/attachments/92381943/download_file","bulk_download_file_name":"Determination_of_geyser_events_in_a_ther.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381943/74.full-libre.pdf?1665662745=\u0026response-content-disposition=attachment%3B+filename%3DDetermination_of_geyser_events_in_a_ther.pdf\u0026Expires=1732830792\u0026Signature=ZBDr0yX9MVSAc2DqiLWqo8lPnbuSJuG47DkNULfVcIrA4UJxRo0x0x~nEeigVnuggInJURsPiW8RRU5xbtOnZf-ueshPPJ-oh~05KAkUN3TLLHOBrMv0qwY-B0ofHAM4z3KQ5RSFNVQrNxVNShWu1rNOfpCDSs-KNREa0v7iMzGOouNIhJXiUZVnMnvZlxDwIPmjx5~obSBNvyoXzMbXdPpsl682GSQ7jxQeBhdIm4fBjz9MQWw2iEQuVgC52fEpriMIx04wNWR~I~s9b4t4LrzLVVrebLXb8dF-FUrCjveqK8f1KVXZFMiINI0la3CyySmLUJE2hlRoBgGvIuaCMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":24729255,"url":"https://stumejournals.com/journals/mtm/2019/2/74.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404054"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404054/Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator"><img alt="Research paper thumbnail of Controlling vapor quality of R245fa in a microchannel evaporator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404054/Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator">Controlling vapor quality of R245fa in a microchannel evaporator</a></div><div class="wp-workCard_item"><span>Proceedings of the 25&lt;sup&gt;th&lt;/sup&gt; IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.</span><span>, Aug 24, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404054"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404054"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404054; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404054]").text(description); $(".js-view-count[data-work-id=88404054]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404054; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404054']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404054, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404054]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404054,"title":"Controlling vapor quality of R245fa in a microchannel evaporator","translated_title":"","metadata":{"publication_date":{"day":24,"month":8,"year":2019,"errors":{}},"publication_name":"Proceedings of the 25\u003csup\u003eth\u003c/sup\u003e IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019."},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404054/Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator","translated_internal_url":"","created_at":"2022-10-13T05:03:32.350-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":474021,"name":"Evaporator","url":"https://www.academia.edu/Documents/in/Evaporator"}],"urls":[{"id":24729254,"url":"https://iifiir.org/en/fridoc/34721"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404053"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404053/Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source"><img alt="Research paper thumbnail of Performance analysis and cycle time optimization of a single evaporator three-bed solid-sorption refrigeration system driven by low-temperature heat source" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404053/Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source">Performance analysis and cycle time optimization of a single evaporator three-bed solid-sorption refrigeration system driven by low-temperature heat source</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/water adsorption chiller. Presented study builds upon the fact that desorption phase requires noticeably less time than adsorption phase, i.e. desorption is 2.2-3.5 times faster than adsorption. The operating cycle was simulated using a numerical model. Lengths of adsorption/desorption phases and the offset time between individual adsorbers were varied for optimal performance. The results show that third bed increased cooling capacity of adsorption chiller. The optimal total cycle time that yields the highest cooling capacity is slightly shorter than in a two-bed setup. The difference is larger if the chiller is driven by lower temperature, 65°C instead of 85°C. The optimal ratio between the time of desorption and the time of adsorption in a three-bed system is f ~ 0.6, while it is f ~ 0.8 in a two-bed system. The optimal offset time is 1/3 of the total cycle time. The cycle time optimiza...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404053"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404053"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404053; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404053]").text(description); $(".js-view-count[data-work-id=88404053]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404053; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404053']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404053, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404053]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404053,"title":"Performance analysis and cycle time optimization of a single evaporator three-bed solid-sorption refrigeration system driven by low-temperature heat source","translated_title":"","metadata":{"abstract":"This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/water adsorption chiller. Presented study builds upon the fact that desorption phase requires noticeably less time than adsorption phase, i.e. desorption is 2.2-3.5 times faster than adsorption. The operating cycle was simulated using a numerical model. Lengths of adsorption/desorption phases and the offset time between individual adsorbers were varied for optimal performance. The results show that third bed increased cooling capacity of adsorption chiller. The optimal total cycle time that yields the highest cooling capacity is slightly shorter than in a two-bed setup. The difference is larger if the chiller is driven by lower temperature, 65°C instead of 85°C. The optimal ratio between the time of desorption and the time of adsorption in a three-bed system is f ~ 0.6, while it is f ~ 0.8 in a two-bed system. The optimal offset time is 1/3 of the total cycle time. The cycle time optimiza...","publisher":"International Institute of Refrigeration (IIR)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/water adsorption chiller. Presented study builds upon the fact that desorption phase requires noticeably less time than adsorption phase, i.e. desorption is 2.2-3.5 times faster than adsorption. The operating cycle was simulated using a numerical model. Lengths of adsorption/desorption phases and the offset time between individual adsorbers were varied for optimal performance. The results show that third bed increased cooling capacity of adsorption chiller. The optimal total cycle time that yields the highest cooling capacity is slightly shorter than in a two-bed setup. The difference is larger if the chiller is driven by lower temperature, 65°C instead of 85°C. The optimal ratio between the time of desorption and the time of adsorption in a three-bed system is f ~ 0.6, while it is f ~ 0.8 in a two-bed system. The optimal offset time is 1/3 of the total cycle time. The cycle time optimiza...","internal_url":"https://www.academia.edu/88404053/Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source","translated_internal_url":"","created_at":"2022-10-13T05:03:32.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404052"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404052/Mo%C5%BCliwo%C5%9Bci_wykorzystania_zi%C4%99bnik%C3%B3w_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_spr%C4%99%C5%BCarkowych_pompach_ciep%C5%82a"><img alt="Research paper thumbnail of Możliwości wykorzystania ziębników naturalnych i ich mieszanin w wysokotemperaturowych sprężarkowych pompach ciepła" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404052/Mo%C5%BCliwo%C5%9Bci_wykorzystania_zi%C4%99bnik%C3%B3w_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_spr%C4%99%C5%BCarkowych_pompach_ciep%C5%82a">Możliwości wykorzystania ziębników naturalnych i ich mieszanin w wysokotemperaturowych sprężarkowych pompach ciepła</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404052"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404052"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404052; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404052]").text(description); $(".js-view-count[data-work-id=88404052]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404052; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404052']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404052, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404052]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404052,"title":"Możliwości wykorzystania ziębników naturalnych i ich mieszanin w wysokotemperaturowych sprężarkowych pompach ciepła","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404052/Mo%C5%BCliwo%C5%9Bci_wykorzystania_zi%C4%99bnik%C3%B3w_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_spr%C4%99%C5%BCarkowych_pompach_ciep%C5%82a","translated_internal_url":"","created_at":"2022-10-13T05:03:32.029-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Możliwości_wykorzystania_ziębników_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_sprężarkowych_pompach_ciepła","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404051"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404051/The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions"><img alt="Research paper thumbnail of The mathematical model of zeotropic mixture refrigerants in metastable flow conditions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404051/The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions">The mathematical model of zeotropic mixture refrigerants in metastable flow conditions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper shows the results of an theoretical analysis of the metastable flow phenomena during th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper shows the results of an theoretical analysis of the metastable flow phenomena during the two-phase refrigerant&amp;#39;s throttling process inside the capillary tube. The effect of the metastable flow region outlet refrigerant parameters and real working parameters of capillary tube is presented. Necessity of consideration of the metastable flow region in the new methods of calculation and selection of the capillary tubes is noticed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404051"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404051"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404051; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404051]").text(description); $(".js-view-count[data-work-id=88404051]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404051; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404051']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404051, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404051]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404051,"title":"The mathematical model of zeotropic mixture refrigerants in metastable flow conditions","translated_title":"","metadata":{"abstract":"The paper shows the results of an theoretical analysis of the metastable flow phenomena during the two-phase refrigerant\u0026#39;s throttling process inside the capillary tube. The effect of the metastable flow region outlet refrigerant parameters and real working parameters of capillary tube is presented. Necessity of consideration of the metastable flow region in the new methods of calculation and selection of the capillary tubes is noticed.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"The paper shows the results of an theoretical analysis of the metastable flow phenomena during the two-phase refrigerant\u0026#39;s throttling process inside the capillary tube. The effect of the metastable flow region outlet refrigerant parameters and real working parameters of capillary tube is presented. Necessity of consideration of the metastable flow region in the new methods of calculation and selection of the capillary tubes is noticed.","internal_url":"https://www.academia.edu/88404051/The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions","translated_internal_url":"","created_at":"2022-10-13T05:03:31.845-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":145339,"name":"Metastability","url":"https://www.academia.edu/Documents/in/Metastability"},{"id":1444222,"name":"Refrigerant","url":"https://www.academia.edu/Documents/in/Refrigerant"},{"id":3074150,"name":"Bandwidth Throttling ","url":"https://www.academia.edu/Documents/in/Bandwidth_Throttling"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404050"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404050/System_autonomicznej_klimatyzacji_stanowiskowej_SMG"><img alt="Research paper thumbnail of System autonomicznej klimatyzacji stanowiskowej SMG" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404050/System_autonomicznej_klimatyzacji_stanowiskowej_SMG">System autonomicznej klimatyzacji stanowiskowej SMG</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404050"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404050"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404050; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404050]").text(description); $(".js-view-count[data-work-id=88404050]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404050; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404050']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404050, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404050]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404050,"title":"System autonomicznej klimatyzacji stanowiskowej SMG","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404050/System_autonomicznej_klimatyzacji_stanowiskowej_SMG","translated_internal_url":"","created_at":"2022-10-13T05:03:31.679-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"System_autonomicznej_klimatyzacji_stanowiskowej_SMG","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404049"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404049/Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids"><img alt="Research paper thumbnail of Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404049/Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids">Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404049"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404049"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404049; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404049]").text(description); $(".js-view-count[data-work-id=88404049]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404049; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404049']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404049, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404049]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404049,"title":"Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404049/Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids","translated_internal_url":"","created_at":"2022-10-13T05:03:31.469-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404047/Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications"><img alt="Research paper thumbnail of Optimization of transcritical CO[2] thermodynamic cycle for cooling and heating applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404047/Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications">Optimization of transcritical CO[2] thermodynamic cycle for cooling and heating applications</a></div><div class="wp-workCard_item"><span>Archives of Thermodynamics</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404047]").text(description); $(".js-view-count[data-work-id=88404047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404047, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404047,"title":"Optimization of transcritical CO[2] thermodynamic cycle for cooling and heating applications","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Archives of Thermodynamics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404047/Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications","translated_internal_url":"","created_at":"2022-10-13T05:03:31.090-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404046/Wykorzystanie_proces%C3%B3w_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej"><img alt="Research paper thumbnail of Wykorzystanie procesów adsorpcji i desorpcji w systemach mikroklimatyzacji osobistej" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404046/Wykorzystanie_proces%C3%B3w_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej">Wykorzystanie procesów adsorpcji i desorpcji w systemach mikroklimatyzacji osobistej</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404046]").text(description); $(".js-view-count[data-work-id=88404046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404046, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404046,"title":"Wykorzystanie procesów adsorpcji i desorpcji w systemach mikroklimatyzacji osobistej","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404046/Wykorzystanie_proces%C3%B3w_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej","translated_internal_url":"","created_at":"2022-10-13T05:03:30.915-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Wykorzystanie_procesów_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404045"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404045/Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciep%C5%82a_i_zi%C4%99biarek_Cz%C4%99%C5%9B%C4%87_2"><img alt="Research paper thumbnail of Podstawy termodynamiczne sorpcyjnych chemicznych pomp ciepła i ziębiarek. Część 2" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404045/Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciep%C5%82a_i_zi%C4%99biarek_Cz%C4%99%C5%9B%C4%87_2">Podstawy termodynamiczne sorpcyjnych chemicznych pomp ciepła i ziębiarek. Część 2</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The eq...