CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;35 of 35 results for author: <span class="mathjax">Albrecht, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Albrecht%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Albrecht, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Albrecht%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Albrecht, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11028">arXiv:2407.11028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11028">pdf</a>, <a href="https://arxiv.org/ps/2407.11028">ps</a>, <a href="https://arxiv.org/format/2407.11028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Laser-initiated electron and heat transport in gold-skutterudite CoSb$_3$ bilayers resolved by pulsed x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Plech%2C+A">Anton Plech</a>, <a href="/search/physics?searchtype=author&amp;query=Gaal%2C+P">Peter Gaal</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+D">Daniel Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Levantino%2C+M">Matteo Levantino</a>, <a href="/search/physics?searchtype=author&amp;query=Daniel%2C+M">Marcus Daniel</a>, <a href="/search/physics?searchtype=author&amp;query=Stankov%2C+S">Svetoslav Stankov</a>, <a href="/search/physics?searchtype=author&amp;query=Buth%2C+G">Gernot Buth</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11028v1-abstract-short" style="display: inline;"> Electron and lattice heat transport have been investigated in bilayer thin films of gold and CoSb$_3$ after photo-excitation of the nanometric top gold layer through picosecond x-ray scattering in a pump-probe setup. The unconventional observation of a larger portion of the deposited heat being detected first in the underlying CoSb$_3$ layer supports the picture of ballistic transport of the photo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11028v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11028v1-abstract-full" style="display: none;"> Electron and lattice heat transport have been investigated in bilayer thin films of gold and CoSb$_3$ after photo-excitation of the nanometric top gold layer through picosecond x-ray scattering in a pump-probe setup. The unconventional observation of a larger portion of the deposited heat being detected first in the underlying CoSb$_3$ layer supports the picture of ballistic transport of the photo-excited electrons from gold to the underlying layer. The lattice expansion recorded by x-ray scattering allows accounting for the energy deposition and heat transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11028v1-abstract-full').style.display = 'none'; document.getElementById('2407.11028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04288">arXiv:2403.04288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04288">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.033517">10.1103/PhysRevA.109.033517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monochromatic high-harmonic generation by Bessel-Gauss beam in periodically modulated media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Finke%2C+O">Ond艡ej Finke</a>, <a href="/search/physics?searchtype=author&amp;query=V%C3%A1bek%2C+J">Jan V谩bek</a>, <a href="/search/physics?searchtype=author&amp;query=Dvo%C5%99%C3%A1%C4%8Dek%2C+M">Mat臎j Dvo艡谩膷ek</a>, <a href="/search/physics?searchtype=author&amp;query=Jurkovi%C4%8Dov%C3%A1%2C+L">Lucie Jurkovi膷ov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Ovcharenko%2C+H">Hrehorij Ovcharenko</a>, <a href="/search/physics?searchtype=author&amp;query=Hort%2C+O">Ond艡ej Hort</a>, <a href="/search/physics?searchtype=author&amp;query=Nejdl%2C+J">Jaroslav Nejdl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04288v2-abstract-short" style="display: inline;"> High harmonic generation (HHG) has become a multipurpose source of coherent XUV radiation used in various applications. One of the notable aspects of HHG is its wide spectrum consisting of many harmonic orders. This might represent a bottleneck in HHG utility for applications requiring a single wavelength. We propose a method to generate radiation consisting of a single high-order harmonic frequen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04288v2-abstract-full').style.display = 'inline'; document.getElementById('2403.04288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04288v2-abstract-full" style="display: none;"> High harmonic generation (HHG) has become a multipurpose source of coherent XUV radiation used in various applications. One of the notable aspects of HHG is its wide spectrum consisting of many harmonic orders. This might represent a bottleneck in HHG utility for applications requiring a single wavelength. We propose a method to generate radiation consisting of a single high-order harmonic frequency employing Bessel-Gauss driving beam and a periodically modulated gaseous medium. We validate it by analytical calculations and numerical simulations. Our method provides a way to generate monochromatic harmonic radiation directly from the source without the need for additional monochromatizing optics. Thus, it represents a substantial enhancement of the flux and simplification of the setup for numerous applications requiring monochromatic short-wavelength radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04288v2-abstract-full').style.display = 'none'; document.getElementById('2403.04288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 033517 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16688">arXiv:2311.16688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16688">pdf</a>, <a href="https://arxiv.org/format/2311.16688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Coherent phonon-magnon interactions detected by micro-focused Brillouin light scattering spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kunz%2C+Y">Yannik Kunz</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BC%C3%9F%2C+M">Matthias K眉脽</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Geilen%2C+M">Moritz Geilen</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Weiler%2C+M">Mathias Weiler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16688v1-abstract-short" style="display: inline;"> We investigated the interaction of surface acoustic waves and spin waves with spatial resolution by micro-focused Brillouin light scattering spectroscopy in a Co$_{40}$Fe$_{40}$B$_{20}$ ferromagnetic layer on a LiNbO$_{3}$-piezoelectric substrate. We experimentally demonstrate that the magnetoelastic excitation of magnons by phonons is coherent by studying the interfering BLS-signals of the phonon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16688v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16688v1-abstract-full" style="display: none;"> We investigated the interaction of surface acoustic waves and spin waves with spatial resolution by micro-focused Brillouin light scattering spectroscopy in a Co$_{40}$Fe$_{40}$B$_{20}$ ferromagnetic layer on a LiNbO$_{3}$-piezoelectric substrate. We experimentally demonstrate that the magnetoelastic excitation of magnons by phonons is coherent by studying the interfering BLS-signals of the phonons and magnons during their conversion process.We find a pronounced spatial dependence of the phonon annihilation and magnon excitation which we map as a function of the magnetic field. The coupling efficiency of the surface acoustic waves (SAWs) and the spin waves (SWs) is characterized by a magnetic field dependent decay of the SAWs amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16688v1-abstract-full').style.display = 'none'; document.getElementById('2311.16688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02141">arXiv:2311.02141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.02141">pdf</a>, <a href="https://arxiv.org/format/2311.02141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Beyond a Year of Sanctions in Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Barone%2C+M">M. Barone</a>, <a href="/search/physics?searchtype=author&amp;query=Brentjes%2C+S">S. Brentjes</a>, <a href="/search/physics?searchtype=author&amp;query=Bona%2C+M">M. Bona</a>, <a href="/search/physics?searchtype=author&amp;query=Ellis%2C+J">J. Ellis</a>, <a href="/search/physics?searchtype=author&amp;query=Glazov%2C+A">A. Glazov</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+H">H. Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Mangano%2C+M">M. Mangano</a>, <a href="/search/physics?searchtype=author&amp;query=Neuneck%2C+G">G. Neuneck</a>, <a href="/search/physics?searchtype=author&amp;query=Raicevic%2C+N">N. Raicevic</a>, <a href="/search/physics?searchtype=author&amp;query=Scheffran%2C+J">J. Scheffran</a>, <a href="/search/physics?searchtype=author&amp;query=Spiro%2C+M">M. Spiro</a>, <a href="/search/physics?searchtype=author&amp;query=van+Mechelen%2C+P">P. van Mechelen</a>, <a href="/search/physics?searchtype=author&amp;query=Vigen%2C+J">J. Vigen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02141v1-abstract-short" style="display: inline;"> While sanctions in political and economic areas are now part of the standard repertoire of Western countries (not always endorsed by UN mandates), sanctions in science and culture in general are new. Historically, fundamental research as conducted at international research centers such as CERN has long been seen as a driver for peace, and the Science4Peace idea has been celebrated for decades. How&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02141v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02141v1-abstract-full" style="display: none;"> While sanctions in political and economic areas are now part of the standard repertoire of Western countries (not always endorsed by UN mandates), sanctions in science and culture in general are new. Historically, fundamental research as conducted at international research centers such as CERN has long been seen as a driver for peace, and the Science4Peace idea has been celebrated for decades. However, much changed with the war against Ukraine, and most Western science organizations put scientific cooperation with Russia and Belarus on hold immediately after the start of the war in 2022. In addition, common publications and participation in conferences were banned by some institutions, going against the ideal of free scientific exchange and communication. These and other points were the topics of an international virtual panel discussion organized by the Science4Peace Forum together with the &#34;Natural Scientists Initiative - Responsibility for Peace and Sustainability&#34; (NatWiss e.V.) in Germany and the journal &#34;Wissenschaft und Frieden&#34; (W&amp;F) (see the Figure). Fellows from the Hamburg Institute for Peace Research and Security Policy (IFSH), scientists collaborating with the large physics research institutes DESY and CERN, as well as from climate and futures researchers were represented on the panel. In this Dossier we document the panel discussion, and give additional perspectives. The authors of the individual sections present their personal reflections, which should not be taken as implying that they are endorsed by the Science4Peace Forum or any other organizations. It is regrettable that some colleagues who expressed support for this document felt that it would be unwise for them to co-sign it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02141v1-abstract-full').style.display = 'none'; document.getElementById('2311.02141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Writeup based on a Panel discussion organized by the Science4Peace Forum (https://science4peace.com/Public-Events/Entries/2023/4/sanctions-in-science---one-year-of-sanctions-a-virtual-panel-discussion.html) on Sanctions in Science in April 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11849">arXiv:2310.11849</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11849">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1111/jmi.13234">10.1111/jmi.13234 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The dissociation of (a+c) misfit dislocations at the InGaN/GaN interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Smalc-Koziorowska%2C+J">J. Smalc-Koziorowska</a>, <a href="/search/physics?searchtype=author&amp;query=Moneta%2C+J">J. Moneta</a>, <a href="/search/physics?searchtype=author&amp;query=Muziol%2C+G">G. Muziol</a>, <a href="/search/physics?searchtype=author&amp;query=Chrominski%2C+W">W. Chrominski</a>, <a href="/search/physics?searchtype=author&amp;query=Kernke%2C+R">R. Kernke</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/physics?searchtype=author&amp;query=Belabbas%2C+I">I. Belabbas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11849v1-abstract-short" style="display: inline;"> (a+c) dislocations in hexagonal materials are typically observed to be dissociated into partial dislocations. Edge (a+c) dislocations are introduced into (0001) nitride semiconductor layers by the process of plastic