CINXE.COM
Eva Papp | The Australian National University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Eva Papp | The Australian National University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="sGiN9Et-hJ-ms5e9NftEThO0cTt2QWa2f0ockl616ueEEcLeMfpdt3RzgYikMxpqbVFkN0VKRsOT4bMf8xHntQ" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp","image":"https://0.academia-photos.com/498748/678510/24411696/s200_eva.papp.jpg","sameAs":["http://data.aad.gov.au/aadc/metadata/program_metadata.cfm?program=EPIC","http://www.arc.gov.au/pdf/LP12/LP12R2-Listing_by_all_State_and_Organisation_2012.pdf","http://www.hazeledwards.com/page/antarctic_writer_on_ice.html"]},"dateCreated":"2011-06-18T15:04:45-07:00","dateModified":"2025-04-03T01:51:10-07:00","name":"Eva Papp","description":"Emeritus Faculty member at the Australian National University.","image":"https://0.academia-photos.com/498748/678510/24411696/s200_eva.papp.jpg","thumbnailUrl":"https://0.academia-photos.com/498748/678510/24411696/s65_eva.papp.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/498748/678510/24411696/s200_eva.papp.jpg","width":200},"sameAs":["http://data.aad.gov.au/aadc/metadata/program_metadata.cfm?program=EPIC","http://www.arc.gov.au/pdf/LP12/LP12R2-Listing_by_all_State_and_Organisation_2012.pdf","http://www.hazeledwards.com/page/antarctic_writer_on_ice.html"],"relatedLink":"https://www.academia.edu/121404736/Geophysics_palaeochannels_and_groundwater_resources_in_alluvial_plains_Lower_Murrumbidgee_catchment_NSW"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/text_button-d1941ab08e91e29ee143084c4749da4aaffa350a2ac6eec2306b1d7a352d911a.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="eva papp" /> <meta name="description" content="Emeritus Faculty member at the Australian National University." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '58b9d7e23a46e5800ffea3b472b07c5ca0ff45ed'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13886,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286629301,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1744153551000); window.Aedu.timeDifference = new Date().getTime() - 1744153551000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-d43ce42295f6e9eee644b2bf4f7c938efedf73a791a7b96315b2735fd5bbc7d7.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7fdb74ea7c97cb254ac2c4f31e80ad5a64c58e5ddd088d4fec81511810f0bd68.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-84fdd41845ff5754cd1cff7f1d30286e6e2b13003663bb3ee5235a6a53668f78.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://anu-au.academia.edu/EvaPapp" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-5888e8cdcd0801926d9a9f3090e2416b8e78912036f8e63b1c6faa35593f3647.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp","photo":"https://0.academia-photos.com/498748/678510/24411696/s65_eva.papp.jpg","has_photo":true,"department":{"id":486858,"name":"ANU Emeritus Faculty","url":"https://anu-au.academia.edu/Departments/ANU_Emeritus_Faculty/Documents","university":{"id":458,"name":"The Australian National University","url":"https://anu-au.academia.edu/"}},"position":"Emerita","position_id":6,"is_analytics_public":true,"interests":[{"id":73139,"name":"Electromagnetic Theory","url":"https://www.academia.edu/Documents/in/Electromagnetic_Theory"},{"id":60646,"name":"Early Vertebrates","url":"https://www.academia.edu/Documents/in/Early_Vertebrates"},{"id":14988,"name":"Bioelectromagnetics","url":"https://www.academia.edu/Documents/in/Bioelectromagnetics"},{"id":19363,"name":"Vertebrate Evolution","url":"https://www.academia.edu/Documents/in/Vertebrate_Evolution"},{"id":3364,"name":"Morphological evolution","url":"https://www.academia.edu/Documents/in/Morphological_evolution"},{"id":51590,"name":"Finite Element Modeling","url":"https://www.academia.edu/Documents/in/Finite_Element_Modeling"},{"id":2795,"name":"Landscape Archaeology","url":"https://www.academia.edu/Documents/in/Landscape_Archaeology"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":19522,"name":"Remote sensing and GIS applications in Landscape Research","url":"https://www.academia.edu/Documents/in/Remote_sensing_and_GIS_applications_in_Landscape_Research"},{"id":2527247,"name":"time crystals","url":"https://www.academia.edu/Documents/in/time_crystals"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":52311,"link":"http://data.aad.gov.au/aadc/metadata/program_metadata.cfm?program=EPIC","name":"AAD Metadata ","link_domain":"data.aad.gov.au","icon":"//www.google.com/s2/u/0/favicons?domain=data.aad.gov.au"},{"id":52312,"link":"http://www.arc.gov.au/pdf/LP12/LP12R2-Listing_by_all_State_and_Organisation_2012.pdf","name":"ARC Linkage Outcomes","link_domain":"www.arc.gov.au","icon":"//www.google.com/s2/u/0/favicons?domain=www.arc.gov.au"},{"id":52313,"link":"http://www.hazeledwards.com/page/antarctic_writer_on_ice.html","name":"Antarctic Writer on Ice","link_domain":"www.hazeledwards.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.hazeledwards.com"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://anu-au.academia.edu/EvaPapp","location":"/EvaPapp","scheme":"https","host":"anu-au.academia.edu","port":null,"pathname":"/EvaPapp","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-131aaf0a-4d89-4cd7-b21b-71f1d0ed2c58"></div> <div id="ProfileCheckPaperUpdate-react-component-131aaf0a-4d89-4cd7-b21b-71f1d0ed2c58"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Eva Papp" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/498748/678510/24411696/s200_eva.papp.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Eva Papp</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://anu-au.academia.edu/">The Australian National University</a>, <a class="u-tcGrayDarker" href="https://anu-au.academia.edu/Departments/ANU_Emeritus_Faculty/Documents">ANU Emeritus Faculty</a>, <span class="u-tcGrayDarker">Emerita</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Eva" data-follow-user-id="498748" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="498748"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">184</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">74</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">9</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Emeritus Faculty member at the Australian National University.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cadic-conicet.academia.edu/JorgeRabassa"><img class="profile-avatar u-positionAbsolute" alt="Jorge Rabassa related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/3456772/5281997/6038136/s200_jorge.rabassa.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cadic-conicet.academia.edu/JorgeRabassa">Jorge Rabassa</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro Austral de Investigaciones Científicas (CADIC)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://mpic.academia.edu/KathrynFitzsimmons"><img class="profile-avatar u-positionAbsolute" alt="Kathryn Fitzsimmons related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/294925/59740/62471/s200_kathryn.fitzsimmons.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mpic.academia.edu/KathrynFitzsimmons">Kathryn Fitzsimmons</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Max Planck Institute for Chemistry</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uow.academia.edu/TimCohen"><img class="profile-avatar u-positionAbsolute" alt="Tim Cohen related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uow.academia.edu/TimCohen">Tim Cohen</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Wollongong</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uow.academia.edu/TonyDosseto"><img class="profile-avatar u-positionAbsolute" alt="Anthony Dosseto related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/109885/29965/7079093/s200_tony.dosseto.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uow.academia.edu/TonyDosseto">Anthony Dosseto</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Wollongong</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/LyndaPetherick"><img class="profile-avatar u-positionAbsolute" alt="Lynda Petherick related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/LyndaPetherick">Lynda Petherick</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://mq.academia.edu/PaulHesse"><img class="profile-avatar u-positionAbsolute" alt="Paul Hesse related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/8315233/3856437/4511760/s200_paul.hesse.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mq.academia.edu/PaulHesse">Paul Hesse</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Macquarie University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/SanderKaars"><img class="profile-avatar u-positionAbsolute" alt="Sander van der Kaars related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SanderKaars">Sander van der Kaars</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uow.academia.edu/GNanson"><img class="profile-avatar u-positionAbsolute" alt="G. Nanson related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uow.academia.edu/GNanson">G. Nanson</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Wollongong</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unsw.academia.edu/SMooney"><img class="profile-avatar u-positionAbsolute" alt="S. Mooney related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unsw.academia.edu/SMooney">S. Mooney</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The University of New South Wales</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uow.academia.edu/TimothyTBarrows"><img class="profile-avatar u-positionAbsolute" alt="Timothy Barrows related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1895291/4747769/5473743/s200_timothy_t..barrows.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uow.academia.edu/TimothyTBarrows">Timothy Barrows</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Wollongong</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="498748">View All (8)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="498748" href="https://www.academia.edu/Documents/in/Electromagnetic_Theory"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://anu-au.academia.edu/EvaPapp","location":"/EvaPapp","scheme":"https","host":"anu-au.academia.edu","port":null,"pathname":"/EvaPapp","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Electromagnetic Theory"]}" data-trace="false" data-dom-id="Pill-react-component-bec7b533-76b4-47e6-9076-f00563534ee9"></div> <div id="Pill-react-component-bec7b533-76b4-47e6-9076-f00563534ee9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="498748" href="https://www.academia.edu/Documents/in/Early_Vertebrates"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Early Vertebrates"]}" data-trace="false" data-dom-id="Pill-react-component-a04d4a30-1242-4595-87e5-6baa3350a5e9"></div> <div id="Pill-react-component-a04d4a30-1242-4595-87e5-6baa3350a5e9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="498748" href="https://www.academia.edu/Documents/in/Vertebrate_Evolution"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Vertebrate Evolution"]}" data-trace="false" data-dom-id="Pill-react-component-49cf2759-1a95-4d73-9b36-d949a87fafee"></div> <div id="Pill-react-component-49cf2759-1a95-4d73-9b36-d949a87fafee"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="498748" href="https://www.academia.edu/Documents/in/Morphological_evolution"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Morphological evolution"]}" data-trace="false" data-dom-id="Pill-react-component-8fb73bcd-718f-403d-b4b0-a89d61035fa3"></div> <div id="Pill-react-component-8fb73bcd-718f-403d-b4b0-a89d61035fa3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="498748" href="https://www.academia.edu/Documents/in/Finite_Element_Modeling"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Finite Element Modeling"]}" data-trace="false" data-dom-id="Pill-react-component-ae61891c-69e2-401b-aa4f-c5f80545b1e9"></div> <div id="Pill-react-component-ae61891c-69e2-401b-aa4f-c5f80545b1e9"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li><a class="ds2-5-text-link ds2-5-text-link--small" href="https://evapapp.academia.edu/"><span class="ds2-5-text-link__content"><i class="fa fa-laptop"></i></span></a></li><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Books" data-toggle="tab" href="#books" role="tab" title="Books"><span>1</span> <span class="ds2-5-body-sm-bold">Books</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>18</span> <span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Talks" data-toggle="tab" href="#talks" role="tab" title="Talks"><span>26</span> <span class="ds2-5-body-sm-bold">Talks</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Students" data-toggle="tab" href="#students" role="tab" title="Students"><span>9</span> <span class="ds2-5-body-sm-bold">Students</span></a></li><li class="nav-chip more-tab" role="presentation"><a class="js-profile-documents-more-tab link-unstyled u-textTruncate" data-toggle="dropdown" role="tab">More <i class="fa fa-chevron-down"></i></a><ul class="js-profile-documents-more-dropdown dropdown-menu dropdown-menu-right profile-documents-more-dropdown" role="menu"><li role="presentation"><a data-click-track="profile-works-tab" data-section-name="Posters,-conference-presentations" data-toggle="tab" href="#postersconferencepresentations" role="tab" style="border: none;"><span>23</span> Posters, conference presentations</a></li><li role="presentation"><a data-click-track="profile-works-tab" data-section-name="Science-outreach,-art-and-science" data-toggle="tab" href="#scienceoutreachartandscience" role="tab" style="border: none;"><span>2</span> Science outreach, art and science</a></li><li role="presentation"><a data-click-track="profile-works-tab" data-section-name="Data" data-toggle="tab" href="#data" role="tab" style="border: none;"><span>4</span> Data</a></li></ul></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Books" id="Books"><h3 class="profile--tab_heading_container">Books by Eva Papp</h3></div><div class="js-work-strip profile--work_container" data-work-id="1765305"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1765305/Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration"><img alt="Research paper thumbnail of Papp, E. (ed) Geophysical and Remote Sensing Methods for Regolith Exploration" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1765305/Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration">Papp, E. (ed) Geophysical and Remote Sensing Methods for Regolith Exploration</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of the volume is to provide source material for students, geologists and geophysicist...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem. <br /> <br />A number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled "Regolith Dating Methods", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies. <br /> <br />The booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service. <br /> <br />We believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78489db0e2c16b3dad59b5092f67546b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42681225,"asset_id":1765305,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42681225/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765305"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765305"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765305; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765305]").text(description); $(".js-view-count[data-work-id=1765305]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765305; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765305']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78489db0e2c16b3dad59b5092f67546b" } } $('.js-work-strip[data-work-id=1765305]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765305,"title":"Papp, E. (ed) Geophysical and Remote Sensing Methods for Regolith Exploration","translated_title":"","metadata":{"abstract":"The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem.\r\n\r\nA number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled \"Regolith Dating Methods\", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies.\r\n\r\nThe booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service.\r\n\r\nWe believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.\r\n\r\n"},"translated_abstract":"The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem.\r\n\r\nA number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled \"Regolith Dating Methods\", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies.\r\n\r\nThe booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service.\r\n\r\nWe believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.\r\n\r\n","internal_url":"https://www.academia.edu/1765305/Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration","translated_internal_url":"","created_at":"2012-07-04T19:20:48.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[],"downloadable_attachments":[{"id":42681225,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"_WRD139.jpg","download_url":"https://www.academia.edu/attachments/42681225/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681225/_WRD139.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=Vhh037CCUmG3l9A1PC2U4zM-uBHISWPOQq35vqdH73f4m5ImOt3DlcSATecyIl-JONncGxweOitWCnBof~1Zpu~ILa9xxhE4zDR~seskaH08sA0UdNUlUjoMYjSnSjpXhu9ztDcfkJloYnhrv9lt77AHpGQyFV3j4gB2ZtWormePi5pRv98UxjQfLcRosQ2NBsDOIDczJvHerDo8~72omsVElSefBJTdj9pl1LdP7oUiwXa8IzQLaqRxbGplVLrHs2gSQskCimCinK0hvQ6XHwLwEjv-GX-WFTQk83h~TbjUW9gdCTDCdy9P9wcr5QVeGbIZOLBqGzm15KLMtedS5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":42681226,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"image001.jpg","download_url":"https://www.academia.edu/attachments/42681226/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681226/image001.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=dKMLu9LLhNRvU3KHIN-LL7h~z8pe3dPW2W-V35hB9H5Q6XI6pP0ebQvfqx85B~hJZkohNtLdbNYSRvp33QN-no9a4~rObdOJkUwhObnFBtC~ejluPOPsKjp7-XD74RMEbYZL4QWk2Zor5JNGZJ0JvGgqSjISXJbhpvKVrYl5WBdm0-i2lv9IyVVhpKf~TsYQQ9vfyBzwofdKHzM2txsMUSDwTchZUOxqaqva~hvsSJWNW3MkkBGzWez7fGxXQRCEZOxMmzuGGjuHg71m922BzLZixLQjnrDmJk-3lBESCymIwcHpstO8CxhgddSSuFm5Kn8TQPCIbiqvWGORB3JY8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem.\r\n\r\nA number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled \"Regolith Dating Methods\", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies.\r\n\r\nThe booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service.\r\n\r\nWe believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.\r\n\r\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":42681225,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"_WRD139.jpg","download_url":"https://www.academia.edu/attachments/42681225/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681225/_WRD139.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=Vhh037CCUmG3l9A1PC2U4zM-uBHISWPOQq35vqdH73f4m5ImOt3DlcSATecyIl-JONncGxweOitWCnBof~1Zpu~ILa9xxhE4zDR~seskaH08sA0UdNUlUjoMYjSnSjpXhu9ztDcfkJloYnhrv9lt77AHpGQyFV3j4gB2ZtWormePi5pRv98UxjQfLcRosQ2NBsDOIDczJvHerDo8~72omsVElSefBJTdj9pl1LdP7oUiwXa8IzQLaqRxbGplVLrHs2gSQskCimCinK0hvQ6XHwLwEjv-GX-WFTQk83h~TbjUW9gdCTDCdy9P9wcr5QVeGbIZOLBqGzm15KLMtedS5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":42681226,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"image001.jpg","download_url":"https://www.academia.edu/attachments/42681226/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681226/image001.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=dKMLu9LLhNRvU3KHIN-LL7h~z8pe3dPW2W-V35hB9H5Q6XI6pP0ebQvfqx85B~hJZkohNtLdbNYSRvp33QN-no9a4~rObdOJkUwhObnFBtC~ejluPOPsKjp7-XD74RMEbYZL4QWk2Zor5JNGZJ0JvGgqSjISXJbhpvKVrYl5WBdm0-i2lv9IyVVhpKf~TsYQQ9vfyBzwofdKHzM2txsMUSDwTchZUOxqaqva~hvsSJWNW3MkkBGzWez7fGxXQRCEZOxMmzuGGjuHg71m922BzLZixLQjnrDmJk-3lBESCymIwcHpstO8CxhgddSSuFm5Kn8TQPCIbiqvWGORB3JY8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":301465,"url":"http://crcleme.org.au/Pubs/OPEN%20FILE%20REPORTS/OFR%20144/OFR144.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765305-figures'); } }); </script> <div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Eva Papp</h3></div><div class="js-work-strip profile--work_container" data-work-id="101297078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101297078/High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales"><img alt="Research paper thumbnail of High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales" class="work-thumbnail" src="https://attachments.academia-assets.com/101877573/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101297078/High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales">High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales</a></div><div class="wp-workCard_item"><span>Exploration Geophysics</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, N...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-101297078-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-101297078-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228123/figure-1-location-map-for-west-wyalong-and-yiddah-including"><img alt="Fig. 1. Location map for West Wyalong and Yiddah, including position of seismic lines and interpreted palaeochannels. " class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228129/figure-2-example-of-shot-record-from-the-wyalong-line-shot"><img alt="Fig. 2. Example of a shot record from the Wyalong line (shot 700) after various stages of processing. Seismic imagery of palaeochannels " class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228140/figure-3-high-resolution-seismic-imagery-of-palaeochannels"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228145/figure-4-wyalong-seismic-line-the-first-refractor-layer"><img alt="Fig 4. Wyalong seismic line. The first refractor layer, location of drill holes, and magnetic susceptibility peaks shown. H:V = 1:80. " class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_004.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-101297078-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="03129d649e81937cd7964eb75aa27008" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101877573,"asset_id":101297078,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101877573/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101297078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101297078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101297078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101297078]").text(description); $(".js-view-count[data-work-id=101297078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101297078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101297078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "03129d649e81937cd7964eb75aa27008" } } $('.js-work-strip[data-work-id=101297078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101297078,"title":"High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales","translated_title":"","metadata":{"abstract":"Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...","publisher":"CSIRO Publishing","ai_title_tag":"Seismic Mapping of Palaeochannels in West Wyalong, NSW","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Exploration Geophysics"},"translated_abstract":"Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...","internal_url":"https://www.academia.edu/101297078/High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_internal_url":"","created_at":"2023-05-05T09:35:57.179-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101877573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101877573/thumbnails/1.jpg","file_name":"EG0038320230505-1-z7n6vy.pdf","download_url":"https://www.academia.edu/attachments/101877573/download_file","bulk_download_file_name":"High_resolution_seismic_imagery_of_palae.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101877573/EG0038320230505-1-z7n6vy-libre.pdf?1683308210=\u0026response-content-disposition=attachment%3B+filename%3DHigh_resolution_seismic_imagery_of_palae.pdf\u0026Expires=1744157147\u0026Signature=MC23Lyrsr6JCebpkMoQOqUFyJSmF8c10YuDuiH~TvSiqktzqiwN8q2wvXipIaPmyCgO~MhuOPT~RtJapPVRNnR66aUExaCO4aptEYaXKmQ454nf6ZJrzinNGp55hKvdrzdwNj-P7LYLJuGdgpIzn9E1b-~UCKNao3D2y3U0F7SQUDLt9wCel7TZsk1VvD-F96umWrFLL0B2p5c-9PMDxfPylOK45LDGmyS7jyFrmUeFggw4tU70T2bY8J9Z5qZYyJ7WzfwRXPCA7diZVirrzXTPqqu1ujRR15lPu3XpMiKXwJUU1wVv1Yyv6ARMsQORn7-gQF-jF171q7jETFUBqgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":101877573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101877573/thumbnails/1.jpg","file_name":"EG0038320230505-1-z7n6vy.pdf","download_url":"https://www.academia.edu/attachments/101877573/download_file","bulk_download_file_name":"High_resolution_seismic_imagery_of_palae.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101877573/EG0038320230505-1-z7n6vy-libre.pdf?1683308210=\u0026response-content-disposition=attachment%3B+filename%3DHigh_resolution_seismic_imagery_of_palae.pdf\u0026Expires=1744157147\u0026Signature=MC23Lyrsr6JCebpkMoQOqUFyJSmF8c10YuDuiH~TvSiqktzqiwN8q2wvXipIaPmyCgO~MhuOPT~RtJapPVRNnR66aUExaCO4aptEYaXKmQ454nf6ZJrzinNGp55hKvdrzdwNj-P7LYLJuGdgpIzn9E1b-~UCKNao3D2y3U0F7SQUDLt9wCel7TZsk1VvD-F96umWrFLL0B2p5c-9PMDxfPylOK45LDGmyS7jyFrmUeFggw4tU70T2bY8J9Z5qZYyJ7WzfwRXPCA7diZVirrzXTPqqu1ujRR15lPu3XpMiKXwJUU1wVv1Yyv6ARMsQORn7-gQF-jF171q7jETFUBqgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":24963,"name":"Exploration Geophysics","url":"https://www.academia.edu/Documents/in/Exploration_Geophysics"},{"id":123472,"name":"Exploration","url":"https://www.academia.edu/Documents/in/Exploration"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":184047,"name":"New South Wales","url":"https://www.academia.edu/Documents/in/New_South_Wales"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":387622,"name":"Borehole","url":"https://www.academia.edu/Documents/in/Borehole"},{"id":725892,"name":"Regolith","url":"https://www.academia.edu/Documents/in/Regolith"},{"id":1736724,"name":"Bedrock","url":"https://www.academia.edu/Documents/in/Bedrock"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-101297078-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="87636463"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/87636463/Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales"><img alt="Research paper thumbnail of Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales</div><div class="wp-workCard_item"><span>Exploration Geophysics</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shap...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="87636463"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="87636463"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 87636463; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=87636463]").text(description); $(".js-view-count[data-work-id=87636463]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 87636463; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='87636463']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=87636463]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":87636463,"title":"Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales","translated_title":"","metadata":{"abstract":"We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.","publisher":"Informa UK Limited","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Exploration Geophysics"},"translated_abstract":"We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.","internal_url":"https://www.academia.edu/87636463/Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_internal_url":"","created_at":"2022-09-30T11:34:54.030-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":13883,"name":"Seismology","url":"https://www.academia.edu/Documents/in/Seismology"},{"id":24963,"name":"Exploration Geophysics","url":"https://www.academia.edu/Documents/in/Exploration_Geophysics"},{"id":91639,"name":"Seismic Refraction","url":"https://www.academia.edu/Documents/in/Seismic_Refraction"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":184047,"name":"New South Wales","url":"https://www.academia.edu/Documents/in/New_South_Wales"}],"urls":[{"id":24340967,"url":"https://www.tandfonline.com/doi/pdf/10.1071/EG00389"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-87636463-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="76878595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/76878595/Spectral_classification_of_radiometric_data_using_an_information_theory_approach"><img alt="Research paper thumbnail of Spectral classification of radiometric data using an information theory approach" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Spectral classification of radiometric data using an information theory approach</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76878595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76878595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76878595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76878595]").text(description); $(".js-view-count[data-work-id=76878595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76878595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76878595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76878595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76878595,"title":"Spectral classification of radiometric data using an information theory approach","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/76878595/Spectral_classification_of_radiometric_data_using_an_information_theory_approach","translated_internal_url":"","created_at":"2022-04-18T16:26:30.961-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spectral_classification_of_radiometric_data_using_an_information_theory_approach","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-76878595-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="38305824"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38305824/From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes"><img alt="Research paper thumbnail of From mysterious Lake George to classy Lake Burley Griffin: the white settlers' tale of two lakes" class="work-thumbnail" src="https://attachments.academia-assets.com/58354295/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38305824/From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes">From mysterious Lake George to classy Lake Burley Griffin: the white settlers' tale of two lakes</a></div><div class="wp-workCard_item"><span>Topiarius</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In New South Wales, Australia, around 1820, the white discovery and colonisation of Weereewa (ren...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In New South Wales, Australia, around 1820, the white discovery<br />and colonisation of Weereewa (renamed to Lake George) and the<br />Limestone Plains (now Canberra) went hand in hand. However, the<br />development paths of the two regions had separated, when, after the<br />1901 Federation of Australia, competition for the site of the National<br /> Capital was won by Canberra in 1908, and Lake George missed<br />out. Consequently, the artificial Lake Burley Griffin in Canberra<br />was created and subsequently developed into the classy water body<br />that Parliament House is reflected in today. Lake Burley Griffin is<br />intimately known, loved, photographed, talked about as one of the<br />symbols of the Nation, and its artificial water body is used for various <br />recreational activities. On the contrary, Lake George remained<br />a generally untouched, intermittent natural lake, mysterious and distant <br />for most Canberrans.<br />This paper summarises and contrasts the story of Lake George and<br />Lake Burley Griffin, underlining how landscape influenced colonial<br />and modern history.