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The equations proposed were used to design a device suitable for waste heat recovery. The results obtained were compared with those calculated for compressors and absorption heat pump devices as well as more complex, chemical heat pump devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404045"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404045"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404045; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404045]").text(description); $(".js-view-count[data-work-id=88404045]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404045; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404045']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404045, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404045]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404045,"title":"Podstawy termodynamiczne sorpcyjnych chemicznych pomp ciepła i ziębiarek. Część 2","translated_title":"","metadata":{"abstract":"This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The equations proposed were used to design a device suitable for waste heat recovery. The results obtained were compared with those calculated for compressors and absorption heat pump devices as well as more complex, chemical heat pump devices.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":"This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The equations proposed were used to design a device suitable for waste heat recovery. The results obtained were compared with those calculated for compressors and absorption heat pump devices as well as more complex, chemical heat pump devices.","internal_url":"https://www.academia.edu/88404045/Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciep%C5%82a_i_zi%C4%99biarek_Cz%C4%99%C5%9B%C4%87_2","translated_internal_url":"","created_at":"2022-10-13T05:03:30.747-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciepła_i_ziębiarek_Część_2","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404044/Przydatno%C5%9B%C4%87_mikroklimatyzacji_osobistej_opartej_na_materia%C5%82ach_zmiennofazowych_w_aspekcie_wymaga%C5%84_technicznych_i_ergonomicznych"><img alt="Research paper thumbnail of Przydatność mikroklimatyzacji osobistej opartej na materiałach zmiennofazowych w aspekcie wymagań technicznych i ergonomicznych" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404044/Przydatno%C5%9B%C4%87_mikroklimatyzacji_osobistej_opartej_na_materia%C5%82ach_zmiennofazowych_w_aspekcie_wymaga%C5%84_technicznych_i_ergonomicznych">Przydatność mikroklimatyzacji osobistej opartej na materiałach zmiennofazowych w aspekcie wymagań technicznych i ergonomicznych</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404044]").text(description); $(".js-view-count[data-work-id=88404044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404044, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404044,"title":"Przydatność mikroklimatyzacji osobistej opartej na materiałach zmiennofazowych w aspekcie wymagań technicznych i ergonomicznych","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404044/Przydatno%C5%9B%C4%87_mikroklimatyzacji_osobistej_opartej_na_materia%C5%82ach_zmiennofazowych_w_aspekcie_wymaga%C5%84_technicznych_i_ergonomicznych","translated_internal_url":"","created_at":"2022-10-13T05:03:30.555-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Przydatność_mikroklimatyzacji_osobistej_opartej_na_materiałach_zmiennofazowych_w_aspekcie_wymagań_technicznych_i_ergonomicznych","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404042/Sorpcyjne_chemiczne_zi%C4%99biarki_i_pompy_ciep%C5%82a_Cz%C4%99%C5%9B%C4%87_1"><img alt="Research paper thumbnail of Sorpcyjne chemiczne ziębiarki i pompy ciepła. Część 1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404042/Sorpcyjne_chemiczne_zi%C4%99biarki_i_pompy_ciep%C5%82a_Cz%C4%99%C5%9B%C4%87_1">Sorpcyjne chemiczne ziębiarki i pompy ciepła. Część 1</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404042]").text(description); $(".js-view-count[data-work-id=88404042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404042, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404042,"title":"Sorpcyjne chemiczne ziębiarki i pompy ciepła. Część 1","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404042/Sorpcyjne_chemiczne_zi%C4%99biarki_i_pompy_ciep%C5%82a_Cz%C4%99%C5%9B%C4%87_1","translated_internal_url":"","created_at":"2022-10-13T05:03:30.416-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sorpcyjne_chemiczne_ziębiarki_i_pompy_ciepła_Część_1","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404040/Termodynamiczne_aspekty_doboru_obiegu_por%C3%B3wnowawczego"><img alt="Research paper thumbnail of Termodynamiczne aspekty doboru obiegu porównowawczego" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404040/Termodynamiczne_aspekty_doboru_obiegu_por%C3%B3wnowawczego">Termodynamiczne aspekty doboru obiegu porównowawczego</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404040]").text(description); $(".js-view-count[data-work-id=88404040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404040, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404040,"title":"Termodynamiczne aspekty doboru obiegu porównowawczego","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404040/Termodynamiczne_aspekty_doboru_obiegu_por%C3%B3wnowawczego","translated_internal_url":"","created_at":"2022-10-13T05:03:30.279-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Termodynamiczne_aspekty_doboru_obiegu_porównowawczego","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404038/Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure"><img alt="Research paper thumbnail of Subcooled boiling regime map for water at low saturation temperature and subatmospheric pressure" class="work-thumbnail" src="https://attachments.academia-assets.com/92382005/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404038/Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure">Subcooled boiling regime map for water at low saturation temperature and subatmospheric pressure</a></div><div class="wp-workCard_item"><span>Experimental Thermal and Fluid Science</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5c188b42bf0c54942abdd9b1c765f1d2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92382005,&quot;asset_id&quot;:88404038,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92382005/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404038]").text(description); $(".js-view-count[data-work-id=88404038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404038, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5c188b42bf0c54942abdd9b1c765f1d2" } } $('.js-work-strip[data-work-id=88404038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404038,"title":"Subcooled boiling regime map for water at low saturation temperature and subatmospheric pressure","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Subatmospheric pool boiling heat transfer was investigated experimentally. At low vapor pressure, the static head of the liquid column induces a non-negligible pressure gradient. This results in a local pressure-induced subcooling that makes the case of boiling at low vapor pressure with a high level of liquid a particular case of subcooled boiling. The experiments were conducted for variety of working parameters: three vapor pressures (2.4 kPa, 3.1 kPa, 4.1 kPa), four levels of liquid (15 cm, 28 cm, 35 cm, 60 cm) and five applied heat fluxes (3.6 W • cm −2 , 4.4 W • cm −2 , 5.2 W • cm −2 , 6.1 W • cm −2 and 7.1 W • cm −2). Owing to a statistical analysis of the signal of a heat flux sensor coupled with high-speed video recording, four different boiling regimes were identified: the regime of convection or small popping bubbles, the regime of isolated bubbles, the regime of intermittent boiling and the regime of fully developed boiling. The small popping bubbles and the intermittent boiling regimes are specific to the low pressure boiling: they are governed by the phenomenon of condensation driven by the aforementioned static pressure induced subcooling. Finally, to provide a visual representation of the influence of the working parameters on the boiling behavior, a dimensionless boiling regime map was proposed. This type of representation is a tool to predict the boiling regimes from a set of operating conditions but it is also useful to interpret the physical phenomena involved and how they differ from those occurring at higher pressure. 1.1. Temperature-induced subcooled boiling Subcooled boiling was primarily studied in the case of temperatureinduced subcooling (liquid bulk temperature being lower than the","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Experimental Thermal and Fluid Science","grobid_abstract_attachment_id":92382005},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404038/Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure","translated_internal_url":"","created_at":"2022-10-13T05:03:30.057-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92382005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382005/thumbnails/1.jpg","file_name":"j.expthermflusci.2020.11015020221013-1-3qqdbi.pdf","download_url":"https://www.academia.edu/attachments/92382005/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subcooled_boiling_regime_map_for_water_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382005/j.expthermflusci.2020.11015020221013-1-3qqdbi-libre.pdf?1665662720=\u0026response-content-disposition=attachment%3B+filename%3DSubcooled_boiling_regime_map_for_water_a.pdf\u0026Expires=1732830792\u0026Signature=KlpkT-5Hvpe1qFcaLkSMOhAmLvHH5NRPHCNC9GenBIofgrN2~xZ-D1ym3bgRXWOT22e~KK0UlYNNOXrH6xm8z-3lrGaYsuQnXnf26K82LVbRUwOgqjrKvo-hmMcftcCfLPBIgbJbVc7TZ5LnYIbokqCSMW-Vpm3o7JSU0aHz2R-zl8gAT2PmOooSJSbT~Z5prnZJSTOM5k4V4Dola~PGBhOfK749NDTeUG0Pp15toEkVDfTnb7e2oPlKV2C-K7T2tXvEeK8rPPLz6iAmum94403Xn4pBC9qNYbYr7B8wBKUH6uetBvzRQTkHO5RpmPc1cV-Uk7PtH2kOYM8A5OVbow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92382005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382005/thumbnails/1.jpg","file_name":"j.expthermflusci.2020.11015020221013-1-3qqdbi.pdf","download_url":"https://www.academia.edu/attachments/92382005/download_file?st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subcooled_boiling_regime_map_for_water_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382005/j.expthermflusci.2020.11015020221013-1-3qqdbi-libre.pdf?1665662720=\u0026response-content-disposition=attachment%3B+filename%3DSubcooled_boiling_regime_map_for_water_a.pdf\u0026Expires=1732830792\u0026Signature=KlpkT-5Hvpe1qFcaLkSMOhAmLvHH5NRPHCNC9GenBIofgrN2~xZ-D1ym3bgRXWOT22e~KK0UlYNNOXrH6xm8z-3lrGaYsuQnXnf26K82LVbRUwOgqjrKvo-hmMcftcCfLPBIgbJbVc7TZ5LnYIbokqCSMW-Vpm3o7JSU0aHz2R-zl8gAT2PmOooSJSbT~Z5prnZJSTOM5k4V4Dola~PGBhOfK749NDTeUG0Pp15toEkVDfTnb7e2oPlKV2C-K7T2tXvEeK8rPPLz6iAmum94403Xn4pBC9qNYbYr7B8wBKUH6uetBvzRQTkHO5RpmPc1cV-Uk7PtH2kOYM8A5OVbow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"},{"id":1444999,"name":"Nucleate Boiling","url":"https://www.academia.edu/Documents/in/Nucleate_Boiling"},{"id":3156000,"name":"Subcooling","url":"https://www.academia.edu/Documents/in/Subcooling"}],"urls":[{"id":24729250,"url":"https://api.elsevier.com/content/article/PII:S0894177719321466?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404033/Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance"><img alt="Research paper thumbnail of Impact of Silica Nanofluid Deposition on Thermosyphon Performance" class="work-thumbnail" src="https://attachments.academia-assets.com/92382004/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404033/Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance">Impact of Silica Nanofluid Deposition on Thermosyphon Performance</a></div><div class="wp-workCard_item"><span>Heat Transfer Engineering</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40e6737ff3edffd85e7b87061dd35404" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92382004,&quot;asset_id&quot;:88404033,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92382004/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404033]").text(description); $(".js-view-count[data-work-id=88404033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404033, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40e6737ff3edffd85e7b87061dd35404" } } $('.js-work-strip[data-work-id=88404033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404033,"title":"Impact of Silica Nanofluid Deposition on Thermosyphon Performance","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Thermosyphons are amongst the most efficient passive heat transfer devices known nowadays. Due to heat and mass transfer limitations of working fluids, much effort is invested in developing a new generation of enhanced fluids, such as nanofluids. Previous studies reported improved thermal capacity when water was replaced by nanofluid. The interplay between nanoparticles and the evaporator surface is crucial here. However, the details of the deposition mechanism and its impact on boiling are still not known. This paper focusses on determining how the boiling process in the thermosyphon affects the inner wall of the evaporator and the nanofluid itself, and how it influences the thermal performance. For that purpose, we conducted the experimental study on a thermosyphon filled with silica nanofluid and then analyzed the samples of evaporator surface and silica nanofluid under a scanning electron microscope. Silica deposited into a porous layer during boiling, which enabled capillary wicking. This in turn decreased the overheating of the evaporator wall. Moreover, silica nanofluid increased heat transfer efficiency and transferred more thermal energy at low heat loads. After opening the thermosyphon, the deposited layer dried and split up. Based on two methods of crack pattern analysis, the mean thickness of the layer was estimated.