relaxation. As there is an increasing interest in obtaining relaxed InGaN buffer layers for the deposition of high In content structures, the study of the dissociation mechanism of mis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11849v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11849v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11849v1-abstract-full" style="display: none;"> (a+c) dislocations in hexagonal materials are typically observed to be dissociated into partial dislocations. Edge (a+c) dislocations are introduced into (0001) nitride semiconductor layers by the process of plastic relaxation. As there is an increasing interest in obtaining relaxed InGaN buffer layers for the deposition of high In content structures, the study of the dissociation mechanism of misfit (a+c) dislocations laying at the InGaN/GaN interface is then crucial for understanding their nucleation and glide mechanisms. In the case of the presented plastically relaxed InGaN layers deposited on GaN substrates we observe a trigonal network of (a+c) dislocations extending at the interface with a rotation of 3 degrees from &lt;1-100&gt; directions. High resolution microscopy studies show that these dislocations are dissociated into two Frank-Shockley 1/6&lt;2-203&gt; partial dislocations with the I1 BSF spreading between them. Atomistic simulations of a dissociated edge (a+c) dislocation revealed a 3/5 atom ring structure for the cores of both partial dislocations. The observed separation between two partial dislocations must result from the climb of at least one of the dislocations during the dissociation process, possibly induced by the mismatch stress in the InGaN layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11849v1-abstract-full').style.display = 'none'; document.getElementById('2310.11849v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a submitted version of the manuscript published in Journal of Microscopy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13004">arXiv:2305.13004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.13004">pdf</a>, <a href="https://arxiv.org/ps/2305.13004">ps</a>, <a href="https://arxiv.org/format/2305.13004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Single-shot spatial coherence of a plasma based soft X-ray laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Hort%2C+O">Ond艡ej Hort</a>, <a href="/search/physics?searchtype=author&amp;query=Kozlov%C3%A1%2C+M">Michaela Kozlov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Kr%C5%AFs%2C+M">Miroslav Kr暖s</a>, <a href="/search/physics?searchtype=author&amp;query=Nejdl%2C+J">Jaroslav Nejdl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13004v1-abstract-short" style="display: inline;"> Many applications of short-wavelength radiation impose strong requirements on the coherence properties of the source. However, the measurement of such properties poses a challenge, mainly due to the lack of high-quality optics and source fluctuations that often violate assumptions necessary for multi-shot or cumulative techniques. In this article, we present a new method of single-shot spatial coh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13004v1-abstract-full').style.display = 'inline'; document.getElementById('2305.13004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13004v1-abstract-full" style="display: none;"> Many applications of short-wavelength radiation impose strong requirements on the coherence properties of the source. However, the measurement of such properties poses a challenge, mainly due to the lack of high-quality optics and source fluctuations that often violate assumptions necessary for multi-shot or cumulative techniques. In this article, we present a new method of single-shot spatial coherence measurement adapted to the soft X-ray spectral range. Our method is based on a far-field diffraction pattern from a binary transmission mask consisting of a non-redundant array of simple apertures. Unlike all currently available methods, our technique allows measuring radiation field with an arbitrary spatial coherence function without any prior assumption on intensity distribution or the model of the degree of spatial coherence. We experimentally verified the technique by retrieving the spatial coherence functions of individual shots of laser-driven Zn plasma soft X-ray laser with one- and two-dimensional masks. The experimental results revealed nontrivial illumination pattern and strong asymmetry of the spatial coherence function, which clearly calls for abandoning the often used models that assume rotational invariance of the coherence function, such as the popular Gaussian-Schell beam model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13004v1-abstract-full').style.display = 'none'; document.getElementById('2305.13004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06374">arXiv:2304.06374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06374">pdf</a>, <a href="https://arxiv.org/format/2304.06374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acd5f6">10.1088/1367-2630/acd5f6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-lasting XUV activation of helium nanodroplets for avalanche ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Medina%2C+C">C. Medina</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%A6gdsmand%2C+A+%C3%98">A. 脴. L忙gdsmand</a>, <a href="/search/physics?searchtype=author&amp;query=Ltaief%2C+L+B">L. Ben Ltaief</a>, <a href="/search/physics?searchtype=author&amp;query=Hoque%2C+Z">Z. Hoque</a>, <a href="/search/physics?searchtype=author&amp;query=Roos%2C+A+H">A. H. Roos</a>, <a href="/search/physics?searchtype=author&amp;query=Jurkovi%C4%8D%2C+M">M. Jurkovi膷</a>, <a href="/search/physics?searchtype=author&amp;query=Hort%2C+O">O. Hort</a>, <a href="/search/physics?searchtype=author&amp;query=Finke%2C+O">O. Finke</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Nejdl%2C+J">J. Nejdl</a>, <a href="/search/physics?searchtype=author&amp;query=Stienkemeier%2C+F">F. Stienkemeier</a>, <a href="/search/physics?searchtype=author&amp;query=Andreasson%2C+J">J. Andreasson</a>, <a href="/search/physics?searchtype=author&amp;query=Klime%C5%A1ov%C3%A1%2C+E">E. Klime拧ov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Krikunova%2C+M">M. Krikunova</a>, <a href="/search/physics?searchtype=author&amp;query=Heidenreich%2C+A">A. Heidenreich</a>, <a href="/search/physics?searchtype=author&amp;query=Mudrich%2C+M">M. Mudrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06374v1-abstract-short" style="display: inline;"> We study the dynamics of avalanche ionization of pure helium nanodroplets activated by a weak extreme-ultraviolet (XUV) pulse and driven by an intense near-infrared (NIR) pulse. In addition to a transient enhancement of ignition of a nanoplasma at short delay times $\sim200$~fs, long-term activation of the nanodroplets lasting up to a few nanoseconds is observed. Molecular dynamics simulations sug&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06374v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06374v1-abstract-full" style="display: none;"> We study the dynamics of avalanche ionization of pure helium nanodroplets activated by a weak extreme-ultraviolet (XUV) pulse and driven by an intense near-infrared (NIR) pulse. In addition to a transient enhancement of ignition of a nanoplasma at short delay times $\sim200$~fs, long-term activation of the nanodroplets lasting up to a few nanoseconds is observed. Molecular dynamics simulations suggest that the short-term activation is caused by the injection of seed electrons into the droplets by XUV photoemission. Long-term activation appears due to electrons remaining loosely bound to photoions which form stable `snowball&#39; structures in the droplets. Thus, we show that XUV irradiation can induce long-lasting changes of the strong-field optical properties of nanoparticles, potentially opening new routes to controlling avalanche-ionization phenomena in nanostructures and condensed-phase systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06374v1-abstract-full').style.display = 'none'; document.getElementById('2304.06374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10508">arXiv:2301.10508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.10508">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01513-5">10.1038/s42005-023-01513-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bright continuously-tunable VUV source for ultrafast spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jurkovi%C4%8Dov%C3%A1%2C+L">Lucie Jurkovi膷ov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Ltaief%2C+L+B">Ltaief Ben Ltaief</a>, <a href="/search/physics?searchtype=author&amp;query=Roos%2C+A+H">Andreas Hult Roos</a>, <a href="/search/physics?searchtype=author&amp;query=Hort%2C+O">Ond艡ej Hort</a>, <a href="/search/physics?searchtype=author&amp;query=Finke%2C+O">Ond艡ej Finke</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Hoque%2C+Z">Ziaul Hoque</a>, <a href="/search/physics?searchtype=author&amp;query=Klime%C5%A1ov%C3%A1%2C+E">Eva Klime拧ov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Sundaralingam%2C+A">Akgash Sundaralingam</a>, <a href="/search/physics?searchtype=author&amp;query=Antipenkov%2C+R">Roman Antipenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Grenfell%2C+A">Annika Grenfell</a>, <a href="/search/physics?searchtype=author&amp;query=%C5%A0pa%C4%8Dek%2C+A">Alexandr 艩pa膷ek</a>, <a href="/search/physics?searchtype=author&amp;query=Szuba%2C+W">Wojciech Szuba</a>, <a href="/search/physics?searchtype=author&amp;query=Krikunova%2C+M">Maria Krikunova</a>, <a href="/search/physics?searchtype=author&amp;query=Mudrich%2C+M">Marcel Mudrich</a>, <a href="/search/physics?searchtype=author&amp;query=Nejdl%2C+J">Jaroslav Nejdl</a>, <a href="/search/physics?searchtype=author&amp;query=Andreasson%2C+J">Jakob Andreasson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10508v2-abstract-short" style="display: inline;"> Ultrafast electron dynamics drive phenomena such as photochemical reactions, catalysis, and light harvesting. To capture such dynamics in real-time, femtosecond to attosecond light sources are extensively used. However, an exact match between the excitation photon energy and a characteristic resonance is crucial. High-harmonic generation sources are exceptional in terms of pulse duration but limit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10508v2-abstract-full').style.display = 'inline'; document.getElementById('2301.10508v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10508v2-abstract-full" style="display: none;"> Ultrafast electron dynamics drive phenomena such as photochemical reactions, catalysis, and light harvesting. To capture such dynamics in real-time, femtosecond to attosecond light sources are extensively used. However, an exact match between the excitation photon energy and a characteristic resonance is crucial. High-harmonic generation sources are exceptional in terms of pulse duration but limited in spectral tunability in the VUV range. Here, we present a monochromatic femtosecond source continuously tunable around 21 eV photon energy utilizing the second harmonic of an OPCPA laser system to drive high-harmonic generation. The unique tunability of the source is verified in an experiment probing the interatomic Coulombic decay in doped He nanodroplets across the He absorption bands. Moreover, we achieved intensities sufficient for driving non-linear processes using a tight focusing of the VUV beam. We demonstrated it on the observation of collective autoionization of multiply excited pure He nanodroplets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10508v2-abstract-full').style.display = 'none'; document.getElementById('2301.10508v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, submitted to Nat. Commun</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics volume 7, Article number: 26 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11736">arXiv:2212.11736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11736">pdf</a>, <a href="https://arxiv.org/format/2212.11736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Adsorption-controlled plasma-assisted molecular beam epitaxy of LaInO3 on DyScO3(110): Growth window, strain relaxation, and domain pattern </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hoffmann%2C+G">Georg Hoffmann</a>, <a href="/search/physics?searchtype=author&amp;query=Zupancic%2C+M">Martina Zupancic</a>, <a href="/search/physics?searchtype=author&amp;query=Klimm%2C+D">Detlef Klimm</a>, <a href="/search/physics?searchtype=author&amp;query=Schewski%2C+R">Robert Schewski</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Ramsteiner%2C+M">Manfred Ramsteiner</a>, <a href="/search/physics?searchtype=author&amp;query=Bierwagen%2C+O">Oliver Bierwagen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11736v1-abstract-short" style="display: inline;"> We report