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-38305824-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-38305824-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315470/figure-1-artists-vision-of-an-ideal-federal-city-lake-george"><img alt="Fig. 1. Artist’s vision of “An ideal federal city, Lake George, NSW”. Architectural design by Charles Coulter, 1864-1956. Watercolor by Ch. Coulter 1901, source: nla.gov.au/nla.obj- 13520423 The initial inspiration for this work came in the form of a painting from 1901 (Fig. 1). This artwork depicts the vision of Canberra, the then future National Capital, on the shores of Lake George as an Australian Venice, with elaborate architecture, lush vegetation, sail boats and picturesque jetties, boat sheds and promenades. The artist, Charles Coulter, was an architect commissioned by the Lake George Capital Site League, a lobby group for the future National Capital to be built around Lake George, to design a parliament building and city centre around the lake. The painting was published in Melbourne in the Proceedings of the Congress of Engineers, Architects, Surveyors, and Others Interested in the Building of the Federal Capital of Australia in 1901, seven years before the location of the National Capital was decided [Barrow 2012: 60). " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315471/figure-2-the-view-of-lake-george-on-july-looking-south-east"><img alt="Fig. 2. The view of Lake George on 07 July 2016, looking south-east from Geary’s Gap Lookout. On the lake bed, which has been dry for 20 years, some water is beginning to collect, as a result of an extended rainy period. Photo credit Stuart Cohen, Bottlebrush Media Lake George, or Weereewa, is located in New South Wales, South-eastern Australia, 40 km north of the National Capital, Canberra. When travelling by road from Sydney to Canberra, the traveller will reach the northern tip of the lake bed on he latest addition to this landsca grazing next to several large mobs of kangaroos on patches of land still dry, as t unusually rainy winter began to proud rulers of the skies glide softly buzzing noise of intermi climbs up onto the escarpmen for pray in pairs, and their loud calls mix with t , and sweeping views of the majestic landsca: conduct a general silence in the vehicle (Fig. 2). fill some of the lake bed. It had been empty of water and full of sheep before, this last time for several decades. Above the grass, eagles, ttent flow of vehicles down below. Then, the road he left, and the steep escarpment, a rugged 80 km long line of the Lake George fault owering above the road, on the right. The emerging view, as the vehicle winds its way along the highway southbound, is unusual and attention-command ups and downs of the Great Dividing Ranges left behind, the completely flat lake bed, opening up and disappearing into the horizon ahead, turns every head in the vehicle. The very steep, rocky escarpment along the western side of the highway is none less unique. The numerous wind turbines, dwarfed on the far eastern horizon as pe, are the only indicators that the road trip is taking place in 2016 and not 6000 years ago. Not mentioning, of course, the fl ing. After the ocks of sheep ne he pe " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315472/figure-3-the-longest-historical-water-level-record-in"><img alt="Fig. 3. The longest historical water level record in Australia: Lake George 1819-1990 [Jacobson, Jankowski and Abell 1991]. The red arrow shows the year of Federation, 1901, while the green arrow marks the year of the declaration of the Australian Capital Territory, including Canberra, in 1911 " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315473/figure-4-the-borders-of-the-australian-capital-territory"><img alt="Fig. 4. The borders of the Australian Capital Territory, shown with white outline. The centre of Canberra’s urban area and the location of Lake Burley Griffin is marked with a star. Lake George 5 metres elevation contours are shown in red, 672 m— 712 m [Google Earth image, public domain. Access 14 April 2017] - “Once the site was selected, the Australian Capital Territory was declared on 1“ January 1911 (Fig. 4). In the same year, an international competition for the design of Canberra, the new capital city, was launched and Scrivener's detailed survey of the area was supplied to the competing architects. Most of the proposals included artificial bodies of water. " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315475/figure-5-form-dam-had-to-be-built-bridges-constructed-and"><img alt="form, a dam had to be built. Bridges constructed, and the bed of the lake cleared and formed. (Transcript from the Commonwealth Film Unit 1965. Available at: https://www.youtube.com/watch?v=wqsxXTv7ZUk [Access 15 Nov. 2016] - Transcript published with the permission of National Film and Sound Archive of Australia). Fig. 5. The elaborate drinking water supply scheme for Canberra, with Cotter, Bendora and Corin Dams on the Cotter River in the ACT and the Googong Reservoir on the Queanbeyan River, in NSW. [https://www.iconwater.com.au/ Water-and-Sewerage- System/ACT-Water-Supply-Map.aspx Reproduced with the permission of Icon Water, 2 May 2017] " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315476/figure-6-lake-burley-griffin-and-canberra-view-from-the"><img alt="Fig. 6. Lake Burley Griffin and Canberra. View from the Telstra Tower. By Redlands597198 [https://upload.wikimedia.org/wikipedia/commons/0/02/ Canberra_view_from_telstra_tower.jpg Access 31 March 2017] Lake Burley Griffin, named after its original designer, together with Parliament House, became one of the best-known landmarks of Canberra and symbols of moder Australia, featured on countless photographs, posters, illustrations, websites, school books and tourist guide books (Fig. 6). Lake Burley Griffin, named after its original designer, together with Parliament " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315478/figure-7-lake-george-as-grazing-land-photo-by-papp"><img alt="Fig 7. Lake George as a grazing land. Photo by E. Papp 2016 " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_007.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-38305824-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0998fdc1ca4020ad52abeb9ca57e563c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58354295,"asset_id":38305824,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58354295/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38305824"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38305824"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38305824; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38305824]").text(description); $(".js-view-count[data-work-id=38305824]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38305824; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38305824']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0998fdc1ca4020ad52abeb9ca57e563c" } } $('.js-work-strip[data-work-id=38305824]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38305824,"title":"From mysterious Lake George to classy Lake Burley Griffin: the white settlers' tale of two lakes","translated_title":"","metadata":{"issue":"7","abstract":"In New South Wales, Australia, around 1820, the white discovery\nand colonisation of Weereewa (renamed to Lake George) and the\nLimestone Plains (now Canberra) went hand in hand. However, the\ndevelopment paths of the two regions had separated, when, after the\n1901 Federation of Australia, competition for the site of the National\n Capital was won by Canberra in 1908, and Lake George missed\nout. Consequently, the artificial Lake Burley Griffin in Canberra\nwas created and subsequently developed into the classy water body\nthat Parliament House is reflected in today. Lake Burley Griffin is\nintimately known, loved, photographed, talked about as one of the\nsymbols of the Nation, and its artificial water body is used for various \nrecreational activities. On the contrary, Lake George remained\na generally untouched, intermittent natural lake, mysterious and distant \nfor most Canberrans.\nThis paper summarises and contrasts the story of Lake George and\nLake Burley Griffin, underlining how landscape influenced colonial\nand modern history.","ai_title_tag":"Contrasting Lake George and Lake Burley Griffin","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Topiarius"},"translated_abstract":"In New South Wales, Australia, around 1820, the white discovery\nand colonisation of Weereewa (renamed to Lake George) and the\nLimestone Plains (now Canberra) went hand in hand. However, the\ndevelopment paths of the two regions had separated, when, after the\n1901 Federation of Australia, competition for the site of the National\n Capital was won by Canberra in 1908, and Lake George missed\nout. Consequently, the artificial Lake Burley Griffin in Canberra\nwas created and subsequently developed into the classy water body\nthat Parliament House is reflected in today. Lake Burley Griffin is\nintimately known, loved, photographed, talked about as one of the\nsymbols of the Nation, and its artificial water body is used for various \nrecreational activities. On the contrary, Lake George remained\na generally untouched, intermittent natural lake, mysterious and distant \nfor most Canberrans.\nThis paper summarises and contrasts the story of Lake George and\nLake Burley Griffin, underlining how landscape influenced colonial\nand modern history.","internal_url":"https://www.academia.edu/38305824/From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes","translated_internal_url":"","created_at":"2019-02-07T10:01:33.538-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":58354295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58354295/thumbnails/1.jpg","file_name":"TOPIARIUS7_7_Papp-2.pdf","download_url":"https://www.academia.edu/attachments/58354295/download_file","bulk_download_file_name":"From_mysterious_Lake_George_to_classy_La.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58354295/TOPIARIUS7_7_Papp-2-libre.pdf?1549581094=\u0026response-content-disposition=attachment%3B+filename%3DFrom_mysterious_Lake_George_to_classy_La.pdf\u0026Expires=1744157147\u0026Signature=FjWm3Rv0D6Pq~QQsoPwPJSoMzv8sTmAlN0j7wi2SuSKyZtoy0curTqrt5tFPcj1-N0co8Oa1RRUsF2CfggBlLt5fZQwQmkq6BZOgUmy6ARKhCqonurByqpoY7uLJospBbyfsvaEDdkv4bnq3E2ANlMZB0-2ZqbHZ2g-maXKwX9IfMTwEmYb5c-tpRLF3NDMnF2P3iliotG8iaTU62M9g~RDmb~DqRmhQlwPvTVJo7v5IrnXt8JUjgvDwVPnFBXhwkrUTk0NbM6LyXl~990gWqn7shSv8gipEGKDsKk33kLCAnJFMHQJ~uzFBBkZrI4AtqRRwB9Mmk3BqTOQgLM9j~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"In New South Wales, Australia, around 1820, the white discovery\nand colonisation of Weereewa (renamed to Lake George) and the\nLimestone Plains (now Canberra) went hand in hand. However, the\ndevelopment paths of the two regions had separated, when, after the\n1901 Federation of Australia, competition for the site of the National\n Capital was won by Canberra in 1908, and Lake George missed\nout. Consequently, the artificial Lake Burley Griffin in Canberra\nwas created and subsequently developed into the classy water body\nthat Parliament House is reflected in today. Lake Burley Griffin is\nintimately known, loved, photographed, talked about as one of the\nsymbols of the Nation, and its artificial water body is used for various \nrecreational activities. On the contrary, Lake George remained\na generally untouched, intermittent natural lake, mysterious and distant \nfor most Canberrans.\nThis paper summarises and contrasts the story of Lake George and\nLake Burley Griffin, underlining how landscape influenced colonial\nand modern history.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":58354295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58354295/thumbnails/1.jpg","file_name":"TOPIARIUS7_7_Papp-2.pdf","download_url":"https://www.academia.edu/attachments/58354295/download_file","bulk_download_file_name":"From_mysterious_Lake_George_to_classy_La.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58354295/TOPIARIUS7_7_Papp-2-libre.pdf?1549581094=\u0026response-content-disposition=attachment%3B+filename%3DFrom_mysterious_Lake_George_to_classy_La.pdf\u0026Expires=1744157147\u0026Signature=FjWm3Rv0D6Pq~QQsoPwPJSoMzv8sTmAlN0j7wi2SuSKyZtoy0curTqrt5tFPcj1-N0co8Oa1RRUsF2CfggBlLt5fZQwQmkq6BZOgUmy6ARKhCqonurByqpoY7uLJospBbyfsvaEDdkv4bnq3E2ANlMZB0-2ZqbHZ2g-maXKwX9IfMTwEmYb5c-tpRLF3NDMnF2P3iliotG8iaTU62M9g~RDmb~DqRmhQlwPvTVJo7v5IrnXt8JUjgvDwVPnFBXhwkrUTk0NbM6LyXl~990gWqn7shSv8gipEGKDsKk33kLCAnJFMHQJ~uzFBBkZrI4AtqRRwB9Mmk3BqTOQgLM9j~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":58354296,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58354296/thumbnails/1.jpg","file_name":"TOPIARIUS7_7_Papp-2.pdf","download_url":"https://www.academia.edu/attachments/58354296/download_file","bulk_download_file_name":"From_mysterious_Lake_George_to_classy_La.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58354296/TOPIARIUS7_7_Papp-2-libre.pdf?1549581137=\u0026response-content-disposition=attachment%3B+filename%3DFrom_mysterious_Lake_George_to_classy_La.pdf\u0026Expires=1744157147\u0026Signature=ARAcVxuh6IYNuiVbAfuJDedQW~LkaachCJQLrtWuwSVIrQSOHPkOa~msOW3D7Xx4Dc5Se48WoJ~KoAb2hGk-ttzlENsG2KZfVpniV9ggh~vwKhQEdHfgx8xSuAZxt7jht9cGjk07JmMIHe5etVdr7q-JrkAU5gMjItZ~ODzTVI6dzXEF-O3Xva4KeSivRqush~~RqDxyl7LZeDgJxsf-hRUfIS19Dtc9X8bjU57stEDbKomNiwQiyC3DwN62bFlU1z1IXx0OHwcfj8r0rUc8CmRICav0NjKYwMUgFkLXeY3Uofrjzh4KyjnOQRrHyWQYOhiEtfWUKRUruKM80ubBRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":22831,"name":"Landscape","url":"https://www.academia.edu/Documents/in/Landscape"},{"id":26376,"name":"Sedimentary Basins","url":"https://www.academia.edu/Documents/in/Sedimentary_Basins"},{"id":199677,"name":"Canberra","url":"https://www.academia.edu/Documents/in/Canberra"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":2554321,"name":"Weereewa NSW","url":"https://www.academia.edu/Documents/in/Weereewa_NSW"},{"id":3129686,"name":"Australian Capital Territory","url":"https://www.academia.edu/Documents/in/Australian_Capital_Territory"}],"urls":[{"id":8694023,"url":"http://www.topiarius.ur.edu.pl/wp-content/uploads/TOPIARIUS7_7_Papp-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-38305824-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="38027989"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/38027989/%C3%81cs_P%C3%A9ter_Fedor_Sz%C3%A1sz_Anita_Papp_%C3%89va_Koroncz_P%C3%A9ter_Fedor_Ferenc_Development_of_a_complex_laboratory_procedure_for_the_characterization_of_pore_structure_in_clay_drill_core_samples_from_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia</div><div class="wp-workCard_item"><span>Földtudományok és környezet - harmóniában</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South W...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38027989"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38027989"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38027989; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38027989]").text(description); $(".js-view-count[data-work-id=38027989]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38027989; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38027989']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=38027989]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38027989,"title":"Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia","translated_title":"","metadata":{"abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.","organization":"Magyarhoni Földtani Társulat","page_numbers":"21-24","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Földtudományok és környezet - harmóniában"},"translated_abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.","internal_url":"https://www.academia.edu/38027989/%C3%81cs_P%C3%A9ter_Fedor_Sz%C3%A1sz_Anita_Papp_%C3%89va_Koroncz_P%C3%A9ter_Fedor_Ferenc_Development_of_a_complex_laboratory_procedure_for_the_characterization_of_pore_structure_in_clay_drill_core_samples_from_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2018-12-22T22:41:36.191-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":32153003,"work_id":38027989,"tagging_user_id":498748,"tagged_user_id":67736234,"co_author_invite_id":null,"email":"f***c@geochem-ltd.eu","display_order":0,"name":"Ferenc Fedor","title":"Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia"},{"id":32153004,"work_id":38027989,"tagging_user_id":498748,"tagged_user_id":34155723,"co_author_invite_id":null,"email":"a***r@pte.hu","display_order":4194304,"name":"Péter Ács","title":"Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia"}],"downloadable_attachments":[],"slug":"Ács_Péter_Fedor_Szász_Anita_Papp_Éva_Koroncz_Péter_Fedor_Ferenc_Development_of_a_complex_laboratory_procedure_for_the_characterization_of_pore_structure_in_clay_drill_core_samples_from_Lake_George_NSW_Australia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-38027989-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34514044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34514044/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/54379174/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34514044/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia">AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unideb.academia.edu/DavidArpad">David Arpad</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszintfeletti magasságban helyezkedik el.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f9eb173222247deda9fe34535668983f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54379174,"asset_id":34514044,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54379174/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34514044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34514044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34514044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34514044]").text(description); $(".js-view-count[data-work-id=34514044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34514044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34514044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f9eb173222247deda9fe34535668983f" } } $('.js-work-strip[data-work-id=34514044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34514044,"title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia","translated_title":"","metadata":{"grobid_abstract":"A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszintfeletti magasságban helyezkedik el.","grobid_abstract_attachment_id":54379174},"translated_abstract":null,"internal_url":"https://www.academia.edu/34514044/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2017-09-08T07:42:14.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":698845,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":30245488,"work_id":34514044,"tagging_user_id":698845,"tagged_user_id":498748,"co_author_invite_id":null,"email":"e***p@anu.edu.au","affiliation":"The Australian National University","display_order":0,"name":"Eva Papp","title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"},{"id":30245489,"work_id":34514044,"tagging_user_id":698845,"tagged_user_id":699132,"co_author_invite_id":null,"email":"f***8@gmail.com","affiliation":"University of Debrecen","display_order":1,"name":"Rozália Fodor","title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"}],"downloadable_attachments":[{"id":54379174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54379174/thumbnails/1.jpg","file_name":"Lake_George_trace_fossils.pdf","download_url":"https://www.academia.edu/attachments/54379174/download_file","bulk_download_file_name":"AZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54379174/Lake_George_trace_fossils-libre.pdf?1504881850=\u0026response-content-disposition=attachment%3B+filename%3DAZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf\u0026Expires=1744157147\u0026Signature=fh6Khr6~TM2ldKl9iBMM2MdtekVh8bdaOJgLA2aC8E87pWFKpgjAco1TIVVj-n6MY1ogRmdOuyck7EL6q7Rsu6sy-Wc58XabwW1IyN1EfHc9TwG5gUypx0vPmkZQWlDcUPRNVGTYmByAY5IIQIb-zA8x7v6aqncGjPdr5x5ixIZEB0jzCxmZ18KDMmDR2NfnF4p2rRh5UrMg~l04V4h-4q0JDNR8hDnwBcFfnBDlUjeaupBZ1GxwAHmRuZV84YdPGxR2aJwsFfEvUEDg27eeGKSzPyyu5rllnI2P7Qy~688rm6cQu7lWuC34vKzkcRjcb6gXyIC2DYMowcHMoGynAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"AZ_ŐSÉLETNYOMOK_KÖRNYEZETJELZŐ_SZEREPE_A_WEEREEWA_TÓ_LAKE_GEORGE_ÚJ_DÉL_WALES_AUSZTRÁLIA_NEGYEDIDŐSZAKI_KÉPZŐDMÉNYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_slug":"","page_count":4,"language":"hu","content_type":"Work","summary":"A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszintfeletti magasságban helyezkedik el.","impression_tracking_id":null,"owner":{"id":698845,"first_name":"David","middle_initials":null,"last_name":"Arpad","page_name":"DavidArpad","domain_name":"unideb","created_at":"2011-08-30T20:51:51.052-07:00","display_name":"David Arpad","url":"https://unideb.academia.edu/DavidArpad"},"attachments":[{"id":54379174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54379174/thumbnails/1.jpg","file_name":"Lake_George_trace_fossils.pdf","download_url":"https://www.academia.edu/attachments/54379174/download_file","bulk_download_file_name":"AZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54379174/Lake_George_trace_fossils-libre.pdf?1504881850=\u0026response-content-disposition=attachment%3B+filename%3DAZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf\u0026Expires=1744157147\u0026Signature=fh6Khr6~TM2ldKl9iBMM2MdtekVh8bdaOJgLA2aC8E87pWFKpgjAco1TIVVj-n6MY1ogRmdOuyck7EL6q7Rsu6sy-Wc58XabwW1IyN1EfHc9TwG5gUypx0vPmkZQWlDcUPRNVGTYmByAY5IIQIb-zA8x7v6aqncGjPdr5x5ixIZEB0jzCxmZ18KDMmDR2NfnF4p2rRh5UrMg~l04V4h-4q0JDNR8hDnwBcFfnBDlUjeaupBZ1GxwAHmRuZV84YdPGxR2aJwsFfEvUEDg27eeGKSzPyyu5rllnI2P7Qy~688rm6cQu7lWuC34vKzkcRjcb6gXyIC2DYMowcHMoGynAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2588,"name":"Ichnology","url":"https://www.academia.edu/Documents/in/Ichnology"},{"id":6697,"name":"Australia","url":"https://www.academia.edu/Documents/in/Australia"},{"id":7075,"name":"Paleoenvironment","url":"https://www.academia.edu/Documents/in/Paleoenvironment"},{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"},{"id":70233,"name":"Trace Fossils","url":"https://www.academia.edu/Documents/in/Trace_Fossils"},{"id":1078280,"name":"Bioturbation Structures","url":"https://www.academia.edu/Documents/in/Bioturbation_Structures"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34514044-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="33544650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33544650/The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW"><img alt="Research paper thumbnail of The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW" class="work-thumbnail" src="https://attachments.academia-assets.com/53574587/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33544650/The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW">The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hydrothermal Au – Cu mineralisation at Majors Creek, NSW has led to the formation of disseminated...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hydrothermal Au – Cu mineralisation at Majors Creek,<br />NSW has led to the formation of disseminated sulphides<br />throughout the host granodiorite body. Mineralisation in<br />overburden and shallow bedrock occurs in sparse<br />concentration settings such as quartz veins and potassic<br />alteration. Distinguishing between alterations zones,<br />mineralising features and the fresh-weathered rock<br />boundary is paramount to explorers.<br />A combination of DC electrical resistivity and CT<br />scanning was employed to delineate the weathered/fresh<br />rock boundary, potential mineralising features and areas<br />of differing alterations. A 500 metre survey line was<br />constructed over a known area of mineralisation and<br />passed directly over a drill core sample. CT scanning<br />data will define pore space characteristics of alteration<br />and weathering states of the host granodiorite.<br />This study has the potential to spark future researching<br />into shallow surface exploration throughout the Major’s<br />Creek area, building on a potential relationship between,<br />pore space, apparent resistivity and overburden-bedrock<br />characteristics.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d57dcbc23e950efdf8317ae5a08c8547" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":53574587,"asset_id":33544650,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/53574587/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33544650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33544650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33544650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33544650]").text(description); $(".js-view-count[data-work-id=33544650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33544650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33544650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d57dcbc23e950efdf8317ae5a08c8547" } } $('.js-work-strip[data-work-id=33544650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33544650,"title":"The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW","translated_title":"","metadata":{"abstract":"Hydrothermal Au – Cu mineralisation at Majors Creek,\nNSW has led to the formation of disseminated sulphides\nthroughout the host granodiorite body. Mineralisation in\noverburden and shallow bedrock occurs in sparse\nconcentration settings such as quartz veins and potassic\nalteration. Distinguishing between alterations zones,\nmineralising features and the fresh-weathered rock\nboundary is paramount to explorers.\nA combination of DC electrical resistivity and CT\nscanning was employed to delineate the weathered/fresh\nrock boundary, potential mineralising features and areas\nof differing alterations. A 500 metre survey line was\nconstructed over a known area of mineralisation and\npassed directly over a drill core sample. CT scanning\ndata will define pore space characteristics of alteration\nand weathering states of the host granodiorite.\nThis study has the potential to spark future researching\ninto shallow surface exploration throughout the Major’s\nCreek area, building on a potential relationship between,\npore space, apparent resistivity and overburden-bedrock\ncharacteristics.\n"},"translated_abstract":"Hydrothermal Au – Cu mineralisation at Majors Creek,\nNSW has led to the formation of disseminated sulphides\nthroughout the host granodiorite body. Mineralisation in\noverburden and shallow bedrock occurs in sparse\nconcentration settings such as quartz veins and potassic\nalteration. Distinguishing between alterations zones,\nmineralising features and the fresh-weathered rock\nboundary is paramount to explorers.\nA combination of DC electrical resistivity and CT\nscanning was employed to delineate the weathered/fresh\nrock boundary, potential mineralising features and areas\nof differing alterations. A 500 metre survey line was\nconstructed over a known area of mineralisation and\npassed directly over a drill core sample. CT scanning\ndata will define pore space characteristics of alteration\nand weathering states of the host granodiorite.\nThis study has the potential to spark future researching\ninto shallow surface exploration throughout the Major’s\nCreek area, building on a potential relationship between,\npore space, apparent resistivity and overburden-bedrock\ncharacteristics.\n","internal_url":"https://www.academia.edu/33544650/The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW","translated_internal_url":"","created_at":"2017-06-18T22:01:41.974-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29410896,"work_id":33544650,"tagging_user_id":498748,"tagged_user_id":9559421,"co_author_invite_id":null,"email":"s***2@gmail.com","affiliation":"The Australian National University","display_order":1,"name":"Sanjay Govindan","title":"The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW"}],"downloadable_attachments":[{"id":53574587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53574587/thumbnails/1.jpg","file_name":"ASEG2015ab237.pdf","download_url":"https://www.academia.edu/attachments/53574587/download_file","bulk_download_file_name":"The_nature_of_changing_pore_space_at_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53574587/ASEG2015ab237-libre.pdf?1497848666=\u0026response-content-disposition=attachment%3B+filename%3DThe_nature_of_changing_pore_space_at_an.pdf\u0026Expires=1744157147\u0026Signature=VKTVfCEepoU4YQm2uyJO1xTbhCDhib5Z6O~rzh97Avy~fuviVwx4TksRv~HoCLBJQ16UTpaxzdAiXGHH2qS5qj1SXzUH3IROgc9sJ8xhh7UpESYLlCEnIViBk3BrRmEIKC7dCdLCOoVaI2v4gXX6ixSe94t8zwL3sSLJOnduNM5qVqtYnW74y3~3xVB0FtA246U9tUNmSPRJCVhLzDh5jG3FKDG5H8VYpxcTe2se9wbq3RPdpyz-f3N33YSU-iiXeJDibzDajGNfI2ycCMqE2bgXsvM5-6~YLhlEEQNBaGa~yTjg2O~BzgfLBD6dQVTYVFUMAn~yzsG~CJfim8B-ww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Hydrothermal Au – Cu mineralisation at Majors Creek,\nNSW has led to the formation of disseminated sulphides\nthroughout the host granodiorite body. Mineralisation in\noverburden and shallow bedrock occurs in sparse\nconcentration settings such as quartz veins and potassic\nalteration. Distinguishing between alterations zones,\nmineralising features and the fresh-weathered rock\nboundary is paramount to explorers.\nA combination of DC electrical resistivity and CT\nscanning was employed to delineate the weathered/fresh\nrock boundary, potential mineralising features and areas\nof differing alterations. A 500 metre survey line was\nconstructed over a known area of mineralisation and\npassed directly over a drill core sample. CT scanning\ndata will define pore space characteristics of alteration\nand weathering states of the host granodiorite.\nThis study has the potential to spark future researching\ninto shallow surface exploration throughout the Major’s\nCreek area, building on a potential relationship between,\npore space, apparent resistivity and overburden-bedrock\ncharacteristics.\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":53574587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53574587/thumbnails/1.jpg","file_name":"ASEG2015ab237.pdf","download_url":"https://www.academia.edu/attachments/53574587/download_file","bulk_download_file_name":"The_nature_of_changing_pore_space_at_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53574587/ASEG2015ab237-libre.pdf?1497848666=\u0026response-content-disposition=attachment%3B+filename%3DThe_nature_of_changing_pore_space_at_an.pdf\u0026Expires=1744157147\u0026Signature=VKTVfCEepoU4YQm2uyJO1xTbhCDhib5Z6O~rzh97Avy~fuviVwx4TksRv~HoCLBJQ16UTpaxzdAiXGHH2qS5qj1SXzUH3IROgc9sJ8xhh7UpESYLlCEnIViBk3BrRmEIKC7dCdLCOoVaI2v4gXX6ixSe94t8zwL3sSLJOnduNM5qVqtYnW74y3~3xVB0FtA246U9tUNmSPRJCVhLzDh5jG3FKDG5H8VYpxcTe2se9wbq3RPdpyz-f3N33YSU-iiXeJDibzDajGNfI2ycCMqE2bgXsvM5-6~YLhlEEQNBaGa~yTjg2O~BzgfLBD6dQVTYVFUMAn~yzsG~CJfim8B-ww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":105432,"name":"CT scanning","url":"https://www.academia.edu/Documents/in/CT_scanning"}],"urls":[{"id":8189020,"url":"http://www.publish.csiro.au/EX/issue/8090"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-33544650-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="29713843"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29713843/A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15"><img alt="Research paper thumbnail of A new core from Lake George [online]. Quaternary Australasia, Vol. 33, No. 1, Jun 2016:15." class="work-thumbnail" src="https://attachments.academia-assets.com/50164212/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29713843/A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15">A new core from Lake George [online]. Quaternary Australasia, Vol. 33, No. 1, Jun 2016:15.</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the fir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cc8a0ce6e5a6336aa1ec489ebf948af9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50164212,"asset_id":29713843,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50164212/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29713843"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29713843"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29713843; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29713843]").text(description); $(".js-view-count[data-work-id=29713843]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29713843; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29713843']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cc8a0ce6e5a6336aa1ec489ebf948af9" } } $('.js-work-strip[data-work-id=29713843]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29713843,"title":"A new core from Lake George [online]. Quaternary Australasia, Vol. 33, No. 1, Jun 2016:15.","translated_title":"","metadata":{"abstract":"On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another."},"translated_abstract":"On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another.","internal_url":"https://www.academia.edu/29713843/A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15","translated_internal_url":"","created_at":"2016-11-07T06:16:12.375-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50164212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50164212/thumbnails/1.jpg","file_name":"Quaternary_Australia_Vol_33_July_2016_electronic_copy.pdf","download_url":"https://www.academia.edu/attachments/50164212/download_file","bulk_download_file_name":"A_new_core_from_Lake_George_online_Quate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50164212/Quaternary_Australia_Vol_33_July_2016_electronic_copy-libre.pdf?1478529799=\u0026response-content-disposition=attachment%3B+filename%3DA_new_core_from_Lake_George_online_Quate.pdf\u0026Expires=1744157148\u0026Signature=b3MjJz0NDVVpPyuIXWyKt9D8x9zzanCiaze7TGGGs9Bvah7gDvA2Z~xhgolvn2td73Kb~450mGK4FXuV5A0w04KQs39TZjf30lcal0EZkNu3zZYfOB76FoJhoqnTSNM1~tjO~63cBX3ut06QjLcL70tHvn29dT6YRFBVh41ar0BVgNHBKmwTzhPQTQftdOLqdetA2hAC7kBa6p10pysSA-xrRSox2Maw-4HLuHp7K8Rn1Gobe0khkr54KaE60w6~-4YznfBBRFg9uT8zHIsHUm4mcmmiHvtk2bn2-AyH2XlEQDU9KAz0pM9qCqKbe-SrD1LWbwHRR2Gsnp1W2A3pqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15","translated_slug":"","page_count":48,"language":"en","content_type":"Work","summary":"On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":50164212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50164212/thumbnails/1.jpg","file_name":"Quaternary_Australia_Vol_33_July_2016_electronic_copy.pdf","download_url":"https://www.academia.edu/attachments/50164212/download_file","bulk_download_file_name":"A_new_core_from_Lake_George_online_Quate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50164212/Quaternary_Australia_Vol_33_July_2016_electronic_copy-libre.pdf?1478529799=\u0026response-content-disposition=attachment%3B+filename%3DA_new_core_from_Lake_George_online_Quate.pdf\u0026Expires=1744157148\u0026Signature=b3MjJz0NDVVpPyuIXWyKt9D8x9zzanCiaze7TGGGs9Bvah7gDvA2Z~xhgolvn2td73Kb~450mGK4FXuV5A0w04KQs39TZjf30lcal0EZkNu3zZYfOB76FoJhoqnTSNM1~tjO~63cBX3ut06QjLcL70tHvn29dT6YRFBVh41ar0BVgNHBKmwTzhPQTQftdOLqdetA2hAC7kBa6p10pysSA-xrRSox2Maw-4HLuHp7K8Rn1Gobe0khkr54KaE60w6~-4YznfBBRFg9uT8zHIsHUm4mcmmiHvtk2bn2-AyH2XlEQDU9KAz0pM9qCqKbe-SrD1LWbwHRR2Gsnp1W2A3pqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2119,"name":"Paleomagnetism","url":"https://www.academia.edu/Documents/in/Paleomagnetism"},{"id":6951,"name":"Groundwater","url":"https://www.academia.edu/Documents/in/Groundwater"},{"id":20614,"name":"OSL dating","url":"https://www.academia.edu/Documents/in/OSL_dating"},{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"},{"id":191577,"name":"Resistivity","url":"https://www.academia.edu/Documents/in/Resistivity"}],"urls":[{"id":7718621,"url":"http://search.informit.com.au/documentSummary;dn=227972847569674;res=IELHSS%3E%20ISSN:%200811-0433.%20%5Bcited%2008%20Nov%2016%5D."}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-29713843-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="8803757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8803757/Papp_%C3%89_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW"><img alt="Research paper thumbnail of Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW." class="work-thumbnail" src="https://attachments.academia-assets.com/35150966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8803757/Papp_%C3%89_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW">Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW.</a></div><div class="wp-workCard_item"><span>HUNGEO 2014, pp. 156-167. ISBN 978-963-8221-53-7</span><span>, Aug 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Ir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="87c09f396e17b01ab060177ba158e3e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":35150966,"asset_id":8803757,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/35150966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8803757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8803757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8803757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8803757]").text(description); $(".js-view-count[data-work-id=8803757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8803757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8803757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "87c09f396e17b01ab060177ba158e3e0" } } $('.js-work-strip[data-work-id=8803757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8803757,"title":"Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW.","translated_title":"","metadata":{"abstract":"Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.","more_info":"Pesented at HUNGEO 2014, 22-26 August 2014 Debrecen, Hungary","publication_date":{"day":null,"month":8,"year":2014,"errors":{}},"publication_name":"HUNGEO 2014, pp. 156-167. ISBN 978-963-8221-53-7"},"translated_abstract":"Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.","internal_url":"https://www.academia.edu/8803757/Papp_%C3%89_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW","translated_internal_url":"","created_at":"2014-10-15T19:20:52.072-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494812,"work_id":8803757,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6392835,"email":"l***n@anu.edu.au","display_order":null,"name":"Lauren Burraston","title":"Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW."}],"downloadable_attachments":[{"id":35150966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/35150966/thumbnails/1.jpg","file_name":"Papp_et_al_2014.pdf","download_url":"https://www.academia.edu/attachments/35150966/download_file","bulk_download_file_name":"Papp_E_Burraston_L_and_McPhail_D_C_Ident.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/35150966/Papp_et_al_2014-libre.pdf?1413425871=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_Burraston_L_and_McPhail_D_C_Ident.pdf\u0026Expires=1744157148\u0026Signature=RGmhYW8fdqbKioMUSWiKxyzIWft5rTGJbztogD6WaZ5NFWabLyEzjkQivWmjctcNataEgbMZ1~2gif~epK16XUcFaoMIk1korCkn6q-gpM32LpR~JJ4a91yOLYhREYWeZ4GvquiR9VrBNIuPqcPIRR2~tijDNMpj4~OHcDheVTUA2YZydPFIOmEnTm26YYr9tN0nGAq4N93BV6H9lut6iL5EvFmGV~MUqQdHP1vOFvG~owgqbnjOa5kLKPfSiiDbspRaCTnUHrpZcgPSqyt1wrPXm9SCfVtFx48YGHG0OkhhZNFyV6WAlNeLNZ~px4FLWaGfZ~HT5xch8g1hjj0D7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Papp_É_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":35150966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/35150966/thumbnails/1.jpg","file_name":"Papp_et_al_2014.pdf","download_url":"https://www.academia.edu/attachments/35150966/download_file","bulk_download_file_name":"Papp_E_Burraston_L_and_McPhail_D_C_Ident.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/35150966/Papp_et_al_2014-libre.pdf?1413425871=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_Burraston_L_and_McPhail_D_C_Ident.pdf\u0026Expires=1744157148\u0026Signature=RGmhYW8fdqbKioMUSWiKxyzIWft5rTGJbztogD6WaZ5NFWabLyEzjkQivWmjctcNataEgbMZ1~2gif~epK16XUcFaoMIk1korCkn6q-gpM32LpR~JJ4a91yOLYhREYWeZ4GvquiR9VrBNIuPqcPIRR2~tijDNMpj4~OHcDheVTUA2YZydPFIOmEnTm26YYr9tN0nGAq4N93BV6H9lut6iL5EvFmGV~MUqQdHP1vOFvG~owgqbnjOa5kLKPfSiiDbspRaCTnUHrpZcgPSqyt1wrPXm9SCfVtFx48YGHG0OkhhZNFyV6WAlNeLNZ~px4FLWaGfZ~HT5xch8g1hjj0D7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":213575,"name":"Resistivity Imaging","url":"https://www.academia.edu/Documents/in/Resistivity_Imaging"},{"id":351709,"name":"2D and 3D geoelectrical resistivity imaging: Theory and field design","url":"https://www.academia.edu/Documents/in/2D_and_3D_geoelectrical_resistivity_imaging_Theory_and_field_design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-8803757-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6227194"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6227194/Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_%C3%89va_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales"><img alt="Research paper thumbnail of Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales." class="work-thumbnail" src="https://attachments.academia-assets.com/33093749/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6227194/Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_%C3%89va_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales">Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales.</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We assess a method for conducting seismic refraction inversion in a 3-D setting to image the sha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We assess a method for conducting seismic refraction inversion <br />in a 3-D setting to image the shape and structure of a <br />palaeochannel. The trial survey was conducted over a suspected <br />Tertiary palaeochannel adjacent to the Wyalong goldfields <br />(Lachlan Fold Belt) in central NSW. This work has implications <br />for the control of groundwater migration and dryland salinity <br />studies. The method was conducted using standard multichannel <br />seismic recording equipment and an unconventional 3-D field <br />geometry. Three-dimensional velocity-depth models show a <br />4-layer sub-horizontal system underlain by high-velocity <br />metasedimentitic basement at a variable depth, ranging from 70 to <br />170 m. The interpreted palaeochannel is coincident with high <br />magnetic intensity features identified from recent surveys of the <br />region.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9c52dbc5c0b22f9f12a61f0ff736335c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33093749,"asset_id":6227194,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33093749/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6227194"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6227194"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6227194; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6227194]").text(description); $(".js-view-count[data-work-id=6227194]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6227194; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6227194']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9c52dbc5c0b22f9f12a61f0ff736335c" } } $('.js-work-strip[data-work-id=6227194]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6227194,"title":"Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales.","translated_title":"","metadata":{"abstract":"We assess a method for conducting seismic refraction inversion\r\nin a 3-D setting to image the shape and structure of a\r\npalaeochannel. The trial survey was conducted over a suspected\r\nTertiary palaeochannel adjacent to the Wyalong goldfields\r\n(Lachlan Fold Belt) in central NSW. This work has implications\r\nfor the control of groundwater migration and dryland salinity\r\nstudies. The method was conducted using standard multichannel\r\nseismic recording equipment and an unconventional 3-D field\r\ngeometry. Three-dimensional velocity-depth models show a \r\n4-layer sub-horizontal system underlain by high-velocity\r\nmetasedimentitic basement at a variable depth, ranging from 70 to\r\n170 m. The interpreted palaeochannel is coincident with high\r\nmagnetic intensity features identified from recent surveys of the\r\nregion.","more_info":"Exploration Geophysics, Vol 31. pp. 389-393. 2000","ai_title_tag":"3D Seismic Refraction Inversion of Palaeochannels in NSW"},"translated_abstract":"We assess a method for conducting seismic refraction inversion\r\nin a 3-D setting to image the shape and structure of a\r\npalaeochannel. The trial survey was conducted over a suspected\r\nTertiary palaeochannel adjacent to the Wyalong goldfields\r\n(Lachlan Fold Belt) in central NSW. This work has implications\r\nfor the control of groundwater migration and dryland salinity\r\nstudies. The method was conducted using standard multichannel\r\nseismic recording equipment and an unconventional 3-D field\r\ngeometry. Three-dimensional velocity-depth models show a \r\n4-layer sub-horizontal system underlain by high-velocity\r\nmetasedimentitic basement at a variable depth, ranging from 70 to\r\n170 m. The interpreted palaeochannel is coincident with high\r\nmagnetic intensity features identified from recent surveys of the\r\nregion.","internal_url":"https://www.academia.edu/6227194/Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_%C3%89va_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_internal_url":"","created_at":"2014-02-27T06:54:38.258-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15550800,"work_id":6227194,"tagging_user_id":498748,"tagged_user_id":41924283,"co_author_invite_id":null,"email":"k***l@awi-bremerhaven.de","display_order":0,"name":"Karsten Gohl","title":"Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales."},{"id":32860783,"work_id":6227194,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6880436,"email":"t***a@es.usyd.edu.au","display_order":4194304,"name":"Tara Deen","title":"Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales."}],"downloadable_attachments":[{"id":33093749,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33093749/thumbnails/1.jpg","file_name":"Deen_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33093749/download_file","bulk_download_file_name":"Tara_J_Deen_Karsten_Gohl_Christopher_Les.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33093749/Deen_et_al_2000-libre.pdf?1393512855=\u0026response-content-disposition=attachment%3B+filename%3DTara_J_Deen_Karsten_Gohl_Christopher_Les.pdf\u0026Expires=1744157148\u0026Signature=VZD-9oxcpCqV9MPQzo9OZE483b82gTSL8wwtAxK~fEfGsE9W8pMMPesw9fodN0KF5O2z6sgCoAH60q8pnhkWFNSww-mRI~IuVpORR9n9CAeRmFGAelgGy8OfELwTHwMp-Q3tRp6-kGYu2sXZEBgKP0hLNoYl7mfa01ryL1O4UfvEhEHwTj8aRCcz3~5RY~yRlLLg1cBbKBbeArt4qNuPgJAPIyXf06wP4bnA~cTWfPMwLRNdHUYg2vR9KMZ2XwjFPXx8EqOknSzkDVmrw9qj0D9Wo84HpWhOyL27N0ASzLqZWEuj9mkMUUQ4MQXS9FXXozDpygYPLSwPSzEFJ-NcLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_Éva_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We assess a method for conducting seismic refraction inversion\r\nin a 3-D setting to image the shape and structure of a\r\npalaeochannel. The trial survey was conducted over a suspected\r\nTertiary palaeochannel adjacent to the Wyalong goldfields\r\n(Lachlan Fold Belt) in central NSW. This work has implications\r\nfor the control of groundwater migration and dryland salinity\r\nstudies. The method was conducted using standard multichannel\r\nseismic recording equipment and an unconventional 3-D field\r\ngeometry. Three-dimensional velocity-depth models show a \r\n4-layer sub-horizontal system underlain by high-velocity\r\nmetasedimentitic basement at a variable depth, ranging from 70 to\r\n170 m. The interpreted palaeochannel is coincident with high\r\nmagnetic intensity features identified from recent surveys of the\r\nregion.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":33093749,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33093749/thumbnails/1.jpg","file_name":"Deen_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33093749/download_file","bulk_download_file_name":"Tara_J_Deen_Karsten_Gohl_Christopher_Les.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33093749/Deen_et_al_2000-libre.pdf?1393512855=\u0026response-content-disposition=attachment%3B+filename%3DTara_J_Deen_Karsten_Gohl_Christopher_Les.pdf\u0026Expires=1744157148\u0026Signature=VZD-9oxcpCqV9MPQzo9OZE483b82gTSL8wwtAxK~fEfGsE9W8pMMPesw9fodN0KF5O2z6sgCoAH60q8pnhkWFNSww-mRI~IuVpORR9n9CAeRmFGAelgGy8OfELwTHwMp-Q3tRp6-kGYu2sXZEBgKP0hLNoYl7mfa01ryL1O4UfvEhEHwTj8aRCcz3~5RY~yRlLLg1cBbKBbeArt4qNuPgJAPIyXf06wP4bnA~cTWfPMwLRNdHUYg2vR9KMZ2XwjFPXx8EqOknSzkDVmrw9qj0D9Wo84HpWhOyL27N0ASzLqZWEuj9mkMUUQ4MQXS9FXXozDpygYPLSwPSzEFJ-NcLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":2494320,"url":"http://library.seg.org/doi/pdfplus/10.1071/EG00389"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6227194-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6193577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6193577/Christopher_Leslie_Leonie_Jones_%C3%89va_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales"><img alt="Research paper thumbnail of Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales" class="work-thumbnail" src="https://attachments.academia-assets.com/33072303/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6193577/Christopher_Leslie_Leonie_Jones_%C3%89va_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales">Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Two high-resolution 2-D seismic surveys were carried out over <br />palaeochannels near West Wyalong, NSW using an IVITM <br />mini-vibrator. The first aim of these seismic surveys was to map in <br />detail the profile of the palaeochannels. The second aim was to <br />establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels. <br />Preliminary results, when tied to borehole data, indicate possible <br />palaeo-erosion surfaces and maghemite gravel-filled <br />palaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding <br />100 m.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-6193577-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-6193577-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254308/figure-1-location-map-for-west-wyalong-and-yiddah-including"><img alt="Fig. 1. Location map for West Wyalong and Yiddah, including position of seismic lines and interpreted palaeochannels. " class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254315/figure-2-example-of-shot-record-from-the-wyalong-line-shot"><img alt="Fig. 2. Example of a shot record from the Wyalong line (shot 700) after various stages of processing. Seismic imagery of palaeochannels " class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254319/figure-3-christopher-leslie-leonie-jones-va-papp-kevin-wake"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254325/figure-4-wyalong-seismic-line-the-first-refractor-layer"><img alt="Fig 4. Wyalong seismic line. The first refractor layer, location of drill holes, and magnetic susceptibility peaks shown. H:V = 1:80. " class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_004.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-6193577-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a512d1b611ca8a46c7968d2aacc3d0c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33072303,"asset_id":6193577,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33072303/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6193577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6193577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6193577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6193577]").text(description); $(".js-view-count[data-work-id=6193577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6193577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6193577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a512d1b611ca8a46c7968d2aacc3d0c2" } } $('.js-work-strip[data-work-id=6193577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6193577,"title":"Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales","translated_title":"","metadata":{"abstract":"Two high-resolution 2-D seismic surveys were carried out over\r\npalaeochannels near West Wyalong, NSW using an IVITM\r\nmini-vibrator. The first aim of these seismic surveys was to map in\r\ndetail the profile of the palaeochannels. The second aim was to\r\nestablish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels.\r\nPreliminary results, when tied to borehole data, indicate possible\r\npalaeo-erosion surfaces and maghemite gravel-filled\r\npalaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding \r\n100 m. \r\n","ai_title_tag":"High-Resolution Seismic Imaging of Palaeochannels in NSW"},"translated_abstract":"Two high-resolution 2-D seismic surveys were carried out over\r\npalaeochannels near West Wyalong, NSW using an IVITM\r\nmini-vibrator. The first aim of these seismic surveys was to map in\r\ndetail the profile of the palaeochannels. The second aim was to\r\nestablish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels.\r\nPreliminary results, when tied to borehole data, indicate possible\r\npalaeo-erosion surfaces and maghemite gravel-filled\r\npalaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding \r\n100 m. \r\n","internal_url":"https://www.academia.edu/6193577/Christopher_Leslie_Leonie_Jones_%C3%89va_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_internal_url":"","created_at":"2014-02-24T12:41:47.384-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15401391,"work_id":6193577,"tagging_user_id":498748,"tagged_user_id":32577549,"co_author_invite_id":null,"email":"j***s@usgs.gov","display_order":0,"name":"L. Jones","title":"Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales"},{"id":15401392,"work_id":6193577,"tagging_user_id":498748,"tagged_user_id":41924283,"co_author_invite_id":null,"email":"k***l@awi-bremerhaven.de","display_order":4194304,"name":"Karsten Gohl","title":"Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales"}],"downloadable_attachments":[{"id":33072303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33072303/thumbnails/1.jpg","file_name":"Leslie_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33072303/download_file","bulk_download_file_name":"Christopher_Leslie_Leonie_Jones_Eva_Papp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33072303/Leslie_et_al_2000-libre.pdf?1393274259=\u0026response-content-disposition=attachment%3B+filename%3DChristopher_Leslie_Leonie_Jones_Eva_Papp.pdf\u0026Expires=1744157148\u0026Signature=ZcajhONgGzjHiNxyewcZY-C6cQth1zjs3F--E5-1f0JB0OplyRj53dQC2D-6i3Od27YIc7KjYy5No6P6d8SKos9vZeDYhJlnbn3PGaruTLI9TkBo84Ue4S7XSzZ82A5y9YAfawyMi0JOtYLEJnh66bAonwqi0odq8FSXop7EdONrHdyob-ok7uSmSpZB5KNuQbmwVRT4duvwA~G8q78NBp9HGNRWnF8gXNCe9UnLSQ174yQVD7c8rTmBV5tvDlXcpB8xZv~nbPFMXuxxHni6r8J5f0O0-NfjclE~xy8i2XgfqAzaXS4rov-O4HLl38sDyeR4rmoIIy3ni4mevv12Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Christopher_Leslie_Leonie_Jones_Éva_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Two high-resolution 2-D seismic surveys were carried out over\r\npalaeochannels near West Wyalong, NSW using an IVITM\r\nmini-vibrator. The first aim of these seismic surveys was to map in\r\ndetail the profile of the palaeochannels. The second aim was to\r\nestablish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels.\r\nPreliminary results, when tied to borehole data, indicate possible\r\npalaeo-erosion surfaces and maghemite gravel-filled\r\npalaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding \r\n100 m. \r\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":33072303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33072303/thumbnails/1.jpg","file_name":"Leslie_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33072303/download_file","bulk_download_file_name":"Christopher_Leslie_Leonie_Jones_Eva_Papp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33072303/Leslie_et_al_2000-libre.pdf?1393274259=\u0026response-content-disposition=attachment%3B+filename%3DChristopher_Leslie_Leonie_Jones_Eva_Papp.pdf\u0026Expires=1744157148\u0026Signature=ZcajhONgGzjHiNxyewcZY-C6cQth1zjs3F--E5-1f0JB0OplyRj53dQC2D-6i3Od27YIc7KjYy5No6P6d8SKos9vZeDYhJlnbn3PGaruTLI9TkBo84Ue4S7XSzZ82A5y9YAfawyMi0JOtYLEJnh66bAonwqi0odq8FSXop7EdONrHdyob-ok7uSmSpZB5KNuQbmwVRT4duvwA~G8q78NBp9HGNRWnF8gXNCe9UnLSQ174yQVD7c8rTmBV5tvDlXcpB8xZv~nbPFMXuxxHni6r8J5f0O0-NfjclE~xy8i2XgfqAzaXS4rov-O4HLl38sDyeR4rmoIIy3ni4mevv12Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406292,"name":"Shallow Depth Geophysics","url":"https://www.academia.edu/Documents/in/Shallow_Depth_Geophysics"}],"urls":[{"id":2477112,"url":"http://library.seg.org/doi/pdf/10.1071/EG00383"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-6193577-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765277"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1765277/Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies"><img alt="Research paper thumbnail of Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies" class="work-thumbnail" src="https://attachments.academia-assets.com/22549972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1765277/Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies">Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A factor analysis-based method has been developed for preliminary interpretation of ground-based...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A factor analysis-based method has been developed for <br />preliminary interpretation of ground-based, time-domain <br />electromagnetic data. We refer to this method as factor score <br />imaging. It provides data volume and dimensionality reduction, <br />allows efficient approximation of the shape of buried conductive <br />bodies and aids selection of initial model geometry for full <br />inversion. In this paper, the method is applied to modelled <br />amplitude responses of simple geometrical bodies, such as a buried <br />conductive sphere and a dipping plate. It was found that five or <br />fewer factors typically describe the 30-dimensional data. Factor <br />score imaging was developed to visualise the results. In the first <br />factor score images, the footprint of the modelled bodies are <br />recovered with remarkable accuracy. The simple examples <br />described in this paper provide insight into the developed <br />methodology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9e6eea49bb36190fa4de908931f182b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":22549972,"asset_id":1765277,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/22549972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765277"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765277"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765277; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765277]").text(description); $(".js-view-count[data-work-id=1765277]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765277; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765277']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9e6eea49bb36190fa4de908931f182b" } } $('.js-work-strip[data-work-id=1765277]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765277,"title":"Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies","translated_title":"","metadata":{"abstract":"A factor analysis-based method has been developed for\r\npreliminary interpretation of ground-based, time-domain\r\nelectromagnetic data. We refer to this method as factor score\r\nimaging. It provides data volume and dimensionality reduction,\r\nallows efficient approximation of the shape of buried conductive\r\nbodies and aids selection of initial model geometry for full\r\ninversion. In this paper, the method is applied to modelled\r\namplitude responses of simple geometrical bodies, such as a buried\r\nconductive sphere and a dipping plate. It was found that five or\r\nfewer factors typically describe the 30-dimensional data. Factor\r\nscore imaging was developed to visualise the results. In the first\r\nfactor score images, the footprint of the modelled bodies are\r\nrecovered with remarkable accuracy. The simple examples\r\ndescribed in this paper provide insight into the developed\r\nmethodology.","more_info":"Published in Exploration Geophysics (2002) 33, 44-50"},"translated_abstract":"A factor analysis-based method has been developed for\r\npreliminary interpretation of ground-based, time-domain\r\nelectromagnetic data. We refer to this method as factor score\r\nimaging. It provides data volume and dimensionality reduction,\r\nallows efficient approximation of the shape of buried conductive\r\nbodies and aids selection of initial model geometry for full\r\ninversion. In this paper, the method is applied to modelled\r\namplitude responses of simple geometrical bodies, such as a buried\r\nconductive sphere and a dipping plate. It was found that five or\r\nfewer factors typically describe the 30-dimensional data. Factor\r\nscore imaging was developed to visualise the results. In the first\r\nfactor score images, the footprint of the modelled bodies are\r\nrecovered with remarkable accuracy. The simple examples\r\ndescribed in this paper provide insight into the developed\r\nmethodology.","internal_url":"https://www.academia.edu/1765277/Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies","translated_internal_url":"","created_at":"2012-07-04T18:44:18.342-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494803,"work_id":1765277,"tagging_user_id":498748,"tagged_user_id":33153047,"co_author_invite_id":null,"email":"r***r@ato.gov.au","affiliation":"Monash University","display_order":1,"name":"Rohan A Baxter","title":"Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies"}],"downloadable_attachments":[{"id":22549972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/22549972/thumbnails/1.jpg","file_name":"Papp_Baxter_2002.pdf","download_url":"https://www.academia.edu/attachments/22549972/download_file","bulk_download_file_name":"Papp_E_and_Baxter_R_Factor_analysis_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/22549972/Papp_Baxter_2002-libre.pdf?1390867302=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_and_Baxter_R_Factor_analysis_and.pdf\u0026Expires=1744157148\u0026Signature=CbK-TnA5mijTLLUwPS-ZX5ibuUEFqWhY7WUb8qiWUxcymrpURy7YvZOzSGhBGPceZ4HxmIIVZLHT852UtNRoAiUSIF6CqS7W0OUZSMJCONdDfyHD~bsFhrScpTHn1F7oHTjEPy5v2U9VRyFkQQQaQlB-ktioOtmrWIzoNJq4CVe~JYB9H9jCYRsOk-~yXeTvL~QeIiIGUYJNltkBhhyRmFPZrvgwmluUkHGo7H2qpN1Tj78qIOaU7LLfvz7shEcvFq0P-z~PTUEspGCC4U~9CuNSOmAqL9BqNQ1RPWNCSVnTC4DKCWnyHwJhIMu~xErJg8PLp7UHwaw8KFrps1E0yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"A factor analysis-based method has been developed for\r\npreliminary interpretation of ground-based, time-domain\r\nelectromagnetic data. We refer to this method as factor score\r\nimaging. It provides data volume and dimensionality reduction,\r\nallows efficient approximation of the shape of buried conductive\r\nbodies and aids selection of initial model geometry for full\r\ninversion. In this paper, the method is applied to modelled\r\namplitude responses of simple geometrical bodies, such as a buried\r\nconductive sphere and a dipping plate. It was found that five or\r\nfewer factors typically describe the 30-dimensional data. Factor\r\nscore imaging was developed to visualise the results. In the first\r\nfactor score images, the footprint of the modelled bodies are\r\nrecovered with remarkable accuracy. The simple examples\r\ndescribed in this paper provide insight into the developed\r\nmethodology.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":22549972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/22549972/thumbnails/1.jpg","file_name":"Papp_Baxter_2002.pdf","download_url":"https://www.academia.edu/attachments/22549972/download_file","bulk_download_file_name":"Papp_E_and_Baxter_R_Factor_analysis_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/22549972/Papp_Baxter_2002-libre.pdf?1390867302=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_and_Baxter_R_Factor_analysis_and.pdf\u0026Expires=1744157148\u0026Signature=CbK-TnA5mijTLLUwPS-ZX5ibuUEFqWhY7WUb8qiWUxcymrpURy7YvZOzSGhBGPceZ4HxmIIVZLHT852UtNRoAiUSIF6CqS7W0OUZSMJCONdDfyHD~bsFhrScpTHn1F7oHTjEPy5v2U9VRyFkQQQaQlB-ktioOtmrWIzoNJq4CVe~JYB9H9jCYRsOk-~yXeTvL~QeIiIGUYJNltkBhhyRmFPZrvgwmluUkHGo7H2qpN1Tj78qIOaU7LLfvz7shEcvFq0P-z~PTUEspGCC4U~9CuNSOmAqL9BqNQ1RPWNCSVnTC4DKCWnyHwJhIMu~xErJg8PLp7UHwaw8KFrps1E0yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765277-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765605"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765605/%C3%89va_Papp_Ground_Penetrating_Radar_survey_of_the_Casey_road"><img alt="Research paper thumbnail of Éva Papp: Ground Penetrating Radar survey of the Casey road. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Éva Papp: Ground Penetrating Radar survey of the Casey road. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765605"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765605"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765605; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765605]").text(description); $(".js-view-count[data-work-id=1765605]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765605; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765605']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765605]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765605,"title":"Éva Papp: Ground Penetrating Radar survey of the Casey road. ","translated_title":"","metadata":{"more_info":"Report for the Australian Antarctic Division. 2002. 41. pp."},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765605/%C3%89va_Papp_Ground_Penetrating_Radar_survey_of_the_Casey_road","translated_internal_url":"","created_at":"2012-07-04T20:48:43.783-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Éva_Papp_Ground_Penetrating_Radar_survey_of_the_Casey_road","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":119725,"name":"Gpr","url":"https://www.academia.edu/Documents/in/Gpr"},{"id":530958,"name":"Antarctic geophysics","url":"https://www.academia.edu/Documents/in/Antarctic_geophysics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765605-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1767076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1767076/Sz_B%C3%A9rczi_B_Luk%C3%A1cs_A_Holba_A_Kiss_and_%C3%89_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_"><img alt="Research paper thumbnail of Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)" class="work-thumbnail" src="https://attachments.academia-assets.com/53739900/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1767076/Sz_B%C3%A9rczi_B_Luk%C3%A1cs_A_Holba_A_Kiss_and_%C3%89_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_">Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://elte-hu.academia.edu/B%C3%A9rcziSzaniszl%C3%B3">Bérczi Szaniszló</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Some high petrologic class (6 & 7) members of the NIPR Antarctic Meteorite collection show signal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Some high petrologic class (6 & 7) members of the NIPR Antarctic Meteorite collection show signals indicating iron outflow. Meteorites are endpoints of heat-driven evolutions at various temperatures, and probably higher petrologic class corresponds to higher heat impact. At high enough temperature one expects liquidification of iron, resulting in iron loss from the texture. Compositional data suggest that the iron loss starts at petrologic class 6; at classes 6 and 7 of any chondrite type metallic iron (and maybe FeS) is less than for 1-5.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-1767076-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-1767076-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605863/figure-2-composite-diagram-about-the-carbon-content-of"><img alt="Fig. 2. Composite diagram about the carbon content of meteorite types and PC's. Columns are from Fig. /. Van Schmus - Wood table with the corresponding frequencies of occurrences were added to each PC's. Therefore both carbon (from OTTING & ZAHRINGER, 1967).and the total iron content are represented in this diagram. Lines have been fitted to the changing carbon content with PC at each meteorite types. The carbon slope corresponds to the intensity of carbon loss during thermal transformations. " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605871/figure-2-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605879/figure-3-post-condensation-central-temperatures-for-bodies"><img alt="Fig. 3. Post-condensation central temperatures for bodies with different initial mass and solar distance " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605886/figure-4-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605893/figure-5-frequency-of-occurrence-of-meteorite-types-in-that"><img alt="Fig. 5. Frequency of occurrence of meteorite types in that part of the NIPR Japanese Meteorite Collection where it was determined. Frequency data are transformed into a gray color grade, like as on Fig. 1. The two most frequent types are H4 and L6 in the NIPR Antarctic Meteorite Collection " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605899/figure-6-ratios-of-the-occurrence-frequencies-for-meteorites"><img alt="Fig. 6. Ratios of the occurrence frequencies for meteorites on Fig. /. (Wasson) and Fig. 6. (NIPR). The "Wasson"/"NIPR" ratios show that there are considerable differences in occurence of chondritic meteorites of fall (Wasson) and found (NIPR) origin. " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605905/figure-7-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605911/figure-8-nipr-catalog-data-for-chondrites-arranged-in-the"><img alt="Fig. 8: NIPR Catalog Data for chondrites, arranged in the classical oxidized Fe/non-oxidised Fe diagram. The data were normalized to the Si content of the meteorites. For astronomers this diagram resembles the Hertzsprung-Russel diagram where two characteristical data of stars with different initial conditions and evolutionary paths are represented. " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605919/figure-9-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605929/figure-10-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605936/figure-11-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605941/figure-12-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_012.