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Heat Transfer Engineering","grobid_abstract_attachment_id":92382004},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404033/Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance","translated_internal_url":"","created_at":"2022-10-13T05:03:29.838-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92382004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382004/thumbnails/1.jpg","file_name":"01457632.2020.181841320221013-1-f30c7f.pdf","download_url":"https://www.academia.edu/attachments/92382004/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Silica_Nanofluid_Deposition_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382004/01457632.2020.181841320221013-1-f30c7f-libre.pdf?1665662734=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Silica_Nanofluid_Deposition_on.pdf\u0026Expires=1732830792\u0026Signature=X4fIRTUx8pqWZm6A290j1b2TELe4TNxXk4bCnQ~BVVM3kgcVA8nklwcqgke1k8Yt8NBwLP4S1Y296B7I0Z2mecnV3kACx1qgKUQviNsYr2Go-Qf7nqVAtmH8wQTEK8X111oLjkQg8~LZXRj3y6S~psKVC2nAKO1HnwXBuBfMvJPQJ5YhkHA605v5XylFjI76qf3YoS~cCyOcOuElad03GrXIc~6UseON-NNUZfC7DNZTWTvCumLS4BAamz2vq~CcnR4gD0Zp-pgnLMeU4ZTcUD-uqPpaJB1b4agibICHQcV1J3BOAS4FXkGJRDvVGH0mPyMIpZ5X3q2TuA4xE0e3Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance","translated_slug":"","page_count":50,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92382004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382004/thumbnails/1.jpg","file_name":"01457632.2020.181841320221013-1-f30c7f.pdf","download_url":"https://www.academia.edu/attachments/92382004/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Silica_Nanofluid_Deposition_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382004/01457632.2020.181841320221013-1-f30c7f-libre.pdf?1665662734=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Silica_Nanofluid_Deposition_on.pdf\u0026Expires=1732830792\u0026Signature=X4fIRTUx8pqWZm6A290j1b2TELe4TNxXk4bCnQ~BVVM3kgcVA8nklwcqgke1k8Yt8NBwLP4S1Y296B7I0Z2mecnV3kACx1qgKUQviNsYr2Go-Qf7nqVAtmH8wQTEK8X111oLjkQg8~LZXRj3y6S~psKVC2nAKO1HnwXBuBfMvJPQJ5YhkHA605v5XylFjI76qf3YoS~cCyOcOuElad03GrXIc~6UseON-NNUZfC7DNZTWTvCumLS4BAamz2vq~CcnR4gD0Zp-pgnLMeU4ZTcUD-uqPpaJB1b4agibICHQcV1J3BOAS4FXkGJRDvVGH0mPyMIpZ5X3q2TuA4xE0e3Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":1340630,"name":"Chemical Engineering Heat \u0026 Mass Transfer","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Heat_and_Mass_Transfer"},{"id":1524533,"name":"Mechanical Engineering and heat and mass transfer","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering_and_heat_and_mass_transfer"}],"urls":[{"id":24729247,"url":"https://www.tandfonline.com/doi/pdf/10.1080/01457632.2020.1818413"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404029/The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids"><img alt="Research paper thumbnail of The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404029/The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids">The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids</a></div><div class="wp-workCard_item"><span>Colloids and Surfaces A: Physicochemical and Engineering Aspects</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultaneous phase changes occurring in the evaporation-condensation cycle of working fluid. One of the most promising solutions to enhance their heat transfer capacity of the device is the use of nanofluids – suspensions of particles with at least one dimension below 100 nm. It was determined that nanofluid does not influence the work of thermosyphons condenser section and the focus should be put on the boiling process in the evaporator section. During boiling, nanoparticles tend to deposit on the heater’s surface, what alters characteristics of this surface and near surface hydrodynamics. This changes the appearance of nanofluid, but the precise effect on how the deposition of particles affects the properties of nanofluid is unknown. Changes in surface tension and wettability affect boiling regimes (e.g. reduced surface tension reduces the size of departing bubbles and inhibits geysering), and efficiency of heat transfer through the device. Understanding of those parameters is crucial for the development of appropriate models describing heat transfer in thermosyphon working with nanofluids. The main goal of this study is to determine surface tension and contact angle of nanofluids based on silica nanoparticles and nano-sized graphene oxide flakes before and after the experimental boiling cycle in the thermosyphon. Results show that, in comparison with water, silica nanofluid (2 vol%) is characterised by lower surface tension and contact angles on both analysed surfaces. After-use silica nanofluid exhibited noticeably higher averaged surface tension and smaller contact angles in comparison to the fresh working medium. The change was most likely due to the decreased concentration caused by the deposition of nanoparticles during the thermosyphon operation. Still, the differences between before-use and after-use samples were smaller than the measurement uncertainties. Before-use graphene oxide nanofluid already showed surface tension and contact angle similar to water due to low concentration of graphene flakes (0.1 g/L). Consequently, the properties of after-use graphene oxide fluid were also not much different from water. Additional measurements of surface tension for graphene oxide nanofluid with and without addition of sodium dodecyl sulphate surfactant allowed to differentiate the effects caused by graphene flakes and surfactant. The surfactant reduced the surface tension of the nanofluid, but the change was smaller than in case of surfactant addition to pure water.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404029]").text(description); $(".js-view-count[data-work-id=88404029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404029, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404029,"title":"The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids","translated_title":"","metadata":{"abstract":"Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultaneous phase changes occurring in the evaporation-condensation cycle of working fluid. One of the most promising solutions to enhance their heat transfer capacity of the device is the use of nanofluids – suspensions of particles with at least one dimension below 100 nm. It was determined that nanofluid does not influence the work of thermosyphons condenser section and the focus should be put on the boiling process in the evaporator section. During boiling, nanoparticles tend to deposit on the heater’s surface, what alters characteristics of this surface and near surface hydrodynamics. This changes the appearance of nanofluid, but the precise effect on how the deposition of particles affects the properties of nanofluid is unknown. Changes in surface tension and wettability affect boiling regimes (e.g. reduced surface tension reduces the size of departing bubbles and inhibits geysering), and efficiency of heat transfer through the device. Understanding of those parameters is crucial for the development of appropriate models describing heat transfer in thermosyphon working with nanofluids. The main goal of this study is to determine surface tension and contact angle of nanofluids based on silica nanoparticles and nano-sized graphene oxide flakes before and after the experimental boiling cycle in the thermosyphon. Results show that, in comparison with water, silica nanofluid (2 vol%) is characterised by lower surface tension and contact angles on both analysed surfaces. After-use silica nanofluid exhibited noticeably higher averaged surface tension and smaller contact angles in comparison to the fresh working medium. The change was most likely due to the decreased concentration caused by the deposition of nanoparticles during the thermosyphon operation. Still, the differences between before-use and after-use samples were smaller than the measurement uncertainties. Before-use graphene oxide nanofluid already showed surface tension and contact angle similar to water due to low concentration of graphene flakes (0.1 g/L). Consequently, the properties of after-use graphene oxide fluid were also not much different from water. Additional measurements of surface tension for graphene oxide nanofluid with and without addition of sodium dodecyl sulphate surfactant allowed to differentiate the effects caused by graphene flakes and surfactant. The surfactant reduced the surface tension of the nanofluid, but the change was smaller than in case of surfactant addition to pure water.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects"},"translated_abstract":"Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultaneous phase changes occurring in the evaporation-condensation cycle of working fluid. One of the most promising solutions to enhance their heat transfer capacity of the device is the use of nanofluids – suspensions of particles with at least one dimension below 100 nm. It was determined that nanofluid does not influence the work of thermosyphons condenser section and the focus should be put on the boiling process in the evaporator section. During boiling, nanoparticles tend to deposit on the heater’s surface, what alters characteristics of this surface and near surface hydrodynamics. This changes the appearance of nanofluid, but the precise effect on how the deposition of particles affects the properties of nanofluid is unknown. Changes in surface tension and wettability affect boiling regimes (e.g. reduced surface tension reduces the size of departing bubbles and inhibits geysering), and efficiency of heat transfer through the device. Understanding of those parameters is crucial for the development of appropriate models describing heat transfer in thermosyphon working with nanofluids. The main goal of this study is to determine surface tension and contact angle of nanofluids based on silica nanoparticles and nano-sized graphene oxide flakes before and after the experimental boiling cycle in the thermosyphon. Results show that, in comparison with water, silica nanofluid (2 vol%) is characterised by lower surface tension and contact angles on both analysed surfaces. After-use silica nanofluid exhibited noticeably higher averaged surface tension and smaller contact angles in comparison to the fresh working medium. The change was most likely due to the decreased concentration caused by the deposition of nanoparticles during the thermosyphon operation. Still, the differences between before-use and after-use samples were smaller than the measurement uncertainties. Before-use graphene oxide nanofluid already showed surface tension and contact angle similar to water due to low concentration of graphene flakes (0.1 g/L). Consequently, the properties of after-use graphene oxide fluid were also not much different from water. Additional measurements of surface tension for graphene oxide nanofluid with and without addition of sodium dodecyl sulphate surfactant allowed to differentiate the effects caused by graphene flakes and surfactant. The surfactant reduced the surface tension of the nanofluid, but the change was smaller than in case of surfactant addition to pure water.","internal_url":"https://www.academia.edu/88404029/The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids","translated_internal_url":"","created_at":"2022-10-13T05:03:29.625-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":161126,"name":"Contact angle","url":"https://www.academia.edu/Documents/in/Contact_angle"},{"id":211877,"name":"Wetting","url":"https://www.academia.edu/Documents/in/Wetting"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":24729243,"url":"https://api.elsevier.com/content/article/PII:S0927775721009511?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404024/Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures"><img alt="Research paper thumbnail of Pool boiling heat transfer coefficient of dimethyl ether and its azeotropic ternary mixtures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404024/Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures">Pool boiling heat transfer coefficient of dimethyl ether and its azeotropic ternary mixtures</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Mass Transfer</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being h...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being highly flammable substance, only recently it has again found commercial use as a primary working fluid in cooling and heating systems. Known as refrigerant RE170, it is now considered to be one of the potential natural refrigerants of the future due to minimal Global Warming Potential and zero Ozone Depletion Potential. Two novel azeotropic ternary mixtures of RE170/R1234yf/R152a were developed in order to improve cooling capacity and performance of a dimethyl ether refrigeration cycle. The mass ratios were purposefully selected to offer high cycle efficiency COP, high specific cooling capacity q e , small specific volume of vapour, reduced compressor power requirements, and the smallest possible temperature glide. The mixtures were subjected to experimental analysis in order to establish to what degree the added fluids (R1234yf and R152a) influence boiling and heat transfer performance. Boiling curves and heat transfer coefficients were determined experimentally and compared with the values obtained for pure RE170. Finally, several known heat transfer coefficient correlations (suitable for both hydrocarbons and synthetic refrigerants) were applied to the resulting data and evaluated for accuracy by evaluation of MAPE. The Cooper correlation was the most accurate for for ternary mixtures of dimethyl ether in the broadest range of temperatures, heat fluxes, and compositions (MAPE between 3.5-19.8). In order to improve the accuracy even further, the original Cooper correlation was modified with the acentric factor and the molecular mass power factor was optimised for modern chloride-less refrigerants. Resulting equation, when applied to ternary mixtures, returns errors below 5% in the entire range of experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404024]").text(description); $(".js-view-count[data-work-id=88404024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404024, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404024,"title":"Pool boiling heat transfer coefficient of dimethyl ether and its azeotropic ternary mixtures","translated_title":"","metadata":{"abstract":"Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being highly flammable substance, only recently it has again found commercial use as a primary working fluid in cooling and heating systems. Known as refrigerant RE170, it is now considered to be one of the potential natural refrigerants of the future due to minimal Global Warming Potential and zero Ozone Depletion Potential. Two novel azeotropic ternary mixtures of RE170/R1234yf/R152a were developed in order to improve cooling capacity and performance of a dimethyl ether refrigeration cycle. The mass ratios were purposefully selected to offer high cycle efficiency COP, high specific cooling capacity q e , small specific volume of vapour, reduced compressor power requirements, and the smallest possible temperature glide. The mixtures were subjected to experimental analysis in order to establish to what degree the added fluids (R1234yf and R152a) influence boiling and heat transfer performance. Boiling curves and heat transfer coefficients were determined experimentally and compared with the values obtained for pure RE170. Finally, several known heat transfer coefficient correlations (suitable for both hydrocarbons and synthetic refrigerants) were applied to the resulting data and evaluated for accuracy by evaluation of MAPE. The Cooper correlation was the most accurate for for ternary mixtures of dimethyl ether in the broadest range of temperatures, heat fluxes, and compositions (MAPE between 3.5-19.8). In order to improve the accuracy even further, the original Cooper correlation was modified with the acentric factor and the molecular mass power factor was optimised for modern chloride-less refrigerants. Resulting equation, when applied to ternary mixtures, returns errors below 5% in the entire range of experimental data.