the growth of epitaxial LaInO3 on DyScO3(110) substrates by adsorption-controlled plasma-assisted molecular beam epitaxy (PA-MBE). The adsorption-controlled growth was monitored using line-of-sight quadrupole mass spectrometry. In a thermodynamics of MBE (TOMBE) diagram, the experimental growth window was found to be significantly narrower than the predicted one. We found the critical th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11736v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11736v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11736v1-abstract-full" style="display: none;"> We report the growth of epitaxial LaInO3 on DyScO3(110) substrates by adsorption-controlled plasma-assisted molecular beam epitaxy (PA-MBE). The adsorption-controlled growth was monitored using line-of-sight quadrupole mass spectrometry. In a thermodynamics of MBE (TOMBE) diagram, the experimental growth window was found to be significantly narrower than the predicted one. We found the critical thickness for strain relaxation of the LaInO3 layer (lattice mismatch $\approx$ -4$\%$) to be of 1 nm using in-situ RHEED analysis. Substrate and film possess an orthorhombic crystal structure which can be approximated by a pseudo-cubic lattice. X-ray-diffraction (XRD) analysis revealed the pseudo-cube-on-pseudo-cube epitaxial relationship ofthe LaInO3 films to the DyScO3 substrates. This relation was confirmed by transmission electron microscopy (TEM), which further resolved the presence of rotational orthorhombic domains - the majority of which have coinciding c-axis with that of the substrate. Raman spectroscopy further confirmed the presence of a LaInO3 layer. Our findings open up the possibility for 2-dimensional electron gases at the MBE-grown heterointerface with BaSnO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11736v1-abstract-full').style.display = 'none'; document.getElementById('2212.11736v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12260">arXiv:2207.12260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12260">pdf</a>, <a href="https://arxiv.org/format/2207.12260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation and annihilation of skyrmions and antiskyrmions in magnetic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Koraltan%2C+S">Sabri Koraltan</a>, <a href="/search/physics?searchtype=author&amp;query=Abert%2C+C">Claas Abert</a>, <a href="/search/physics?searchtype=author&amp;query=Bruckner%2C+F">Florian Bruckner</a>, <a href="/search/physics?searchtype=author&amp;query=Heigl%2C+M">Michael Heigl</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Suess%2C+D">Dieter Suess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12260v1-abstract-short" style="display: inline;"> We demonstrate the controlled generation and annihilation of (anti)skyrmions with tunable chirality in magnetic heterostructures by means of micromagnetic simulations. By making use of magnetic (anti)vortices in patterned ferromagnetic layer, we stabilize full lattices of (anti)skyrmions in an underlying skyrmionic thin film in a reproducible manner. The stability of the (anti)skyrmion depends on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12260v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12260v1-abstract-full" style="display: none;"> We demonstrate the controlled generation and annihilation of (anti)skyrmions with tunable chirality in magnetic heterostructures by means of micromagnetic simulations. By making use of magnetic (anti)vortices in patterned ferromagnetic layer, we stabilize full lattices of (anti)skyrmions in an underlying skyrmionic thin film in a reproducible manner. The stability of the (anti)skyrmion depends on the polarization of the (anti)vortex, whereas their chirality is given by those of the (anti)vortices. Furthermore, we demonstrate that the core coupling between the (anti)vortices and (anti)skyrmions allows to annihilate the spin-objects in a controlled fashion by applying short pulses of in-plane external magnetic fields, representing a new key paradigm in skyrmionic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12260v1-abstract-full').style.display = 'none'; document.getElementById('2207.12260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13240">arXiv:2204.13240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13240">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04501-x">10.1038/s41586-022-04501-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FAIR data enabling new horizons for materials research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Scheffler%2C+M">Matthias Scheffler</a>, <a href="/search/physics?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Bereau%2C+T">Tristan Bereau</a>, <a href="/search/physics?searchtype=author&amp;query=Bungartz%2C+H">Hans-Joachim Bungartz</a>, <a href="/search/physics?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/physics?searchtype=author&amp;query=Greiner%2C+M">Mark Greiner</a>, <a href="/search/physics?searchtype=author&amp;query=Gro%C3%9F%2C+A">Axel Gro脽</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+C+T">Christoph T. Koch</a>, <a href="/search/physics?searchtype=author&amp;query=Kremer%2C+K">Kurt Kremer</a>, <a href="/search/physics?searchtype=author&amp;query=Nagel%2C+W+E">Wolfgang E. Nagel</a>, <a href="/search/physics?searchtype=author&amp;query=Scheidgen%2C+M">Markus Scheidgen</a>, <a href="/search/physics?searchtype=author&amp;query=W%C3%B6ll%2C+C">Christof W枚ll</a>, <a href="/search/physics?searchtype=author&amp;query=Draxl%2C+C">Claudia Draxl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13240v1-abstract-short" style="display: inline;"> The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13240v1-abstract-full').style.display = 'inline'; document.getElementById('2204.13240v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13240v1-abstract-full" style="display: none;"> The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. The enormous amount of research data produced every day in these fields represents a gold mine of the twenty-first century. This gold mine is, however, of little value if these data are not comprehensively characterized and made available. How can we refine this feedstock; that is, turn data into knowledge and value? For this, a FAIR (findable, accessible, interoperable and reusable) data infrastructure is a must. Only then can data be readily shared and explored using data analytics and artificial intelligence (AI) methods. Making data &#39;findable and AI ready&#39; (a forward-looking interpretation of the acronym) will change the way in which science is carried out today. In this Perspective, we discuss how we can prepare to make this happen for the field of materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13240v1-abstract-full').style.display = 'none'; document.getElementById('2204.13240v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 604, 635 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04491">arXiv:2202.04491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04491">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-022-11313-6">10.1038/s41598-022-11313-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-matched high-order harmonic generation in pre-ionized noble gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Finke%2C+O">O. Finke</a>, <a href="/search/physics?searchtype=author&amp;query=V%C3%A1bek%2C+J">J. V谩bek</a>, <a href="/search/physics?searchtype=author&amp;query=Nevrkla%2C+M">M. Nevrkla</a>, <a href="/search/physics?searchtype=author&amp;query=Bobrova%2C+N">N. Bobrova</a>, <a href="/search/physics?searchtype=author&amp;query=Hort%2C+O">O. Hort</a>, <a href="/search/physics?searchtype=author&amp;query=Jurkovi%C4%8D%2C+M">M. Jurkovi膷</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Jan%C4%8D%C3%A1rek%2C+A">A. Jan膷谩rek</a>, <a href="/search/physics?searchtype=author&amp;query=Catoire%2C+F">F. Catoire</a>, <a href="/search/physics?searchtype=author&amp;query=Skupin%2C+S">S. Skupin</a>, <a href="/search/physics?searchtype=author&amp;query=Nejdl%2C+J">J. Nejdl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04491v2-abstract-short" style="display: inline;"> One of the main difficulties to efficiently generating high-order harmonics in long neutral-gas targets is to reach the phase-matching conditions. One issue is that the medium cannot be sufficiently ionized by the driving laser due to plasma defocusing. We propose a method to improve the phase-matching by pre-ionizing the gas using a weak capillary discharge. We have demonstrated this mechanism, f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04491v2-abstract-full').style.display = 'inline'; document.getElementById('2202.04491v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04491v2-abstract-full" style="display: none;"> One of the main difficulties to efficiently generating high-order harmonics in long neutral-gas targets is to reach the phase-matching conditions. One issue is that the medium cannot be sufficiently ionized by the driving laser due to plasma defocusing. We propose a method to improve the phase-matching by pre-ionizing the gas using a weak capillary discharge. We have demonstrated this mechanism, for the first time, in absorption-limited XUV generation by an 800 nm femtosecond laser in argon and krypton. The phase-mismatch control ability of our method is confirmed by an analytical model and numerical simulation of the complete generation process. Our method allows increasing the efficiency of the harmonic generation significantly, paving the way towards photon-hungry applications of these short-wavelength compact sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04491v2-abstract-full').style.display = 'none'; document.getElementById('2202.04491v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages (9 article, 5 supplement), 8 figures (6 article, 2 supplement), submitted to PRX</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01379">arXiv:2111.01379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01379">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202109170">10.1002/adfm.202109170 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling of the thermally induced sign inversion of longitudinal spin Seebeck effect in a compensated ferrimagnet: Role of magnetic anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chanda%2C+A">Amit Chanda</a>, <a href="/search/physics?searchtype=author&amp;query=Schulz%2C+N">Noah Schulz</a>, <a href="/search/physics?searchtype=author&amp;query=Holzmann%2C+C">Christian Holzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Seyd%2C+J">Johannes Seyd</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Phan%2C+M">Manh-Huong Phan</a>, <a href="/search/physics?searchtype=author&amp;query=Srikanth%2C+H">Hari Srikanth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01379v1-abstract-short" style="display: inline;"> We report on a systematic investigation of the longitudinal spin Seebeck effect (LSSE) in a GGG(Gd3Ga5O12)/GdIG(Gd3Fe5O12)/Pt film series exhibiting an in-plane magnetic easy axis with a compensation temperature (T_Comp) that decreases from 270 to 220 K when decreasing GdIG film thickness from 272 to 31 nm, respectively. For all the films, the LSSE signal flips its sign below T_Comp. We demonstrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01379v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01379v1-abstract-full" style="display: none;"> We report on a systematic investigation of the longitudinal spin Seebeck effect (LSSE) in a GGG(Gd3Ga5O12)/GdIG(Gd3Fe5O12)/Pt film series exhibiting an in-plane magnetic easy axis with a compensation temperature (T_Comp) that decreases from 270 to 220 K when decreasing GdIG film thickness from 272 to 31 nm, respectively. For all the films, the LSSE signal flips its sign below T_Comp. We demonstrate a universal scaling behavior of the temperature dependence of LSSE signal for our GdIG films around their respective T_Comp. Additionally, we demonstrate LSSE in a 31 nm GdIG film grown on a lattice-mismatched GSGG (Gd3Sc2Ga3O12) substrate that exhibits an out-of-plane magnetic easy axis at room temperature. However, this sample reveals a spin reorientation transition where the magnetic easy axis changes its orientation to in-plane at low temperatures. We observed a clear distinction in the LSSE signal for the GSGG/GdIG(31 nm)/Pt heterostructure, relative to GGG/GdIG(31nm)/Pt showing an in-plane magnetic easy axis. Our findings underscore a strong correlation between the LSSE signal and the orientation of magnetic easy axis in compensated ferrimagnets and opens the possibility to tune LSSE through effective anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01379v1-abstract-full').style.display = 'none'; document.getElementById('2111.01379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Advanced Functional Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Functional Materials, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08136">arXiv:2109.08136</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.08136">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Highly Tunable Magnetic and Magnetotransport Properties of Exchange Coupled Ferromagnet/Antiferromagnet-based Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arekapudi%2C+S+S+P+K">Sri Sai Phani Kanth Arekapudi</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BClz%2C+D">Daniel B眉lz</a>, <a href="/search/physics?searchtype=author&amp;query=Ganss%2C+F">Fabian Ganss</a>, <a href="/search/physics?searchtype=author&amp;query=Samad%2C+F">Fabian Samad</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+C">Chen Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zahn%2C+D+R+T">Dietrich R. T. Zahn</a>, <a href="/search/physics?