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-1767076-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ba77a6cf51c98b7e0d2ca7f63163dea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":53739900,"asset_id":1767076,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/53739900/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1767076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1767076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1767076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1767076]").text(description); $(".js-view-count[data-work-id=1767076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1767076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1767076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ba77a6cf51c98b7e0d2ca7f63163dea" } } $('.js-work-strip[data-work-id=1767076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1767076,"title":"Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)","translated_title":"","metadata":{"more_info":"Acta Mineralogica-Petrographica, Szeged, XXXIX, 87-106, 1998.","ai_title_tag":"Iron Flow and Thermal Evolution in Chondrite Parent Bodies","grobid_abstract":"Some high petrologic class (6 \u0026 7) members of the NIPR Antarctic Meteorite collection show signals indicating iron outflow. Meteorites are endpoints of heat-driven evolutions at various temperatures, and probably higher petrologic class corresponds to higher heat impact. At high enough temperature one expects liquidification of iron, resulting in iron loss from the texture. Compositional data suggest that the iron loss starts at petrologic class 6; at classes 6 and 7 of any chondrite type metallic iron (and maybe FeS) is less than for 1-5.","grobid_abstract_attachment_id":53739900},"translated_abstract":null,"internal_url":"https://www.academia.edu/1767076/Sz_B%C3%A9rczi_B_Luk%C3%A1cs_A_Holba_A_Kiss_and_%C3%89_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_","translated_internal_url":"","created_at":"2012-07-05T11:31:14.539-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494818,"work_id":1767076,"tagging_user_id":498748,"tagged_user_id":42538440,"co_author_invite_id":null,"email":"b***i@ludens.elte.hu","affiliation":"Eötvös Loránd University Budapest","display_order":1,"name":"Bérczi Szaniszló","title":"Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)"},{"id":30159829,"work_id":1767076,"tagging_user_id":498748,"tagged_user_id":54197288,"co_author_invite_id":null,"email":"b***i@gmail.com","display_order":4194304,"name":"Szaniszló Bérczi","title":"Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)"}],"downloadable_attachments":[{"id":53739900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53739900/thumbnails/1.jpg","file_name":"mineralogica_039_087-105.pdf","download_url":"https://www.academia.edu/attachments/53739900/download_file","bulk_download_file_name":"Sz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53739900/mineralogica_039_087-105-libre.pdf?1499073204=\u0026response-content-disposition=attachment%3B+filename%3DSz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf\u0026Expires=1744157148\u0026Signature=FTlPcd4L2hKbnvbSd9Zn3BGhDY~5PYelrFj0uWEtqd32UzyUh1RSz48utD~jhxVveVGWeO5zy3KzLXBpo5n4qt215dWZsAvcESnu3yzF6FVIL-zLaW-FdwldWqSi7wiuu7nH~AAcABAxHKRbloGM~XkVF~0fsbUemE9s-23ZdlCGc75NYgPrkmL6IzYohNVZwSuT2pFPh90RTy0Sf4BVo7qWBtUG0v-51byQ4wZ71JLuatW00nP09Bl7saPQOkje2xy7khZtsbI0n9O7p153Yl7fWj9uRjiLD-ltECwLPP~ZAXMiYLXmxyMxHlGBkeLeDVFXrFrXN8KuPEi1NemDPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sz_Bérczi_B_Lukács_A_Holba_A_Kiss_and_É_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Some high petrologic class (6 \u0026 7) members of the NIPR Antarctic Meteorite collection show signals indicating iron outflow. Meteorites are endpoints of heat-driven evolutions at various temperatures, and probably higher petrologic class corresponds to higher heat impact. At high enough temperature one expects liquidification of iron, resulting in iron loss from the texture. Compositional data suggest that the iron loss starts at petrologic class 6; at classes 6 and 7 of any chondrite type metallic iron (and maybe FeS) is less than for 1-5.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":53739900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53739900/thumbnails/1.jpg","file_name":"mineralogica_039_087-105.pdf","download_url":"https://www.academia.edu/attachments/53739900/download_file","bulk_download_file_name":"Sz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53739900/mineralogica_039_087-105-libre.pdf?1499073204=\u0026response-content-disposition=attachment%3B+filename%3DSz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf\u0026Expires=1744157148\u0026Signature=FTlPcd4L2hKbnvbSd9Zn3BGhDY~5PYelrFj0uWEtqd32UzyUh1RSz48utD~jhxVveVGWeO5zy3KzLXBpo5n4qt215dWZsAvcESnu3yzF6FVIL-zLaW-FdwldWqSi7wiuu7nH~AAcABAxHKRbloGM~XkVF~0fsbUemE9s-23ZdlCGc75NYgPrkmL6IzYohNVZwSuT2pFPh90RTy0Sf4BVo7qWBtUG0v-51byQ4wZ71JLuatW00nP09Bl7saPQOkje2xy7khZtsbI0n9O7p153Yl7fWj9uRjiLD-ltECwLPP~ZAXMiYLXmxyMxHlGBkeLeDVFXrFrXN8KuPEi1NemDPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-1767076-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1767083"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1767083/B_Luk%C3%A1cs_Sz_B%C3%A9rczi_S_J%C3%B3zsa_Gy_Szakm%C3%A1ny_and_%C3%89_Papp_Thermal_transformations_in_the_meteorite_parent_bodies_II"><img alt="Research paper thumbnail of B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1767083"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1767083"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1767083; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1767083]").text(description); $(".js-view-count[data-work-id=1767083]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1767083; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1767083']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1767083]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1767083,"title":"B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II","translated_title":"","metadata":{"more_info":"Annales Universitas Scientarium Budapestiensis de Rolando Eötvös Nominatae, Sectio Geophysica et Meteorologica, Tomus XII. Budapest, 1996."},"translated_abstract":null,"internal_url":"https://www.academia.edu/1767083/B_Luk%C3%A1cs_Sz_B%C3%A9rczi_S_J%C3%B3zsa_Gy_Szakm%C3%A1ny_and_%C3%89_Papp_Thermal_transformations_in_the_meteorite_parent_bodies_II","translated_internal_url":"","created_at":"2012-07-05T11:34:46.611-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494807,"work_id":1767083,"tagging_user_id":498748,"tagged_user_id":7599669,"co_author_invite_id":null,"email":"g***y@gmail.com","display_order":1,"name":"György Szakmány","title":"B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II"}],"downloadable_attachments":[],"slug":"B_Lukács_Sz_Bérczi_S_Józsa_Gy_Szakmány_and_É_Papp_Thermal_transformations_in_the_meteorite_parent_bodies_II","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1767083-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1371222"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1371222/Geophysical_well_logging"><img alt="Research paper thumbnail of Geophysical well logging" class="work-thumbnail" src="https://attachments.academia-assets.com/8543848/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1371222/Geophysical_well_logging">Geophysical well logging</a></div><div class="wp-workCard_item"><span>Geophysical and Remote Sensing …</span><span>, Jan 1, 2002</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-1371222-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-1371222-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191704/figure-1-geophysical-well-logging-was-first-developed-for"><img alt="Geophysical well logging was first developed for the petroleum industry by Marcel and Conrad Schlumberger in 1927 (Figure 1). Figure |. The original geophysical logging equipment used by the Schlumberger brothers in the late 1920’s (Schlumberger, 2000). " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191717/figure-2-part-of-the-first-geophysical-log-obtained-by-the"><img alt="Figure 2. Part of the first geophysical log obtained by the Schlumberger brothers in 1927. The Schlumberger brothers developed a resistivity tool to detect differences in the porosity of the sandstones of the oilfield at Merkwiller-Pechelbronn, in eastern France. Part of the Schlumberger brother’s original log is shown in Figure 2. Since this first log was run, geophysical well logging has developed into a billion-dollar global industry serving a wide range of industry and research activities. Geophysical well logging is a key technology in the petroleum industry. In the mineral industry, it is very widely used both for " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191726/figure-3-regolith-logging-with-small-easy-to-use-geophysical"><img alt="Figure 3. Regolith logging with a small, easy-to-use geophysical logging system, mounted in a 4WD vehicle. Geophysical well logging offers the opportunity of determining the composition, variability and physical properties of the rocks around the borehole. The actual volume of material sampled in this way varies from technique to technique and with the geological conditions, but it is invariably much larger than is represented by just the borehole. Moreover, depth control with a modern geophysical logging system is often better than a few millimetres. This means that the depth resolution of borehole data, representing the subsurface structure, is generally better than can be obtained even with diamond coring, where core breakage and core loss can be a serious problem, especially in regolith. Modern geophysical logging systems can be easily deployed from 4WD vehicles, using digital, computerised. small svstems. such as the one shown jn Ficure 3. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191734/figure-4-basic-sonic-tool-generally-consists-of-two-modules"><img alt="A basic sonic tool generally consists of two modules. One contains the transmitter and the other contains two or more receivers. The two parts separated by a rubber connector (Figure 4) to reduce the amount of direct transmission of acoustic energy along the tool from transmitter to receiver. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191741/figure-5-simple-single-point-resistivity-logging-typically"><img alt="Simple “single point resistivity” logging typically uses a geometry like that shown in Figure 5. Note that resistivity logs only work if the downhole probe is below the water table. This can be a limitation for some shallow regolith studies unless water can be added to the borehole to artificially raise the level to the area of interest. Single-point resistivity logging measures the resistivity between a single moving electrode downhole and an earth connection at the surface. Theoretical analysis and practical observation shows however that the bulk of the signal is in fact generated within a small volume surrounding the downhole electrode. Thus for a 5 cm diameter spherical electrode, 90% of the signal is generated within 50 cm of the electrode. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191749/figure-6-an-sp-log-through-interbedded-sandstones-and-shales"><img alt="Figure 6. An SP log through interbedded sandstones and shales (modified after Sheriff 1991). Electrochemical SP-s can for example arise from preferential diffusion and absorption of cations and anions on and through clays. Cations being much smaller than anions generally have a higher mobility through clays. Saline groundwater which is in contact with clay-rich materials often develop charge imbalances (ie. potentials) as a result of fluid flow. These potentials which are typically in the range of a few mV to a few tens of mV-s. can be measured in an SP log (Fisure 6). " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191753/figure-7-the-disseminated-nature-of-these-targets-make-them"><img alt="The disseminated nature of these targets make them ideal for IP but otherwise difficult to detect. IP has also been used in the detection of zones of alteration and redox trends and it has been used successfully to determine the rank of coal in situ. IP logging is widely used in mineral exploration, and has particular value in the exploration for disseminated sulphide targets such porphyry copper deposits. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191759/figure-8-hydrogen-nucleii-and-become-what-are-known-as"><img alt="hydrogen nucleii and become what are known as “thermal neutrons”. These thermal neutrons behave in many respects like a diffusing gas and form a spherical shell around the source in the probe. The radius of this sphere will depend primarily on the concentration of hydrogen in the environment around the probe. In general the neutron tool is a very useful tool for measuring “porosity” but it must be remembered that the measurements are model-dependent. In particular: " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191766/figure-9-an-example-of-wireline-logs-of-drillhole-through"><img alt="Figure 9. An example of wireline logs of a drillhole through regolith. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_009.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-1371222-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="204fa141e20064a1c9349894de61f5c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":8543848,"asset_id":1371222,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/8543848/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1371222"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1371222"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1371222; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1371222]").text(description); $(".js-view-count[data-work-id=1371222]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1371222; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1371222']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "204fa141e20064a1c9349894de61f5c7" } } $('.js-work-strip[data-work-id=1371222]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1371222,"title":"Geophysical well logging","translated_title":"","metadata":{"more_info":"In: Papp, É. (ed), Geophysical and remote sensing methods for regolith exploration. CRCLEME 2002","publisher":"crcleme.org.au","ai_abstract":"Geophysical well logging is a critical technique used to record various properties of subsurface geology surrounding boreholes, originally developed for the petroleum industry by the Schlumberger brothers in 1927. This technology allows for a comprehensive understanding of subsurface composition and physical properties, combining multiple measurement techniques to provide valuable data that is more representative than traditional drilling methods. With applications in mineral exploration, groundwater assessment, and regolith studies, geophysical well logging has evolved into a billion-dollar industry while overcoming the high costs and limitations of conventional drilling.","publication_date":{"day":1,"month":1,"year":2002,"errors":{}},"publication_name":"Geophysical and Remote Sensing …"},"translated_abstract":null,"internal_url":"https://www.academia.edu/1371222/Geophysical_well_logging","translated_internal_url":"","created_at":"2012-02-10T12:03:04.744-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38017028,"work_id":1371222,"tagging_user_id":498748,"tagged_user_id":52763962,"co_author_invite_id":7518258,"email":"p***a@earthinsite.com","affiliation":"The Australian National University","display_order":0,"name":"Prame Chopra","title":"Geophysical well logging"},{"id":38017031,"work_id":1371222,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":7518259,"email":"d***n@ga.gov.au","display_order":4194304,"name":"D. Gibson","title":"Geophysical well logging"}],"downloadable_attachments":[{"id":8543848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/8543848/thumbnails/1.jpg","file_name":"13wells.pdf","download_url":"https://www.academia.edu/attachments/8543848/download_file","bulk_download_file_name":"Geophysical_well_logging.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/8543848/13wells-libre.pdf?1390855878=\u0026response-content-disposition=attachment%3B+filename%3DGeophysical_well_logging.pdf\u0026Expires=1744157148\u0026Signature=ejA2P4S6Ykko8YX5B-2t0ZVn8rDdh6pfQK--nRMztFLvgRpz2x2D3QhcM0NoA-Eo5yNh0fNJmtF-7uHodY3tnuZCXYBCPMnISrDS0CDyMaQ6zEBr996BomO9Ewf0I-4ZvQcy7RuO3Uz9QKXa9h4xW4xflPePh-V6PsUjb3hAmIgnKbku~9YVUcVctcLoE-dssBrv-XU6DoFWLe7zadEIvRunYcz2NuUaB0Vi3mdsowRmi6rwOr3BUNNxqBeleFwLQTK3WXo5tuhxf3jWWsaQEZsTyfptywwuOspCbLv6sSl0HZceE-woLVL~7moNpzA4TNtUkpIhxkHxiiKcKMo3Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Geophysical_well_logging","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":8543848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/8543848/thumbnails/1.jpg","file_name":"13wells.pdf","download_url":"https://www.academia.edu/attachments/8543848/download_file","bulk_download_file_name":"Geophysical_well_logging.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/8543848/13wells-libre.pdf?1390855878=\u0026response-content-disposition=attachment%3B+filename%3DGeophysical_well_logging.pdf\u0026Expires=1744157148\u0026Signature=ejA2P4S6Ykko8YX5B-2t0ZVn8rDdh6pfQK--nRMztFLvgRpz2x2D3QhcM0NoA-Eo5yNh0fNJmtF-7uHodY3tnuZCXYBCPMnISrDS0CDyMaQ6zEBr996BomO9Ewf0I-4ZvQcy7RuO3Uz9QKXa9h4xW4xflPePh-V6PsUjb3hAmIgnKbku~9YVUcVctcLoE-dssBrv-XU6DoFWLe7zadEIvRunYcz2NuUaB0Vi3mdsowRmi6rwOr3BUNNxqBeleFwLQTK3WXo5tuhxf3jWWsaQEZsTyfptywwuOspCbLv6sSl0HZceE-woLVL~7moNpzA4TNtUkpIhxkHxiiKcKMo3Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-1371222-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1371221"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1371221/Mapping_the_Conductivity_Structure_of_the_Keringal_Gold_Deposit_Western_Australia_Development_and_Implementation_of_a_Statistics_based_Method_for_"><img alt="Research paper thumbnail of Mapping the Conductivity Structure of the Keringal Gold Deposit, Western Australia: Development and Implementation of a Statistics-based Method for …" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Mapping the Conductivity Structure of the Keringal Gold Deposit, Western Australia: Development and Implementation of a Statistics-based Method for …</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1371221"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1371221"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1371221; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1371221]").text(description); $(".js-view-count[data-work-id=1371221]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1371221; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1371221']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1371221]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1371221,"title":"Mapping the Conductivity Structure of the Keringal Gold Deposit, Western Australia: Development and Implementation of a Statistics-based Method for …","translated_title":"","metadata":{"abstract":"Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...","publisher":"University of Western Australia","publication_date":{"day":1,"month":1,"year":2003,"errors":{}}},"translated_abstract":"Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...","internal_url":"https://www.academia.edu/1371221/Mapping_the_Conductivity_Structure_of_the_Keringal_Gold_Deposit_Western_Australia_Development_and_Implementation_of_a_Statistics_based_Method_for_","translated_internal_url":"","created_at":"2012-02-10T12:03:04.692-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mapping_the_Conductivity_Structure_of_the_Keringal_Gold_Deposit_Western_Australia_Development_and_Implementation_of_a_Statistics_based_Method_for_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1371221-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1371220"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1371220/Hyperspectral_remote_sensing"><img alt="Research paper thumbnail of Hyperspectral remote sensing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Hyperspectral remote sensing</div><div class="wp-workCard_item"><span>Geophysical and Remote Sensing Methods for …</span><span>, Jan 1, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b31d4c897d2a33487b25f0ab38b73361" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":8543850,"asset_id":1371220,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/8543850/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1371220"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1371220"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1371220; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1371220]").text(description); $(".js-view-count[data-work-id=1371220]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1371220; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1371220']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b31d4c897d2a33487b25f0ab38b73361" } } $('.js-work-strip[data-work-id=1371220]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1371220,"title":"Hyperspectral remote sensing","translated_title":"","metadata":{"more_info":"In: Papp, É. (ed), Geophysical and remote sensing methods for regolith exploration. CRCLEME 2002","publisher":"uqu.edu.sa","publication_date":{"day":1,"month":1,"year":2002,"errors":{}},"publication_name":"Geophysical and Remote Sensing Methods for …"},"translated_abstract":null,"internal_url":"https://www.academia.edu/1371220/Hyperspectral_remote_sensing","translated_internal_url":"","created_at":"2012-02-10T12:03:04.468-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hyperspectral_remote_sensing","translated_slug":"","page_count":null,"language":"tl","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":8543850,"title":"","file_type":"","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"","download_url":"https://www.academia.edu/attachments/8543850/download_file","bulk_download_file_name":"Hyperspectral_remote_sensing","bulk_download_url":"http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4280125/Hyperspectral%20Remote%20Sensing%20(2).pdf"}],"research_interests":[],"urls":[{"id":4525680,"url":"http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4280125/Hyperspectral%20Remote%20Sensing%20(2).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1371220-figures'); } }); </script> <div class="profile--tab_heading_container js-section-heading" data-section="Talks" id="Talks"><h3 class="profile--tab_heading_container">Talks by Eva Papp</h3></div><div class="js-work-strip profile--work_container" data-work-id="34318282"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34318282/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/54217881/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34318282/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia">Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FerencFedor">Ferenc Fedor</a></span></div><div class="wp-workCard_item"><span>HUNGEO 2017. ISBN 978-963-8221-66-7</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South W...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 " , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d < 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="161f7518170dde71dbb2af31250e69b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54217881,"asset_id":34318282,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54217881/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34318282"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34318282"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34318282; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34318282]").text(description); $(".js-view-count[data-work-id=34318282]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34318282; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34318282']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "161f7518170dde71dbb2af31250e69b2" } } $('.js-work-strip[data-work-id=34318282]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34318282,"title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia","translated_title":"","metadata":{"abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","page_numbers":"45","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"HUNGEO 2017. ISBN 978-963-8221-66-7"},"translated_abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","internal_url":"https://www.academia.edu/34318282/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2017-08-23T01:53:44.761-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[{"id":30084166,"work_id":34318282,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6491351,"email":"a***r@geochem-ltd.eu","display_order":1,"name":"Peter Acs","title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia"},{"id":30084167,"work_id":34318282,"tagging_user_id":498748,"tagged_user_id":138793899,"co_author_invite_id":6491352,"email":"f***a@geochem-ltd.eu","display_order":2,"name":"Anita Fedor-Szasz","title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia"},{"id":30084169,"work_id":34318282,"tagging_user_id":498748,"tagged_user_id":67736234,"co_author_invite_id":6491353,"email":"f***c@geochem-ltd.eu","display_order":4,"name":"Ferenc Fedor","title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia"}],"downloadable_attachments":[{"id":54217881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54217881/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_talk_Abstract_English.pdf","download_url":"https://www.academia.edu/attachments/54217881/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54217881/EP_HUNGEO_2017_talk_Abstract_English-libre.pdf?1503478714=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157148\u0026Signature=PgS2Wn1eRVxH1HQQXBbPyIRS6luJjMRnacX8P~Pv~1ZJSiAYYb51OMGJYZwdukMdM3V06MS7wplnv9wdNc-Z~8ezyAvq-AWHkof8tInYrRQAiliRjMSNGtSjuF0UApVKq7278bUnV97Aj5H5I5D3wZOvs~qFP3~0Dc-2CMPIK4UC6kWsnY~RBEWSTnFxO8h~h52NoCGck-i~fhaAKtdrz0tA1N7GL1GEhL6pmAdMKI0wf3V71x4lte1jVg3TbOzCOf8gkjUw-En7S2XDpzAPkAyxWPBXiNjKBE-JmHyM2A3qWmTYmEPQHSmk19pNWnB~88t6dCFaBz~Fa2ZQA0zRgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":54217881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54217881/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_talk_Abstract_English.pdf","download_url":"https://www.academia.edu/attachments/54217881/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54217881/EP_HUNGEO_2017_talk_Abstract_English-libre.pdf?1503478714=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157148\u0026Signature=PgS2Wn1eRVxH1HQQXBbPyIRS6luJjMRnacX8P~Pv~1ZJSiAYYb51OMGJYZwdukMdM3V06MS7wplnv9wdNc-Z~8ezyAvq-AWHkof8tInYrRQAiliRjMSNGtSjuF0UApVKq7278bUnV97Aj5H5I5D3wZOvs~qFP3~0Dc-2CMPIK4UC6kWsnY~RBEWSTnFxO8h~h52NoCGck-i~fhaAKtdrz0tA1N7GL1GEhL6pmAdMKI0wf3V71x4lte1jVg3TbOzCOf8gkjUw-En7S2XDpzAPkAyxWPBXiNjKBE-JmHyM2A3qWmTYmEPQHSmk19pNWnB~88t6dCFaBz~Fa2ZQA0zRgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":420,"name":"Sedimentology","url":"https://www.academia.edu/Documents/in/Sedimentology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34318282-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="244899" id="books"><div class="js-work-strip profile--work_container" data-work-id="1765305"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1765305/Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration"><img alt="Research paper thumbnail of Papp, E. (ed) Geophysical and Remote Sensing Methods for Regolith Exploration" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1765305/Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration">Papp, E. (ed) Geophysical and Remote Sensing Methods for Regolith Exploration</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of the volume is to provide source material for students, geologists and geophysicist...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem. <br /> <br />A number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled "Regolith Dating Methods", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies. <br /> <br />The booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service. <br /> <br />We believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78489db0e2c16b3dad59b5092f67546b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42681225,"asset_id":1765305,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42681225/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765305"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765305"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765305; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765305]").text(description); $(".js-view-count[data-work-id=1765305]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765305; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765305']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78489db0e2c16b3dad59b5092f67546b" } } $('.js-work-strip[data-work-id=1765305]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765305,"title":"Papp, E. (ed) Geophysical and Remote Sensing Methods for Regolith Exploration","translated_title":"","metadata":{"abstract":"The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem.\r\n\r\nA number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled \"Regolith Dating Methods\", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies.\r\n\r\nThe booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service.\r\n\r\nWe believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.\r\n\r\n"},"translated_abstract":"The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem.\r\n\r\nA number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled \"Regolith Dating Methods\", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies.\r\n\r\nThe booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service.\r\n\r\nWe believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.\r\n\r\n","internal_url":"https://www.academia.edu/1765305/Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration","translated_internal_url":"","created_at":"2012-07-04T19:20:48.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[],"downloadable_attachments":[{"id":42681225,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"_WRD139.jpg","download_url":"https://www.academia.edu/attachments/42681225/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681225/_WRD139.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=Vhh037CCUmG3l9A1PC2U4zM-uBHISWPOQq35vqdH73f4m5ImOt3DlcSATecyIl-JONncGxweOitWCnBof~1Zpu~ILa9xxhE4zDR~seskaH08sA0UdNUlUjoMYjSnSjpXhu9ztDcfkJloYnhrv9lt77AHpGQyFV3j4gB2ZtWormePi5pRv98UxjQfLcRosQ2NBsDOIDczJvHerDo8~72omsVElSefBJTdj9pl1LdP7oUiwXa8IzQLaqRxbGplVLrHs2gSQskCimCinK0hvQ6XHwLwEjv-GX-WFTQk83h~TbjUW9gdCTDCdy9P9wcr5QVeGbIZOLBqGzm15KLMtedS5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":42681226,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"image001.jpg","download_url":"https://www.academia.edu/attachments/42681226/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681226/image001.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=dKMLu9LLhNRvU3KHIN-LL7h~z8pe3dPW2W-V35hB9H5Q6XI6pP0ebQvfqx85B~hJZkohNtLdbNYSRvp33QN-no9a4~rObdOJkUwhObnFBtC~ejluPOPsKjp7-XD74RMEbYZL4QWk2Zor5JNGZJ0JvGgqSjISXJbhpvKVrYl5WBdm0-i2lv9IyVVhpKf~TsYQQ9vfyBzwofdKHzM2txsMUSDwTchZUOxqaqva~hvsSJWNW3MkkBGzWez7fGxXQRCEZOxMmzuGGjuHg71m922BzLZixLQjnrDmJk-3lBESCymIwcHpstO8CxhgddSSuFm5Kn8TQPCIbiqvWGORB3JY8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Papp_E_ed_Geophysical_and_Remote_Sensing_Methods_for_Regolith_Exploration","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The purpose of the volume is to provide source material for students, geologists and geophysicists in the form of a collection of brief articles on geophysical and remote sensing methodologies suitable for regolith exploration. The articles do not contain detailed information on how each method works, but are rather intended as a guide to selecting the appropriate method for a particular exploration or environmental problem.\r\n\r\nA number of factors contributed to the initiation of this project. Firstly, a realisation that there is very little material available on regolith geophysics that could be used by mineral exploration professionals to make important decisions about the application or deterrence of certain geophysical or remote sensing techniques. Secondly, the scarcity of material on this topic that can be used for teaching purposes at undergraduate university level. Thirdly, the success of Brad Pillans' booklet titled \"Regolith Dating Methods\", a CRC LEME publication, showed that there is a lot of interest among the professional community in practical, off-the-shelf material in regolith exploration methodologies.\r\n\r\nThe booklet contains twelve articles. Each article describes a remote sensing or a geophysical technique suitable for regolith exploration. The papers are organised in a similar structure, with the intention of aiding the reader in the comparison of the methods. After a brief general description, the advantages and pitfalls of each method are presented, as well as the likely product of a survey. This is followed by one or more case histories, the organisational requirements of a field survey, the likely costs, and finally addresses of the main organisations providing the service.\r\n\r\nWe believe that with this volume CRCLEME is providing a service to the exploration and environmental geophysics community as well as providing a valuable aid for teaching mineral exploration students.\r\n\r\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":42681225,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"_WRD139.jpg","download_url":"https://www.academia.edu/attachments/42681225/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681225/_WRD139.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=Vhh037CCUmG3l9A1PC2U4zM-uBHISWPOQq35vqdH73f4m5ImOt3DlcSATecyIl-JONncGxweOitWCnBof~1Zpu~ILa9xxhE4zDR~seskaH08sA0UdNUlUjoMYjSnSjpXhu9ztDcfkJloYnhrv9lt77AHpGQyFV3j4gB2ZtWormePi5pRv98UxjQfLcRosQ2NBsDOIDczJvHerDo8~72omsVElSefBJTdj9pl1LdP7oUiwXa8IzQLaqRxbGplVLrHs2gSQskCimCinK0hvQ6XHwLwEjv-GX-WFTQk83h~TbjUW9gdCTDCdy9P9wcr5QVeGbIZOLBqGzm15KLMtedS5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":42681226,"title":"","file_type":"jpg","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"image001.jpg","download_url":"https://www.academia.edu/attachments/42681226/download_file","bulk_download_file_name":"Papp_E_ed_Geophysical_and_Remote_Sensing.jpg","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42681226/image001.jpg?1738293240=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_ed_Geophysical_and_Remote_Sensing.jpg\u0026Expires=1744157147\u0026Signature=dKMLu9LLhNRvU3KHIN-LL7h~z8pe3dPW2W-V35hB9H5Q6XI6pP0ebQvfqx85B~hJZkohNtLdbNYSRvp33QN-no9a4~rObdOJkUwhObnFBtC~ejluPOPsKjp7-XD74RMEbYZL4QWk2Zor5JNGZJ0JvGgqSjISXJbhpvKVrYl5WBdm0-i2lv9IyVVhpKf~TsYQQ9vfyBzwofdKHzM2txsMUSDwTchZUOxqaqva~hvsSJWNW3MkkBGzWez7fGxXQRCEZOxMmzuGGjuHg71m922BzLZixLQjnrDmJk-3lBESCymIwcHpstO8CxhgddSSuFm5Kn8TQPCIbiqvWGORB3JY8A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":301465,"url":"http://crcleme.org.au/Pubs/OPEN%20FILE%20REPORTS/OFR%20144/OFR144.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765305-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="177223" id="papers"><div class="js-work-strip profile--work_container" data-work-id="101297078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/101297078/High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales"><img alt="Research paper thumbnail of High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales" class="work-thumbnail" src="https://attachments.academia-assets.com/101877573/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/101297078/High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales">High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales</a></div><div class="wp-workCard_item"><span>Exploration Geophysics</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, N...