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"International Journal of Heat and Mass Transfer"},"translated_abstract":"Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being highly flammable substance, only recently it has again found commercial use as a primary working fluid in cooling and heating systems. Known as refrigerant RE170, it is now considered to be one of the potential natural refrigerants of the future due to minimal Global Warming Potential and zero Ozone Depletion Potential. Two novel azeotropic ternary mixtures of RE170/R1234yf/R152a were developed in order to improve cooling capacity and performance of a dimethyl ether refrigeration cycle. The mass ratios were purposefully selected to offer high cycle efficiency COP, high specific cooling capacity q e , small specific volume of vapour, reduced compressor power requirements, and the smallest possible temperature glide. The mixtures were subjected to experimental analysis in order to establish to what degree the added fluids (R1234yf and R152a) influence boiling and heat transfer performance. Boiling curves and heat transfer coefficients were determined experimentally and compared with the values obtained for pure RE170. Finally, several known heat transfer coefficient correlations (suitable for both hydrocarbons and synthetic refrigerants) were applied to the resulting data and evaluated for accuracy by evaluation of MAPE. The Cooper correlation was the most accurate for for ternary mixtures of dimethyl ether in the broadest range of temperatures, heat fluxes, and compositions (MAPE between 3.5-19.8). In order to improve the accuracy even further, the original Cooper correlation was modified with the acentric factor and the molecular mass power factor was optimised for modern chloride-less refrigerants. Resulting equation, when applied to ternary mixtures, returns errors below 5% in the entire range of experimental data.","internal_url":"https://www.academia.edu/88404024/Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures","translated_internal_url":"","created_at":"2022-10-13T05:03:29.404-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":24729240,"url":"https://api.elsevier.com/content/article/PII:S0017931021001666?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404021"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404021/Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa"><img alt="Research paper thumbnail of Influence of saturation temperature and heat flux on pool boiling of R245fa" class="work-thumbnail" src="https://attachments.academia-assets.com/92381997/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404021/Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa">Influence of saturation temperature and heat flux on pool boiling of R245fa</a></div><div class="wp-workCard_item"><span>Experimental Heat Transfer</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4496443fdc70ee041d92d3611116a875" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92381997,&quot;asset_id&quot;:88404021,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92381997/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404021"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404021"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404021; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404021]").text(description); $(".js-view-count[data-work-id=88404021]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404021; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404021']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404021, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4496443fdc70ee041d92d3611116a875" } } $('.js-work-strip[data-work-id=88404021]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404021,"title":"Influence of saturation temperature and heat flux on pool boiling of R245fa","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Low-pressure refrigerants such as R245fa allow compact design of IT cooling systems intended for harsh environments. Nucleate boiling of R245fa on an electrically heated flat horizontal surface was experimentally studied. Heat fluxes q w were 30-65 kW=m 2 and saturation temperatures 40-70 � C. Results show that the heat-transfer coefficient HTC increases with both heat flux and temperature, and that higher heat fluxes/temperatures lessen the HTC dependence on temperature/heat flux. For instance, increasing temperature from 40 to 70 � C translates into change of the exponent n in the HTC / q n w from 0.60 to 0.50. Therefore, pool-boiling correlations employing n ¼ const do not accurately reflect the HTC / q n w dependence. Comparing the experimental data with nucleate boiling correlations showed that the models of Kruzhilin and Mostinski were the most accurate with the Mean Absolute Percentage Error MAPE equal to 16.6% and 32.9%, respectively. The data were then used to optimize the model of Rohsenow and increase its accuracy. This model was chosen for optimization as it is the only model among the analyzed in this paper which incorporates a description of both surface roughness and contact angle. These properties are addressed using an empirical parameter C sf. Optimizing this parameter allowed the characterization of the interface between R245fa and heating surface used in this study. The resulting MAPE is 5.9%.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Experimental Heat Transfer","grobid_abstract_attachment_id":92381997},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404021/Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa","translated_internal_url":"","created_at":"2022-10-13T05:03:29.189-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92381997,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381997/thumbnails/1.jpg","file_name":"08916152.2020.179500920221013-1-xorcsk.pdf","download_url":"https://www.academia.edu/attachments/92381997/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_saturation_temperature_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381997/08916152.2020.179500920221013-1-xorcsk-libre.pdf?1665662745=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_saturation_temperature_and.pdf\u0026Expires=1732830793\u0026Signature=Po3yt~V-JPqIgIO-LBfFsRAsHenvcngDFyhNonvUmiMT79-ceryidx9vB-4~z0cf1D4VbvIwGX~rdnwJzPjnlk4EXBAfVpZ-9nph72z1yQg-1A1V06tF5t3ry1F3YxFRupyv4p3aOdwM9P6ol7zfeBhmb-j-~CbibhLsXAB-D9wHuBqmapysa~X9LFteGYimCjCXKW70IvF~jOuxJtcBzjbiBjau6PLB7ybeBDYCaYyBInsjB-5exOBvr1eaSZlZj6~G83yR~YYlBiCNX2Up7SErAJfvszU1p960pC1SgHQN-bxc3jQ~pvgL68eYh-AxeyG~pNMVCg0XE8xhLV~VDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92381997,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381997/thumbnails/1.jpg","file_name":"08916152.2020.179500920221013-1-xorcsk.pdf","download_url":"https://www.academia.edu/attachments/92381997/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_saturation_temperature_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381997/08916152.2020.179500920221013-1-xorcsk-libre.pdf?1665662745=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_saturation_temperature_and.pdf\u0026Expires=1732830793\u0026Signature=Po3yt~V-JPqIgIO-LBfFsRAsHenvcngDFyhNonvUmiMT79-ceryidx9vB-4~z0cf1D4VbvIwGX~rdnwJzPjnlk4EXBAfVpZ-9nph72z1yQg-1A1V06tF5t3ry1F3YxFRupyv4p3aOdwM9P6ol7zfeBhmb-j-~CbibhLsXAB-D9wHuBqmapysa~X9LFteGYimCjCXKW70IvF~jOuxJtcBzjbiBjau6PLB7ybeBDYCaYyBInsjB-5exOBvr1eaSZlZj6~G83yR~YYlBiCNX2Up7SErAJfvszU1p960pC1SgHQN-bxc3jQ~pvgL68eYh-AxeyG~pNMVCg0XE8xhLV~VDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"},{"id":994412,"name":"Experimental Fluid Dynamics and Heat Transfer","url":"https://www.academia.edu/Documents/in/Experimental_Fluid_Dynamics_and_Heat_Transfer"}],"urls":[{"id":24729238,"url":"https://www.tandfonline.com/doi/pdf/10.1080/08916152.2020.1795009"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="16054049" id="papers"><div class="js-work-strip profile--work_container" data-work-id="88404057"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404057/Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method"><img alt="Research paper thumbnail of Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method" class="work-thumbnail" src="https://attachments.academia-assets.com/92381941/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404057/Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method">Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method</a></div><div class="wp-workCard_item"><span>Energies</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper details an experimental study that was performed to investigate the specific heat of m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper details an experimental study that was performed to investigate the specific heat of microencapsulated phase change material (mPCM) slurry and its heat of fusion at the PCM phase change transition temperature. Six samples (mPCM slurry concentrate with the water solution of propylene glycol used as a main base liquid) were prepared. As the concentrate contains 43.0% mPCM, the actual mass fraction amounts to 8.6, 12.9, 17.2, 21.5, 25.8, and 30.1 wt%, respectively. The thermal delay method was used. Samples were cooled from 50 °C to 10 °C. A higher concentration of microcapsules caused a proportional increase in the specific heat of slurry at the main peak melting temperature. The maximum value of the specific heat changed from 9.2 to 33.7 kJ/kg for 8.6 wt%, and 30.1 wt%, respectively. The specific heat of the mPCM slurry is a constant quantity and depends on the concentration of the microcapsules. The specific heat of the slurry (PCM inside microcapsules in a liquid form) d...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d3e0b853fe5dba330a71ba70eb68351c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92381941,&quot;asset_id&quot;:88404057,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92381941/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404057"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404057"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404057; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404057]").text(description); $(".js-view-count[data-work-id=88404057]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404057; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404057']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404057, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d3e0b853fe5dba330a71ba70eb68351c" } } $('.js-work-strip[data-work-id=88404057]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404057,"title":"Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method","translated_title":"","metadata":{"abstract":"This paper details an experimental study that was performed to investigate the specific heat of microencapsulated phase change material (mPCM) slurry and its heat of fusion at the PCM phase change transition temperature. Six samples (mPCM slurry concentrate with the water solution of propylene glycol used as a main base liquid) were prepared. As the concentrate contains 43.0% mPCM, the actual mass fraction amounts to 8.6, 12.9, 17.2, 21.5, 25.8, and 30.1 wt%, respectively. The thermal delay method was used. Samples were cooled from 50 °C to 10 °C. A higher concentration of microcapsules caused a proportional increase in the specific heat of slurry at the main peak melting temperature. The maximum value of the specific heat changed from 9.2 to 33.7 kJ/kg for 8.6 wt%, and 30.1 wt%, respectively. The specific heat of the mPCM slurry is a constant quantity and depends on the concentration of the microcapsules. The specific heat of the slurry (PCM inside microcapsules in a liquid form) d...","publisher":"MDPI AG","publication_name":"Energies"},"translated_abstract":"This paper details an experimental study that was performed to investigate the specific heat of microencapsulated phase change material (mPCM) slurry and its heat of fusion at the PCM phase change transition temperature. Six samples (mPCM slurry concentrate with the water solution of propylene glycol used as a main base liquid) were prepared. As the concentrate contains 43.0% mPCM, the actual mass fraction amounts to 8.6, 12.9, 17.2, 21.5, 25.8, and 30.1 wt%, respectively. The thermal delay method was used. Samples were cooled from 50 °C to 10 °C. A higher concentration of microcapsules caused a proportional increase in the specific heat of slurry at the main peak melting temperature. The maximum value of the specific heat changed from 9.2 to 33.7 kJ/kg for 8.6 wt%, and 30.1 wt%, respectively. The specific heat of the mPCM slurry is a constant quantity and depends on the concentration of the microcapsules. The specific heat of the slurry (PCM inside microcapsules in a liquid form) d...","internal_url":"https://www.academia.edu/88404057/Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method","translated_internal_url":"","created_at":"2022-10-13T05:03:33.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92381941,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381941/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92381941/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determining_the_Heat_of_Fusion_and_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381941/pdf-libre.pdf?1665662762=\u0026response-content-disposition=attachment%3B+filename%3DDetermining_the_Heat_of_Fusion_and_Speci.pdf\u0026Expires=1732830792\u0026Signature=HP0Rr0ctkNjdTKgUVvHAa8RW37E0p3SjZMhynSxEOnTv-MNgl9VftYqhoa5alGBCBUb1H5~bVH34lAHLqw-Ug3obOw3vuHd2v9ItdkCXlliAYpn5DS0EiMbg4peCXwp3RhhURPxXBTTFfiPct3HHRUePcpzspqm2-kInrQh-x6Xu7S9zX6S84UsxRvsyDHH51TxIGg48YGDv8Ju5mVO~J3giEQmyCZ9xR49h4gFjxd5mCdwDXTI48eP2Mqpx3HS8i93NOzOUmLdaijjLzFYpL-ZEXXzuc92Hs3ixOgTJEiJ-bnNHdAqKliAfV7KO4~ljVktF-V1gzMTdO1xvPUKVNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Determining_the_Heat_of_Fusion_and_Specific_Heat_of_Microencapsulated_Phase_Change_Material_Slurry_by_Thermal_Delay_Method","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92381941,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381941/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92381941/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determining_the_Heat_of_Fusion_and_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381941/pdf-libre.pdf?1665662762=\u0026response-content-disposition=attachment%3B+filename%3DDetermining_the_Heat_of_Fusion_and_Speci.pdf\u0026Expires=1732830792\u0026Signature=HP0Rr0ctkNjdTKgUVvHAa8RW37E0p3SjZMhynSxEOnTv-MNgl9VftYqhoa5alGBCBUb1H5~bVH34lAHLqw-Ug3obOw3vuHd2v9ItdkCXlliAYpn5DS0EiMbg4peCXwp3RhhURPxXBTTFfiPct3HHRUePcpzspqm2-kInrQh-x6Xu7S9zX6S84UsxRvsyDHH51TxIGg48YGDv8Ju5mVO~J3giEQmyCZ9xR49h4gFjxd5mCdwDXTI48eP2Mqpx3HS8i93NOzOUmLdaijjLzFYpL-ZEXXzuc92Hs3ixOgTJEiJ-bnNHdAqKliAfV7KO4~ljVktF-V1gzMTdO1xvPUKVNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1290065,"name":"ENERGIES","url":"https://www.academia.edu/Documents/in/ENERGIES-1"}],"urls":[{"id":24729257,"url":"https://www.mdpi.com/1996-1073/14/1/179/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404056"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404056/Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems"><img alt="Research paper thumbnail of Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404056/Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems">Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems</a></div><div class="wp-workCard_item"><span>Applied Thermal Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404056"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404056]").text(description); $(".js-view-count[data-work-id=88404056]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404056']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404056, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404056]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404056,"title":"Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Applied Thermal Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404056/Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems","translated_internal_url":"","created_at":"2022-10-13T05:03:32.839-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparative_investigation_of_low_GWP_binary_and_ternary_blends_as_potential_replacements_of_HFC_refrigerants_for_air_conditioning_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8065,"name":"Refrigeration","url":"https://www.academia.edu/Documents/in/Refrigeration"},{"id":123865,"name":"Global warming potential","url":"https://www.academia.edu/Documents/in/Global_warming_potential"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":589381,"name":"Flammability","url":"https://www.academia.edu/Documents/in/Flammability"},{"id":641466,"name":"Applied Thermal Engineering","url":"https://www.academia.edu/Documents/in/Applied_Thermal_Engineering"},{"id":1323179,"name":"Vapor Compression Refrigeration","url":"https://www.academia.edu/Documents/in/Vapor_Compression_Refrigeration"},{"id":1444222,"name":"Refrigerant","url":"https://www.academia.edu/Documents/in/Refrigerant"}],"urls":[{"id":24729256,"url":"https://api.elsevier.com/content/article/PII:S135943112200309X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404055"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404055/Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid"><img alt="Research paper thumbnail of Determination of geyser events in a thermosyphon working with graphene oxide nanofluid" class="work-thumbnail" src="https://attachments.academia-assets.com/92381944/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404055/Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid">Determination of geyser events in a thermosyphon working with graphene oxide nanofluid</a></div><div class="wp-workCard_item"><span>Machines. Technologies. Materials.