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/physics?searchtype=author&amp;query=Salvan%2C+G">Georgeta Salvan</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08136v1-abstract-short" style="display: inline;"> Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical thickness of the AFM thin films and the measurement temperature, bimetallic Mn-based alloys and transition metal oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferroma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08136v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08136v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08136v1-abstract-full" style="display: none;"> Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical thickness of the AFM thin films and the measurement temperature, bimetallic Mn-based alloys and transition metal oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferromagnetic (FM)/AFM-based heterostructures can result in unusual magnetic and magnetotransport phenomena. Here, we integrate chemically disordered AFM IrMn3 thin films with coexisting AFM phases into complex exchange coupled MgO(001)/Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures and study the structural, magnetic, and magnetotransport properties in various magnetic field cooling states. In particular, we unveil the impact of rotating the relative orientation of the disordered and reversible AFM moments with respect to the irreversible AFM moments on the magnetic and magnetoresistance properties of the exchange coupled heterostructures. We further found that the persistence of AFM grains with thermally disordered and reversible AFM order is crucial for achieving highly tunable magnetic properties and multi-level magnetoresistance states. We anticipate that the introduced approach and the heterostructure architecture can be utilized in future spintronic devices to manipulate the thermally disordered and reversible AFM order at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08136v1-abstract-full').style.display = 'none'; document.getElementById('2109.08136v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages and 9 figures; 19 supplementary figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11128">arXiv:2105.11128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.11128">pdf</a>, <a href="https://arxiv.org/format/2105.11128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjs/s11734-021-00192-z">10.1140/epjs/s11734-021-00192-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Multipurpose End-Station for Atomic, Molecular and Optical Sciences and Coherent Diffractive Imaging at ELI Beamlines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Klime%C5%A1ov%C3%A1%2C+E">Eva Klime拧ov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Kulyk%2C+O">Olena Kulyk</a>, <a href="/search/physics?searchtype=author&amp;query=Hoque%2C+Z">Ziaul Hoque</a>, <a href="/search/physics?searchtype=author&amp;query=Roos%2C+A+H">Andreas Hult Roos</a>, <a href="/search/physics?searchtype=author&amp;query=Khakurel%2C+K+P">Krishna P. Khakurel</a>, <a href="/search/physics?searchtype=author&amp;query=Rebarz%2C+M">Mateusz Rebarz</a>, <a href="/search/physics?searchtype=author&amp;query=Jurkovi%C4%8D%2C+M">Matej Jurkovi膷</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Finke%2C+O">Ond艡ej Finke</a>, <a href="/search/physics?searchtype=author&amp;query=Lera%2C+R">Roberto Lera</a>, <a href="/search/physics?searchtype=author&amp;query=Hort%2C+O">Ond艡ej Hort</a>, <a href="/search/physics?searchtype=author&amp;query=Mai%2C+D">Dong-Du Mai</a>, <a href="/search/physics?searchtype=author&amp;query=Nejdl%2C+J">Jaroslav Nejdl</a>, <a href="/search/physics?searchtype=author&amp;query=Sokol%2C+M">Martin Sokol</a>, <a href="/search/physics?searchtype=author&amp;query=Fink%2C+R+B">Rasmus Burlund Fink</a>, <a href="/search/physics?searchtype=author&amp;query=Ltaief%2C+L+B">Ltaief Ben Ltaief</a>, <a href="/search/physics?searchtype=author&amp;query=Westphal%2C+D">Daniel Westphal</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+A">Adam Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=La%C5%A1tovi%C4%8Dka%2C+T">Tom谩拧 La拧tovi膷ka</a>, <a href="/search/physics?searchtype=author&amp;query=Frassetto%2C+F">Fabio Frassetto</a>, <a href="/search/physics?searchtype=author&amp;query=Poletto%2C+L">Luca Poletto</a>, <a href="/search/physics?searchtype=author&amp;query=Andreasson%2C+J">Jakob Andreasson</a>, <a href="/search/physics?searchtype=author&amp;query=Krikunova%2C+M">Maria Krikunova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11128v1-abstract-short" style="display: inline;"> We report on the status of a users&#39; end-station, MAC: a Multipurpose station for Atomic, molecular and optical sciences and Coherent diffractive imaging, designed for studies of structure and dynamics of matter in the femtosecond time-domain. MAC is located in the E1 experimental hall on the high harmonic generation (HHG) beamline of the ELI Beamlines facility. The extreme ultraviolet beam from th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11128v1-abstract-full').style.display = 'inline'; document.getElementById('2105.11128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11128v1-abstract-full" style="display: none;"> We report on the status of a users&#39; end-station, MAC: a Multipurpose station for Atomic, molecular and optical sciences and Coherent diffractive imaging, designed for studies of structure and dynamics of matter in the femtosecond time-domain. MAC is located in the E1 experimental hall on the high harmonic generation (HHG) beamline of the ELI Beamlines facility. The extreme ultraviolet beam from the HHG beamline can be used at the MAC end-station together with a synchronized pump beam (which will cover the NIR/Vis/UV or THz range) for time-resolved experiments on different samples. Sample delivery systems at the MAC end-station include a molecular beam, a source for pure or doped clusters, ultrathin cylindrical or flat liquid jets, and focused beams of substrate-free nanoparticles produced by an electrospray or a gas dynamic virtual nozzle combined with an aerodynamic lens stack. We further present the available detectors: electron/ion time-of-flight and velocity map imaging spectrometers and an X-ray camera, and discuss future upgrades: a magnetic bottle electron spectrometer, production of doped nanodroplets and the planned developments of beam capabilities at the MAC end-station. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11128v1-abstract-full').style.display = 'none'; document.getElementById('2105.11128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures. This is a preprint of an article published in The European Physical Journal Special Topics, 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.07817">arXiv:2105.07817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.07817">pdf</a>, <a href="https://arxiv.org/format/2105.07817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-022-00234-6">10.1038/s43246-022-00234-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A consistent picture of excitations in cubic BaSnO$_{3}$ revealed by combining theory and experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aggoune%2C+W">Wahib Aggoune</a>, <a href="/search/physics?searchtype=author&amp;query=Eljarrat%2C+A">Alberto Eljarrat</a>, <a href="/search/physics?searchtype=author&amp;query=Nabok%2C+D">Dmitrii Nabok</a>, <a href="/search/physics?searchtype=author&amp;query=Irmscher%2C+K">Klaus Irmscher</a>, <a href="/search/physics?searchtype=author&amp;query=Zupancic%2C+M">Martina Zupancic</a>, <a href="/search/physics?searchtype=author&amp;query=Galazka%2C+Z">Zbigniew Galazka</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+C">Christoph Koch</a>, <a href="/search/physics?searchtype=author&amp;query=Draxl%2C+C">Claudia Draxl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.07817v3-abstract-short" style="display: inline;"> Among the transparent conducting oxides, the perovskite barium stannate is most promising for various electronic applications due to its outstanding carrier mobility achieved at room temperature. However, most of its important characteristics, such as band gaps, effective masses, and absorption edge, remain controversial. Here, we provide a fully consistent picture by combining state-of-the-art {\&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07817v3-abstract-full').style.display = 'inline'; document.getElementById('2105.07817v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.07817v3-abstract-full" style="display: none;"> Among the transparent conducting oxides, the perovskite barium stannate is most promising for various electronic applications due to its outstanding carrier mobility achieved at room temperature. However, most of its important characteristics, such as band gaps, effective masses, and absorption edge, remain controversial. Here, we provide a fully consistent picture by combining state-of-the-art {\it ab initio} methodology with forefront electron energy-loss spectroscopy and optical absorption measurements. Valence electron energy-loss spectra, featuring signals originating from band gap transitions, are acquired on defect-free sample regions of a BaSnO$_{3}$ single crystal. These high-energy-resolution measurements are able to capture also very weak excitations below the optical gap, attributed to indirect transitions. By temperature-dependent optical absorption measurements, we assess band-gap renormalization effects induced by electron-phonon coupling. Overall, we find for the effective electronic mass, the direct and the indirect gap, the optical gap, as well as the absorption onsets and spectra, excellent agreement between both experimental techniques and the theoretical many-body results, supporting also the picture of a phonon-mediated mechanism where indirect transitions are activated by phonon-induced symmetry lowering. This work demonstrates a fruitful connection between different high-level theoretical and experimental methods for exploring the characteristics of advanced materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07817v3-abstract-full').style.display = 'none'; document.getElementById('2105.07817v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Mater. 3, 12 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14934">arXiv:2104.14934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.14934">pdf</a>, <a href="https://arxiv.org/format/2104.14934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.034016">10.1103/PhysRevApplied.16.034016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of stripe domain wall magnetization in perpendicular anisotropy multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Salikhov%2C+R">Ruslan Salikhov</a>, <a href="/search/physics?searchtype=author&amp;query=Samad%2C+F">Fabian Samad</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6hm%2C+B">Benny B枚hm</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+S">Sebastian Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Pohl%2C+D">Darius Pohl</a>, <a href="/search/physics?searchtype=author&amp;query=Rellinghaus%2C+B">Bernd Rellinghaus</a>, <a href="/search/physics?searchtype=author&amp;query=Ullrich%2C+A">Aladin Ullrich</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/physics?searchtype=author&amp;query=Kiselev%2C+N+S">Nikolai S. Kiselev</a>, <a href="/search/physics?