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-101297078-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-101297078-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228123/figure-1-location-map-for-west-wyalong-and-yiddah-including"><img alt="Fig. 1. Location map for West Wyalong and Yiddah, including position of seismic lines and interpreted palaeochannels. " class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228129/figure-2-example-of-shot-record-from-the-wyalong-line-shot"><img alt="Fig. 2. Example of a shot record from the Wyalong line (shot 700) after various stages of processing. Seismic imagery of palaeochannels " class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228140/figure-3-high-resolution-seismic-imagery-of-palaeochannels"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28228145/figure-4-wyalong-seismic-line-the-first-refractor-layer"><img alt="Fig 4. Wyalong seismic line. The first refractor layer, location of drill holes, and magnetic susceptibility peaks shown. H:V = 1:80. " class="figure-slide-image" src="https://figures.academia-assets.com/101877573/figure_004.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-101297078-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="03129d649e81937cd7964eb75aa27008" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101877573,"asset_id":101297078,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101877573/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="101297078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="101297078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 101297078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=101297078]").text(description); $(".js-view-count[data-work-id=101297078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 101297078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='101297078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "03129d649e81937cd7964eb75aa27008" } } $('.js-work-strip[data-work-id=101297078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":101297078,"title":"High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales","translated_title":"","metadata":{"abstract":"Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...","publisher":"CSIRO Publishing","ai_title_tag":"Seismic Mapping of Palaeochannels in West Wyalong, NSW","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Exploration Geophysics"},"translated_abstract":"Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...","internal_url":"https://www.academia.edu/101297078/High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_internal_url":"","created_at":"2023-05-05T09:35:57.179-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101877573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101877573/thumbnails/1.jpg","file_name":"EG0038320230505-1-z7n6vy.pdf","download_url":"https://www.academia.edu/attachments/101877573/download_file","bulk_download_file_name":"High_resolution_seismic_imagery_of_palae.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101877573/EG0038320230505-1-z7n6vy-libre.pdf?1683308210=\u0026response-content-disposition=attachment%3B+filename%3DHigh_resolution_seismic_imagery_of_palae.pdf\u0026Expires=1744157147\u0026Signature=MC23Lyrsr6JCebpkMoQOqUFyJSmF8c10YuDuiH~TvSiqktzqiwN8q2wvXipIaPmyCgO~MhuOPT~RtJapPVRNnR66aUExaCO4aptEYaXKmQ454nf6ZJrzinNGp55hKvdrzdwNj-P7LYLJuGdgpIzn9E1b-~UCKNao3D2y3U0F7SQUDLt9wCel7TZsk1VvD-F96umWrFLL0B2p5c-9PMDxfPylOK45LDGmyS7jyFrmUeFggw4tU70T2bY8J9Z5qZYyJ7WzfwRXPCA7diZVirrzXTPqqu1ujRR15lPu3XpMiKXwJUU1wVv1Yyv6ARMsQORn7-gQF-jF171q7jETFUBqgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, NSW using an IVITM mini-vibrator. The first aim of these seismic surveys was to map in detail the profile of the palaeochannels. The second aim was to establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the sha...","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":101877573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101877573/thumbnails/1.jpg","file_name":"EG0038320230505-1-z7n6vy.pdf","download_url":"https://www.academia.edu/attachments/101877573/download_file","bulk_download_file_name":"High_resolution_seismic_imagery_of_palae.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101877573/EG0038320230505-1-z7n6vy-libre.pdf?1683308210=\u0026response-content-disposition=attachment%3B+filename%3DHigh_resolution_seismic_imagery_of_palae.pdf\u0026Expires=1744157147\u0026Signature=MC23Lyrsr6JCebpkMoQOqUFyJSmF8c10YuDuiH~TvSiqktzqiwN8q2wvXipIaPmyCgO~MhuOPT~RtJapPVRNnR66aUExaCO4aptEYaXKmQ454nf6ZJrzinNGp55hKvdrzdwNj-P7LYLJuGdgpIzn9E1b-~UCKNao3D2y3U0F7SQUDLt9wCel7TZsk1VvD-F96umWrFLL0B2p5c-9PMDxfPylOK45LDGmyS7jyFrmUeFggw4tU70T2bY8J9Z5qZYyJ7WzfwRXPCA7diZVirrzXTPqqu1ujRR15lPu3XpMiKXwJUU1wVv1Yyv6ARMsQORn7-gQF-jF171q7jETFUBqgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":24963,"name":"Exploration Geophysics","url":"https://www.academia.edu/Documents/in/Exploration_Geophysics"},{"id":123472,"name":"Exploration","url":"https://www.academia.edu/Documents/in/Exploration"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":184047,"name":"New South Wales","url":"https://www.academia.edu/Documents/in/New_South_Wales"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":387622,"name":"Borehole","url":"https://www.academia.edu/Documents/in/Borehole"},{"id":725892,"name":"Regolith","url":"https://www.academia.edu/Documents/in/Regolith"},{"id":1736724,"name":"Bedrock","url":"https://www.academia.edu/Documents/in/Bedrock"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-101297078-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="87636463"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/87636463/Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales"><img alt="Research paper thumbnail of Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales</div><div class="wp-workCard_item"><span>Exploration Geophysics</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shap...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="87636463"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="87636463"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 87636463; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=87636463]").text(description); $(".js-view-count[data-work-id=87636463]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 87636463; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='87636463']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=87636463]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":87636463,"title":"Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales","translated_title":"","metadata":{"abstract":"We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.","publisher":"Informa UK Limited","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Exploration Geophysics"},"translated_abstract":"We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.","internal_url":"https://www.academia.edu/87636463/Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_internal_url":"","created_at":"2022-09-30T11:34:54.030-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We assess a method for conducting seismic refraction inversion in a 3-D setting to image the shape and structure of a palaeochannel. The trial survey was conducted over a suspected Tertiary palaeochannel adjacent to the Wyalong goldfields (Lachlan Fold Belt) in central NSW. This work has implications for the control of groundwater migration and dryland salinity studies. The method was conducted using standard multichannel seismic recording equipment and an unconventional 3-D field geometry. Three-dimensional velocity-depth models show a 4-layer sub-horizontal system underlain by high-velocity metasedimentitic basement at a variable depth, ranging from 70 to 170 m. The interpreted palaeochannel is coincident with high magnetic intensity features identified from recent surveys of the region.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":13883,"name":"Seismology","url":"https://www.academia.edu/Documents/in/Seismology"},{"id":24963,"name":"Exploration Geophysics","url":"https://www.academia.edu/Documents/in/Exploration_Geophysics"},{"id":91639,"name":"Seismic Refraction","url":"https://www.academia.edu/Documents/in/Seismic_Refraction"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":184047,"name":"New South Wales","url":"https://www.academia.edu/Documents/in/New_South_Wales"}],"urls":[{"id":24340967,"url":"https://www.tandfonline.com/doi/pdf/10.1071/EG00389"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-87636463-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="76878595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/76878595/Spectral_classification_of_radiometric_data_using_an_information_theory_approach"><img alt="Research paper thumbnail of Spectral classification of radiometric data using an information theory approach" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Spectral classification of radiometric data using an information theory approach</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="76878595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="76878595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76878595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76878595]").text(description); $(".js-view-count[data-work-id=76878595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76878595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='76878595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=76878595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":76878595,"title":"Spectral classification of radiometric data using an information theory approach","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/76878595/Spectral_classification_of_radiometric_data_using_an_information_theory_approach","translated_internal_url":"","created_at":"2022-04-18T16:26:30.961-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spectral_classification_of_radiometric_data_using_an_information_theory_approach","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-76878595-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="38305824"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38305824/From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes"><img alt="Research paper thumbnail of From mysterious Lake George to classy Lake Burley Griffin: the white settlers' tale of two lakes" class="work-thumbnail" src="https://attachments.academia-assets.com/58354295/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38305824/From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes">From mysterious Lake George to classy Lake Burley Griffin: the white settlers' tale of two lakes</a></div><div class="wp-workCard_item"><span>Topiarius</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In New South Wales, Australia, around 1820, the white discovery and colonisation of Weereewa (ren...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In New South Wales, Australia, around 1820, the white discovery<br />and colonisation of Weereewa (renamed to Lake George) and the<br />Limestone Plains (now Canberra) went hand in hand. However, the<br />development paths of the two regions had separated, when, after the<br />1901 Federation of Australia, competition for the site of the National<br /> Capital was won by Canberra in 1908, and Lake George missed<br />out. Consequently, the artificial Lake Burley Griffin in Canberra<br />was created and subsequently developed into the classy water body<br />that Parliament House is reflected in today. Lake Burley Griffin is<br />intimately known, loved, photographed, talked about as one of the<br />symbols of the Nation, and its artificial water body is used for various <br />recreational activities. On the contrary, Lake George remained<br />a generally untouched, intermittent natural lake, mysterious and distant <br />for most Canberrans.<br />This paper summarises and contrasts the story of Lake George and<br />Lake Burley Griffin, underlining how landscape influenced colonial<br />and modern history.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-38305824-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-38305824-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315470/figure-1-artists-vision-of-an-ideal-federal-city-lake-george"><img alt="Fig. 1. Artist’s vision of “An ideal federal city, Lake George, NSW”. Architectural design by Charles Coulter, 1864-1956. Watercolor by Ch. Coulter 1901, source: nla.gov.au/nla.obj- 13520423 The initial inspiration for this work came in the form of a painting from 1901 (Fig. 1). This artwork depicts the vision of Canberra, the then future National Capital, on the shores of Lake George as an Australian Venice, with elaborate architecture, lush vegetation, sail boats and picturesque jetties, boat sheds and promenades. The artist, Charles Coulter, was an architect commissioned by the Lake George Capital Site League, a lobby group for the future National Capital to be built around Lake George, to design a parliament building and city centre around the lake. The painting was published in Melbourne in the Proceedings of the Congress of Engineers, Architects, Surveyors, and Others Interested in the Building of the Federal Capital of Australia in 1901, seven years before the location of the National Capital was decided [Barrow 2012: 60). " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315471/figure-2-the-view-of-lake-george-on-july-looking-south-east"><img alt="Fig. 2. The view of Lake George on 07 July 2016, looking south-east from Geary’s Gap Lookout. On the lake bed, which has been dry for 20 years, some water is beginning to collect, as a result of an extended rainy period. Photo credit Stuart Cohen, Bottlebrush Media Lake George, or Weereewa, is located in New South Wales, South-eastern Australia, 40 km north of the National Capital, Canberra. When travelling by road from Sydney to Canberra, the traveller will reach the northern tip of the lake bed on he latest addition to this landsca grazing next to several large mobs of kangaroos on patches of land still dry, as t unusually rainy winter began to proud rulers of the skies glide softly buzzing noise of intermi climbs up onto the escarpmen for pray in pairs, and their loud calls mix with t , and sweeping views of the majestic landsca: conduct a general silence in the vehicle (Fig. 2). fill some of the lake bed. It had been empty of water and full of sheep before, this last time for several decades. Above the grass, eagles, ttent flow of vehicles down below. Then, the road he left, and the steep escarpment, a rugged 80 km long line of the Lake George fault owering above the road, on the right. The emerging view, as the vehicle winds its way along the highway southbound, is unusual and attention-command ups and downs of the Great Dividing Ranges left behind, the completely flat lake bed, opening up and disappearing into the horizon ahead, turns every head in the vehicle. The very steep, rocky escarpment along the western side of the highway is none less unique. The numerous wind turbines, dwarfed on the far eastern horizon as pe, are the only indicators that the road trip is taking place in 2016 and not 6000 years ago. Not mentioning, of course, the fl ing. After the ocks of sheep ne he pe " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315472/figure-3-the-longest-historical-water-level-record-in"><img alt="Fig. 3. The longest historical water level record in Australia: Lake George 1819-1990 [Jacobson, Jankowski and Abell 1991]. The red arrow shows the year of Federation, 1901, while the green arrow marks the year of the declaration of the Australian Capital Territory, including Canberra, in 1911 " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315473/figure-4-the-borders-of-the-australian-capital-territory"><img alt="Fig. 4. The borders of the Australian Capital Territory, shown with white outline. The centre of Canberra’s urban area and the location of Lake Burley Griffin is marked with a star. Lake George 5 metres elevation contours are shown in red, 672 m— 712 m [Google Earth image, public domain. Access 14 April 2017] - “Once the site was selected, the Australian Capital Territory was declared on 1“ January 1911 (Fig. 4). In the same year, an international competition for the design of Canberra, the new capital city, was launched and Scrivener's detailed survey of the area was supplied to the competing architects. Most of the proposals included artificial bodies of water. " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315475/figure-5-form-dam-had-to-be-built-bridges-constructed-and"><img alt="form, a dam had to be built. Bridges constructed, and the bed of the lake cleared and formed. (Transcript from the Commonwealth Film Unit 1965. Available at: https://www.youtube.com/watch?v=wqsxXTv7ZUk [Access 15 Nov. 2016] - Transcript published with the permission of National Film and Sound Archive of Australia). Fig. 5. The elaborate drinking water supply scheme for Canberra, with Cotter, Bendora and Corin Dams on the Cotter River in the ACT and the Googong Reservoir on the Queanbeyan River, in NSW. [https://www.iconwater.com.au/ Water-and-Sewerage- System/ACT-Water-Supply-Map.aspx Reproduced with the permission of Icon Water, 2 May 2017] " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315476/figure-6-lake-burley-griffin-and-canberra-view-from-the"><img alt="Fig. 6. Lake Burley Griffin and Canberra. View from the Telstra Tower. By Redlands597198 [https://upload.wikimedia.org/wikipedia/commons/0/02/ Canberra_view_from_telstra_tower.jpg Access 31 March 2017] Lake Burley Griffin, named after its original designer, together with Parliament House, became one of the best-known landmarks of Canberra and symbols of moder Australia, featured on countless photographs, posters, illustrations, websites, school books and tourist guide books (Fig. 6). Lake Burley Griffin, named after its original designer, together with Parliament " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/15315478/figure-7-lake-george-as-grazing-land-photo-by-papp"><img alt="Fig 7. Lake George as a grazing land. Photo by E. Papp 2016 " class="figure-slide-image" src="https://figures.academia-assets.com/58354295/figure_007.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-38305824-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0998fdc1ca4020ad52abeb9ca57e563c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58354295,"asset_id":38305824,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58354295/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38305824"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38305824"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38305824; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38305824]").text(description); $(".js-view-count[data-work-id=38305824]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38305824; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38305824']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0998fdc1ca4020ad52abeb9ca57e563c" } } $('.js-work-strip[data-work-id=38305824]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38305824,"title":"From mysterious Lake George to classy Lake Burley Griffin: the white settlers' tale of two lakes","translated_title":"","metadata":{"issue":"7","abstract":"In New South Wales, Australia, around 1820, the white discovery\nand colonisation of Weereewa (renamed to Lake George) and the\nLimestone Plains (now Canberra) went hand in hand. However, the\ndevelopment paths of the two regions had separated, when, after the\n1901 Federation of Australia, competition for the site of the National\n Capital was won by Canberra in 1908, and Lake George missed\nout. Consequently, the artificial Lake Burley Griffin in Canberra\nwas created and subsequently developed into the classy water body\nthat Parliament House is reflected in today. Lake Burley Griffin is\nintimately known, loved, photographed, talked about as one of the\nsymbols of the Nation, and its artificial water body is used for various \nrecreational activities. On the contrary, Lake George remained\na generally untouched, intermittent natural lake, mysterious and distant \nfor most Canberrans.\nThis paper summarises and contrasts the story of Lake George and\nLake Burley Griffin, underlining how landscape influenced colonial\nand modern history.","ai_title_tag":"Contrasting Lake George and Lake Burley Griffin","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Topiarius"},"translated_abstract":"In New South Wales, Australia, around 1820, the white discovery\nand colonisation of Weereewa (renamed to Lake George) and the\nLimestone Plains (now Canberra) went hand in hand. However, the\ndevelopment paths of the two regions had separated, when, after the\n1901 Federation of Australia, competition for the site of the National\n Capital was won by Canberra in 1908, and Lake George missed\nout. Consequently, the artificial Lake Burley Griffin in Canberra\nwas created and subsequently developed into the classy water body\nthat Parliament House is reflected in today. Lake Burley Griffin is\nintimately known, loved, photographed, talked about as one of the\nsymbols of the Nation, and its artificial water body is used for various \nrecreational activities. On the contrary, Lake George remained\na generally untouched, intermittent natural lake, mysterious and distant \nfor most Canberrans.\nThis paper summarises and contrasts the story of Lake George and\nLake Burley Griffin, underlining how landscape influenced colonial\nand modern history.","internal_url":"https://www.academia.edu/38305824/From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes","translated_internal_url":"","created_at":"2019-02-07T10:01:33.538-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":58354295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58354295/thumbnails/1.jpg","file_name":"TOPIARIUS7_7_Papp-2.pdf","download_url":"https://www.academia.edu/attachments/58354295/download_file","bulk_download_file_name":"From_mysterious_Lake_George_to_classy_La.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58354295/TOPIARIUS7_7_Papp-2-libre.pdf?1549581094=\u0026response-content-disposition=attachment%3B+filename%3DFrom_mysterious_Lake_George_to_classy_La.pdf\u0026Expires=1744157147\u0026Signature=FjWm3Rv0D6Pq~QQsoPwPJSoMzv8sTmAlN0j7wi2SuSKyZtoy0curTqrt5tFPcj1-N0co8Oa1RRUsF2CfggBlLt5fZQwQmkq6BZOgUmy6ARKhCqonurByqpoY7uLJospBbyfsvaEDdkv4bnq3E2ANlMZB0-2ZqbHZ2g-maXKwX9IfMTwEmYb5c-tpRLF3NDMnF2P3iliotG8iaTU62M9g~RDmb~DqRmhQlwPvTVJo7v5IrnXt8JUjgvDwVPnFBXhwkrUTk0NbM6LyXl~990gWqn7shSv8gipEGKDsKk33kLCAnJFMHQJ~uzFBBkZrI4AtqRRwB9Mmk3BqTOQgLM9j~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"From_mysterious_Lake_George_to_classy_Lake_Burley_Griffin_the_white_settlers_tale_of_two_lakes","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"In New South Wales, Australia, around 1820, the white discovery\nand colonisation of Weereewa (renamed to Lake George) and the\nLimestone Plains (now Canberra) went hand in hand. However, the\ndevelopment paths of the two regions had separated, when, after the\n1901 Federation of Australia, competition for the site of the National\n Capital was won by Canberra in 1908, and Lake George missed\nout. Consequently, the artificial Lake Burley Griffin in Canberra\nwas created and subsequently developed into the classy water body\nthat Parliament House is reflected in today. Lake Burley Griffin is\nintimately known, loved, photographed, talked about as one of the\nsymbols of the Nation, and its artificial water body is used for various \nrecreational activities. On the contrary, Lake George remained\na generally untouched, intermittent natural lake, mysterious and distant \nfor most Canberrans.\nThis paper summarises and contrasts the story of Lake George and\nLake Burley Griffin, underlining how landscape influenced colonial\nand modern history.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":58354295,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58354295/thumbnails/1.jpg","file_name":"TOPIARIUS7_7_Papp-2.pdf","download_url":"https://www.academia.edu/attachments/58354295/download_file","bulk_download_file_name":"From_mysterious_Lake_George_to_classy_La.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58354295/TOPIARIUS7_7_Papp-2-libre.pdf?1549581094=\u0026response-content-disposition=attachment%3B+filename%3DFrom_mysterious_Lake_George_to_classy_La.pdf\u0026Expires=1744157147\u0026Signature=FjWm3Rv0D6Pq~QQsoPwPJSoMzv8sTmAlN0j7wi2SuSKyZtoy0curTqrt5tFPcj1-N0co8Oa1RRUsF2CfggBlLt5fZQwQmkq6BZOgUmy6ARKhCqonurByqpoY7uLJospBbyfsvaEDdkv4bnq3E2ANlMZB0-2ZqbHZ2g-maXKwX9IfMTwEmYb5c-tpRLF3NDMnF2P3iliotG8iaTU62M9g~RDmb~DqRmhQlwPvTVJo7v5IrnXt8JUjgvDwVPnFBXhwkrUTk0NbM6LyXl~990gWqn7shSv8gipEGKDsKk33kLCAnJFMHQJ~uzFBBkZrI4AtqRRwB9Mmk3BqTOQgLM9j~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":58354296,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58354296/thumbnails/1.jpg","file_name":"TOPIARIUS7_7_Papp-2.pdf","download_url":"https://www.academia.edu/attachments/58354296/download_file","bulk_download_file_name":"From_mysterious_Lake_George_to_classy_La.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58354296/TOPIARIUS7_7_Papp-2-libre.pdf?1549581137=\u0026response-content-disposition=attachment%3B+filename%3DFrom_mysterious_Lake_George_to_classy_La.pdf\u0026Expires=1744157147\u0026Signature=ARAcVxuh6IYNuiVbAfuJDedQW~LkaachCJQLrtWuwSVIrQSOHPkOa~msOW3D7Xx4Dc5Se48WoJ~KoAb2hGk-ttzlENsG2KZfVpniV9ggh~vwKhQEdHfgx8xSuAZxt7jht9cGjk07JmMIHe5etVdr7q-JrkAU5gMjItZ~ODzTVI6dzXEF-O3Xva4KeSivRqush~~RqDxyl7LZeDgJxsf-hRUfIS19Dtc9X8bjU57stEDbKomNiwQiyC3DwN62bFlU1z1IXx0OHwcfj8r0rUc8CmRICav0NjKYwMUgFkLXeY3Uofrjzh4KyjnOQRrHyWQYOhiEtfWUKRUruKM80ubBRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":22831,"name":"Landscape","url":"https://www.academia.edu/Documents/in/Landscape"},{"id":26376,"name":"Sedimentary Basins","url":"https://www.academia.edu/Documents/in/Sedimentary_Basins"},{"id":199677,"name":"Canberra","url":"https://www.academia.edu/Documents/in/Canberra"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":2554321,"name":"Weereewa NSW","url":"https://www.academia.edu/Documents/in/Weereewa_NSW"},{"id":3129686,"name":"Australian Capital Territory","url":"https://www.academia.edu/Documents/in/Australian_Capital_Territory"}],"urls":[{"id":8694023,"url":"http://www.topiarius.ur.edu.pl/wp-content/uploads/TOPIARIUS7_7_Papp-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-38305824-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="38027989"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/38027989/%C3%81cs_P%C3%A9ter_Fedor_Sz%C3%A1sz_Anita_Papp_%C3%89va_Koroncz_P%C3%A9ter_Fedor_Ferenc_Development_of_a_complex_laboratory_procedure_for_the_characterization_of_pore_structure_in_clay_drill_core_samples_from_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia</div><div class="wp-workCard_item"><span>Földtudományok és környezet - harmóniában</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South W...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38027989"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38027989"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38027989; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38027989]").text(description); $(".js-view-count[data-work-id=38027989]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38027989; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38027989']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=38027989]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38027989,"title":"Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia","translated_title":"","metadata":{"abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.","organization":"Magyarhoni Földtani Társulat","page_numbers":"21-24","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Földtudományok és környezet - harmóniában"},"translated_abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.","internal_url":"https://www.academia.edu/38027989/%C3%81cs_P%C3%A9ter_Fedor_Sz%C3%A1sz_Anita_Papp_%C3%89va_Koroncz_P%C3%A9ter_Fedor_Ferenc_Development_of_a_complex_laboratory_procedure_for_the_characterization_of_pore_structure_in_clay_drill_core_samples_from_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2018-12-22T22:41:36.191-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":32153003,"work_id":38027989,"tagging_user_id":498748,"tagged_user_id":67736234,"co_author_invite_id":null,"email":"f***c@geochem-ltd.eu","display_order":0,"name":"Ferenc Fedor","title":"Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia"},{"id":32153004,"work_id":38027989,"tagging_user_id":498748,"tagged_user_id":34155723,"co_author_invite_id":null,"email":"a***r@pte.hu","display_order":4194304,"name":"Péter Ács","title":"Ács Péter, Fedor-Szász Anita, Papp Éva, Koroncz Péter, Fedor Ferenc: Development of a complex laboratory procedure for the characterization of pore structure in clay drill core samples, from Lake George, NSW, Australia"}],"downloadable_attachments":[],"slug":"Ács_Péter_Fedor_Szász_Anita_Papp_Éva_Koroncz_Péter_Fedor_Ferenc_Development_of_a_complex_laboratory_procedure_for_the_characterization_of_pore_structure_in_clay_drill_core_samples_from_Lake_George_NSW_Australia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary environments.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-38027989-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34514044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34514044/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/54379174/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34514044/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia">AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unideb.academia.edu/DavidArpad">David Arpad</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszintfeletti magasságban helyezkedik el.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f9eb173222247deda9fe34535668983f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54379174,"asset_id":34514044,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54379174/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34514044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34514044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34514044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34514044]").text(description); $(".js-view-count[data-work-id=34514044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34514044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34514044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f9eb173222247deda9fe34535668983f" } } $('.js-work-strip[data-work-id=34514044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34514044,"title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia","translated_title":"","metadata":{"grobid_abstract":"A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszintfeletti magasságban helyezkedik el.","grobid_abstract_attachment_id":54379174},"translated_abstract":null,"internal_url":"https://www.academia.edu/34514044/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2017-09-08T07:42:14.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":698845,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":30245488,"work_id":34514044,"tagging_user_id":698845,"tagged_user_id":498748,"co_author_invite_id":null,"email":"e***p@anu.edu.au","affiliation":"The Australian National University","display_order":0,"name":"Eva Papp","title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"},{"id":30245489,"work_id":34514044,"tagging_user_id":698845,"tagged_user_id":699132,"co_author_invite_id":null,"email":"f***8@gmail.com","affiliation":"University of Debrecen","display_order":1,"name":"Rozália Fodor","title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"}],"downloadable_attachments":[{"id":54379174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54379174/thumbnails/1.jpg","file_name":"Lake_George_trace_fossils.pdf","download_url":"https://www.academia.edu/attachments/54379174/download_file","bulk_download_file_name":"AZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54379174/Lake_George_trace_fossils-libre.pdf?1504881850=\u0026response-content-disposition=attachment%3B+filename%3DAZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf\u0026Expires=1744157147\u0026Signature=fh6Khr6~TM2ldKl9iBMM2MdtekVh8bdaOJgLA2aC8E87pWFKpgjAco1TIVVj-n6MY1ogRmdOuyck7EL6q7Rsu6sy-Wc58XabwW1IyN1EfHc9TwG5gUypx0vPmkZQWlDcUPRNVGTYmByAY5IIQIb-zA8x7v6aqncGjPdr5x5ixIZEB0jzCxmZ18KDMmDR2NfnF4p2rRh5UrMg~l04V4h-4q0JDNR8hDnwBcFfnBDlUjeaupBZ1GxwAHmRuZV84YdPGxR2aJwsFfEvUEDg27eeGKSzPyyu5rllnI2P7Qy~688rm6cQu7lWuC34vKzkcRjcb6gXyIC2DYMowcHMoGynAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"AZ_ŐSÉLETNYOMOK_KÖRNYEZETJELZŐ_SZEREPE_A_WEEREEWA_TÓ_LAKE_GEORGE_ÚJ_DÉL_WALES_AUSZTRÁLIA_NEGYEDIDŐSZAKI_KÉPZŐDMÉNYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_slug":"","page_count":4,"language":"hu","content_type":"Work","summary":"A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszintfeletti magasságban helyezkedik el.","impression_tracking_id":null,"owner":{"id":698845,"first_name":"David","middle_initials":null,"last_name":"Arpad","page_name":"DavidArpad","domain_name":"unideb","created_at":"2011-08-30T20:51:51.052-07:00","display_name":"David Arpad","url":"https://unideb.academia.edu/DavidArpad"},"attachments":[{"id":54379174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54379174/thumbnails/1.jpg","file_name":"Lake_George_trace_fossils.pdf","download_url":"https://www.academia.edu/attachments/54379174/download_file","bulk_download_file_name":"AZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54379174/Lake_George_trace_fossils-libre.pdf?1504881850=\u0026response-content-disposition=attachment%3B+filename%3DAZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf\u0026Expires=1744157147\u0026Signature=fh6Khr6~TM2ldKl9iBMM2MdtekVh8bdaOJgLA2aC8E87pWFKpgjAco1TIVVj-n6MY1ogRmdOuyck7EL6q7Rsu6sy-Wc58XabwW1IyN1EfHc9TwG5gUypx0vPmkZQWlDcUPRNVGTYmByAY5IIQIb-zA8x7v6aqncGjPdr5x5ixIZEB0jzCxmZ18KDMmDR2NfnF4p2rRh5UrMg~l04V4h-4q0JDNR8hDnwBcFfnBDlUjeaupBZ1GxwAHmRuZV84YdPGxR2aJwsFfEvUEDg27eeGKSzPyyu5rllnI2P7Qy~688rm6cQu7lWuC34vKzkcRjcb6gXyIC2DYMowcHMoGynAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2588,"name":"Ichnology","url":"https://www.academia.edu/Documents/in/Ichnology"},{"id":6697,"name":"Australia","url":"https://www.academia.edu/Documents/in/Australia"},{"id":7075,"name":"Paleoenvironment","url":"https://www.academia.edu/Documents/in/Paleoenvironment"},{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"},{"id":70233,"name":"Trace Fossils","url":"https://www.academia.edu/Documents/in/Trace_Fossils"},{"id":1078280,"name":"Bioturbation Structures","url":"https://www.academia.edu/Documents/in/Bioturbation_Structures"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34514044-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="33544650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33544650/The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW"><img alt="Research paper thumbnail of The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW" class="work-thumbnail" src="https://attachments.academia-assets.com/53574587/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33544650/The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW">The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hydrothermal Au – Cu mineralisation at Majors Creek, NSW has led to the formation of disseminated...