</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ed1357a5dc10b1d2001b9433d1cb091c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92381944,&quot;asset_id&quot;:88404055,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92381944/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404055"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404055"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404055; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404055]").text(description); $(".js-view-count[data-work-id=88404055]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404055; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404055']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404055, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ed1357a5dc10b1d2001b9433d1cb091c" } } $('.js-work-strip[data-work-id=88404055]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404055,"title":"Determination of geyser events in a thermosyphon working with graphene oxide nanofluid","translated_title":"","metadata":{"publisher":"Scientific Technical Union of Mechanical Engineering *Industry 4.0*","grobid_abstract":"Two-phase closed thermosyphons are efficient passive devices with potential for using in many heat transfer applications. One of the boiling regimes that may occur is the geyser boiling. It is a repetitive irregular process of pushing liquid without its previous evaporation in the direction of condenser. Although it does not affect time-averaged thermal performance of the device, it causes additional mechanical load and shortens the lifetime of the device. Unfortunately, geysering is not well investigated, thus no precise definition exists. This paper focuses on the process of data reduction that leads to geyser boiling detection. It may be applied for various working fluids and operating conditions. Two parameters are crucial for recognizing geyser events from the background noise (pressure variations followed by the geyser): the minimum amplitude of pressure increase and waiting period between ensuing events. We compared two working fluids: water and graphene oxide nanofluid. In general, with increase of heat flux the frequency of geysers increases and their amplitude decreases.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Machines. Technologies. Materials.","grobid_abstract_attachment_id":92381944},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404055/Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid","translated_internal_url":"","created_at":"2022-10-13T05:03:32.648-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92381944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381944/thumbnails/1.jpg","file_name":"74.full.pdf","download_url":"https://www.academia.edu/attachments/92381944/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determination_of_geyser_events_in_a_ther.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381944/74.full-libre.pdf?1665662748=\u0026response-content-disposition=attachment%3B+filename%3DDetermination_of_geyser_events_in_a_ther.pdf\u0026Expires=1732830792\u0026Signature=eaNs2GQph~hYUhBmPPV~2Y618mE8lvyAHpNak1vBBM66RLF5zhxjrnItB7Mxql1VAs4pj5vEKF2goKAkY~Ft8V70XigOnLT5d3ZFToL7FFMFnTnD1e~vvJhwQyDsrwAYMwEWRXzljLCp5TCNxiUP-QIeLF1VeWIzMKVVypiQMZg-HKZXecJdXQW24Ni6Qi8-n9sqQTPq9ESMCctfs9WDKsdqakUsONTaSkN5YgZr6wnAMncz56xOwf6tR9l4-fF2bO-E1zAxyOcHFeY7lg0-JSVdwDlgZpgj1IzCyb8DuM4ti8942aYtVbWqxLI7tqFQMTQyWSdwrmroX~JT-5qgsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Determination_of_geyser_events_in_a_thermosyphon_working_with_graphene_oxide_nanofluid","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92381944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381944/thumbnails/1.jpg","file_name":"74.full.pdf","download_url":"https://www.academia.edu/attachments/92381944/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Determination_of_geyser_events_in_a_ther.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381944/74.full-libre.pdf?1665662748=\u0026response-content-disposition=attachment%3B+filename%3DDetermination_of_geyser_events_in_a_ther.pdf\u0026Expires=1732830792\u0026Signature=eaNs2GQph~hYUhBmPPV~2Y618mE8lvyAHpNak1vBBM66RLF5zhxjrnItB7Mxql1VAs4pj5vEKF2goKAkY~Ft8V70XigOnLT5d3ZFToL7FFMFnTnD1e~vvJhwQyDsrwAYMwEWRXzljLCp5TCNxiUP-QIeLF1VeWIzMKVVypiQMZg-HKZXecJdXQW24Ni6Qi8-n9sqQTPq9ESMCctfs9WDKsdqakUsONTaSkN5YgZr6wnAMncz56xOwf6tR9l4-fF2bO-E1zAxyOcHFeY7lg0-JSVdwDlgZpgj1IzCyb8DuM4ti8942aYtVbWqxLI7tqFQMTQyWSdwrmroX~JT-5qgsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":92381943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381943/thumbnails/1.jpg","file_name":"74.full.pdf","download_url":"https://www.academia.edu/attachments/92381943/download_file","bulk_download_file_name":"Determination_of_geyser_events_in_a_ther.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381943/74.full-libre.pdf?1665662745=\u0026response-content-disposition=attachment%3B+filename%3DDetermination_of_geyser_events_in_a_ther.pdf\u0026Expires=1732830792\u0026Signature=ZBDr0yX9MVSAc2DqiLWqo8lPnbuSJuG47DkNULfVcIrA4UJxRo0x0x~nEeigVnuggInJURsPiW8RRU5xbtOnZf-ueshPPJ-oh~05KAkUN3TLLHOBrMv0qwY-B0ofHAM4z3KQ5RSFNVQrNxVNShWu1rNOfpCDSs-KNREa0v7iMzGOouNIhJXiUZVnMnvZlxDwIPmjx5~obSBNvyoXzMbXdPpsl682GSQ7jxQeBhdIm4fBjz9MQWw2iEQuVgC52fEpriMIx04wNWR~I~s9b4t4LrzLVVrebLXb8dF-FUrCjveqK8f1KVXZFMiINI0la3CyySmLUJE2hlRoBgGvIuaCMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":24729255,"url":"https://stumejournals.com/journals/mtm/2019/2/74.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404054"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404054/Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator"><img alt="Research paper thumbnail of Controlling vapor quality of R245fa in a microchannel evaporator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404054/Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator">Controlling vapor quality of R245fa in a microchannel evaporator</a></div><div class="wp-workCard_item"><span>Proceedings of the 25&lt;sup&gt;th&lt;/sup&gt; IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.</span><span>, Aug 24, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404054"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404054"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404054; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404054]").text(description); $(".js-view-count[data-work-id=88404054]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404054; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404054']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404054, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404054]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404054,"title":"Controlling vapor quality of R245fa in a microchannel evaporator","translated_title":"","metadata":{"publication_date":{"day":24,"month":8,"year":2019,"errors":{}},"publication_name":"Proceedings of the 25\u003csup\u003eth\u003c/sup\u003e IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019."},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404054/Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator","translated_internal_url":"","created_at":"2022-10-13T05:03:32.350-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Controlling_vapor_quality_of_R245fa_in_a_microchannel_evaporator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":474021,"name":"Evaporator","url":"https://www.academia.edu/Documents/in/Evaporator"}],"urls":[{"id":24729254,"url":"https://iifiir.org/en/fridoc/34721"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404053"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404053/Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source"><img alt="Research paper thumbnail of Performance analysis and cycle time optimization of a single evaporator three-bed solid-sorption refrigeration system driven by low-temperature heat source" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404053/Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source">Performance analysis and cycle time optimization of a single evaporator three-bed solid-sorption refrigeration system driven by low-temperature heat source</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/water adsorption chiller. Presented study builds upon the fact that desorption phase requires noticeably less time than adsorption phase, i.e. desorption is 2.2-3.5 times faster than adsorption. The operating cycle was simulated using a numerical model. Lengths of adsorption/desorption phases and the offset time between individual adsorbers were varied for optimal performance. The results show that third bed increased cooling capacity of adsorption chiller. The optimal total cycle time that yields the highest cooling capacity is slightly shorter than in a two-bed setup. The difference is larger if the chiller is driven by lower temperature, 65°C instead of 85°C. The optimal ratio between the time of desorption and the time of adsorption in a three-bed system is f ~ 0.6, while it is f ~ 0.8 in a two-bed system. The optimal offset time is 1/3 of the total cycle time. The cycle time optimiza...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404053"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404053"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404053; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404053]").text(description); $(".js-view-count[data-work-id=88404053]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404053; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404053']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404053, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404053]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404053,"title":"Performance analysis and cycle time optimization of a single evaporator three-bed solid-sorption refrigeration system driven by low-temperature heat source","translated_title":"","metadata":{"abstract":"This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/water adsorption chiller. Presented study builds upon the fact that desorption phase requires noticeably less time than adsorption phase, i.e. desorption is 2.2-3.5 times faster than adsorption. The operating cycle was simulated using a numerical model. Lengths of adsorption/desorption phases and the offset time between individual adsorbers were varied for optimal performance. The results show that third bed increased cooling capacity of adsorption chiller. The optimal total cycle time that yields the highest cooling capacity is slightly shorter than in a two-bed setup. The difference is larger if the chiller is driven by lower temperature, 65°C instead of 85°C. The optimal ratio between the time of desorption and the time of adsorption in a three-bed system is f ~ 0.6, while it is f ~ 0.8 in a two-bed system. The optimal offset time is 1/3 of the total cycle time. The cycle time optimiza...","publisher":"International Institute of Refrigeration (IIR)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"This paper discusses performance analysis and cycle time optimization of a three-bed silica-gel/water adsorption chiller. Presented study builds upon the fact that desorption phase requires noticeably less time than adsorption phase, i.e. desorption is 2.2-3.5 times faster than adsorption. The operating cycle was simulated using a numerical model. Lengths of adsorption/desorption phases and the offset time between individual adsorbers were varied for optimal performance. The results show that third bed increased cooling capacity of adsorption chiller. The optimal total cycle time that yields the highest cooling capacity is slightly shorter than in a two-bed setup. The difference is larger if the chiller is driven by lower temperature, 65°C instead of 85°C. The optimal ratio between the time of desorption and the time of adsorption in a three-bed system is f ~ 0.6, while it is f ~ 0.8 in a two-bed system. The optimal offset time is 1/3 of the total cycle time. The cycle time optimiza...","internal_url":"https://www.academia.edu/88404053/Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source","translated_internal_url":"","created_at":"2022-10-13T05:03:32.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Performance_analysis_and_cycle_time_optimization_of_a_single_evaporator_three_bed_solid_sorption_refrigeration_system_driven_by_low_temperature_heat_source","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404052"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404052/Mo%C5%BCliwo%C5%9Bci_wykorzystania_zi%C4%99bnik%C3%B3w_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_spr%C4%99%C5%BCarkowych_pompach_ciep%C5%82a"><img alt="Research paper thumbnail of Możliwości wykorzystania ziębników naturalnych i ich mieszanin w wysokotemperaturowych sprężarkowych pompach ciepła" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404052/Mo%C5%BCliwo%C5%9Bci_wykorzystania_zi%C4%99bnik%C3%B3w_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_spr%C4%99%C5%BCarkowych_pompach_ciep%C5%82a">Możliwości wykorzystania ziębników naturalnych i ich mieszanin w wysokotemperaturowych sprężarkowych pompach ciepła</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404052"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404052"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404052; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404052]").text(description); $(".js-view-count[data-work-id=88404052]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404052; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404052']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404052, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404052]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404052,"title":"Możliwości wykorzystania ziębników naturalnych i ich mieszanin w wysokotemperaturowych sprężarkowych pompach ciepła","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404052/Mo%C5%BCliwo%C5%9Bci_wykorzystania_zi%C4%99bnik%C3%B3w_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_spr%C4%99%C5%BCarkowych_pompach_ciep%C5%82a","translated_internal_url":"","created_at":"2022-10-13T05:03:32.029-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Możliwości_wykorzystania_ziębników_naturalnych_i_ich_mieszanin_w_wysokotemperaturowych_sprężarkowych_pompach_ciepła","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404051"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404051/The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions"><img alt="Research paper thumbnail of The mathematical model of zeotropic mixture refrigerants in metastable flow conditions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404051/The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions">The mathematical model of zeotropic mixture refrigerants in metastable flow conditions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper shows the results of an theoretical analysis of the metastable flow phenomena during th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper shows the results of an theoretical analysis of the metastable flow phenomena during the two-phase refrigerant&amp;#39;s throttling process inside the capillary tube. The effect of the metastable flow region outlet refrigerant parameters and real working parameters of capillary tube is presented. Necessity of consideration of the metastable flow region in the new methods of calculation and selection of the capillary tubes is noticed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404051"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404051"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404051; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404051]").text(description); $(".js-view-count[data-work-id=88404051]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404051; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404051']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404051, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404051]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404051,"title":"The mathematical model of zeotropic mixture refrigerants in metastable flow conditions","translated_title":"","metadata":{"abstract":"The paper shows the results of an theoretical analysis of the metastable flow phenomena during the two-phase refrigerant\u0026#39;s throttling process inside the capillary tube. The effect of the metastable flow region outlet refrigerant parameters and real working parameters of capillary tube is presented. Necessity of consideration of the metastable flow region in the new methods of calculation and selection of the capillary tubes is noticed.