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14934v1-abstract-short" style="display: inline;"> We report on the controlled switching of domain wall (DW) magnetization in aligned stripe domain structures, stabilized in [Co (0.44 nm)/Pt (0.7 nm)]$_X$ ($X = 48$, 100, 150) multilayers with perpendicular magnetic anisotropy. The switching process, induced by an external magnetic field, is monitored by measuring the evolution of the in-plane magnetization. % We show that the remanent in-plane mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14934v1-abstract-full').style.display = 'inline'; document.getElementById('2104.14934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14934v1-abstract-full" style="display: none;"> We report on the controlled switching of domain wall (DW) magnetization in aligned stripe domain structures, stabilized in [Co (0.44 nm)/Pt (0.7 nm)]$_X$ ($X = 48$, 100, 150) multilayers with perpendicular magnetic anisotropy. The switching process, induced by an external magnetic field, is monitored by measuring the evolution of the in-plane magnetization. % We show that the remanent in-plane magnetization originates from the polarization of the Bloch-type DWs. With micromagnetic simulations, we reveal that the reversal of the DW polarization is the result of the emergence and collapse of horizontal Bloch lines within the DWs at particular strengths of the external magnetic field, applied opposite to the DW polarization. Our findings are relevant for DW-based magnonics and bubble skyrmion applications in magnetic multilayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14934v1-abstract-full').style.display = 'none'; document.getElementById('2104.14934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 16, 034016 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05450">arXiv:2011.05450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05450">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26594-0">10.1038/s41467-021-26594-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast high-harmonic nanoscopy of magnetization dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zayko%2C+S">Sergey Zayko</a>, <a href="/search/physics?searchtype=author&amp;query=Kfir%2C+O">Ofer Kfir</a>, <a href="/search/physics?searchtype=author&amp;query=Heigl%2C+M">Michael Heigl</a>, <a href="/search/physics?searchtype=author&amp;query=Lohmann%2C+M">Michael Lohmann</a>, <a href="/search/physics?searchtype=author&amp;query=Sivis%2C+M">Murat Sivis</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Ropers%2C+C">Claus Ropers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05450v1-abstract-short" style="display: inline;"> Light-induced magnetization changes, such as all-optical switching, skyrmion nucleation, and intersite spin transfer, unfold on temporal and spatial scales down to femtoseconds and nanometers, respectively. Pump-probe spectroscopy and diffraction studies indicate that spatio-temporal dynamics may drastically affect the non-equilibrium magnetic evolution. Yet, direct real-space magnetic imaging on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05450v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05450v1-abstract-full" style="display: none;"> Light-induced magnetization changes, such as all-optical switching, skyrmion nucleation, and intersite spin transfer, unfold on temporal and spatial scales down to femtoseconds and nanometers, respectively. Pump-probe spectroscopy and diffraction studies indicate that spatio-temporal dynamics may drastically affect the non-equilibrium magnetic evolution. Yet, direct real-space magnetic imaging on the relevant timescale has remained challenging. Here, we demonstrate ultrafast high-harmonic nanoscopy employing circularly polarized high-harmonic radiation for real-space imaging of femtosecond magnetization dynamics. We observe the reversible and irreversible evolution of nanoscale spin textures following femtosecond laser excitation. Specifically, we map quenched magnetic domains and localized spin structures in Co/Pd multilayers with a sub-wavelength spatial resolution down to 16 nm, and strobosocopically trace the local magnetization dynamics with 40 fs temporal resolution. Our approach enables the highest spatio-temporal resolution of magneto-optical imaging to date. Facilitating ultrafast imaging with an extreme sensitivity to various microscopic degrees of freedom expressed in chiral and linear dichroism, we envisage a wide range of applications spanning magnetism, phase transitions, and carrier dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05450v1-abstract-full').style.display = 'none'; document.getElementById('2011.05450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.04419">arXiv:2004.04419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.04419">pdf</a>, <a href="https://arxiv.org/format/2004.04419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.014429">10.1103/PhysRevB.102.014429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hysteresis-free magnetization reversal of exchange-coupled bilayers with finite magnetic anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vogler%2C+C">Christoph Vogler</a>, <a href="/search/physics?searchtype=author&amp;query=Heigl%2C+M">Michael Heigl</a>, <a href="/search/physics?searchtype=author&amp;query=Mandru%2C+A">Andrada-Oana Mandru</a>, <a href="/search/physics?searchtype=author&amp;query=Hebler%2C+B">Birgit Hebler</a>, <a href="/search/physics?searchtype=author&amp;query=Marioni%2C+M">Miguel Marioni</a>, <a href="/search/physics?searchtype=author&amp;query=Hug%2C+H+J">Hans Josef Hug</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Suess%2C+D">Dieter Suess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.04419v1-abstract-short" style="display: inline;"> Exchange-coupled structures consisting of ferromagnetic and ferrimagnetic layers become technologically more and more important. We show experimentally the occurrence of completely reversible, hysteresis-free minor loops of [Co(0.2 nm)/Ni(0.4 nm)/Pt(0.6 nm)]$_N$ multilayers exchange-coupled to a 20 nm thick ferrimagnetic Tb$_{28}$Co$_{14}$Fe$_{58}$ layer, acting as hard magnetic pinning layer. Fur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04419v1-abstract-full').style.display = 'inline'; document.getElementById('2004.04419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.04419v1-abstract-full" style="display: none;"> Exchange-coupled structures consisting of ferromagnetic and ferrimagnetic layers become technologically more and more important. We show experimentally the occurrence of completely reversible, hysteresis-free minor loops of [Co(0.2 nm)/Ni(0.4 nm)/Pt(0.6 nm)]$_N$ multilayers exchange-coupled to a 20 nm thick ferrimagnetic Tb$_{28}$Co$_{14}$Fe$_{58}$ layer, acting as hard magnetic pinning layer. Furthermore, we present detailed theoretical investigations by means of micromagnetic simulations and most important a purely analytical derivation for the condition of the occurrence of full reversibility in magnetization reversal. Hysteresis-free loops always occur if a domain wall is formed during the reversal of the ferromagnetic layer and generates an intrinsic hard-axis bias field that overcomes the magnetic anisotropy field of the ferromagnetic layer. The derived condition further reveals that the magnetic anisotropy and the bulk exchange of both layers, as well as the exchange coupling strength and the thickness of the ferromagnetic layer play an important role for its reversibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04419v1-abstract-full').style.display = 'none'; document.getElementById('2004.04419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 014429 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12638">arXiv:1912.12638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.12638">pdf</a>, <a href="https://arxiv.org/format/1912.12638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Technical Design Report for the PANDA Endcap Disc DIRC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Panda+Collaboration"> Panda Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Davi%2C+F">F. Davi</a>, <a href="/search/physics?searchtype=author&amp;query=Erni%2C+W">W. Erni</a>, <a href="/search/physics?searchtype=author&amp;query=Krusche%2C+B">B. Krusche</a>, <a href="/search/physics?searchtype=author&amp;query=Steinacher%2C+M">M. Steinacher</a>, <a href="/search/physics?searchtype=author&amp;query=Walford%2C+N">N. Walford</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">B. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">C. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Erlen%2C+T">T. Erlen</a>, <a href="/search/physics?searchtype=author&amp;query=Feldbauer%2C+F">F. Feldbauer</a>, <a href="/search/physics?searchtype=author&amp;query=Fink%2C+M">M. Fink</a>, <a href="/search/physics?searchtype=author&amp;query=Freudenreich%2C+V">V. Freudenreich</a>, <a href="/search/physics?searchtype=author&amp;query=Fritsch%2C+M">M. Fritsch</a>, <a href="/search/physics?searchtype=author&amp;query=Heinsius%2C+F+H">F. H. Heinsius</a>, <a href="/search/physics?searchtype=author&amp;query=Held%2C+T">T. Held</a>, <a href="/search/physics?searchtype=author&amp;query=Holtmann%2C+T">T. Holtmann</a>, <a href="/search/physics?searchtype=author&amp;query=Keshk%2C+I">I. Keshk</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+H">H. Koch</a>, <a href="/search/physics?searchtype=author&amp;query=Kopf%2C+B">B. Kopf</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhlmann%2C+M">M. Kuhlmann</a> , et al. (441 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12638v1-abstract-short" style="display: inline;"> PANDA (anti-Proton ANnihiliation at DArmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12638v1-abstract-full').style.display = 'inline'; document.getElementById('1912.12638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12638v1-abstract-full" style="display: none;"> PANDA (anti-Proton ANnihiliation at DArmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2x10^32 cm^2 s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5掳 to 22掳 and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA Disc DIRC detector that has not been used in any other high energy physics experiment (HEP) before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees suffcient safety margins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12638v1-abstract-full').style.display = 'none'; document.getElementById('1912.12638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">TDR for Panda/Fair to be published</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11517">arXiv:1911.11517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.11517">pdf</a>, <a href="https://arxiv.org/format/1911.11517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.054009">10.1103/PhysRevApplied.13.054009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Free-standing and positionable microwave antenna device for magneto-optical spectroscopy experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hache%2C+T">T. Hache</a>, <a href="/search/physics?searchtype=author&amp;query=Va%C5%88atka%2C+M">M. Va艌atka</a>, <a href="/search/physics?searchtype=author&amp;query=Flaj%C5%A1man%2C+L">L. Flaj拧man</a>, <a href="/search/physics?searchtype=author&amp;query=Weinhold%2C+T">T. Weinhold</a>, <a href="/search/physics?searchtype=author&amp;query=Hula%2C+T">T. Hula</a>, <a href="/search/physics?searchtype=author&amp;query=Ciubotariu%2C+O">O. Ciubotariu</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Arkook%2C+B">B. Arkook</a>, <a href="/search/physics?searchtype=author&amp;query=Barsukov%2C+I">I. Barsukov</a>, <a href="/search/physics?searchtype=author&amp;query=Fallarino%2C+L">L. Fallarino</a>, <a href="/search/physics?searchtype=author&amp;query=Hellwig%2C+O">O. Hellwig</a>, <a href="/search/physics?searchtype=author&amp;query=Fassbender%2C+J">J. Fassbender</a>, <a href="/search/physics?searchtype=author&amp;query=Urb%C3%A1nek%2C+M">M. Urb谩nek</a>, <a href="/search/physics?searchtype=author&amp;query=Schultheiss%2C+H">H. Schultheiss</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11517v1-abstract-short" style="display: inline;"> Modern spectroscopic techniques for the investigation of magnetization dynamics in micro- and nano- structures or thin films use typically microwave antennas which are directly fabricated on top of the sample by means of electron-beam-lithography (EBL). Following this approach, every magnetic structure on the sample needs its own antenna, resulting in additional EBL steps and layer deposition proc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11517v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11517v1-abstract-full" style="display: none;"> Modern spectroscopic techniques for the investigation of magnetization dynamics in micro- and nano- structures or thin films use typically microwave antennas which are directly fabricated on top of the sample by means of electron-beam-lithography (EBL). Following this approach, every magnetic structure on the sample needs its own antenna, resulting in additional EBL steps and layer deposition processes. We demonstrate a new approach for magnetization excitation that is suitable for optical and non-optical spectroscopy techniques. By patterning the antenna on a separated flexible glass cantilever and insulating it electrically, we solved the before mentioned issues. Since we use flexible transparent glass as a substrate, optical spectroscopy techniques like Brillouin-light-scattering microscopy (渭BLS), time resolved magneto-optical Kerr effect measurements (TRMOKE) or optical detected