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hydrothermal Au – Cu mineralisation at Majors Creek,<br />NSW has led to the formation of disseminated sulphides<br />throughout the host granodiorite body. Mineralisation in<br />overburden and shallow bedrock occurs in sparse<br />concentration settings such as quartz veins and potassic<br />alteration. Distinguishing between alterations zones,<br />mineralising features and the fresh-weathered rock<br />boundary is paramount to explorers.<br />A combination of DC electrical resistivity and CT<br />scanning was employed to delineate the weathered/fresh<br />rock boundary, potential mineralising features and areas<br />of differing alterations. A 500 metre survey line was<br />constructed over a known area of mineralisation and<br />passed directly over a drill core sample. CT scanning<br />data will define pore space characteristics of alteration<br />and weathering states of the host granodiorite.<br />This study has the potential to spark future researching<br />into shallow surface exploration throughout the Major’s<br />Creek area, building on a potential relationship between,<br />pore space, apparent resistivity and overburden-bedrock<br />characteristics.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d57dcbc23e950efdf8317ae5a08c8547" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":53574587,"asset_id":33544650,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/53574587/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33544650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33544650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33544650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33544650]").text(description); $(".js-view-count[data-work-id=33544650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33544650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33544650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d57dcbc23e950efdf8317ae5a08c8547" } } $('.js-work-strip[data-work-id=33544650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33544650,"title":"The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW","translated_title":"","metadata":{"abstract":"Hydrothermal Au – Cu mineralisation at Majors Creek,\nNSW has led to the formation of disseminated sulphides\nthroughout the host granodiorite body. Mineralisation in\noverburden and shallow bedrock occurs in sparse\nconcentration settings such as quartz veins and potassic\nalteration. Distinguishing between alterations zones,\nmineralising features and the fresh-weathered rock\nboundary is paramount to explorers.\nA combination of DC electrical resistivity and CT\nscanning was employed to delineate the weathered/fresh\nrock boundary, potential mineralising features and areas\nof differing alterations. A 500 metre survey line was\nconstructed over a known area of mineralisation and\npassed directly over a drill core sample. CT scanning\ndata will define pore space characteristics of alteration\nand weathering states of the host granodiorite.\nThis study has the potential to spark future researching\ninto shallow surface exploration throughout the Major’s\nCreek area, building on a potential relationship between,\npore space, apparent resistivity and overburden-bedrock\ncharacteristics.\n"},"translated_abstract":"Hydrothermal Au – Cu mineralisation at Majors Creek,\nNSW has led to the formation of disseminated sulphides\nthroughout the host granodiorite body. Mineralisation in\noverburden and shallow bedrock occurs in sparse\nconcentration settings such as quartz veins and potassic\nalteration. Distinguishing between alterations zones,\nmineralising features and the fresh-weathered rock\nboundary is paramount to explorers.\nA combination of DC electrical resistivity and CT\nscanning was employed to delineate the weathered/fresh\nrock boundary, potential mineralising features and areas\nof differing alterations. A 500 metre survey line was\nconstructed over a known area of mineralisation and\npassed directly over a drill core sample. CT scanning\ndata will define pore space characteristics of alteration\nand weathering states of the host granodiorite.\nThis study has the potential to spark future researching\ninto shallow surface exploration throughout the Major’s\nCreek area, building on a potential relationship between,\npore space, apparent resistivity and overburden-bedrock\ncharacteristics.\n","internal_url":"https://www.academia.edu/33544650/The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW","translated_internal_url":"","created_at":"2017-06-18T22:01:41.974-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29410896,"work_id":33544650,"tagging_user_id":498748,"tagged_user_id":9559421,"co_author_invite_id":null,"email":"s***2@gmail.com","affiliation":"The Australian National University","display_order":1,"name":"Sanjay Govindan","title":"The nature of changing pore space at an in-situ weathered/fresh rock interface and its effect on the resistivity signature, Dargues Reef Gold Deposit, Majors Creek NSW"}],"downloadable_attachments":[{"id":53574587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53574587/thumbnails/1.jpg","file_name":"ASEG2015ab237.pdf","download_url":"https://www.academia.edu/attachments/53574587/download_file","bulk_download_file_name":"The_nature_of_changing_pore_space_at_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53574587/ASEG2015ab237-libre.pdf?1497848666=\u0026response-content-disposition=attachment%3B+filename%3DThe_nature_of_changing_pore_space_at_an.pdf\u0026Expires=1744157147\u0026Signature=VKTVfCEepoU4YQm2uyJO1xTbhCDhib5Z6O~rzh97Avy~fuviVwx4TksRv~HoCLBJQ16UTpaxzdAiXGHH2qS5qj1SXzUH3IROgc9sJ8xhh7UpESYLlCEnIViBk3BrRmEIKC7dCdLCOoVaI2v4gXX6ixSe94t8zwL3sSLJOnduNM5qVqtYnW74y3~3xVB0FtA246U9tUNmSPRJCVhLzDh5jG3FKDG5H8VYpxcTe2se9wbq3RPdpyz-f3N33YSU-iiXeJDibzDajGNfI2ycCMqE2bgXsvM5-6~YLhlEEQNBaGa~yTjg2O~BzgfLBD6dQVTYVFUMAn~yzsG~CJfim8B-ww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_nature_of_changing_pore_space_at_an_in_situ_weathered_fresh_rock_interface_and_its_effect_on_the_resistivity_signature_Dargues_Reef_Gold_Deposit_Majors_Creek_NSW","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Hydrothermal Au – Cu mineralisation at Majors Creek,\nNSW has led to the formation of disseminated sulphides\nthroughout the host granodiorite body. Mineralisation in\noverburden and shallow bedrock occurs in sparse\nconcentration settings such as quartz veins and potassic\nalteration. Distinguishing between alterations zones,\nmineralising features and the fresh-weathered rock\nboundary is paramount to explorers.\nA combination of DC electrical resistivity and CT\nscanning was employed to delineate the weathered/fresh\nrock boundary, potential mineralising features and areas\nof differing alterations. A 500 metre survey line was\nconstructed over a known area of mineralisation and\npassed directly over a drill core sample. CT scanning\ndata will define pore space characteristics of alteration\nand weathering states of the host granodiorite.\nThis study has the potential to spark future researching\ninto shallow surface exploration throughout the Major’s\nCreek area, building on a potential relationship between,\npore space, apparent resistivity and overburden-bedrock\ncharacteristics.\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":53574587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53574587/thumbnails/1.jpg","file_name":"ASEG2015ab237.pdf","download_url":"https://www.academia.edu/attachments/53574587/download_file","bulk_download_file_name":"The_nature_of_changing_pore_space_at_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53574587/ASEG2015ab237-libre.pdf?1497848666=\u0026response-content-disposition=attachment%3B+filename%3DThe_nature_of_changing_pore_space_at_an.pdf\u0026Expires=1744157147\u0026Signature=VKTVfCEepoU4YQm2uyJO1xTbhCDhib5Z6O~rzh97Avy~fuviVwx4TksRv~HoCLBJQ16UTpaxzdAiXGHH2qS5qj1SXzUH3IROgc9sJ8xhh7UpESYLlCEnIViBk3BrRmEIKC7dCdLCOoVaI2v4gXX6ixSe94t8zwL3sSLJOnduNM5qVqtYnW74y3~3xVB0FtA246U9tUNmSPRJCVhLzDh5jG3FKDG5H8VYpxcTe2se9wbq3RPdpyz-f3N33YSU-iiXeJDibzDajGNfI2ycCMqE2bgXsvM5-6~YLhlEEQNBaGa~yTjg2O~BzgfLBD6dQVTYVFUMAn~yzsG~CJfim8B-ww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":105432,"name":"CT scanning","url":"https://www.academia.edu/Documents/in/CT_scanning"}],"urls":[{"id":8189020,"url":"http://www.publish.csiro.au/EX/issue/8090"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-33544650-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="29713843"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29713843/A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15"><img alt="Research paper thumbnail of A new core from Lake George [online]. Quaternary Australasia, Vol. 33, No. 1, Jun 2016:15." class="work-thumbnail" src="https://attachments.academia-assets.com/50164212/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29713843/A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15">A new core from Lake George [online]. Quaternary Australasia, Vol. 33, No. 1, Jun 2016:15.</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the fir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cc8a0ce6e5a6336aa1ec489ebf948af9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":50164212,"asset_id":29713843,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/50164212/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29713843"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29713843"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29713843; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29713843]").text(description); $(".js-view-count[data-work-id=29713843]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29713843; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29713843']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cc8a0ce6e5a6336aa1ec489ebf948af9" } } $('.js-work-strip[data-work-id=29713843]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29713843,"title":"A new core from Lake George [online]. Quaternary Australasia, Vol. 33, No. 1, Jun 2016:15.","translated_title":"","metadata":{"abstract":"On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another."},"translated_abstract":"On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another.","internal_url":"https://www.academia.edu/29713843/A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15","translated_internal_url":"","created_at":"2016-11-07T06:16:12.375-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":50164212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50164212/thumbnails/1.jpg","file_name":"Quaternary_Australia_Vol_33_July_2016_electronic_copy.pdf","download_url":"https://www.academia.edu/attachments/50164212/download_file","bulk_download_file_name":"A_new_core_from_Lake_George_online_Quate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50164212/Quaternary_Australia_Vol_33_July_2016_electronic_copy-libre.pdf?1478529799=\u0026response-content-disposition=attachment%3B+filename%3DA_new_core_from_Lake_George_online_Quate.pdf\u0026Expires=1744157148\u0026Signature=b3MjJz0NDVVpPyuIXWyKt9D8x9zzanCiaze7TGGGs9Bvah7gDvA2Z~xhgolvn2td73Kb~450mGK4FXuV5A0w04KQs39TZjf30lcal0EZkNu3zZYfOB76FoJhoqnTSNM1~tjO~63cBX3ut06QjLcL70tHvn29dT6YRFBVh41ar0BVgNHBKmwTzhPQTQftdOLqdetA2hAC7kBa6p10pysSA-xrRSox2Maw-4HLuHp7K8Rn1Gobe0khkr54KaE60w6~-4YznfBBRFg9uT8zHIsHUm4mcmmiHvtk2bn2-AyH2XlEQDU9KAz0pM9qCqKbe-SrD1LWbwHRR2Gsnp1W2A3pqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_core_from_Lake_George_online_Quaternary_Australasia_Vol_33_No_1_Jun_2016_15","translated_slug":"","page_count":48,"language":"en","content_type":"Work","summary":"On the 27 November 2015, our ARC-funded Lake George Project* arrived at a milestone, when the first core appeared from the direction of the high-tech sonic drill rig, perched above a surveying mark on the bed of mysterious Lake George, or, to use its traditional name, Weereewa. A team of drillers, surpassed in number by a team of scientists, excitedly started to package the fresh core, to keep it from sunlight in anticipation of OSL dating, some months away. The wind turbines in the background were slowly rotating, but the puddles on the on the lake floor hadn’t dried up yet, so on this early morning everyone felt lucky, for one reason or another.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":50164212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50164212/thumbnails/1.jpg","file_name":"Quaternary_Australia_Vol_33_July_2016_electronic_copy.pdf","download_url":"https://www.academia.edu/attachments/50164212/download_file","bulk_download_file_name":"A_new_core_from_Lake_George_online_Quate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50164212/Quaternary_Australia_Vol_33_July_2016_electronic_copy-libre.pdf?1478529799=\u0026response-content-disposition=attachment%3B+filename%3DA_new_core_from_Lake_George_online_Quate.pdf\u0026Expires=1744157148\u0026Signature=b3MjJz0NDVVpPyuIXWyKt9D8x9zzanCiaze7TGGGs9Bvah7gDvA2Z~xhgolvn2td73Kb~450mGK4FXuV5A0w04KQs39TZjf30lcal0EZkNu3zZYfOB76FoJhoqnTSNM1~tjO~63cBX3ut06QjLcL70tHvn29dT6YRFBVh41ar0BVgNHBKmwTzhPQTQftdOLqdetA2hAC7kBa6p10pysSA-xrRSox2Maw-4HLuHp7K8Rn1Gobe0khkr54KaE60w6~-4YznfBBRFg9uT8zHIsHUm4mcmmiHvtk2bn2-AyH2XlEQDU9KAz0pM9qCqKbe-SrD1LWbwHRR2Gsnp1W2A3pqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2119,"name":"Paleomagnetism","url":"https://www.academia.edu/Documents/in/Paleomagnetism"},{"id":6951,"name":"Groundwater","url":"https://www.academia.edu/Documents/in/Groundwater"},{"id":20614,"name":"OSL dating","url":"https://www.academia.edu/Documents/in/OSL_dating"},{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"},{"id":191577,"name":"Resistivity","url":"https://www.academia.edu/Documents/in/Resistivity"}],"urls":[{"id":7718621,"url":"http://search.informit.com.au/documentSummary;dn=227972847569674;res=IELHSS%3E%20ISSN:%200811-0433.%20%5Bcited%2008%20Nov%2016%5D."}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-29713843-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="8803757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8803757/Papp_%C3%89_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW"><img alt="Research paper thumbnail of Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW." class="work-thumbnail" src="https://attachments.academia-assets.com/35150966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8803757/Papp_%C3%89_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW">Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW.</a></div><div class="wp-workCard_item"><span>HUNGEO 2014, pp. 156-167. ISBN 978-963-8221-53-7</span><span>, Aug 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Ir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="87c09f396e17b01ab060177ba158e3e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":35150966,"asset_id":8803757,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/35150966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8803757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8803757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8803757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8803757]").text(description); $(".js-view-count[data-work-id=8803757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8803757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8803757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "87c09f396e17b01ab060177ba158e3e0" } } $('.js-work-strip[data-work-id=8803757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8803757,"title":"Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW.","translated_title":"","metadata":{"abstract":"Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.","more_info":"Pesented at HUNGEO 2014, 22-26 August 2014 Debrecen, Hungary","publication_date":{"day":null,"month":8,"year":2014,"errors":{}},"publication_name":"HUNGEO 2014, pp. 156-167. ISBN 978-963-8221-53-7"},"translated_abstract":"Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.","internal_url":"https://www.academia.edu/8803757/Papp_%C3%89_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW","translated_internal_url":"","created_at":"2014-10-15T19:20:52.072-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494812,"work_id":8803757,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6392835,"email":"l***n@anu.edu.au","display_order":null,"name":"Lauren Burraston","title":"Papp, É., Burraston, L. and McPhail, D.C.: Identifying palaeochannels and their influence on groundwater systems in the Lower Murrumbidgee catchment, NSW."}],"downloadable_attachments":[{"id":35150966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/35150966/thumbnails/1.jpg","file_name":"Papp_et_al_2014.pdf","download_url":"https://www.academia.edu/attachments/35150966/download_file","bulk_download_file_name":"Papp_E_Burraston_L_and_McPhail_D_C_Ident.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/35150966/Papp_et_al_2014-libre.pdf?1413425871=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_Burraston_L_and_McPhail_D_C_Ident.pdf\u0026Expires=1744157148\u0026Signature=RGmhYW8fdqbKioMUSWiKxyzIWft5rTGJbztogD6WaZ5NFWabLyEzjkQivWmjctcNataEgbMZ1~2gif~epK16XUcFaoMIk1korCkn6q-gpM32LpR~JJ4a91yOLYhREYWeZ4GvquiR9VrBNIuPqcPIRR2~tijDNMpj4~OHcDheVTUA2YZydPFIOmEnTm26YYr9tN0nGAq4N93BV6H9lut6iL5EvFmGV~MUqQdHP1vOFvG~owgqbnjOa5kLKPfSiiDbspRaCTnUHrpZcgPSqyt1wrPXm9SCfVtFx48YGHG0OkhhZNFyV6WAlNeLNZ~px4FLWaGfZ~HT5xch8g1hjj0D7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Papp_É_Burraston_L_and_McPhail_D_C_Identifying_palaeochannels_and_their_influence_on_groundwater_systems_in_the_Lower_Murrumbidgee_catchment_NSW","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Alluvial plains are often host to major agricultural irrigation areas, such as the Coleambally Irrigation Area (CIA) in the Lower Murrumbidgee Catchment, New South Wales, Australia. There are multiple aquifers in the catchment, making it difficult to understand the impacts of groundwater extraction and irrigation. Known groundwater mounding from irrigation and decreasing hydraulic heads from groundwater extraction, combined with groundwater salinity represent a significant threat to the future of extraction and irrigation in the CIA. In this study we discovered a previously unmapped branch of a known palaeochannel system within the heavily irrigated CIA, based on radiometrics images. We then used a combination of resistivity geophysics, geological logs, hydrogeology and hydrogeochemistry to understand the subsurface geometry of the palaeochannel and the impacts on groundwater. Four resistivity surveys totalling 2.8 km length and 60 m depth were conducted over the paleochannel, with survey lines run parallel to irrigation channels. The results revealed a broad sandy paleochannel partially filled with clay sediments. The clay-rich regions can act as aquitards that impede downward groundwater flow and contribute to rising water tables and elevated levels of shallow groundwater salinity. The sand-rich parts of the channel can provide pathways for saline water from the shallow aquifers to leak into deeper aquifers. We also found evidence of leakage from bores and irrigation channels. Bore hydrographs show that the aquifers are well connected at depths greater than approximately 50 m, where groundwater is extracted for irrigation, but less well connected at shallower depths, reflecting the sand-rich and clay-rich parts of the channel. The shallow groundwater is saline and becomes fresher with increasing depth. Combined with strong downwards hydraulic gradients, this results in a risk to the water quality in the deeper aquifers, if the saline groundwater is transported into the freshwater aquifers at depth.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":35150966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/35150966/thumbnails/1.jpg","file_name":"Papp_et_al_2014.pdf","download_url":"https://www.academia.edu/attachments/35150966/download_file","bulk_download_file_name":"Papp_E_Burraston_L_and_McPhail_D_C_Ident.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/35150966/Papp_et_al_2014-libre.pdf?1413425871=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_Burraston_L_and_McPhail_D_C_Ident.pdf\u0026Expires=1744157148\u0026Signature=RGmhYW8fdqbKioMUSWiKxyzIWft5rTGJbztogD6WaZ5NFWabLyEzjkQivWmjctcNataEgbMZ1~2gif~epK16XUcFaoMIk1korCkn6q-gpM32LpR~JJ4a91yOLYhREYWeZ4GvquiR9VrBNIuPqcPIRR2~tijDNMpj4~OHcDheVTUA2YZydPFIOmEnTm26YYr9tN0nGAq4N93BV6H9lut6iL5EvFmGV~MUqQdHP1vOFvG~owgqbnjOa5kLKPfSiiDbspRaCTnUHrpZcgPSqyt1wrPXm9SCfVtFx48YGHG0OkhhZNFyV6WAlNeLNZ~px4FLWaGfZ~HT5xch8g1hjj0D7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":213575,"name":"Resistivity Imaging","url":"https://www.academia.edu/Documents/in/Resistivity_Imaging"},{"id":351709,"name":"2D and 3D geoelectrical resistivity imaging: Theory and field design","url":"https://www.academia.edu/Documents/in/2D_and_3D_geoelectrical_resistivity_imaging_Theory_and_field_design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-8803757-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6227194"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6227194/Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_%C3%89va_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales"><img alt="Research paper thumbnail of Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales." class="work-thumbnail" src="https://attachments.academia-assets.com/33093749/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6227194/Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_%C3%89va_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales">Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales.</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We assess a method for conducting seismic refraction inversion in a 3-D setting to image the sha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We assess a method for conducting seismic refraction inversion <br />in a 3-D setting to image the shape and structure of a <br />palaeochannel. The trial survey was conducted over a suspected <br />Tertiary palaeochannel adjacent to the Wyalong goldfields <br />(Lachlan Fold Belt) in central NSW. This work has implications <br />for the control of groundwater migration and dryland salinity <br />studies. The method was conducted using standard multichannel <br />seismic recording equipment and an unconventional 3-D field <br />geometry. Three-dimensional velocity-depth models show a <br />4-layer sub-horizontal system underlain by high-velocity <br />metasedimentitic basement at a variable depth, ranging from 70 to <br />170 m. The interpreted palaeochannel is coincident with high <br />magnetic intensity features identified from recent surveys of the <br />region.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9c52dbc5c0b22f9f12a61f0ff736335c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33093749,"asset_id":6227194,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33093749/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6227194"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6227194"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6227194; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6227194]").text(description); $(".js-view-count[data-work-id=6227194]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6227194; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6227194']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9c52dbc5c0b22f9f12a61f0ff736335c" } } $('.js-work-strip[data-work-id=6227194]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6227194,"title":"Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales.","translated_title":"","metadata":{"abstract":"We assess a method for conducting seismic refraction inversion\r\nin a 3-D setting to image the shape and structure of a\r\npalaeochannel. The trial survey was conducted over a suspected\r\nTertiary palaeochannel adjacent to the Wyalong goldfields\r\n(Lachlan Fold Belt) in central NSW. This work has implications\r\nfor the control of groundwater migration and dryland salinity\r\nstudies. The method was conducted using standard multichannel\r\nseismic recording equipment and an unconventional 3-D field\r\ngeometry. Three-dimensional velocity-depth models show a \r\n4-layer sub-horizontal system underlain by high-velocity\r\nmetasedimentitic basement at a variable depth, ranging from 70 to\r\n170 m. The interpreted palaeochannel is coincident with high\r\nmagnetic intensity features identified from recent surveys of the\r\nregion.","more_info":"Exploration Geophysics, Vol 31. pp. 389-393. 2000","ai_title_tag":"3D Seismic Refraction Inversion of Palaeochannels in NSW"},"translated_abstract":"We assess a method for conducting seismic refraction inversion\r\nin a 3-D setting to image the shape and structure of a\r\npalaeochannel. The trial survey was conducted over a suspected\r\nTertiary palaeochannel adjacent to the Wyalong goldfields\r\n(Lachlan Fold Belt) in central NSW. This work has implications\r\nfor the control of groundwater migration and dryland salinity\r\nstudies. The method was conducted using standard multichannel\r\nseismic recording equipment and an unconventional 3-D field\r\ngeometry. Three-dimensional velocity-depth models show a \r\n4-layer sub-horizontal system underlain by high-velocity\r\nmetasedimentitic basement at a variable depth, ranging from 70 to\r\n170 m. The interpreted palaeochannel is coincident with high\r\nmagnetic intensity features identified from recent surveys of the\r\nregion.","internal_url":"https://www.academia.edu/6227194/Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_%C3%89va_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_internal_url":"","created_at":"2014-02-27T06:54:38.258-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15550800,"work_id":6227194,"tagging_user_id":498748,"tagged_user_id":41924283,"co_author_invite_id":null,"email":"k***l@awi-bremerhaven.de","display_order":0,"name":"Karsten Gohl","title":"Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales."},{"id":32860783,"work_id":6227194,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6880436,"email":"t***a@es.usyd.edu.au","display_order":4194304,"name":"Tara Deen","title":"Tara J. Deen, Karsten Gohl, Christopher Leslie, Éva Papp and Kevin Wake-Dyster: Seismic refraction inversion of a palaeochannel system in the Lachlan Fold Belt, Central New South Wales."}],"downloadable_attachments":[{"id":33093749,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33093749/thumbnails/1.jpg","file_name":"Deen_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33093749/download_file","bulk_download_file_name":"Tara_J_Deen_Karsten_Gohl_Christopher_Les.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33093749/Deen_et_al_2000-libre.pdf?1393512855=\u0026response-content-disposition=attachment%3B+filename%3DTara_J_Deen_Karsten_Gohl_Christopher_Les.pdf\u0026Expires=1744157148\u0026Signature=VZD-9oxcpCqV9MPQzo9OZE483b82gTSL8wwtAxK~fEfGsE9W8pMMPesw9fodN0KF5O2z6sgCoAH60q8pnhkWFNSww-mRI~IuVpORR9n9CAeRmFGAelgGy8OfELwTHwMp-Q3tRp6-kGYu2sXZEBgKP0hLNoYl7mfa01ryL1O4UfvEhEHwTj8aRCcz3~5RY~yRlLLg1cBbKBbeArt4qNuPgJAPIyXf06wP4bnA~cTWfPMwLRNdHUYg2vR9KMZ2XwjFPXx8EqOknSzkDVmrw9qj0D9Wo84HpWhOyL27N0ASzLqZWEuj9mkMUUQ4MQXS9FXXozDpygYPLSwPSzEFJ-NcLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tara_J_Deen_Karsten_Gohl_Christopher_Leslie_Éva_Papp_and_Kevin_Wake_Dyster_Seismic_refraction_inversion_of_a_palaeochannel_system_in_the_Lachlan_Fold_Belt_Central_New_South_Wales","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We assess a method for conducting seismic refraction inversion\r\nin a 3-D setting to image the shape and structure of a\r\npalaeochannel. The trial survey was conducted over a suspected\r\nTertiary palaeochannel adjacent to the Wyalong goldfields\r\n(Lachlan Fold Belt) in central NSW. This work has implications\r\nfor the control of groundwater migration and dryland salinity\r\nstudies. The method was conducted using standard multichannel\r\nseismic recording equipment and an unconventional 3-D field\r\ngeometry. Three-dimensional velocity-depth models show a \r\n4-layer sub-horizontal system underlain by high-velocity\r\nmetasedimentitic basement at a variable depth, ranging from 70 to\r\n170 m. The interpreted palaeochannel is coincident with high\r\nmagnetic intensity features identified from recent surveys of the\r\nregion.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":33093749,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33093749/thumbnails/1.jpg","file_name":"Deen_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33093749/download_file","bulk_download_file_name":"Tara_J_Deen_Karsten_Gohl_Christopher_Les.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33093749/Deen_et_al_2000-libre.pdf?1393512855=\u0026response-content-disposition=attachment%3B+filename%3DTara_J_Deen_Karsten_Gohl_Christopher_Les.pdf\u0026Expires=1744157148\u0026Signature=VZD-9oxcpCqV9MPQzo9OZE483b82gTSL8wwtAxK~fEfGsE9W8pMMPesw9fodN0KF5O2z6sgCoAH60q8pnhkWFNSww-mRI~IuVpORR9n9CAeRmFGAelgGy8OfELwTHwMp-Q3tRp6-kGYu2sXZEBgKP0hLNoYl7mfa01ryL1O4UfvEhEHwTj8aRCcz3~5RY~yRlLLg1cBbKBbeArt4qNuPgJAPIyXf06wP4bnA~cTWfPMwLRNdHUYg2vR9KMZ2XwjFPXx8EqOknSzkDVmrw9qj0D9Wo84HpWhOyL27N0ASzLqZWEuj9mkMUUQ4MQXS9FXXozDpygYPLSwPSzEFJ-NcLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":2494320,"url":"http://library.seg.org/doi/pdfplus/10.1071/EG00389"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6227194-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6193577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6193577/Christopher_Leslie_Leonie_Jones_%C3%89va_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales"><img alt="Research paper thumbnail of Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales" class="work-thumbnail" src="https://attachments.academia-assets.com/33072303/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6193577/Christopher_Leslie_Leonie_Jones_%C3%89va_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales">Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Two high-resolution 2-D seismic surveys were carried out over palaeochannels near West Wyalong, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Two high-resolution 2-D seismic surveys were carried out over <br />palaeochannels near West Wyalong, NSW using an IVITM <br />mini-vibrator. The first aim of these seismic surveys was to map in <br />detail the profile of the palaeochannels. The second aim was to <br />establish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels. <br />Preliminary results, when tied to borehole data, indicate possible <br />palaeo-erosion surfaces and maghemite gravel-filled <br />palaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding <br />100 m.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-6193577-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-6193577-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254308/figure-1-location-map-for-west-wyalong-and-yiddah-including"><img alt="Fig. 1. Location map for West Wyalong and Yiddah, including position of seismic lines and interpreted palaeochannels. " class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254315/figure-2-example-of-shot-record-from-the-wyalong-line-shot"><img alt="Fig. 2. Example of a shot record from the Wyalong line (shot 700) after various stages of processing. Seismic imagery of palaeochannels " class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254319/figure-3-christopher-leslie-leonie-jones-va-papp-kevin-wake"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/21254325/figure-4-wyalong-seismic-line-the-first-refractor-layer"><img alt="Fig 4. Wyalong seismic line. The first refractor layer, location of drill holes, and magnetic susceptibility peaks shown. H:V = 1:80. " class="figure-slide-image" src="https://figures.academia-assets.com/33072303/figure_004.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-6193577-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a512d1b611ca8a46c7968d2aacc3d0c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33072303,"asset_id":6193577,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33072303/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6193577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6193577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6193577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6193577]").text(description); $(".js-view-count[data-work-id=6193577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6193577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6193577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a512d1b611ca8a46c7968d2aacc3d0c2" } } $('.js-work-strip[data-work-id=6193577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6193577,"title":"Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales","translated_title":"","metadata":{"abstract":"Two high-resolution 2-D seismic surveys were carried out over\r\npalaeochannels near West Wyalong, NSW using an IVITM\r\nmini-vibrator. The first aim of these seismic surveys was to map in\r\ndetail the profile of the palaeochannels. The second aim was to\r\nestablish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels.\r\nPreliminary results, when tied to borehole data, indicate possible\r\npalaeo-erosion surfaces and maghemite gravel-filled\r\npalaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding \r\n100 m. \r\n","ai_title_tag":"High-Resolution Seismic Imaging of Palaeochannels in NSW"},"translated_abstract":"Two high-resolution 2-D seismic surveys were carried out over\r\npalaeochannels near West Wyalong, NSW using an IVITM\r\nmini-vibrator. The first aim of these seismic surveys was to map in\r\ndetail the profile of the palaeochannels. The second aim was to\r\nestablish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels.\r\nPreliminary results, when tied to borehole data, indicate possible\r\npalaeo-erosion surfaces and maghemite gravel-filled\r\npalaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding \r\n100 m. \r\n","internal_url":"https://www.academia.edu/6193577/Christopher_Leslie_Leonie_Jones_%C3%89va_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_internal_url":"","created_at":"2014-02-24T12:41:47.384-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":15401391,"work_id":6193577,"tagging_user_id":498748,"tagged_user_id":32577549,"co_author_invite_id":null,"email":"j***s@usgs.gov","display_order":0,"name":"L. Jones","title":"Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales"},{"id":15401392,"work_id":6193577,"tagging_user_id":498748,"tagged_user_id":41924283,"co_author_invite_id":null,"email":"k***l@awi-bremerhaven.de","display_order":4194304,"name":"Karsten Gohl","title":"Christopher Leslie, Leonie Jones, Éva Papp, Kevin Wake-Dyster, Tara J. Deen, Karsten Gohl: High-resolution seismic imagery of palaeochannels near West Wyalong, New South Wales"}],"downloadable_attachments":[{"id":33072303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33072303/thumbnails/1.jpg","file_name":"Leslie_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33072303/download_file","bulk_download_file_name":"Christopher_Leslie_Leonie_Jones_Eva_Papp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33072303/Leslie_et_al_2000-libre.pdf?1393274259=\u0026response-content-disposition=attachment%3B+filename%3DChristopher_Leslie_Leonie_Jones_Eva_Papp.pdf\u0026Expires=1744157148\u0026Signature=ZcajhONgGzjHiNxyewcZY-C6cQth1zjs3F--E5-1f0JB0OplyRj53dQC2D-6i3Od27YIc7KjYy5No6P6d8SKos9vZeDYhJlnbn3PGaruTLI9TkBo84Ue4S7XSzZ82A5y9YAfawyMi0JOtYLEJnh66bAonwqi0odq8FSXop7EdONrHdyob-ok7uSmSpZB5KNuQbmwVRT4duvwA~G8q78NBp9HGNRWnF8gXNCe9UnLSQ174yQVD7c8rTmBV5tvDlXcpB8xZv~nbPFMXuxxHni6r8J5f0O0-NfjclE~xy8i2XgfqAzaXS4rov-O4HLl38sDyeR4rmoIIy3ni4mevv12Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Christopher_Leslie_Leonie_Jones_Éva_Papp_Kevin_Wake_Dyster_Tara_J_Deen_Karsten_Gohl_High_resolution_seismic_imagery_of_palaeochannels_near_West_Wyalong_New_South_Wales","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Two high-resolution 2-D seismic surveys were carried out over\r\npalaeochannels near West Wyalong, NSW using an IVITM\r\nmini-vibrator. The first aim of these seismic surveys was to map in\r\ndetail the profile of the palaeochannels. The second aim was to\r\nestablish the regolith stratigraphy within the channels and evaluate the techniques used for acquiring and processing such data. Short receiver spacings, down to one metre, were used in order to achieve satisfactory resolution of the anticipated shallow targets. The short length of the split spread meant that extra effort was required to eliminate noise close to the source. Paradigm Inc. DISCOTM/Focus software allowed interactive tests of processing parameters. A combination of bandpass filtering, spectral equalisation, mutes, and f-k filtering proved effective in suppressing noise and enhancing reflections on the shot records. Refraction statics have been calculated from the first arrivals for all the shots for both lines to reveal the shape of the uppermost layers. Examples of processing tests, as well as the interpreted seismic sections, are presented to demonstrate the effectiveness of high-resolution seismic techniques in imaging regolith stratigraphy and buried palaeochannels.\r\nPreliminary results, when tied to borehole data, indicate possible\r\npalaeo-erosion surfaces and maghemite gravel-filled\r\npalaeochannels to 10 m depth. Saprolite and bedrock interfaces are apparent, indicating palaeotopography with relief exceeding \r\n100 m. \r\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":33072303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33072303/thumbnails/1.jpg","file_name":"Leslie_et_al_2000.pdf","download_url":"https://www.academia.edu/attachments/33072303/download_file","bulk_download_file_name":"Christopher_Leslie_Leonie_Jones_Eva_Papp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33072303/Leslie_et_al_2000-libre.pdf?1393274259=\u0026response-content-disposition=attachment%3B+filename%3DChristopher_Leslie_Leonie_Jones_Eva_Papp.pdf\u0026Expires=1744157148\u0026Signature=ZcajhONgGzjHiNxyewcZY-C6cQth1zjs3F--E5-1f0JB0OplyRj53dQC2D-6i3Od27YIc7KjYy5No6P6d8SKos9vZeDYhJlnbn3PGaruTLI9TkBo84Ue4S7XSzZ82A5y9YAfawyMi0JOtYLEJnh66bAonwqi0odq8FSXop7EdONrHdyob-ok7uSmSpZB5KNuQbmwVRT4duvwA~G8q78NBp9HGNRWnF8gXNCe9UnLSQ174yQVD7c8rTmBV5tvDlXcpB8xZv~nbPFMXuxxHni6r8J5f0O0-NfjclE~xy8i2XgfqAzaXS4rov-O4HLl38sDyeR4rmoIIy3ni4mevv12Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406292,"name":"Shallow Depth Geophysics","url":"https://www.academia.edu/Documents/in/Shallow_Depth_Geophysics"}],"urls":[{"id":2477112,"url":"http://library.seg.org/doi/pdf/10.1071/EG00383"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-6193577-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765277"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1765277/Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies"><img alt="Research paper thumbnail of Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies" class="work-thumbnail" src="https://attachments.academia-assets.com/22549972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1765277/Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies">Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A factor analysis-based method has been developed for preliminary interpretation of ground-based...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A factor analysis-based method has been developed for <br />preliminary interpretation of ground-based, time-domain <br />electromagnetic data. We refer to this method as factor score <br />imaging. It provides data volume and dimensionality reduction, <br />allows efficient approximation of the shape of buried conductive <br />bodies and aids selection of initial model geometry for full <br />inversion. In this paper, the method is applied to modelled <br />amplitude responses of simple geometrical bodies, such as a buried <br />conductive sphere and a dipping plate. It was found that five or <br />fewer factors typically describe the 30-dimensional data. Factor <br />score imaging was developed to visualise the results. In the first <br />factor score images, the footprint of the modelled bodies are <br />recovered with remarkable accuracy. The simple examples <br />described in this paper provide insight into the developed <br />methodology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9e6eea49bb36190fa4de908931f182b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":22549972,"asset_id":1765277,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/22549972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765277"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765277"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765277; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765277]").text(description); $(".js-view-count[data-work-id=1765277]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765277; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765277']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9e6eea49bb36190fa4de908931f182b" } } $('.js-work-strip[data-work-id=1765277]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765277,"title":"Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies","translated_title":"","metadata":{"abstract":"A factor analysis-based method has been developed for\r\npreliminary interpretation of ground-based, time-domain\r\nelectromagnetic data. We refer to this method as factor score\r\nimaging. It provides data volume and dimensionality reduction,\r\nallows efficient approximation of the shape of buried conductive\r\nbodies and aids selection of initial model geometry for full\r\ninversion. In this paper, the method is applied to modelled\r\namplitude responses of simple geometrical bodies, such as a buried\r\nconductive sphere and a dipping plate. It was found that five or\r\nfewer factors typically describe the 30-dimensional data. Factor\r\nscore imaging was developed to visualise the results. In the first\r\nfactor score images, the footprint of the modelled bodies are\r\nrecovered with remarkable accuracy. The simple examples\r\ndescribed in this paper provide insight into the developed\r\nmethodology.","more_info":"Published in Exploration Geophysics (2002) 33, 44-50"},"translated_abstract":"A factor analysis-based method has been developed for\r\npreliminary interpretation of ground-based, time-domain\r\nelectromagnetic data. We refer to this method as factor score\r\nimaging. It provides data volume and dimensionality reduction,\r\nallows efficient approximation of the shape of buried conductive\r\nbodies and aids selection of initial model geometry for full\r\ninversion. In this paper, the method is applied to modelled\r\namplitude responses of simple geometrical bodies, such as a buried\r\nconductive sphere and a dipping plate. It was found that five or\r\nfewer factors typically describe the 30-dimensional data. Factor\r\nscore imaging was developed to visualise the results. In the first\r\nfactor score images, the footprint of the modelled bodies are\r\nrecovered with remarkable accuracy. The simple examples\r\ndescribed in this paper provide insight into the developed\r\nmethodology.","internal_url":"https://www.academia.edu/1765277/Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies","translated_internal_url":"","created_at":"2012-07-04T18:44:18.342-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494803,"work_id":1765277,"tagging_user_id":498748,"tagged_user_id":33153047,"co_author_invite_id":null,"email":"r***r@ato.gov.au","affiliation":"Monash University","display_order":1,"name":"Rohan A Baxter","title":"Papp, E. and Baxter, R., Factor analysis and factor score imaging of transient electromagnetic model responses over simple geometric bodies"}],"downloadable_attachments":[{"id":22549972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/22549972/thumbnails/1.jpg","file_name":"Papp_Baxter_2002.pdf","download_url":"https://www.academia.edu/attachments/22549972/download_file","bulk_download_file_name":"Papp_E_and_Baxter_R_Factor_analysis_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/22549972/Papp_Baxter_2002-libre.pdf?1390867302=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_and_Baxter_R_Factor_analysis_and.pdf\u0026Expires=1744157148\u0026Signature=CbK-TnA5mijTLLUwPS-ZX5ibuUEFqWhY7WUb8qiWUxcymrpURy7YvZOzSGhBGPceZ4HxmIIVZLHT852UtNRoAiUSIF6CqS7W0OUZSMJCONdDfyHD~bsFhrScpTHn1F7oHTjEPy5v2U9VRyFkQQQaQlB-ktioOtmrWIzoNJq4CVe~JYB9H9jCYRsOk-~yXeTvL~QeIiIGUYJNltkBhhyRmFPZrvgwmluUkHGo7H2qpN1Tj78qIOaU7LLfvz7shEcvFq0P-z~PTUEspGCC4U~9CuNSOmAqL9BqNQ1RPWNCSVnTC4DKCWnyHwJhIMu~xErJg8PLp7UHwaw8KFrps1E0yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Papp_E_and_Baxter_R_Factor_analysis_and_factor_score_imaging_of_transient_electromagnetic_model_responses_over_simple_geometric_bodies","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"A factor analysis-based method has been developed for\r\npreliminary interpretation of ground-based, time-domain\r\nelectromagnetic data. We refer to this method as factor score\r\nimaging. It provides data volume and dimensionality reduction,\r\nallows efficient approximation of the shape of buried conductive\r\nbodies and aids selection of initial model geometry for full\r\ninversion. In this paper, the method is applied to modelled\r\namplitude responses of simple geometrical bodies, such as a buried\r\nconductive sphere and a dipping plate. It was found that five or\r\nfewer factors typically describe the 30-dimensional data. Factor\r\nscore imaging was developed to visualise the results. In the first\r\nfactor score images, the footprint of the modelled bodies are\r\nrecovered with remarkable accuracy. The simple examples\r\ndescribed in this paper provide insight into the developed\r\nmethodology.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":22549972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/22549972/thumbnails/1.jpg","file_name":"Papp_Baxter_2002.pdf","download_url":"https://www.academia.edu/attachments/22549972/download_file","bulk_download_file_name":"Papp_E_and_Baxter_R_Factor_analysis_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/22549972/Papp_Baxter_2002-libre.pdf?1390867302=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_and_Baxter_R_Factor_analysis_and.pdf\u0026Expires=1744157148\u0026Signature=CbK-TnA5mijTLLUwPS-ZX5ibuUEFqWhY7WUb8qiWUxcymrpURy7YvZOzSGhBGPceZ4HxmIIVZLHT852UtNRoAiUSIF6CqS7W0OUZSMJCONdDfyHD~bsFhrScpTHn1F7oHTjEPy5v2U9VRyFkQQQaQlB-ktioOtmrWIzoNJq4CVe~JYB9H9jCYRsOk-~yXeTvL~QeIiIGUYJNltkBhhyRmFPZrvgwmluUkHGo7H2qpN1Tj78qIOaU7LLfvz7shEcvFq0P-z~PTUEspGCC4U~9CuNSOmAqL9BqNQ1RPWNCSVnTC4DKCWnyHwJhIMu~xErJg8PLp7UHwaw8KFrps1E0yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765277-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765605"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765605/%C3%89va_Papp_Ground_Penetrating_Radar_survey_of_the_Casey_road"><img alt="Research paper thumbnail of Éva Papp: Ground Penetrating Radar survey of the Casey road. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Éva Papp: Ground Penetrating Radar survey of the Casey road. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765605"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765605"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765605; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765605]").text(description); $(".js-view-count[data-work-id=1765605]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765605; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765605']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765605]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765605,"title":"Éva Papp: Ground Penetrating Radar survey of the Casey road. ","translated_title":"","metadata":{"more_info":"Report for the Australian Antarctic Division. 2002. 41. pp."},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765605/%C3%89va_Papp_Ground_Penetrating_Radar_survey_of_the_Casey_road","translated_internal_url":"","created_at":"2012-07-04T20:48:43.783-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Éva_Papp_Ground_Penetrating_Radar_survey_of_the_Casey_road","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":119725,"name":"Gpr","url":"https://www.academia.edu/Documents/in/Gpr"},{"id":530958,"name":"Antarctic geophysics","url":"https://www.academia.edu/Documents/in/Antarctic_geophysics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765605-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1767076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1767076/Sz_B%C3%A9rczi_B_Luk%C3%A1cs_A_Holba_A_Kiss_and_%C3%89_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_"><img alt="Research paper thumbnail of Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)" class="work-thumbnail" src="https://attachments.academia-assets.com/53739900/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1767076/Sz_B%C3%A9rczi_B_Luk%C3%A1cs_A_Holba_A_Kiss_and_%C3%89_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_">Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://elte-hu.academia.edu/B%C3%A9rcziSzaniszl%C3%B3">Bérczi Szaniszló</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Some high petrologic class (6 & 7) members of the NIPR Antarctic Meteorite collection show signal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Some high petrologic class (6 & 7) members of the NIPR Antarctic Meteorite collection show signals indicating iron outflow. Meteorites are endpoints of heat-driven evolutions at various temperatures, and probably higher petrologic class corresponds to higher heat impact. At high enough temperature one expects liquidification of iron, resulting in iron loss from the texture. Compositional data suggest that the iron loss starts at petrologic class 6; at classes 6 and 7 of any chondrite type metallic iron (and maybe FeS) is less than for 1-5.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-1767076-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-1767076-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605863/figure-2-composite-diagram-about-the-carbon-content-of"><img alt="Fig. 2. Composite diagram about the carbon content of meteorite types and PC's. Columns are from Fig. /. Van Schmus - Wood table with the corresponding frequencies of occurrences were added to each PC's. Therefore both carbon (from OTTING & ZAHRINGER, 1967).and the total iron content are represented in this diagram. Lines have been fitted to the changing carbon content with PC at each meteorite types. The carbon slope corresponds to the intensity of carbon loss during thermal transformations. " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605871/figure-2-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605879/figure-3-post-condensation-central-temperatures-for-bodies"><img alt="Fig. 3. Post-condensation central temperatures for bodies with different initial mass and solar distance " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605886/figure-4-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605893/figure-5-frequency-of-occurrence-of-meteorite-types-in-that"><img alt="Fig. 5. Frequency of occurrence of meteorite types in that part of the NIPR Japanese Meteorite Collection where it was determined. Frequency data are transformed into a gray color grade, like as on Fig. 1. The two most frequent types are H4 and L6 in the NIPR Antarctic Meteorite Collection " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605899/figure-6-ratios-of-the-occurrence-frequencies-for-meteorites"><img alt="Fig. 6. Ratios of the occurrence frequencies for meteorites on Fig. /. (Wasson) and Fig. 6. (NIPR). The "Wasson"/"NIPR" ratios show that there are considerable differences in occurence of chondritic meteorites of fall (Wasson) and found (NIPR) origin. " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605905/figure-7-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605911/figure-8-nipr-catalog-data-for-chondrites-arranged-in-the"><img alt="Fig. 8: NIPR Catalog Data for chondrites, arranged in the classical oxidized Fe/non-oxidised Fe diagram. The data were normalized to the Si content of the meteorites. For astronomers this diagram resembles the Hertzsprung-Russel diagram where two characteristical data of stars with different initial conditions and evolutionary paths are represented. " class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605919/figure-9-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605929/figure-10-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605936/figure-11-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/4605941/figure-12-sz-brczi-lukcs-holba-kiss-and-papp-from-feo"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/53739900/figure_012.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-1767076-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ba77a6cf51c98b7e0d2ca7f63163dea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":53739900,"asset_id":1767076,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/53739900/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1767076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1767076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1767076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1767076]").text(description); $(".js-view-count[data-work-id=1767076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1767076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1767076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ba77a6cf51c98b7e0d2ca7f63163dea" } } $('.js-work-strip[data-work-id=1767076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1767076,"title":"Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)","translated_title":"","metadata":{"more_info":"Acta Mineralogica-Petrographica, Szeged, XXXIX, 87-106, 1998.","ai_title_tag":"Iron Flow and Thermal Evolution in Chondrite Parent Bodies","grobid_abstract":"Some high petrologic class (6 \u0026 7) members of the NIPR Antarctic Meteorite collection show signals indicating iron outflow. Meteorites are endpoints of heat-driven evolutions at various temperatures, and probably higher petrologic class corresponds to higher heat impact. At high enough temperature one expects liquidification of iron, resulting in iron loss from the texture. Compositional data suggest that the iron loss starts at petrologic class 6; at classes 6 and 7 of any chondrite type metallic iron (and maybe FeS) is less than for 1-5.","grobid_abstract_attachment_id":53739900},"translated_abstract":null,"internal_url":"https://www.academia.edu/1767076/Sz_B%C3%A9rczi_B_Luk%C3%A1cs_A_Holba_A_Kiss_and_%C3%89_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_","translated_internal_url":"","created_at":"2012-07-05T11:31:14.539-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494818,"work_id":1767076,"tagging_user_id":498748,"tagged_user_id":42538440,"co_author_invite_id":null,"email":"b***i@ludens.elte.hu","affiliation":"Eötvös Loránd University Budapest","display_order":1,"name":"Bérczi Szaniszló","title":"Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)"},{"id":30159829,"work_id":1767076,"tagging_user_id":498748,"tagged_user_id":54197288,"co_author_invite_id":null,"email":"b***i@gmail.com","display_order":4194304,"name":"Szaniszló Bérczi","title":"Sz. Bérczi, B. Lukács, A. Holba, A. Kiss and É. Papp: From FeO reduction to percolation and outflow of iron: thermal evolution of chondrite parent bodies. Acta Mineralogica-petrographica: 39. pp. 87-105. (1998)"}],"downloadable_attachments":[{"id":53739900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53739900/thumbnails/1.jpg","file_name":"mineralogica_039_087-105.pdf","download_url":"https://www.academia.edu/attachments/53739900/download_file","bulk_download_file_name":"Sz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53739900/mineralogica_039_087-105-libre.pdf?1499073204=\u0026response-content-disposition=attachment%3B+filename%3DSz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf\u0026Expires=1744157148\u0026Signature=FTlPcd4L2hKbnvbSd9Zn3BGhDY~5PYelrFj0uWEtqd32UzyUh1RSz48utD~jhxVveVGWeO5zy3KzLXBpo5n4qt215dWZsAvcESnu3yzF6FVIL-zLaW-FdwldWqSi7wiuu7nH~AAcABAxHKRbloGM~XkVF~0fsbUemE9s-23ZdlCGc75NYgPrkmL6IzYohNVZwSuT2pFPh90RTy0Sf4BVo7qWBtUG0v-51byQ4wZ71JLuatW00nP09Bl7saPQOkje2xy7khZtsbI0n9O7p153Yl7fWj9uRjiLD-ltECwLPP~ZAXMiYLXmxyMxHlGBkeLeDVFXrFrXN8KuPEi1NemDPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sz_Bérczi_B_Lukács_A_Holba_A_Kiss_and_É_Papp_From_FeO_reduction_to_percolation_and_outflow_of_iron_thermal_evolution_of_chondrite_parent_bodies_Acta_Mineralogica_petrographica_39_pp_87_105_1998_","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Some high petrologic class (6 \u0026 7) members of the NIPR Antarctic Meteorite collection show signals indicating iron outflow. Meteorites are endpoints of heat-driven evolutions at various temperatures, and probably higher petrologic class corresponds to higher heat impact. At high enough temperature one expects liquidification of iron, resulting in iron loss from the texture. Compositional data suggest that the iron loss starts at petrologic class 6; at classes 6 and 7 of any chondrite type metallic iron (and maybe FeS) is less than for 1-5.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":53739900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53739900/thumbnails/1.jpg","file_name":"mineralogica_039_087-105.pdf","download_url":"https://www.academia.edu/attachments/53739900/download_file","bulk_download_file_name":"Sz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53739900/mineralogica_039_087-105-libre.pdf?1499073204=\u0026response-content-disposition=attachment%3B+filename%3DSz_Berczi_B_Lukacs_A_Holba_A_Kiss_and_E.pdf\u0026Expires=1744157148\u0026Signature=FTlPcd4L2hKbnvbSd9Zn3BGhDY~5PYelrFj0uWEtqd32UzyUh1RSz48utD~jhxVveVGWeO5zy3KzLXBpo5n4qt215dWZsAvcESnu3yzF6FVIL-zLaW-FdwldWqSi7wiuu7nH~AAcABAxHKRbloGM~XkVF~0fsbUemE9s-23ZdlCGc75NYgPrkmL6IzYohNVZwSuT2pFPh90RTy0Sf4BVo7qWBtUG0v-51byQ4wZ71JLuatW00nP09Bl7saPQOkje2xy7khZtsbI0n9O7p153Yl7fWj9uRjiLD-ltECwLPP~ZAXMiYLXmxyMxHlGBkeLeDVFXrFrXN8KuPEi1NemDPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-1767076-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1767083"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1767083/B_Luk%C3%A1cs_Sz_B%C3%A9rczi_S_J%C3%B3zsa_Gy_Szakm%C3%A1ny_and_%C3%89_Papp_Thermal_transformations_in_the_meteorite_parent_bodies_II"><img alt="Research paper thumbnail of B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1767083"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1767083"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1767083; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1767083]").text(description); $(".js-view-count[data-work-id=1767083]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1767083; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1767083']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1767083]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1767083,"title":"B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II","translated_title":"","metadata":{"more_info":"Annales Universitas Scientarium Budapestiensis de Rolando Eötvös Nominatae, Sectio Geophysica et Meteorologica, Tomus XII. Budapest, 1996."},"translated_abstract":null,"internal_url":"https://www.academia.edu/1767083/B_Luk%C3%A1cs_Sz_B%C3%A9rczi_S_J%C3%B3zsa_Gy_Szakm%C3%A1ny_and_%C3%89_Papp_Thermal_transformations_in_the_meteorite_parent_bodies_II","translated_internal_url":"","created_at":"2012-07-05T11:34:46.611-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29494807,"work_id":1767083,"tagging_user_id":498748,"tagged_user_id":7599669,"co_author_invite_id":null,"email":"g***y@gmail.com","display_order":1,"name":"György Szakmány","title":"B. Lukács, Sz. Bérczi, S. Józsa, Gy. Szakmány and É. Papp: Thermal transformations in the meteorite parent bodies II"}],"downloadable_attachments":[],"slug":"B_Lukács_Sz_Bérczi_S_Józsa_Gy_Szakmány_and_É_Papp_Thermal_transformations_in_the_meteorite_parent_bodies_II","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1767083-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1371222"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1371222/Geophysical_well_logging"><img alt="Research paper thumbnail of Geophysical well logging" class="work-thumbnail" src="https://attachments.academia-assets.com/8543848/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1371222/Geophysical_well_logging">Geophysical well logging</a></div><div class="wp-workCard_item"><span>Geophysical and Remote Sensing …</span><span>, Jan 1, 2002</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-1371222-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-1371222-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191704/figure-1-geophysical-well-logging-was-first-developed-for"><img alt="Geophysical well logging was first developed for the petroleum industry by Marcel and Conrad Schlumberger in 1927 (Figure 1). Figure |. The original geophysical logging equipment used by the Schlumberger brothers in the late 1920’s (Schlumberger, 2000). " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191717/figure-2-part-of-the-first-geophysical-log-obtained-by-the"><img alt="Figure 2. Part of the first geophysical log obtained by the Schlumberger brothers in 1927. The Schlumberger brothers developed a resistivity tool to detect differences in the porosity of the sandstones of the oilfield at Merkwiller-Pechelbronn, in eastern France. Part of the Schlumberger brother’s original log is shown in Figure 2. Since this first log was run, geophysical well logging has developed into a billion-dollar global industry serving a wide range of industry and research activities. Geophysical well logging is a key technology in the petroleum industry. In the mineral industry, it is very widely used both for " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191726/figure-3-regolith-logging-with-small-easy-to-use-geophysical"><img alt="Figure 3. Regolith logging with a small, easy-to-use geophysical logging system, mounted in a 4WD vehicle. Geophysical well logging offers the opportunity of determining the composition, variability and physical properties of the rocks around the borehole. The actual volume of material sampled in this way varies from technique to technique and with the geological conditions, but it is invariably much larger than is represented by just the borehole. Moreover, depth control with a modern geophysical logging system is often better than a few millimetres. This means that the depth resolution of borehole data, representing the subsurface structure, is generally better than can be obtained even with diamond coring, where core breakage and core loss can be a serious problem, especially in regolith. Modern geophysical logging systems can be easily deployed from 4WD vehicles, using digital, computerised. small svstems. such as the one shown jn Ficure 3. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191734/figure-4-basic-sonic-tool-generally-consists-of-two-modules"><img alt="A basic sonic tool generally consists of two modules. One contains the transmitter and the other contains two or more receivers. The two parts separated by a rubber connector (Figure 4) to reduce the amount of direct transmission of acoustic energy along the tool from transmitter to receiver. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191741/figure-5-simple-single-point-resistivity-logging-typically"><img alt="Simple “single point resistivity” logging typically uses a geometry like that shown in Figure 5. Note that resistivity logs only work if the downhole probe is below the water table. This can be a limitation for some shallow regolith studies unless water can be added to the borehole to artificially raise the level to the area of interest. Single-point resistivity logging measures the resistivity between a single moving electrode downhole and an earth connection at the surface. Theoretical analysis and practical observation shows however that the bulk of the signal is in fact generated within a small volume surrounding the downhole electrode. Thus for a 5 cm diameter spherical electrode, 90% of the signal is generated within 50 cm of the electrode. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191749/figure-6-an-sp-log-through-interbedded-sandstones-and-shales"><img alt="Figure 6. An SP log through interbedded sandstones and shales (modified after Sheriff 1991). Electrochemical SP-s can for example arise from preferential diffusion and absorption of cations and anions on and through clays. Cations being much smaller than anions generally have a higher mobility through clays. Saline groundwater which is in contact with clay-rich materials often develop charge imbalances (ie. potentials) as a result of fluid flow. These potentials which are typically in the range of a few mV to a few tens of mV-s. can be measured in an SP log (Fisure 6). " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191753/figure-7-the-disseminated-nature-of-these-targets-make-them"><img alt="The disseminated nature of these targets make them ideal for IP but otherwise difficult to detect. IP has also been used in the detection of zones of alteration and redox trends and it has been used successfully to determine the rank of coal in situ. IP logging is widely used in mineral exploration, and has particular value in the exploration for disseminated sulphide targets such porphyry copper deposits. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191759/figure-8-hydrogen-nucleii-and-become-what-are-known-as"><img alt="hydrogen nucleii and become what are known as “thermal neutrons”. These thermal neutrons behave in many respects like a diffusing gas and form a spherical shell around the source in the probe. The radius of this sphere will depend primarily on the concentration of hydrogen in the environment around the probe. In general the neutron tool is a very useful tool for measuring “porosity” but it must be remembered that the measurements are model-dependent. In particular: " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/5191766/figure-9-an-example-of-wireline-logs-of-drillhole-through"><img alt="Figure 9. An example of wireline logs of a drillhole through regolith. " class="figure-slide-image" src="https://figures.academia-assets.com/8543848/figure_009.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-1371222-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="204fa141e20064a1c9349894de61f5c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":8543848,"asset_id":1371222,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/8543848/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1371222"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1371222"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1371222; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1371222]").text(description); $(".js-view-count[data-work-id=1371222]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1371222; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1371222']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "204fa141e20064a1c9349894de61f5c7" } } $('.js-work-strip[data-work-id=1371222]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1371222,"title":"Geophysical well logging","translated_title":"","metadata":{"more_info":"In: Papp, É. (ed), Geophysical and remote sensing methods for regolith exploration. CRCLEME 2002","publisher":"crcleme.org.au","ai_abstract":"Geophysical well logging is a critical technique used to record various properties of subsurface geology surrounding boreholes, originally developed for the petroleum industry by the Schlumberger brothers in 1927. This technology allows for a comprehensive understanding of subsurface composition and physical properties, combining multiple measurement techniques to provide valuable data that is more representative than traditional drilling methods. With applications in mineral exploration, groundwater assessment, and regolith studies, geophysical well logging has evolved into a billion-dollar industry while overcoming the high costs and limitations of conventional drilling.","publication_date":{"day":1,"month":1,"year":2002,"errors":{}},"publication_name":"Geophysical and Remote Sensing …"},"translated_abstract":null,"internal_url":"https://www.academia.edu/1371222/Geophysical_well_logging","translated_internal_url":"","created_at":"2012-02-10T12:03:04.744-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":38017028,"work_id":1371222,"tagging_user_id":498748,"tagged_user_id":52763962,"co_author_invite_id":7518258,"email":"p***a@earthinsite.com","affiliation":"The Australian National University","display_order":0,"name":"Prame Chopra","title":"Geophysical well logging"},{"id":38017031,"work_id":1371222,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":7518259,"email":"d***n@ga.gov.au","display_order":4194304,"name":"D. Gibson","title":"Geophysical well logging"}],"downloadable_attachments":[{"id":8543848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/8543848/thumbnails/1.jpg","file_name":"13wells.pdf","download_url":"https://www.academia.edu/attachments/8543848/download_file","bulk_download_file_name":"Geophysical_well_logging.