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"The paper shows the results of an theoretical analysis of the metastable flow phenomena during the two-phase refrigerant\u0026#39;s throttling process inside the capillary tube. The effect of the metastable flow region outlet refrigerant parameters and real working parameters of capillary tube is presented. Necessity of consideration of the metastable flow region in the new methods of calculation and selection of the capillary tubes is noticed.","internal_url":"https://www.academia.edu/88404051/The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions","translated_internal_url":"","created_at":"2022-10-13T05:03:31.845-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_mathematical_model_of_zeotropic_mixture_refrigerants_in_metastable_flow_conditions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":145339,"name":"Metastability","url":"https://www.academia.edu/Documents/in/Metastability"},{"id":1444222,"name":"Refrigerant","url":"https://www.academia.edu/Documents/in/Refrigerant"},{"id":3074150,"name":"Bandwidth Throttling ","url":"https://www.academia.edu/Documents/in/Bandwidth_Throttling"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404050"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404050/System_autonomicznej_klimatyzacji_stanowiskowej_SMG"><img alt="Research paper thumbnail of System autonomicznej klimatyzacji stanowiskowej SMG" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404050/System_autonomicznej_klimatyzacji_stanowiskowej_SMG">System autonomicznej klimatyzacji stanowiskowej SMG</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404050"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404050"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404050; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404050]").text(description); $(".js-view-count[data-work-id=88404050]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404050; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404050']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404050, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404050]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404050,"title":"System autonomicznej klimatyzacji stanowiskowej SMG","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404050/System_autonomicznej_klimatyzacji_stanowiskowej_SMG","translated_internal_url":"","created_at":"2022-10-13T05:03:31.679-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"System_autonomicznej_klimatyzacji_stanowiskowej_SMG","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404049"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404049/Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids"><img alt="Research paper thumbnail of Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404049/Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids">Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404049"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404049"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404049; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404049]").text(description); $(".js-view-count[data-work-id=88404049]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404049; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404049']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404049, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404049]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404049,"title":"Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404049/Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids","translated_internal_url":"","created_at":"2022-10-13T05:03:31.469-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Transfer_processes_in_the_thermosyphon_employing_graphene_oxide_and_silica_nanofluids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404047/Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications"><img alt="Research paper thumbnail of Optimization of transcritical CO[2] thermodynamic cycle for cooling and heating applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404047/Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications">Optimization of transcritical CO[2] thermodynamic cycle for cooling and heating applications</a></div><div class="wp-workCard_item"><span>Archives of Thermodynamics</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404047]").text(description); $(".js-view-count[data-work-id=88404047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404047, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404047,"title":"Optimization of transcritical CO[2] thermodynamic cycle for cooling and heating applications","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Archives of Thermodynamics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404047/Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications","translated_internal_url":"","created_at":"2022-10-13T05:03:31.090-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Optimization_of_transcritical_CO_2_thermodynamic_cycle_for_cooling_and_heating_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404046/Wykorzystanie_proces%C3%B3w_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej"><img alt="Research paper thumbnail of Wykorzystanie procesów adsorpcji i desorpcji w systemach mikroklimatyzacji osobistej" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404046/Wykorzystanie_proces%C3%B3w_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej">Wykorzystanie procesów adsorpcji i desorpcji w systemach mikroklimatyzacji osobistej</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404046]").text(description); $(".js-view-count[data-work-id=88404046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404046, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404046,"title":"Wykorzystanie procesów adsorpcji i desorpcji w systemach mikroklimatyzacji osobistej","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404046/Wykorzystanie_proces%C3%B3w_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej","translated_internal_url":"","created_at":"2022-10-13T05:03:30.915-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Wykorzystanie_procesów_adsorpcji_i_desorpcji_w_systemach_mikroklimatyzacji_osobistej","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404045"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404045/Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciep%C5%82a_i_zi%C4%99biarek_Cz%C4%99%C5%9B%C4%87_2"><img alt="Research paper thumbnail of Podstawy termodynamiczne sorpcyjnych chemicznych pomp ciepła i ziębiarek. Część 2" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404045/Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciep%C5%82a_i_zi%C4%99biarek_Cz%C4%99%C5%9B%C4%87_2">Podstawy termodynamiczne sorpcyjnych chemicznych pomp ciepła i ziębiarek. Część 2</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The eq...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The equations proposed were used to design a device suitable for waste heat recovery. The results obtained were compared with those calculated for compressors and absorption heat pump devices as well as more complex, chemical heat pump devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404045"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404045"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404045; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404045]").text(description); $(".js-view-count[data-work-id=88404045]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404045; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404045']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404045, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404045]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404045,"title":"Podstawy termodynamiczne sorpcyjnych chemicznych pomp ciepła i ziębiarek. Część 2","translated_title":"","metadata":{"abstract":"This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The equations proposed were used to design a device suitable for waste heat recovery. The results obtained were compared with those calculated for compressors and absorption heat pump devices as well as more complex, chemical heat pump devices.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":"This article contains thermodynamic analysis of solid sorption chemical heat pump systems. The equations proposed were used to design a device suitable for waste heat recovery. The results obtained were compared with those calculated for compressors and absorption heat pump devices as well as more complex, chemical heat pump devices.","internal_url":"https://www.academia.edu/88404045/Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciep%C5%82a_i_zi%C4%99biarek_Cz%C4%99%C5%9B%C4%87_2","translated_internal_url":"","created_at":"2022-10-13T05:03:30.747-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Podstawy_termodynamiczne_sorpcyjnych_chemicznych_pomp_ciepła_i_ziębiarek_Część_2","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404044/Przydatno%C5%9B%C4%87_mikroklimatyzacji_osobistej_opartej_na_materia%C5%82ach_zmiennofazowych_w_aspekcie_wymaga%C5%84_technicznych_i_ergonomicznych"><img alt="Research paper thumbnail of Przydatność mikroklimatyzacji osobistej opartej na materiałach zmiennofazowych w aspekcie wymagań technicznych i ergonomicznych" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404044/Przydatno%C5%9B%C4%87_mikroklimatyzacji_osobistej_opartej_na_materia%C5%82ach_zmiennofazowych_w_aspekcie_wymaga%C5%84_technicznych_i_ergonomicznych">Przydatność mikroklimatyzacji osobistej opartej na materiałach zmiennofazowych w aspekcie wymagań technicznych i ergonomicznych</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404044]").text(description); $(".js-view-count[data-work-id=88404044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404044, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404044,"title":"Przydatność mikroklimatyzacji osobistej opartej na materiałach zmiennofazowych w aspekcie wymagań technicznych i ergonomicznych","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404044/Przydatno%C5%9B%C4%87_mikroklimatyzacji_osobistej_opartej_na_materia%C5%82ach_zmiennofazowych_w_aspekcie_wymaga%C5%84_technicznych_i_ergonomicznych","translated_internal_url":"","created_at":"2022-10-13T05:03:30.555-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Przydatność_mikroklimatyzacji_osobistej_opartej_na_materiałach_zmiennofazowych_w_aspekcie_wymagań_technicznych_i_ergonomicznych","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404042/Sorpcyjne_chemiczne_zi%C4%99biarki_i_pompy_ciep%C5%82a_Cz%C4%99%C5%9B%C4%87_1"><img alt="Research paper thumbnail of Sorpcyjne chemiczne ziębiarki i pompy ciepła. Część 1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404042/Sorpcyjne_chemiczne_zi%C4%99biarki_i_pompy_ciep%C5%82a_Cz%C4%99%C5%9B%C4%87_1">Sorpcyjne chemiczne ziębiarki i pompy ciepła. Część 1</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404042]").text(description); $(".js-view-count[data-work-id=88404042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404042, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404042,"title":"Sorpcyjne chemiczne ziębiarki i pompy ciepła. Część 1","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404042/Sorpcyjne_chemiczne_zi%C4%99biarki_i_pompy_ciep%C5%82a_Cz%C4%99%C5%9B%C4%87_1","translated_internal_url":"","created_at":"2022-10-13T05:03:30.416-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sorpcyjne_chemiczne_ziębiarki_i_pompy_ciepła_Część_1","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88404040/Termodynamiczne_aspekty_doboru_obiegu_por%C3%B3wnowawczego"><img alt="Research paper thumbnail of Termodynamiczne aspekty doboru obiegu porównowawczego" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88404040/Termodynamiczne_aspekty_doboru_obiegu_por%C3%B3wnowawczego">Termodynamiczne aspekty doboru obiegu porównowawczego</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404040]").text(description); $(".js-view-count[data-work-id=88404040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404040, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404040,"title":"Termodynamiczne aspekty doboru obiegu porównowawczego","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404040/Termodynamiczne_aspekty_doboru_obiegu_por%C3%B3wnowawczego","translated_internal_url":"","created_at":"2022-10-13T05:03:30.279-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Termodynamiczne_aspekty_doboru_obiegu_porównowawczego","translated_slug":"","page_count":null,"language":"pl","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404038/Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure"><img alt="Research paper thumbnail of Subcooled boiling regime map for water at low saturation temperature and subatmospheric pressure" class="work-thumbnail" src="https://attachments.academia-assets.com/92382005/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404038/Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure">Subcooled boiling regime map for water at low saturation temperature and subatmospheric pressure</a></div><div class="wp-workCard_item"><span>Experimental Thermal and Fluid Science</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5c188b42bf0c54942abdd9b1c765f1d2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92382005,&quot;asset_id&quot;:88404038,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92382005/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404038]").text(description); $(".js-view-count[data-work-id=88404038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404038, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5c188b42bf0c54942abdd9b1c765f1d2" } } $('.js-work-strip[data-work-id=88404038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404038,"title":"Subcooled boiling regime map for water at low saturation temperature and subatmospheric pressure","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Subatmospheric pool boiling heat transfer was investigated experimentally. At low vapor pressure, the static head of the liquid column induces a non-negligible pressure gradient. This results in a local pressure-induced subcooling that makes the case of boiling at low vapor pressure with a high level of liquid a particular case of subcooled boiling. The experiments were conducted for variety of working parameters: three vapor pressures (2.4 kPa, 3.1 kPa, 4.1 kPa), four levels of liquid (15 cm, 28 cm, 35 cm, 60 cm) and five applied heat fluxes (3.6 W • cm −2 , 4.4 W • cm −2 , 5.2 W • cm −2 , 6.1 W • cm −2 and 7.1 W • cm −2). Owing to a statistical analysis of the signal of a heat flux sensor coupled with high-speed video recording, four different boiling regimes were identified: the regime of convection or small popping bubbles, the regime of isolated bubbles, the regime of intermittent boiling and the regime of fully developed boiling. The small popping bubbles and the intermittent boiling regimes are specific to the low pressure boiling: they are governed by the phenomenon of condensation driven by the aforementioned static pressure induced subcooling. Finally, to provide a visual representation of the influence of the working parameters on the boiling behavior, a dimensionless boiling regime map was proposed. This type of representation is a tool to predict the boiling regimes from a set of operating conditions but it is also useful to interpret the physical phenomena involved and how they differ from those occurring at higher pressure. 