magnetic resonance (ODMR) measurements can be carried out at visible laser wavelengths. As the antenna is detached from the sample it can be freely positioned in all three dimensions to adress only the desired magnetic sample structures and to achieve effective excitation. We demonstrate the functionality of these antennas using 渭BLS and compare coherently and thermally excited magnon spectra to show the enhancement of the signal by a factor of about 400 due to the excitation by the antenna. Moreover, we succeed to characterize yttrium iron garnet thin films with spatial resolution using optical ferromagnetic resonance (FMR) experiments. We analyse the spatial excitation profile of the antenna by measuring the magnetization dynamics in two dimensions. The technique is furthermore applied to investigate injection-locking of spin Hall nano-oscillators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11517v1-abstract-full').style.display = 'none'; document.getElementById('1911.11517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 054009 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07810">arXiv:1910.07810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07810">pdf</a>, <a href="https://arxiv.org/format/1910.07810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5129881">10.1063/1.5129881 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasma-assisted molecular beam epitaxy of NiO on GaN(00.1) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Budde%2C+M">Melanie Budde</a>, <a href="/search/physics?searchtype=author&amp;query=Remmele%2C+T">Thilo Remmele</a>, <a href="/search/physics?searchtype=author&amp;query=Tschammer%2C+C">Carsten Tschammer</a>, <a href="/search/physics?searchtype=author&amp;query=Feldl%2C+J">Johannes Feldl</a>, <a href="/search/physics?searchtype=author&amp;query=Franz%2C+P">Philipp Franz</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%A4hnemann%2C+J">Jonas L盲hnemann</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zongzhe Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hanke%2C+M">Michael Hanke</a>, <a href="/search/physics?searchtype=author&amp;query=Ramsteiner%2C+M">Manfred Ramsteiner</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Martin Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Bierwagen%2C+O">Oliver Bierwagen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07810v2-abstract-short" style="display: inline;"> The growth of NiO on GaN(00.1) substrates by plasma-assisted molecular beam epitaxy under oxygen rich conditions was investigated at growth temperatures between 100 $^{\circ}$C and 850 $^{\circ}$C. Epitaxial growth of NiO(111) with two rotational domains, with epitaxial relation $\normalsize{}\mathrm{\mathrm{\mathrm{NiO}(1\bar{\mathrm{1}}0)}\:||\:\mathrm{\mathrm{GaN}(11.0)}}$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07810v2-abstract-full').style.display = 'inline'; document.getElementById('1910.07810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07810v2-abstract-full" style="display: none;"> The growth of NiO on GaN(00.1) substrates by plasma-assisted molecular beam epitaxy under oxygen rich conditions was investigated at growth temperatures between 100 $^{\circ}$C and 850 $^{\circ}$C. Epitaxial growth of NiO(111) with two rotational domains, with epitaxial relation $\normalsize{}\mathrm{\mathrm{\mathrm{NiO}(1\bar{\mathrm{1}}0)}\:||\:\mathrm{\mathrm{GaN}(11.0)}}$ and $\mathrm{\mathrm{\mathrm{NiO}\mathrm{(10\bar{\mathrm{1}})}\:||\:\mathrm{GaN(11.0)}}}$, was observed by X-ray diffraction (XRD) and confirmed by in-situ reflection high-energy electron diffraction as well as transmission electron microscopy (TEM) and electron backscatter diffraction. With respect to the high lattice mismatch of 8.1 % and a measured low residual tensile layer strain, growth by lattice matching epitaxy or domain matching epitaxy is discussed. The morphology measured by atomic force microscopy showed a grainy surface, probably arising from the growth by the columnar rotational domains visible in TEM micrographs. The domain sizes measured by AFM and TEM increase with the growth temperature, indicating an increasing surface diffusion length. Growth at 850 $^{\circ}$C, however, involved local decomposition of the GaN substrate that lead to an interfacial $\mathrm尾$-Ga$\mathrm{_{2}}$O$\mathrm{_{3}}$($\bar{\mathrm{2}}$01) layer and a high NiO surface roughness. Raman mesurements of the quasi-forbidden one-phonon peak indicate increasing layer quality (decreasing defect density) with increasing growth temperature. The results above suggest optimum growth temperatures around 700 $^{\circ}$C for high layer and interface quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07810v2-abstract-full').style.display = 'none'; document.getElementById('1910.07810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages (+2 Supplement), 12 figures (+2 Supplement). The following article has been submitted to Journal of Applied Physics (October 2019)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 127, 015306 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.03974">arXiv:1806.03974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.03974">pdf</a>, <a href="https://arxiv.org/format/1806.03974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.033414">10.1103/PhysRevA.98.033414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of the spectral variation origin in high-order harmonic generation in noble gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nefedova%2C+V+E">V. E. Nefedova</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Finke%2C+O">O. Finke</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=V%C3%A1bek%2C+J">J. V谩bek</a>, <a href="/search/physics?searchtype=author&amp;query=Kozlov%C3%A1%2C+M">M. Kozlov谩</a>, <a href="/search/physics?searchtype=author&amp;query=Su%C3%A1rez%2C+N">N. Su谩rez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Nejdl%2C+J">J. Nejdl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.03974v1-abstract-short" style="display: inline;"> One key parameter in the high-order harmonic generation (HHG) phenomenon is the exact frequency of the generated harmonic field. Its deviation from perfect harmonics of the laser frequency can be explained considering (i) the single-atom laser-matter interaction and (ii) the spectral changes of the driving laser. In this work, we perform an experimental and theoretical study of the causes that gen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03974v1-abstract-full').style.display = 'inline'; document.getElementById('1806.03974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.03974v1-abstract-full" style="display: none;"> One key parameter in the high-order harmonic generation (HHG) phenomenon is the exact frequency of the generated harmonic field. Its deviation from perfect harmonics of the laser frequency can be explained considering (i) the single-atom laser-matter interaction and (ii) the spectral changes of the driving laser. In this work, we perform an experimental and theoretical study of the causes that generate spectral changes in the HHG radiation. We measured the driving laser spectral shift after high harmonic generation in long medium using a correction factor to take into account the multiple possible HHG initiation distances along the laser path. We separate out the contribution of laser spectral shift from the resultant high harmonic spectral shift in order to elucidate the microscopic effect of spectral shift in HHG. Therefore, in some cases we are able to identify the dominant electron trajectory from the experimental data. Our investigations lead to valuable conclusions about atomic dipole phase contribution to a high harmonic spectral shift. We demonstrate that the significant contribution of a long electron path leads to a high harmonic shift, which differs from that expected from the driving laser. Moreover, we assess the origin of the high-order harmonics spectral broadening and provide an explanation for the narrowest high harmonic spectral width in our experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03974v1-abstract-full').style.display = 'none'; document.getElementById('1806.03974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 033414 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10341">arXiv:1710.10341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.10341">pdf</a>, <a href="https://arxiv.org/format/1710.10341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5010915">10.1063/1.5010915 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single shot all optical switching of intrinsic micron size magnetic domains of a Pt/Co/Pt ferromagnetic stack </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vomir%2C+M">Mircea Vomir</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Mich猫le Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Bigot%2C+J">Jean-Yves Bigot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10341v1-abstract-short" style="display: inline;"> We demonstrate that the magnetization reversal in a ferromagnetic Pt/Co/Pt stack can be induced by a single femtosecond laser pulse. We find that the size of the switched spot is comparable to the size of the intrinsic magnetic domains. It requires an absorbed energy density of $\sim$4 mJ.cm$^{-2}$, beyond which the excited spot fragments into a multidomain structure. The switching process occurs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10341v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10341v1-abstract-full" style="display: none;"> We demonstrate that the magnetization reversal in a ferromagnetic Pt/Co/Pt stack can be induced by a single femtosecond laser pulse. We find that the size of the switched spot is comparable to the size of the intrinsic magnetic domains. It requires an absorbed energy density of $\sim$4 mJ.cm$^{-2}$, beyond which the excited spot fragments into a multidomain structure. The switching process occurs back and forth with subsequent laser pulses and it is helicity-independent. Furthermore, the dynamics of the magnetization reversal occurs in a timescale less than one microsecond. These results suggest that all optical switching in ferromagnetic films requires to match the laser spot with the specific domain sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10341v1-abstract-full').style.display = 'none'; document.getElementById('1710.10341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.07695">arXiv:1706.07695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.07695">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale Magnetic Imaging using Circularly Polarized High-Harmonic Radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kfir%2C+O">Ofer Kfir</a>, <a href="/search/physics?searchtype=author&amp;query=Zayko%2C+S">Sergey Zayko</a>, <a href="/search/physics?searchtype=author&amp;query=Nolte%2C+C">Christina Nolte</a>, <a href="/search/physics?searchtype=author&amp;query=Sivis%2C+M">Murat Sivis</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%B6ller%2C+M">Marcel M枚ller</a>, <a href="/search/physics?searchtype=author&amp;query=Hebler%2C+B">Birgit Hebler</a>, <a href="/search/physics?searchtype=author&amp;query=Arekapudi%2C+S+S+P+K">Sri Sai Phani Kanth Arekapudi</a>, <a href="/search/physics?searchtype=author&amp;query=Steil%2C+D">Daniel Steil</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4fer%2C+S">Sascha Sch盲fer</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Cohen%2C+O">Oren Cohen</a>, <a href="/search/physics?searchtype=author&amp;query=Mathias%2C+S">Stefan Mathias</a>, <a href="/search/physics?searchtype=author&amp;query=Ropers%2C+C">Claus Ropers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.07695v1-abstract-short" style="display: inline;"> This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a hologra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07695v1-abstract-full').style.display = 'inline'; document.getElementById('1706.07695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.07695v1-abstract-full" style="display: none;"> This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the unique coherence of high harmonics, this approach will facilitate quantitative, element-specific and spatially-resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07695v1-abstract-full').style.display = 'none'; document.getElementById('1706.07695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Ofer Kfir and Sergey Zayko contributed equally to this work. Presented in CLEO 2017 (Oral) doi.org/10.1364/CLEO_QELS.2017.FW1H.8</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.09419">arXiv:1705.09419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.09419">pdf</a>, <a href="https://arxiv.org/format/1705.09419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.013630">10.1103/PhysRevA.96.013630 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapping ultracold atoms at 100 nm from a chip surface in a 0.7-micrometer-period magnetic lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+T">Tien Tran</a>, <a href="/search/physics?searchtype=author&amp;query=Surendran%2C+P">Prince Surendran</a>, <a href="/search/physics?searchtype=author&amp;query=Herrera%2C+I">Ivan Herrera</a>, <a href="/search/physics?searchtype=author&amp;query=Balcytis%2C+A">Armandas Balcytis</a>, <a href="/search/physics?searchtype=author&amp;query=Nissen%2C+D">Dennis Nissen</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Sidorov%2C+A">Andrei Sidorov</a>, <a href="/search/physics?searchtype=author&amp;query=Hannaford%2C+P">Peter Hannaford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.09419v2-abstract-short" style="display: inline;"> We report the trapping of ultracold 87Rb atoms in a 0.7 micron-period 2D triangular magnetic lattice on an atom chip. The magnetic lattice is created by a lithographically patterned magnetic Co/Pd multilayer film plus bias fields. Rubidium atoms in the F=1, mF=-1 low-field seeking state are trapped at estimated distances down to about 100 nm from the chip surface and with calculated mean trapping&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09419v2-abstract-full').style.display = 'inline'; document.getElementById('1705.09419v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.09419v2-abstract-full" style="display: none;"> We report the trapping of ultracold 87Rb atoms in a 0.7 micron-period 2D triangular magnetic lattice on an atom chip. The magnetic lattice is created by a lithographically patterned magnetic Co/Pd multilayer film plus bias fields. Rubidium atoms in the F=1, mF=-1 low-field seeking state are trapped at estimated distances down to about 100 nm from the chip surface and with calculated mean trapping frequencies as high as 800 kHz. The measured lifetimes of the atoms trapped in the magnetic lattice are in the range 0.4 - 1.7 ms, depending on distance from the chip surface. Model calculations suggest the trap lifetimes are currently limited mainly by losses due to surface-induced thermal evaporation following loading of the atoms from the Z-wire trap into the very tight magnetic lattice traps, rather than by fundamental loss processes such as surface interactions, three-body recombination or spin flips due to Johnson magnetic noise. The trapping of atoms in a 0.7 micrometer-period magnetic lattice represents a significant step towards using magnetic lattices for quantum tunneling experiments and to simulate condensed matter and many-body phenomena in nontrivial lattice geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09419v2-abstract-full').style.display = 'none'; document.getElementById('1705.09419v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 013630 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04977">arXiv:1702.04977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04977">pdf</a>, <a href="https://arxiv.org/ps/1702.04977">ps</a>, <a href="https://arxiv.org/format/1702.04977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/41/6/063001">10.1088/1674-1137/41/6/063001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Luminosity measurements for the R scan experiment at BESIII </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Albayrak%2C+O">O. Albayrak</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrose%2C+D+J">D. J. Ambrose</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+F">F. F. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+J+Z">J. Z. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/physics?searchtype=author&amp;query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+J+M">J. M. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Boger%2C+E">E. Boger</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a> , et al. (405 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04977v1-abstract-short" style="display: inline;"> By analyzing the large-angle Bhabha scattering events $e^{+}e^{-}$ $\to$ ($纬$)$e^{+}e^{-}$ and diphoton events $e^{+}e^{-}$ $\to$ $纬纬$ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04977v1-abstract-full').style.display = 'inline'; document.getElementById('1702.04977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04977v1-abstract-full" style="display: none;"> By analyzing the large-angle Bhabha scattering events $e^{+}e^{-}$ $\to$ ($纬$)$e^{+}e^{-}$ and diphoton events $e^{+}e^{-}$ $\to$ $纬纬$ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are the important inputs for R value and $J/蠄$ resonance parameter measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04977v1-abstract-full').style.display = 'none'; document.getElementById('1702.04977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02149">arXiv:1610.02149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.02149">pdf</a>, <a href="https://arxiv.org/format/1610.02149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.032003">10.1103/PhysRevD.95.032003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Feasibility study for the measurement of $蟺N$ TDAs at PANDA in $\bar{p}p\to J/蠄蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=PANDA+Collaboration"> PANDA Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+B">B. Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Erni%2C+W">W. Erni</a>, <a href="/search/physics?searchtype=author&amp;query=Krusche%2C+B">B. Krusche</a>, <a href="/search/physics?searchtype=author&amp;query=Steinacher%2C+M">M. Steinacher</a>, <a href="/search/physics?searchtype=author&amp;query=Walford%2C+N">N. Walford</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">B. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">C. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Erlen%2C+T">T. Erlen</a>, <a href="/search/physics?searchtype=author&amp;query=Fink%2C+M">M. Fink</a>, <a href="/search/physics?searchtype=author&amp;query=Heinsius%2C+F+H">F. H. Heinsius</a>, <a href="/search/physics?searchtype=author&amp;query=Held%2C+T">T. Held</a>, <a href="/search/physics?searchtype=author&amp;query=Holtmann%2C+T">T. Holtmann</a>, <a href="/search/physics?searchtype=author&amp;query=Jasper%2C+S">S. Jasper</a>, <a href="/search/physics?searchtype=author&amp;query=Keshk%2C+I">I. Keshk</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+H">H. Koch</a>, <a href="/search/physics?searchtype=author&amp;query=Kopf%2C+B">B. Kopf</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhlmann%2C+M">M. Kuhlmann</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCmmel%2C+M">M. K眉mmel</a>, <a href="/search/physics?searchtype=author&amp;query=Leiber%2C+S">S. Leiber</a> , et al. (488 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02149v1-abstract-short" style="display: inline;"> The exclusive charmonium production process in $\bar{p}p$ annihilation with an associated $蟺^0$ meson $\bar{p}p\to J/蠄蟺^0$ is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the $J/蠄\to e^+e^-$ decay channel with the PANDA (AntiProton ANnihilation at DArmstadt) experiment is investigated. Simulations on signal reconstruction efficiency as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02149v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02149v1-abstract-full" style="display: none;"> The exclusive charmonium production process in $\bar{p}p$ annihilation with an associated $蟺^0$ meson $\bar{p}p\to J/蠄蟺^0$ is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the $J/蠄\to e^+e^-$ decay channel with the PANDA (AntiProton ANnihilation at DArmstadt) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the $\bar{p}p\to蟺^+蟺^-蟺^0$ and $\bar{p}p\to J/蠄蟺^0蟺^0$ reactions are performed with PandaRoot, the simulation and analysis software framework of the PANDA experiment. It is shown that the measurement can be done at PANDA with significant constraining power under the assumption of an integrated luminosity attainable in four to five months of data taking at the maximum design luminosity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02149v1-abstract-full').style.display = 'none'; document.getElementById('1610.02149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 22 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 032003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.01874">arXiv:1606.01874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.01874">pdf</a>, <a href="https://arxiv.org/format/1606.01874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4962213">10.1063/1.4962213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switching field distribution of exchange coupled ferri-/ferromagnetic composite bit patterned media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Oezelt%2C+H">Harald Oezelt</a>, <a href="/search/physics?searchtype=author&amp;query=Kovacs%2C+A">Alexander Kovacs</a>, <a href="/search/physics?searchtype=author&amp;query=Fischbacher%2C+J">Johann Fischbacher</a>, <a href="/search/physics?searchtype=author&amp;query=Matthes%2C+P">Patrick Matthes</a>, <a href="/search/physics?searchtype=author&amp;query=Kirk%2C+E">Eugenie Kirk</a>, <a href="/search/physics?searchtype=author&amp;query=Wohlh%C3%BCter%2C+P">Phillip Wohlh眉ter</a>, <a href="/search/physics?searchtype=author&amp;query=Heyderman%2C+L+J">Laura Jane Heyderman</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Schrefl%2C+T">Thomas Schrefl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.01874v2-abstract-short" style="display: inline;"> We investigate the switching field distribution and the resulting bit error rate of exchange coupled ferri-/ferromagnetic bilayer island arrays by micromagnetic simulations. Using islands with varying microstructure and anisotropic properties, the intrinsic switching field distribution is computed. The dipolar contribution to the switching field distribution is obtained separately by using a model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01874v2-abstract-full').style.display = 'inline'; document.getElementById('1606.01874v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.01874v2-abstract-full" style="display: none;"> We investigate the switching field distribution and the resulting bit error rate of exchange coupled ferri-/ferromagnetic bilayer island arrays by micromagnetic simulations. Using islands with varying microstructure and anisotropic properties, the intrinsic switching field distribution is computed. The dipolar contribution to the switching field distribution is obtained separately by using a model of a triangular patterned island array resembling $1.4\,\mathrm{Tb/in}^2$ bit patterned media. Both contributions are computed for different thickness of the soft exchange coupled ferrimagnet and also for ferromagnetic single phase FePt islands. A bit patterned media with a bilayer structure of FeGd($5\,\mathrm{nm}$)/FePt($5\,\mathrm{nm}$) shows a bit error rate of $10^{-4}$ with a write field of $1.16\,\mathrm{T}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01874v2-abstract-full').style.display = 'none'; document.getElementById('1606.01874v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 120, 093904 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.01180">arXiv:1604.01180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.01180">pdf</a>, <a href="https://arxiv.org/format/1604.01180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4906288">10.1063/1.4906288 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Micromagnetic simulation of exchange coupled ferri-/ferromagnetic composite in bit patterned media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Oezelt%2C+H">Harald Oezelt</a>, <a href="/search/physics?searchtype=author&amp;query=Kovacs%2C+A">Alexander Kovacs</a>, <a href="/search/physics?searchtype=author&amp;query=Wohlh%C3%BCter%2C+P">Phillip Wohlh眉ter</a>, <a href="/search/physics?searchtype=author&amp;query=Kirk%2C+E">Eugenie Kirk</a>, <a href="/search/physics?searchtype=author&amp;query=Nissen%2C+D">Dennis Nissen</a>, <a href="/search/physics?searchtype=author&amp;query=Matthes%2C+P">Patrick Matthes</a>, <a href="/search/physics?searchtype=author&amp;query=Heyderman%2C+L+J">Laura Jane Heyderman</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Schrefl%2C+T">Thomas Schrefl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.01180v1-abstract-short" style="display: inline;"> Ferri-/ferromagnetic exchange coupled composites are promising candidates for bit patterned media because of the ability to control the magnetic properties of the ferrimagnet by its composition. A micromagnetic model for the bilayer system is presented where we also incorporate the microstructural features of both layers. Micromagnetic finite element simulations are performed to investigate the ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01180v1-abstract-full').style.display = 'inline'; document.getElementById('1604.01180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.01180v1-abstract-full" style="display: none;"> Ferri-/ferromagnetic exchange coupled composites are promising candidates for bit patterned media because of the