1.1. Temperature-induced subcooled boiling Subcooled boiling was primarily studied in the case of temperatureinduced subcooling (liquid bulk temperature being lower than the","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Experimental Thermal and Fluid Science","grobid_abstract_attachment_id":92382005},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404038/Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure","translated_internal_url":"","created_at":"2022-10-13T05:03:30.057-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92382005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382005/thumbnails/1.jpg","file_name":"j.expthermflusci.2020.11015020221013-1-3qqdbi.pdf","download_url":"https://www.academia.edu/attachments/92382005/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subcooled_boiling_regime_map_for_water_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382005/j.expthermflusci.2020.11015020221013-1-3qqdbi-libre.pdf?1665662720=\u0026response-content-disposition=attachment%3B+filename%3DSubcooled_boiling_regime_map_for_water_a.pdf\u0026Expires=1732830792\u0026Signature=KlpkT-5Hvpe1qFcaLkSMOhAmLvHH5NRPHCNC9GenBIofgrN2~xZ-D1ym3bgRXWOT22e~KK0UlYNNOXrH6xm8z-3lrGaYsuQnXnf26K82LVbRUwOgqjrKvo-hmMcftcCfLPBIgbJbVc7TZ5LnYIbokqCSMW-Vpm3o7JSU0aHz2R-zl8gAT2PmOooSJSbT~Z5prnZJSTOM5k4V4Dola~PGBhOfK749NDTeUG0Pp15toEkVDfTnb7e2oPlKV2C-K7T2tXvEeK8rPPLz6iAmum94403Xn4pBC9qNYbYr7B8wBKUH6uetBvzRQTkHO5RpmPc1cV-Uk7PtH2kOYM8A5OVbow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Subcooled_boiling_regime_map_for_water_at_low_saturation_temperature_and_subatmospheric_pressure","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92382005,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382005/thumbnails/1.jpg","file_name":"j.expthermflusci.2020.11015020221013-1-3qqdbi.pdf","download_url":"https://www.academia.edu/attachments/92382005/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subcooled_boiling_regime_map_for_water_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382005/j.expthermflusci.2020.11015020221013-1-3qqdbi-libre.pdf?1665662720=\u0026response-content-disposition=attachment%3B+filename%3DSubcooled_boiling_regime_map_for_water_a.pdf\u0026Expires=1732830792\u0026Signature=KlpkT-5Hvpe1qFcaLkSMOhAmLvHH5NRPHCNC9GenBIofgrN2~xZ-D1ym3bgRXWOT22e~KK0UlYNNOXrH6xm8z-3lrGaYsuQnXnf26K82LVbRUwOgqjrKvo-hmMcftcCfLPBIgbJbVc7TZ5LnYIbokqCSMW-Vpm3o7JSU0aHz2R-zl8gAT2PmOooSJSbT~Z5prnZJSTOM5k4V4Dola~PGBhOfK749NDTeUG0Pp15toEkVDfTnb7e2oPlKV2C-K7T2tXvEeK8rPPLz6iAmum94403Xn4pBC9qNYbYr7B8wBKUH6uetBvzRQTkHO5RpmPc1cV-Uk7PtH2kOYM8A5OVbow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":152114,"name":"Bubble","url":"https://www.academia.edu/Documents/in/Bubble"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"},{"id":1444999,"name":"Nucleate Boiling","url":"https://www.academia.edu/Documents/in/Nucleate_Boiling"},{"id":3156000,"name":"Subcooling","url":"https://www.academia.edu/Documents/in/Subcooling"}],"urls":[{"id":24729250,"url":"https://api.elsevier.com/content/article/PII:S0894177719321466?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404033/Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance"><img alt="Research paper thumbnail of Impact of Silica Nanofluid Deposition on Thermosyphon Performance" class="work-thumbnail" src="https://attachments.academia-assets.com/92382004/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404033/Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance">Impact of Silica Nanofluid Deposition on Thermosyphon Performance</a></div><div class="wp-workCard_item"><span>Heat Transfer Engineering</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40e6737ff3edffd85e7b87061dd35404" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92382004,&quot;asset_id&quot;:88404033,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92382004/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404033]").text(description); $(".js-view-count[data-work-id=88404033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404033, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40e6737ff3edffd85e7b87061dd35404" } } $('.js-work-strip[data-work-id=88404033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404033,"title":"Impact of Silica Nanofluid Deposition on Thermosyphon Performance","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Thermosyphons are amongst the most efficient passive heat transfer devices known nowadays. Due to heat and mass transfer limitations of working fluids, much effort is invested in developing a new generation of enhanced fluids, such as nanofluids. Previous studies reported improved thermal capacity when water was replaced by nanofluid. The interplay between nanoparticles and the evaporator surface is crucial here. However, the details of the deposition mechanism and its impact on boiling are still not known. This paper focusses on determining how the boiling process in the thermosyphon affects the inner wall of the evaporator and the nanofluid itself, and how it influences the thermal performance. For that purpose, we conducted the experimental study on a thermosyphon filled with silica nanofluid and then analyzed the samples of evaporator surface and silica nanofluid under a scanning electron microscope. Silica deposited into a porous layer during boiling, which enabled capillary wicking. This in turn decreased the overheating of the evaporator wall. Moreover, silica nanofluid increased heat transfer efficiency and transferred more thermal energy at low heat loads. After opening the thermosyphon, the deposited layer dried and split up. Based on two methods of crack pattern analysis, the mean thickness of the layer was estimated.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Heat Transfer Engineering","grobid_abstract_attachment_id":92382004},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404033/Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance","translated_internal_url":"","created_at":"2022-10-13T05:03:29.838-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92382004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382004/thumbnails/1.jpg","file_name":"01457632.2020.181841320221013-1-f30c7f.pdf","download_url":"https://www.academia.edu/attachments/92382004/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Silica_Nanofluid_Deposition_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382004/01457632.2020.181841320221013-1-f30c7f-libre.pdf?1665662734=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Silica_Nanofluid_Deposition_on.pdf\u0026Expires=1732830792\u0026Signature=X4fIRTUx8pqWZm6A290j1b2TELe4TNxXk4bCnQ~BVVM3kgcVA8nklwcqgke1k8Yt8NBwLP4S1Y296B7I0Z2mecnV3kACx1qgKUQviNsYr2Go-Qf7nqVAtmH8wQTEK8X111oLjkQg8~LZXRj3y6S~psKVC2nAKO1HnwXBuBfMvJPQJ5YhkHA605v5XylFjI76qf3YoS~cCyOcOuElad03GrXIc~6UseON-NNUZfC7DNZTWTvCumLS4BAamz2vq~CcnR4gD0Zp-pgnLMeU4ZTcUD-uqPpaJB1b4agibICHQcV1J3BOAS4FXkGJRDvVGH0mPyMIpZ5X3q2TuA4xE0e3Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Impact_of_Silica_Nanofluid_Deposition_on_Thermosyphon_Performance","translated_slug":"","page_count":50,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92382004,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92382004/thumbnails/1.jpg","file_name":"01457632.2020.181841320221013-1-f30c7f.pdf","download_url":"https://www.academia.edu/attachments/92382004/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Silica_Nanofluid_Deposition_on.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92382004/01457632.2020.181841320221013-1-f30c7f-libre.pdf?1665662734=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Silica_Nanofluid_Deposition_on.pdf\u0026Expires=1732830792\u0026Signature=X4fIRTUx8pqWZm6A290j1b2TELe4TNxXk4bCnQ~BVVM3kgcVA8nklwcqgke1k8Yt8NBwLP4S1Y296B7I0Z2mecnV3kACx1qgKUQviNsYr2Go-Qf7nqVAtmH8wQTEK8X111oLjkQg8~LZXRj3y6S~psKVC2nAKO1HnwXBuBfMvJPQJ5YhkHA605v5XylFjI76qf3YoS~cCyOcOuElad03GrXIc~6UseON-NNUZfC7DNZTWTvCumLS4BAamz2vq~CcnR4gD0Zp-pgnLMeU4ZTcUD-uqPpaJB1b4agibICHQcV1J3BOAS4FXkGJRDvVGH0mPyMIpZ5X3q2TuA4xE0e3Tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":1340630,"name":"Chemical Engineering Heat \u0026 Mass Transfer","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Heat_and_Mass_Transfer"},{"id":1524533,"name":"Mechanical Engineering and heat and mass transfer","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering_and_heat_and_mass_transfer"}],"urls":[{"id":24729247,"url":"https://www.tandfonline.com/doi/pdf/10.1080/01457632.2020.1818413"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404029/The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids"><img alt="Research paper thumbnail of The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404029/The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids">The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids</a></div><div class="wp-workCard_item"><span>Colloids and Surfaces A: Physicochemical and Engineering Aspects</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultaneous phase changes occurring in the evaporation-condensation cycle of working fluid. One of the most promising solutions to enhance their heat transfer capacity of the device is the use of nanofluids – suspensions of particles with at least one dimension below 100 nm. It was determined that nanofluid does not influence the work of thermosyphons condenser section and the focus should be put on the boiling process in the evaporator section. During boiling, nanoparticles tend to deposit on the heater’s surface, what alters characteristics of this surface and near surface hydrodynamics. This changes the appearance of nanofluid, but the precise effect on how the deposition of particles affects the properties of nanofluid is unknown. Changes in surface tension and wettability affect boiling regimes (e.g. reduced surface tension reduces the size of departing bubbles and inhibits geysering), and efficiency of heat transfer through the device. Understanding of those parameters is crucial for the development of appropriate models describing heat transfer in thermosyphon working with nanofluids. The main goal of this study is to determine surface tension and contact angle of nanofluids based on silica nanoparticles and nano-sized graphene oxide flakes before and after the experimental boiling cycle in the thermosyphon. Results show that, in comparison with water, silica nanofluid (2 vol%) is characterised by lower surface tension and contact angles on both analysed surfaces. After-use silica nanofluid exhibited noticeably higher averaged surface tension and smaller contact angles in comparison to the fresh working medium. The change was most likely due to the decreased concentration caused by the deposition of nanoparticles during the thermosyphon operation. Still, the differences between before-use and after-use samples were smaller than the measurement uncertainties. Before-use graphene oxide nanofluid already showed surface tension and contact angle similar to water due to low concentration of graphene flakes (0.1 g/L). Consequently, the properties of after-use graphene oxide fluid were also not much different from water. Additional measurements of surface tension for graphene oxide nanofluid with and without addition of sodium dodecyl sulphate surfactant allowed to differentiate the effects caused by graphene flakes and surfactant. The surfactant reduced the surface tension of the nanofluid, but the change was smaller than in case of surfactant addition to pure water.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404029]").text(description); $(".js-view-count[data-work-id=88404029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404029, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404029,"title":"The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids","translated_title":"","metadata":{"abstract":"Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultaneous phase changes occurring in the evaporation-condensation cycle of working fluid. One of the most promising solutions to enhance their heat transfer capacity of the device is the use of nanofluids – suspensions of particles with at least one dimension below 100 nm. It was determined that nanofluid does not influence the work of thermosyphons condenser section and the focus should be put on the boiling process in the evaporator section. During boiling, nanoparticles tend to deposit on the heater’s surface, what alters characteristics of this surface and near surface hydrodynamics. This changes the appearance of nanofluid, but the precise effect on how the deposition of particles affects the properties of nanofluid is unknown. Changes in surface tension and wettability affect boiling regimes (e.g. reduced surface tension reduces the size of departing bubbles and inhibits geysering), and efficiency of heat transfer through the device. Understanding of those parameters is crucial for the development of appropriate models describing heat transfer in thermosyphon working with nanofluids. The main goal of this study is to determine surface tension and contact angle of nanofluids based on silica nanoparticles and nano-sized graphene oxide flakes before and after the experimental boiling cycle in the thermosyphon. Results show that, in comparison with water, silica nanofluid (2 vol%) is characterised by lower surface tension and contact angles on both analysed surfaces. After-use silica nanofluid exhibited noticeably higher averaged surface tension and smaller contact angles in comparison to the fresh working medium. The change was most likely due to the decreased concentration caused by the deposition of nanoparticles during the thermosyphon operation. Still, the differences between before-use and after-use samples were smaller than the measurement uncertainties. Before-use graphene oxide nanofluid already showed surface tension and contact angle similar to water due to low concentration of graphene flakes (0.1 g/L). Consequently, the properties of after-use graphene oxide fluid were also not much different from water. Additional measurements of surface tension for graphene oxide nanofluid with and without addition of sodium dodecyl sulphate surfactant allowed to differentiate the effects caused by graphene flakes and surfactant. The surfactant reduced the surface tension of the nanofluid, but the change was smaller than in case of surfactant addition to pure water.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects"},"translated_abstract":"Abstract Thermosyphons are heat transfer devices characterised by high efficiency due to simultaneous phase changes occurring in the evaporation-condensation cycle of working fluid. One of the most promising solutions to enhance their heat transfer capacity of the device is the use of nanofluids – suspensions of particles with at least one dimension below 100 nm. It was determined that nanofluid does not influence the work of thermosyphons condenser section and the focus should be put on the boiling process in the evaporator section. During boiling, nanoparticles tend to deposit on the heater’s surface, what alters characteristics of this surface and near surface hydrodynamics. This changes the appearance of nanofluid, but the precise effect on how the deposition of particles affects the properties of nanofluid is unknown. Changes in surface tension and wettability affect boiling regimes (e.g. reduced surface tension reduces the size of departing bubbles and inhibits geysering), and efficiency of heat transfer through the device. Understanding of those parameters is crucial for the development of appropriate models describing heat transfer in thermosyphon working with nanofluids. The main goal of this study is to determine surface tension and contact angle of nanofluids based on silica nanoparticles and nano-sized graphene oxide flakes before and after the experimental boiling cycle in the thermosyphon. Results show that, in comparison with water, silica nanofluid (2 vol%) is characterised by lower surface tension and contact angles on both analysed surfaces. After-use silica nanofluid exhibited noticeably higher averaged surface tension and smaller contact angles in comparison to the fresh working medium. The change was most likely due to the decreased concentration caused by the deposition of nanoparticles during the thermosyphon operation. Still, the differences between before-use and after-use samples were smaller than the measurement uncertainties. Before-use graphene oxide nanofluid already showed surface tension and contact angle similar to water due to low concentration of graphene flakes (0.1 g/L). Consequently, the properties of after-use graphene oxide fluid were also not much different from water. Additional measurements of surface tension for graphene oxide nanofluid with and without addition of sodium dodecyl sulphate surfactant allowed to differentiate the effects caused by graphene flakes and surfactant. The surfactant reduced the surface tension of the nanofluid, but the change was smaller than in case of surfactant addition to pure water.","internal_url":"https://www.academia.edu/88404029/The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids","translated_internal_url":"","created_at":"2022-10-13T05:03:29.625-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_effect_of_boiling_in_a_thermosyphon_on_surface_tension_and_contact_angle_of_silica_and_graphene_oxide_nanofluids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":161126,"name":"Contact angle","url":"https://www.academia.edu/Documents/in/Contact_angle"},{"id":211877,"name":"Wetting","url":"https://www.academia.edu/Documents/in/Wetting"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":24729243,"url":"https://api.elsevier.com/content/article/PII:S0927775721009511?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404024/Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures"><img alt="Research paper thumbnail of Pool boiling heat transfer coefficient of dimethyl ether and its azeotropic ternary mixtures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404024/Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures">Pool boiling heat transfer coefficient of dimethyl ether and its azeotropic ternary mixtures</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Mass Transfer</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being h...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being highly flammable substance, only recently it has again found commercial use as a primary working fluid in cooling and heating systems. Known as refrigerant RE170, it is now considered to be one of the potential natural refrigerants of the future due to minimal Global Warming Potential and zero Ozone Depletion Potential. Two novel azeotropic ternary mixtures of RE170/R1234yf/R152a were developed in order to improve cooling capacity and performance of a dimethyl ether refrigeration cycle. The mass ratios were purposefully selected to offer high cycle efficiency COP, high specific cooling capacity q e , small specific volume of vapour, reduced compressor power requirements, and the smallest possible temperature glide. The mixtures were subjected to experimental analysis in order to establish to what degree the added fluids (R1234yf and R152a) influence boiling and heat transfer performance. Boiling curves and heat transfer coefficients were determined experimentally and compared with the values obtained for pure RE170. Finally, several known heat transfer coefficient correlations (suitable for both hydrocarbons and synthetic refrigerants) were applied to the resulting data and evaluated for accuracy by evaluation of MAPE. The Cooper correlation was the most accurate for for ternary mixtures of dimethyl ether in the broadest range of temperatures, heat fluxes, and compositions (MAPE between 3.5-19.8). In order to improve the accuracy even further, the original Cooper correlation was modified with the acentric factor and the molecular mass power factor was optimised for modern chloride-less refrigerants. Resulting equation, when applied to ternary mixtures, returns errors below 5% in the entire range of experimental data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404024]").text(description); $(".js-view-count[data-work-id=88404024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404024, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88404024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404024,"title":"Pool boiling heat transfer coefficient of dimethyl ether and its azeotropic ternary mixtures","translated_title":"","metadata":{"abstract":"Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being highly flammable substance, only recently it has again found commercial use as a primary working fluid in cooling and heating systems. Known as refrigerant RE170, it is now considered to be one of the potential natural refrigerants of the future due to minimal Global Warming Potential and zero Ozone Depletion Potential. Two novel azeotropic ternary mixtures of RE170/R1234yf/R152a were developed in order to improve cooling capacity and performance of a dimethyl ether refrigeration cycle. The mass ratios were purposefully selected to offer high cycle efficiency COP, high specific cooling capacity q e , small specific volume of vapour, reduced compressor power requirements, and the smallest possible temperature glide. The mixtures were subjected to experimental analysis in order to establish to what degree the added fluids (R1234yf and R152a) influence boiling and heat transfer performance. Boiling curves and heat transfer coefficients were determined experimentally and compared with the values obtained for pure RE170. Finally, several known heat transfer coefficient correlations (suitable for both hydrocarbons and synthetic refrigerants) were applied to the resulting data and evaluated for accuracy by evaluation of MAPE. The Cooper correlation was the most accurate for for ternary mixtures of dimethyl ether in the broadest range of temperatures, heat fluxes, and compositions (MAPE between 3.5-19.8). In order to improve the accuracy even further, the original Cooper correlation was modified with the acentric factor and the molecular mass power factor was optimised for modern chloride-less refrigerants. Resulting equation, when applied to ternary mixtures, returns errors below 5% in the entire range of experimental data.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"International Journal of Heat and Mass Transfer"},"translated_abstract":"Abstract Dimethyl ether (DME) is a popular medium widely used in industrial applications. Being highly flammable substance, only recently it has again found commercial use as a primary working fluid in cooling and heating systems. Known as refrigerant RE170, it is now considered to be one of the potential natural refrigerants of the future due to minimal Global Warming Potential and zero Ozone Depletion Potential. Two novel azeotropic ternary mixtures of RE170/R1234yf/R152a were developed in order to improve cooling capacity and performance of a dimethyl ether refrigeration cycle. The mass ratios were purposefully selected to offer high cycle efficiency COP, high specific cooling capacity q e , small specific volume of vapour, reduced compressor power requirements, and the smallest possible temperature glide. The mixtures were subjected to experimental analysis in order to establish to what degree the added fluids (R1234yf and R152a) influence boiling and heat transfer performance. Boiling curves and heat transfer coefficients were determined experimentally and compared with the values obtained for pure RE170. Finally, several known heat transfer coefficient correlations (suitable for both hydrocarbons and synthetic refrigerants) were applied to the resulting data and evaluated for accuracy by evaluation of MAPE. The Cooper correlation was the most accurate for for ternary mixtures of dimethyl ether in the broadest range of temperatures, heat fluxes, and compositions (MAPE between 3.5-19.8). In order to improve the accuracy even further, the original Cooper correlation was modified with the acentric factor and the molecular mass power factor was optimised for modern chloride-less refrigerants. Resulting equation, when applied to ternary mixtures, returns errors below 5% in the entire range of experimental data.","internal_url":"https://www.academia.edu/88404024/Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures","translated_internal_url":"","created_at":"2022-10-13T05:03:29.404-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pool_boiling_heat_transfer_coefficient_of_dimethyl_ether_and_its_azeotropic_ternary_mixtures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":24729240,"url":"https://api.elsevier.com/content/article/PII:S0017931021001666?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88404021"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88404021/Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa"><img alt="Research paper thumbnail of Influence of saturation temperature and heat flux on pool boiling of R245fa" class="work-thumbnail" src="https://attachments.academia-assets.com/92381997/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88404021/Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa">Influence of saturation temperature and heat flux on pool boiling of R245fa</a></div><div class="wp-workCard_item"><span>Experimental Heat Transfer</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4496443fdc70ee041d92d3611116a875" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:92381997,&quot;asset_id&quot;:88404021,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/92381997/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88404021"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88404021"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88404021; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88404021]").text(description); $(".js-view-count[data-work-id=88404021]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88404021; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88404021']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88404021, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4496443fdc70ee041d92d3611116a875" } } $('.js-work-strip[data-work-id=88404021]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88404021,"title":"Influence of saturation temperature and heat flux on pool boiling of R245fa","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Low-pressure refrigerants such as R245fa allow compact design of IT cooling systems intended for harsh environments. Nucleate boiling of R245fa on an electrically heated flat horizontal surface was experimentally studied. Heat fluxes q w were 30-65 kW=m 2 and saturation temperatures 40-70 � C. Results show that the heat-transfer coefficient HTC increases with both heat flux and temperature, and that higher heat fluxes/temperatures lessen the HTC dependence on temperature/heat flux. For instance, increasing temperature from 40 to 70 � C translates into change of the exponent n in the HTC / q n w from 0.60 to 0.50. Therefore, pool-boiling correlations employing n ¼ const do not accurately reflect the HTC / q n w dependence. Comparing the experimental data with nucleate boiling correlations showed that the models of Kruzhilin and Mostinski were the most accurate with the Mean Absolute Percentage Error MAPE equal to 16.6% and 32.9%, respectively. The data were then used to optimize the model of Rohsenow and increase its accuracy. This model was chosen for optimization as it is the only model among the analyzed in this paper which incorporates a description of both surface roughness and contact angle. These properties are addressed using an empirical parameter C sf. Optimizing this parameter allowed the characterization of the interface between R245fa and heating surface used in this study. The resulting MAPE is 5.9%.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Experimental Heat Transfer","grobid_abstract_attachment_id":92381997},"translated_abstract":null,"internal_url":"https://www.academia.edu/88404021/Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa","translated_internal_url":"","created_at":"2022-10-13T05:03:29.189-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":240164373,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92381997,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381997/thumbnails/1.jpg","file_name":"08916152.2020.179500920221013-1-xorcsk.pdf","download_url":"https://www.academia.edu/attachments/92381997/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_saturation_temperature_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381997/08916152.2020.179500920221013-1-xorcsk-libre.pdf?1665662745=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_saturation_temperature_and.pdf\u0026Expires=1732830793\u0026Signature=Po3yt~V-JPqIgIO-LBfFsRAsHenvcngDFyhNonvUmiMT79-ceryidx9vB-4~z0cf1D4VbvIwGX~rdnwJzPjnlk4EXBAfVpZ-9nph72z1yQg-1A1V06tF5t3ry1F3YxFRupyv4p3aOdwM9P6ol7zfeBhmb-j-~CbibhLsXAB-D9wHuBqmapysa~X9LFteGYimCjCXKW70IvF~jOuxJtcBzjbiBjau6PLB7ybeBDYCaYyBInsjB-5exOBvr1eaSZlZj6~G83yR~YYlBiCNX2Up7SErAJfvszU1p960pC1SgHQN-bxc3jQ~pvgL68eYh-AxeyG~pNMVCg0XE8xhLV~VDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_saturation_temperature_and_heat_flux_on_pool_boiling_of_R245fa","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":240164373,"first_name":"Bartosz","middle_initials":null,"last_name":"Zajaczkowski","page_name":"BartoszZajaczkowski","domain_name":"independent","created_at":"2022-10-13T05:00:14.997-07:00","display_name":"Bartosz Zajaczkowski","url":"https://independent.academia.edu/BartoszZajaczkowski"},"attachments":[{"id":92381997,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92381997/thumbnails/1.jpg","file_name":"08916152.2020.179500920221013-1-xorcsk.pdf","download_url":"https://www.academia.edu/attachments/92381997/download_file?st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&st=MTczMjgyNzE5Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Influence_of_saturation_temperature_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92381997/08916152.2020.179500920221013-1-xorcsk-libre.pdf?1665662745=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_saturation_temperature_and.pdf\u0026Expires=1732830793\u0026Signature=Po3yt~V-JPqIgIO-LBfFsRAsHenvcngDFyhNonvUmiMT79-ceryidx9vB-4~z0cf1D4VbvIwGX~rdnwJzPjnlk4EXBAfVpZ-9nph72z1yQg-1A1V06tF5t3ry1F3YxFRupyv4p3aOdwM9P6ol7zfeBhmb-j-~CbibhLsXAB-D9wHuBqmapysa~X9LFteGYimCjCXKW70IvF~jOuxJtcBzjbiBjau6PLB7ybeBDYCaYyBInsjB-5exOBvr1eaSZlZj6~G83yR~YYlBiCNX2Up7SErAJfvszU1p960pC1SgHQN-bxc3jQ~pvgL68eYh-AxeyG~pNMVCg0XE8xhLV~VDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"},{"id":994412,"name":"Experimental Fluid Dynamics and Heat Transfer","url":"https://www.academia.edu/Documents/in/Experimental_Fluid_Dynamics_and_Heat_Transfer"}],"urls":[{"id":24729238,"url":"https://www.tandfonline.com/doi/pdf/10.1080/08916152.2020.1795009"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "c52b2a9d7512598d7f3d91fb1aee6380e347eacd4c5601811e5f4f016bcdd3e6", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="b9U8QZ4ZPShwiw8PA4WzBL7o/+tg293Bf1ltt5xD1HKq6oflhH/qEnHTCat9t2CBxMh6uQE2PNVZLubWoHWFIA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/BartoszZajaczkowski" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="WUVqzjvAL7ohK9PuL8NnmHeLPFp0jSsVld1X9cYXoEmcetFqIab4gCBz1UpR8bQdDau5CBVgygGzqtyU+iHxGw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10