ability to control the magnetic properties of the ferrimagnet by its composition. A micromagnetic model for the bilayer system is presented where we also incorporate the microstructural features of both layers. Micromagnetic finite element simulations are performed to investigate the magnetization reversal behaviour of such media. By adding the exchange coupled ferrimagnet to the ferromagnet, the switching field could be reduced by up to $40\,\%$ and also the switching field distribution is narrowed. To reach these significant improvements, an interface exchange coupling strength of $2\,\mathrm{mJ/m^2}$ is required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01180v1-abstract-full').style.display = 'none'; document.getElementById('1604.01180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics, 117, 17E501 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.0528">arXiv:1410.0528</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.0528">pdf</a>, <a href="https://arxiv.org/format/1410.0528">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0022-3727/48/11/115002">10.1088/0022-3727/48/11/115002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Herrera%2C+I">I. Herrera</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Michaux%2C+P">P. Michaux</a>, <a href="/search/physics?searchtype=author&amp;query=Nissen%2C+D">D. Nissen</a>, <a href="/search/physics?searchtype=author&amp;query=Surendran%2C+P">P. Surendran</a>, <a href="/search/physics?searchtype=author&amp;query=Juodkazis%2C+S">S. Juodkazis</a>, <a href="/search/physics?searchtype=author&amp;query=Whitlock%2C+S">S. Whitlock</a>, <a href="/search/physics?searchtype=author&amp;query=McLean%2C+R+J">R. J. McLean</a>, <a href="/search/physics?searchtype=author&amp;query=Sidorov%2C+A">A. Sidorov</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Hannaford%2C+P">P. Hannaford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.0528v2-abstract-short" style="display: inline;"> We report on the design, fabrication and characterization of magnetic nanostructures to create a lattice of magnetic traps with sub--micron period for trapping ultracold atoms. These magnetic nanostructures were fabricated by patterning a Co/Pd multilayered magnetic film grown on a silicon substrate using high precision e-beam lithography and reactive ion etching. The Co/Pd film was chosen for its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.0528v2-abstract-full').style.display = 'inline'; document.getElementById('1410.0528v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.0528v2-abstract-full" style="display: none;"> We report on the design, fabrication and characterization of magnetic nanostructures to create a lattice of magnetic traps with sub--micron period for trapping ultracold atoms. These magnetic nanostructures were fabricated by patterning a Co/Pd multilayered magnetic film grown on a silicon substrate using high precision e-beam lithography and reactive ion etching. The Co/Pd film was chosen for its small grain size and high remanent magnetization and coercivity. The fabricated structures are designed to magnetically trap $^{87}$Rb atoms above the surface of the magnetic film with 1D and 2D (triangular and square) lattice geometries and sub-micron period. Such magnetic lattices can be used for quantum tunneling and quantum simulation experiments, including using geometries and periods that may be inaccessible with optical lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.0528v2-abstract-full').style.display = 'none'; document.getElementById('1410.0528v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6967">arXiv:1402.6967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6967">pdf</a>, <a href="https://arxiv.org/ps/1402.6967">ps</a>, <a href="https://arxiv.org/format/1402.6967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.155303">10.1103/PhysRevB.90.155303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Madsen%2C+K+H">K. H. Madsen</a>, <a href="/search/physics?searchtype=author&amp;query=Ates%2C+S">S. Ates</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Javadi%2C+A">A. Javadi</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+S+M">S. M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Yeo%2C+I">I. Yeo</a>, <a href="/search/physics?searchtype=author&amp;query=Stobbe%2C+S">S. Stobbe</a>, <a href="/search/physics?searchtype=author&amp;query=Lodahl%2C+P">P. Lodahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6967v2-abstract-short" style="display: inline;"> We demonstrate a single-photon collection efficiency of $(44.3\pm2.1)\%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4\pm5)\%$ recorded above the saturation power. The high efficiency is directly confirmed by detecting up to $962\pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6967v2-abstract-full').style.display = 'inline'; document.getElementById('1402.6967v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6967v2-abstract-full" style="display: none;"> We demonstrate a single-photon collection efficiency of $(44.3\pm2.1)\%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4\pm5)\%$ recorded above the saturation power. The high efficiency is directly confirmed by detecting up to $962\pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching $0.77\pm0.19$ ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6967v2-abstract-full').style.display = 'none'; document.getElementById('1402.6967v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 155303 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.6757">arXiv:1207.6757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.6757">pdf</a>, <a href="https://arxiv.org/ps/1207.6757">ps</a>, <a href="https://arxiv.org/format/1207.6757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms2480">10.1038/ncomms2480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Temnov%2C+V+V">Vasily V. Temnov</a>, <a href="/search/physics?searchtype=author&amp;query=Klieber%2C+C">Christoph Klieber</a>, <a href="/search/physics?searchtype=author&amp;query=Nelson%2C+K+A">Keith A. Nelson</a>, <a href="/search/physics?searchtype=author&amp;query=Thomay%2C+T">Tim Thomay</a>, <a href="/search/physics?searchtype=author&amp;query=Knittel%2C+V">Vanessa Knittel</a>, <a href="/search/physics?searchtype=author&amp;query=Leitenstorfer%2C+A">Alfred Leitenstorfer</a>, <a href="/search/physics?searchtype=author&amp;query=Makarov%2C+D">Denys Makarov</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Bratschitsch%2C+R">Rudolf Bratschitsch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.6757v2-abstract-short" style="display: inline;"> Fundamental interactions induced by lattice vibrations on ultrafast time scales become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the THz frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here, we report on the generati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6757v2-abstract-full').style.display = 'inline'; document.getElementById('1207.6757v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.6757v2-abstract-full" style="display: none;"> Fundamental interactions induced by lattice vibrations on ultrafast time scales become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the THz frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here, we report on the generation and nonlinear propagation of giant (1 percent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping already after a propagation distance of 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond THz-ultrasonics at the nano-scale in metals at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6757v2-abstract-full').style.display = 'none'; document.getElementById('1207.6757v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 4, 1468 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.6581">arXiv:1207.6581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.6581">pdf</a>, <a href="https://arxiv.org/format/1207.6581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Technical Design Report for the: PANDA Micro Vertex Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=PANDA+Collaboration"> PANDA Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Erni%2C+W">W. Erni</a>, <a href="/search/physics?searchtype=author&amp;query=Keshelashvili%2C+I">I. Keshelashvili</a>, <a href="/search/physics?searchtype=author&amp;query=Krusche%2C+B">B. Krusche</a>, <a href="/search/physics?searchtype=author&amp;query=Steinacher%2C+M">M. Steinacher</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Y. Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">H. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+J">J. Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Eickel%2C+K">K. Eickel</a>, <a href="/search/physics?searchtype=author&amp;query=Feldbauer%2C+F">F. Feldbauer</a>, <a href="/search/physics?searchtype=author&amp;query=Fink%2C+M">M. Fink</a>, <a href="/search/physics?searchtype=author&amp;query=Friedel%2C+P">P. Friedel</a>, <a href="/search/physics?searchtype=author&amp;query=Heinsius%2C+F+H">F. H. Heinsius</a>, <a href="/search/physics?searchtype=author&amp;query=Held%2C+T">T. Held</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+H">H. Koch</a>, <a href="/search/physics?searchtype=author&amp;query=Kopf%2C+B">B. Kopf</a>, <a href="/search/physics?searchtype=author&amp;query=Leyhe%2C+M">M. Leyhe</a>, <a href="/search/physics?searchtype=author&amp;query=Motzko%2C+C">C. Motzko</a>, <a href="/search/physics?searchtype=author&amp;query=Peliz%C3%A4us%2C+M">M. Peliz盲us</a>, <a href="/search/physics?searchtype=author&amp;query=Pychy%2C+J">J. Pychy</a> , et al. (436 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.6581v2-abstract-short" style="display: inline;"> This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6581v2-abstract-full').style.display = 'inline'; document.getElementById('1207.6581v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.6581v2-abstract-full" style="display: none;"> This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.6581v2-abstract-full').style.display = 'none'; document.getElementById('1207.6581v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">189 pages, 225 figures, 41 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.5441">arXiv:1205.5441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.5441">pdf</a>, <a href="https://arxiv.org/format/1205.5441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2013-13025-8">10.1140/epja/i2013-13025-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Technical Design Report for the: PANDA Straw Tube Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=PANDA+Collaboration"> PANDA Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Erni%2C+W">W. Erni</a>, <a href="/search/physics?searchtype=author&amp;query=Keshelashvili%2C+I">I. Keshelashvili</a>, <a href="/search/physics?searchtype=author&amp;query=Krusche%2C+B">B. Krusche</a>, <a href="/search/physics?searchtype=author&amp;query=Steinacher%2C+M">M. Steinacher</a>, <a href="/search/physics?searchtype=author&amp;query=Heng%2C+Y">Y. Heng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">H. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Aab%2C+A">A. Aab</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+J">J. Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Csap%C3%B3%2C+A">A. Csap贸</a>, <a href="/search/physics?searchtype=author&amp;query=Feldbauer%2C+F">F. Feldbauer</a>, <a href="/search/physics?searchtype=author&amp;query=Fink%2C+M">M. Fink</a>, <a href="/search/physics?searchtype=author&amp;query=Friedel%2C+P">P. Friedel</a>, <a href="/search/physics?searchtype=author&amp;query=Heinsius%2C+F+H">F. H. Heinsius</a>, <a href="/search/physics?searchtype=author&amp;query=Held%2C+T">T. Held</a>, <a href="/search/physics?searchtype=author&amp;query=Klask%2C+L">L. Klask</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+H">H. Koch</a>, <a href="/search/physics?searchtype=author&amp;query=Kopf%2C+B">B. Kopf</a>, <a href="/search/physics?searchtype=author&amp;query=Leiber%2C+S">S. Leiber</a>, <a href="/search/physics?searchtype=author&amp;query=Leyhe%2C+M">M. Leyhe</a> , et al. (451 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.5441v2-abstract-short" style="display: inline;"> This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM-stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.5441v2-abstract-full').style.display = 'inline'; document.getElementById('1205.5441v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.5441v2-abstract-full" style="display: none;"> This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM-stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy-loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.5441v2-abstract-full').style.display = 'none'; document.getElementById('1205.5441v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication on EPJA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2013) 49: 25 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10