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/8543848/13wells-libre.pdf?1390855878=\u0026response-content-disposition=attachment%3B+filename%3DGeophysical_well_logging.pdf\u0026Expires=1744157148\u0026Signature=ejA2P4S6Ykko8YX5B-2t0ZVn8rDdh6pfQK--nRMztFLvgRpz2x2D3QhcM0NoA-Eo5yNh0fNJmtF-7uHodY3tnuZCXYBCPMnISrDS0CDyMaQ6zEBr996BomO9Ewf0I-4ZvQcy7RuO3Uz9QKXa9h4xW4xflPePh-V6PsUjb3hAmIgnKbku~9YVUcVctcLoE-dssBrv-XU6DoFWLe7zadEIvRunYcz2NuUaB0Vi3mdsowRmi6rwOr3BUNNxqBeleFwLQTK3WXo5tuhxf3jWWsaQEZsTyfptywwuOspCbLv6sSl0HZceE-woLVL~7moNpzA4TNtUkpIhxkHxiiKcKMo3Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Geophysical_well_logging","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":8543848,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/8543848/thumbnails/1.jpg","file_name":"13wells.pdf","download_url":"https://www.academia.edu/attachments/8543848/download_file","bulk_download_file_name":"Geophysical_well_logging.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/8543848/13wells-libre.pdf?1390855878=\u0026response-content-disposition=attachment%3B+filename%3DGeophysical_well_logging.pdf\u0026Expires=1744157148\u0026Signature=ejA2P4S6Ykko8YX5B-2t0ZVn8rDdh6pfQK--nRMztFLvgRpz2x2D3QhcM0NoA-Eo5yNh0fNJmtF-7uHodY3tnuZCXYBCPMnISrDS0CDyMaQ6zEBr996BomO9Ewf0I-4ZvQcy7RuO3Uz9QKXa9h4xW4xflPePh-V6PsUjb3hAmIgnKbku~9YVUcVctcLoE-dssBrv-XU6DoFWLe7zadEIvRunYcz2NuUaB0Vi3mdsowRmi6rwOr3BUNNxqBeleFwLQTK3WXo5tuhxf3jWWsaQEZsTyfptywwuOspCbLv6sSl0HZceE-woLVL~7moNpzA4TNtUkpIhxkHxiiKcKMo3Jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-1371222-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1371221"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1371221/Mapping_the_Conductivity_Structure_of_the_Keringal_Gold_Deposit_Western_Australia_Development_and_Implementation_of_a_Statistics_based_Method_for_"><img alt="Research paper thumbnail of Mapping the Conductivity Structure of the Keringal Gold Deposit, Western Australia: Development and Implementation of a Statistics-based Method for …" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Mapping the Conductivity Structure of the Keringal Gold Deposit, Western Australia: Development and Implementation of a Statistics-based Method for …</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1371221"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1371221"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1371221; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1371221]").text(description); $(".js-view-count[data-work-id=1371221]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1371221; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1371221']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1371221]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1371221,"title":"Mapping the Conductivity Structure of the Keringal Gold Deposit, Western Australia: Development and Implementation of a Statistics-based Method for …","translated_title":"","metadata":{"abstract":"Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...","publisher":"University of Western Australia","publication_date":{"day":1,"month":1,"year":2003,"errors":{}}},"translated_abstract":"Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...","internal_url":"https://www.academia.edu/1371221/Mapping_the_Conductivity_Structure_of_the_Keringal_Gold_Deposit_Western_Australia_Development_and_Implementation_of_a_Statistics_based_Method_for_","translated_internal_url":"","created_at":"2012-02-10T12:03:04.692-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Mapping_the_Conductivity_Structure_of_the_Keringal_Gold_Deposit_Western_Australia_Development_and_Implementation_of_a_Statistics_based_Method_for_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Mapping the conductivity structure of the Keringal Gold Deposit, Western Australia: development and implementation of a statistics-based method for modelling and interpretation of transient electromagnetic data. Éva Papp. MSc, Eötvös Loránd University, Budapest, 1982. ...","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1371221-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1371220"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1371220/Hyperspectral_remote_sensing"><img alt="Research paper thumbnail of Hyperspectral remote sensing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Hyperspectral remote sensing</div><div class="wp-workCard_item"><span>Geophysical and Remote Sensing Methods for …</span><span>, Jan 1, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="14f170f645a03421abbe314d7fe1f26b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":8543850,"asset_id":1371220,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/8543850/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1371220"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1371220"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1371220; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1371220]").text(description); $(".js-view-count[data-work-id=1371220]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1371220; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1371220']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "14f170f645a03421abbe314d7fe1f26b" } } $('.js-work-strip[data-work-id=1371220]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1371220,"title":"Hyperspectral remote sensing","translated_title":"","metadata":{"more_info":"In: Papp, É. (ed), Geophysical and remote sensing methods for regolith exploration. CRCLEME 2002","publisher":"uqu.edu.sa","publication_date":{"day":1,"month":1,"year":2002,"errors":{}},"publication_name":"Geophysical and Remote Sensing Methods for …"},"translated_abstract":null,"internal_url":"https://www.academia.edu/1371220/Hyperspectral_remote_sensing","translated_internal_url":"","created_at":"2012-02-10T12:03:04.468-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hyperspectral_remote_sensing","translated_slug":"","page_count":null,"language":"tl","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":8543850,"title":"","file_type":"","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"","download_url":"https://www.academia.edu/attachments/8543850/download_file","bulk_download_file_name":"Hyperspectral_remote_sensing","bulk_download_url":"http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4280125/Hyperspectral%20Remote%20Sensing%20(2).pdf"}],"research_interests":[],"urls":[{"id":4525680,"url":"http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4280125/Hyperspectral%20Remote%20Sensing%20(2).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1371220-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="244891" id="talks"><div class="js-work-strip profile--work_container" data-work-id="34318282"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34318282/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/54217881/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34318282/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia">Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FerencFedor">Ferenc Fedor</a></span></div><div class="wp-workCard_item"><span>HUNGEO 2017. ISBN 978-963-8221-66-7</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South W...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 " , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d < 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="161f7518170dde71dbb2af31250e69b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54217881,"asset_id":34318282,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54217881/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34318282"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34318282"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34318282; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34318282]").text(description); $(".js-view-count[data-work-id=34318282]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34318282; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34318282']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "161f7518170dde71dbb2af31250e69b2" } } $('.js-work-strip[data-work-id=34318282]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34318282,"title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia","translated_title":"","metadata":{"abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","page_numbers":"45","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"HUNGEO 2017. ISBN 978-963-8221-66-7"},"translated_abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","internal_url":"https://www.academia.edu/34318282/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2017-08-23T01:53:44.761-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[{"id":30084166,"work_id":34318282,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6491351,"email":"a***r@geochem-ltd.eu","display_order":1,"name":"Peter Acs","title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia"},{"id":30084167,"work_id":34318282,"tagging_user_id":498748,"tagged_user_id":138793899,"co_author_invite_id":6491352,"email":"f***a@geochem-ltd.eu","display_order":2,"name":"Anita Fedor-Szasz","title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia"},{"id":30084169,"work_id":34318282,"tagging_user_id":498748,"tagged_user_id":67736234,"co_author_invite_id":6491353,"email":"f***c@geochem-ltd.eu","display_order":4,"name":"Ferenc Fedor","title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia"}],"downloadable_attachments":[{"id":54217881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54217881/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_talk_Abstract_English.pdf","download_url":"https://www.academia.edu/attachments/54217881/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54217881/EP_HUNGEO_2017_talk_Abstract_English-libre.pdf?1503478714=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157148\u0026Signature=PgS2Wn1eRVxH1HQQXBbPyIRS6luJjMRnacX8P~Pv~1ZJSiAYYb51OMGJYZwdukMdM3V06MS7wplnv9wdNc-Z~8ezyAvq-AWHkof8tInYrRQAiliRjMSNGtSjuF0UApVKq7278bUnV97Aj5H5I5D3wZOvs~qFP3~0Dc-2CMPIK4UC6kWsnY~RBEWSTnFxO8h~h52NoCGck-i~fhaAKtdrz0tA1N7GL1GEhL6pmAdMKI0wf3V71x4lte1jVg3TbOzCOf8gkjUw-En7S2XDpzAPkAyxWPBXiNjKBE-JmHyM2A3qWmTYmEPQHSmk19pNWnB~88t6dCFaBz~Fa2ZQA0zRgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":54217881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54217881/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_talk_Abstract_English.pdf","download_url":"https://www.academia.edu/attachments/54217881/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54217881/EP_HUNGEO_2017_talk_Abstract_English-libre.pdf?1503478714=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157148\u0026Signature=PgS2Wn1eRVxH1HQQXBbPyIRS6luJjMRnacX8P~Pv~1ZJSiAYYb51OMGJYZwdukMdM3V06MS7wplnv9wdNc-Z~8ezyAvq-AWHkof8tInYrRQAiliRjMSNGtSjuF0UApVKq7278bUnV97Aj5H5I5D3wZOvs~qFP3~0Dc-2CMPIK4UC6kWsnY~RBEWSTnFxO8h~h52NoCGck-i~fhaAKtdrz0tA1N7GL1GEhL6pmAdMKI0wf3V71x4lte1jVg3TbOzCOf8gkjUw-En7S2XDpzAPkAyxWPBXiNjKBE-JmHyM2A3qWmTYmEPQHSmk19pNWnB~88t6dCFaBz~Fa2ZQA0zRgA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":420,"name":"Sedimentology","url":"https://www.academia.edu/Documents/in/Sedimentology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34318282-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765292"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765292/%C3%89va_Papp_B%C3%A9la_Luk%C3%A1cs_The_parameter_space_of_the_Telegraph_equations_Geoscience_Australia_2012_July_3"><img alt="Research paper thumbnail of Éva Papp, Béla Lukács: The parameter space of the Telegraph equations. Geoscience Australia, 2012. July 3." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Éva Papp, Béla Lukács: The parameter space of the Telegraph equations. Geoscience Australia, 2012. July 3.</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Telegraph equations, derived from Maxwell’s equations, give a complete description of EM sign...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Telegraph equations, derived from Maxwell’s equations, give a complete description of EM signal propagation in any medium. In conductive media the propagation depends on parameters of the medium and on parameters of the signal. At different combinations of parameter values, the Telegraph equation exhibits three qualitatively different types of behaviour. The talk examines these field behaviour types and relates various geophysical exploration methods to these parameter-regions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765292"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765292"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765292; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765292]").text(description); $(".js-view-count[data-work-id=1765292]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765292; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765292']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765292]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765292,"title":"Éva Papp, Béla Lukács: The parameter space of the Telegraph equations. Geoscience Australia, 2012. July 3.","translated_title":"","metadata":{"time":{"end_hour":17,"start_hour":16,"errors":{}},"abstract":"The Telegraph equations, derived from Maxwell’s equations, give a complete description of EM signal propagation in any medium. In conductive media the propagation depends on parameters of the medium and on parameters of the signal. At different combinations of parameter values, the Telegraph equation exhibits three qualitatively different types of behaviour. The talk examines these field behaviour types and relates various geophysical exploration methods to these parameter-regions.","location":"Geoscience Australia","event_date":{"day":3,"month":7,"year":2012,"errors":{}}},"translated_abstract":"The Telegraph equations, derived from Maxwell’s equations, give a complete description of EM signal propagation in any medium. In conductive media the propagation depends on parameters of the medium and on parameters of the signal. At different combinations of parameter values, the Telegraph equation exhibits three qualitatively different types of behaviour. The talk examines these field behaviour types and relates various geophysical exploration methods to these parameter-regions.","internal_url":"https://www.academia.edu/1765292/%C3%89va_Papp_B%C3%A9la_Luk%C3%A1cs_The_parameter_space_of_the_Telegraph_equations_Geoscience_Australia_2012_July_3","translated_internal_url":"","created_at":"2012-07-04T19:01:18.488-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"Éva_Papp_Béla_Lukács_The_parameter_space_of_the_Telegraph_equations_Geoscience_Australia_2012_July_3","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Telegraph equations, derived from Maxwell’s equations, give a complete description of EM signal propagation in any medium. In conductive media the propagation depends on parameters of the medium and on parameters of the signal. At different combinations of parameter values, the Telegraph equation exhibits three qualitatively different types of behaviour. The talk examines these field behaviour types and relates various geophysical exploration methods to these parameter-regions.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765292-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765600"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765600/%C3%89_Papp_Ground_penetrating_radar_as_a_tool_for_road_management_and_contaminated_sites_assessment_in_snow_covered_areas_Australian_Geological_Survey_Organisation_June_2002"><img alt="Research paper thumbnail of É. Papp: Ground penetrating radar as a tool for road management and contaminated sites assessment in snow covered areas. Australian Geological Survey Organisation, June 2002." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Ground penetrating radar as a tool for road management and contaminated sites assessment in snow covered areas. Australian Geological Survey Organisation, June 2002.</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765600"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765600"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765600; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765600]").text(description); $(".js-view-count[data-work-id=1765600]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765600; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765600']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765600]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765600,"title":"É. Papp: Ground penetrating radar as a tool for road management and contaminated sites assessment in snow covered areas. Australian Geological Survey Organisation, June 2002.","translated_title":"","metadata":{"more_info":"ASEG Seminar, Geoscience Australia, June 2002.","event_date":{"day":null,"month":6,"year":2002,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765600/%C3%89_Papp_Ground_penetrating_radar_as_a_tool_for_road_management_and_contaminated_sites_assessment_in_snow_covered_areas_Australian_Geological_Survey_Organisation_June_2002","translated_internal_url":"","created_at":"2012-07-04T20:39:08.585-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Ground_penetrating_radar_as_a_tool_for_road_management_and_contaminated_sites_assessment_in_snow_covered_areas_Australian_Geological_Survey_Organisation_June_2002","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765600-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765599"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765599/%C3%89_Papp_Antarctic_Geophysics_53rd_ANARE_Department_of_Geology_ANU_May_2001"><img alt="Research paper thumbnail of É. Papp: Antarctic Geophysics, 53rd ANARE. Department of Geology, ANU May 2001." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Antarctic Geophysics, 53rd ANARE. Department of Geology, ANU May 2001.</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765599"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765599"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765599; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765599]").text(description); $(".js-view-count[data-work-id=1765599]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765599; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765599']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765599]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765599,"title":"É. Papp: Antarctic Geophysics, 53rd ANARE. Department of Geology, ANU May 2001.","translated_title":"","metadata":{"more_info":"Departmental Seminar, Department of Geology, ANU May 2001.","event_date":{"day":null,"month":5,"year":2001,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765599/%C3%89_Papp_Antarctic_Geophysics_53rd_ANARE_Department_of_Geology_ANU_May_2001","translated_internal_url":"","created_at":"2012-07-04T20:36:29.202-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Antarctic_Geophysics_53rd_ANARE_Department_of_Geology_ANU_May_2001","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765599-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765598/%C3%89_Papp_The_RAMAC_GPR_system"><img alt="Research paper thumbnail of É. Papp: The RAMAC© GPR system." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: The RAMAC© GPR system.</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765598]").text(description); $(".js-view-count[data-work-id=1765598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765598,"title":"É. Papp: The RAMAC© GPR system.","translated_title":"","metadata":{"more_info":"Australian Antarctic Division, Oct 2000.","event_date":{"day":null,"month":10,"year":2000,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765598/%C3%89_Papp_The_RAMAC_GPR_system","translated_internal_url":"","created_at":"2012-07-04T20:34:54.697-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_The_RAMAC_GPR_system","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765598-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765345"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1765345/%C3%89va_Papp_Kylie_A_Foster_Greg_Shirtliff_and_Steven_M_Hill_Spectral_characterisation_of_regolith_units_at_Balaclava_West_Broken_Hill_NSW"><img alt="Research paper thumbnail of Éva Papp, Kylie A. Foster, Greg Shirtliff and Steven M. Hill: Spectral characterisation of regolith units at Balaclava West, Broken Hill, NSW." class="work-thumbnail" src="https://attachments.academia-assets.com/46397246/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1765345/%C3%89va_Papp_Kylie_A_Foster_Greg_Shirtliff_and_Steven_M_Hill_Spectral_characterisation_of_regolith_units_at_Balaclava_West_Broken_Hill_NSW">Éva Papp, Kylie A. Foster, Greg Shirtliff and Steven M. Hill: Spectral characterisation of regolith units at Balaclava West, Broken Hill, NSW.</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Technical sessions provided the opportunity to present results on regional geology, metallogenesi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Technical sessions provided the opportunity to present results on regional geology, metallogenesis, geochemistry, exploration and mineral deposits, and geochronology. The talks ranged in their subjects from re-evaluation of time-honoured exploration methods, to regolith and associated topics, to exciting new approaches to generate new exploration targets.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58731841d28c0e17168b9335de00c2f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46397246,"asset_id":1765345,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46397246/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765345"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765345"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765345; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765345]").text(description); $(".js-view-count[data-work-id=1765345]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765345; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765345']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58731841d28c0e17168b9335de00c2f5" } } $('.js-work-strip[data-work-id=1765345]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765345,"title":"Éva Papp, Kylie A. Foster, Greg Shirtliff and Steven M. Hill: Spectral characterisation of regolith units at Balaclava West, Broken Hill, NSW.","translated_title":"","metadata":{"more_info":"Abstracts of Papers Presented at the May 2000 Conference in Broken Hill. Australian Geological Survey Organisation, Record 2000/10.","event_date":{"day":null,"month":5,"year":2000,"errors":{}},"grobid_abstract":"Technical sessions provided the opportunity to present results on regional geology, metallogenesis, geochemistry, exploration and mineral deposits, and geochronology. The talks ranged in their subjects from re-evaluation of time-honoured exploration methods, to regolith and associated topics, to exciting new approaches to generate new exploration targets.","grobid_abstract_attachment_id":46397246},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765345/%C3%89va_Papp_Kylie_A_Foster_Greg_Shirtliff_and_Steven_M_Hill_Spectral_characterisation_of_regolith_units_at_Balaclava_West_Broken_Hill_NSW","translated_internal_url":"","created_at":"2012-07-04T19:45:13.639-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[{"id":46397246,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46397246/thumbnails/1.jpg","file_name":"AGSO_Rec2000_010.pdf","download_url":"https://www.academia.edu/attachments/46397246/download_file","bulk_download_file_name":"Eva_Papp_Kylie_A_Foster_Greg_Shirtliff_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46397246/AGSO_Rec2000_010-libre.pdf?1465650732=\u0026response-content-disposition=attachment%3B+filename%3DEva_Papp_Kylie_A_Foster_Greg_Shirtliff_a.pdf\u0026Expires=1744157149\u0026Signature=G5LwAxVObj3C-0HEkEZwfU9oCzlUoy~se8sHQ-KIa6vsFcwODFk6QGJwe68pHHjEp2HhoNmwa6aYfR4qeAU16lWtXGdY82RyxJFSn1Mj49MXnbiumvjyFYvYrb4hXd4YEeCD7~MC0bZ3qFO0QuonsecUVbNNqSFQBxbKv2xOVBpgXy-pwtWTTW52A7grS5ekqI5msyHvtcKOjDMYGN6MSi3w6cGkhF-IvYb6YfzydsOHJceYV8nXO-2giQ05J9FHLPo~gyozIwxtb0zsky7C-KhTWGvZw0uSz40rndr6JtN9eoszmMu8UYwHhk6YM25GLlL4lB~Dey5zT6en7pEvsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Éva_Papp_Kylie_A_Foster_Greg_Shirtliff_and_Steven_M_Hill_Spectral_characterisation_of_regolith_units_at_Balaclava_West_Broken_Hill_NSW","translated_slug":"","page_count":118,"language":"en","content_type":"Work","summary":"Technical sessions provided the opportunity to present results on regional geology, metallogenesis, geochemistry, exploration and mineral deposits, and geochronology. The talks ranged in their subjects from re-evaluation of time-honoured exploration methods, to regolith and associated topics, to exciting new approaches to generate new exploration targets.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":46397246,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46397246/thumbnails/1.jpg","file_name":"AGSO_Rec2000_010.pdf","download_url":"https://www.academia.edu/attachments/46397246/download_file","bulk_download_file_name":"Eva_Papp_Kylie_A_Foster_Greg_Shirtliff_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46397246/AGSO_Rec2000_010-libre.pdf?1465650732=\u0026response-content-disposition=attachment%3B+filename%3DEva_Papp_Kylie_A_Foster_Greg_Shirtliff_a.pdf\u0026Expires=1744157149\u0026Signature=G5LwAxVObj3C-0HEkEZwfU9oCzlUoy~se8sHQ-KIa6vsFcwODFk6QGJwe68pHHjEp2HhoNmwa6aYfR4qeAU16lWtXGdY82RyxJFSn1Mj49MXnbiumvjyFYvYrb4hXd4YEeCD7~MC0bZ3qFO0QuonsecUVbNNqSFQBxbKv2xOVBpgXy-pwtWTTW52A7grS5ekqI5msyHvtcKOjDMYGN6MSi3w6cGkhF-IvYb6YfzydsOHJceYV8nXO-2giQ05J9FHLPo~gyozIwxtb0zsky7C-KhTWGvZw0uSz40rndr6JtN9eoszmMu8UYwHhk6YM25GLlL4lB~Dey5zT6en7pEvsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765345-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765596/%C3%89_Papp_Statistical_processing_and_interpretation_of_TEM_data"><img alt="Research paper thumbnail of É. Papp: Statistical processing and interpretation of TEM data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Statistical processing and interpretation of TEM data</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765596]").text(description); $(".js-view-count[data-work-id=1765596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765596,"title":"É. Papp: Statistical processing and interpretation of TEM data","translated_title":"","metadata":{"more_info":"Departmental Seminar, Department of Geology, ANU, 15 Sept,1999.","event_date":{"day":15,"month":9,"year":1999,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765596/%C3%89_Papp_Statistical_processing_and_interpretation_of_TEM_data","translated_internal_url":"","created_at":"2012-07-04T20:30:58.860-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Statistical_processing_and_interpretation_of_TEM_data","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765596-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765594"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765594/%C3%89_Papp_Statistical_analysis_and_interpretation_of_time_domain_ground_based"><img alt="Research paper thumbnail of É. Papp: Statistical analysis and interpretation of time domain ground-based" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Statistical analysis and interpretation of time domain ground-based</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765594"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765594"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765594; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765594]").text(description); $(".js-view-count[data-work-id=1765594]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765594; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765594']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765594]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765594,"title":"É. Papp: Statistical analysis and interpretation of time domain ground-based","translated_title":"","metadata":{"more_info":"CRC LEME/AGSO seminar, 3 March,1999.","event_date":{"day":3,"month":3,"year":1999,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765594/%C3%89_Papp_Statistical_analysis_and_interpretation_of_time_domain_ground_based","translated_internal_url":"","created_at":"2012-07-04T20:28:32.989-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Statistical_analysis_and_interpretation_of_time_domain_ground_based","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765594-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765593"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765593/%C3%89_Papp_Geophysical_signature_and_inferred_geophysical_structure_of_Keringal_gold_deposit"><img alt="Research paper thumbnail of É. Papp: Geophysical signature and inferred geophysical structure of Keringal gold deposit. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Geophysical signature and inferred geophysical structure of Keringal gold deposit. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765593"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765593"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765593; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765593]").text(description); $(".js-view-count[data-work-id=1765593]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765593; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765593']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765593]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765593,"title":"É. Papp: Geophysical signature and inferred geophysical structure of Keringal gold deposit. ","translated_title":"","metadata":{"more_info":"Departmental Seminar, Institut für Geologie und Paläontologie, Eberhar-Karls Universität, Tübingen, Germany, Dec 1998.","event_date":{"day":null,"month":12,"year":1998,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765593/%C3%89_Papp_Geophysical_signature_and_inferred_geophysical_structure_of_Keringal_gold_deposit","translated_internal_url":"","created_at":"2012-07-04T20:26:59.924-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Geophysical_signature_and_inferred_geophysical_structure_of_Keringal_gold_deposit","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765593-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765590"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765590/%C3%89_Papp_Image_processing_techniques_for_geologists"><img alt="Research paper thumbnail of É. Papp: Image processing techniques for geologists." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Image processing techniques for geologists.</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765590"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765590"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765590; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765590]").text(description); $(".js-view-count[data-work-id=1765590]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765590; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765590']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765590]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765590,"title":"É. Papp: Image processing techniques for geologists.","translated_title":"","metadata":{"more_info":"Short Course, Institut für Geologie und Paläontologie, Eberhar-Karls Universität, Tübingen, Germany, Dec 1998.","event_date":{"day":null,"month":12,"year":1998,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765590/%C3%89_Papp_Image_processing_techniques_for_geologists","translated_internal_url":"","created_at":"2012-07-04T20:25:24.638-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Image_processing_techniques_for_geologists","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765590-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765359"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765359/%C3%89_Papp_S_Gardoll_The_probable_history_of_impact_crater_formation_on_the_Australian_tectonic_plate"><img alt="Research paper thumbnail of É. Papp, S. Gardoll: The probable history of impact crater formation on the Australian tectonic plate. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp, S. Gardoll: The probable history of impact crater formation on the Australian tectonic plate. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765359"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765359"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765359; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765359]").text(description); $(".js-view-count[data-work-id=1765359]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765359; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765359']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765359]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765359,"title":"É. Papp, S. Gardoll: The probable history of impact crater formation on the Australian tectonic plate. ","translated_title":"","metadata":{"more_info":"TISS Abs. Vol. p. 39. Tokyo, July 1997","event_date":{"day":null,"month":7,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765359/%C3%89_Papp_S_Gardoll_The_probable_history_of_impact_crater_formation_on_the_Australian_tectonic_plate","translated_internal_url":"","created_at":"2012-07-04T19:50:04.300-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_S_Gardoll_The_probable_history_of_impact_crater_formation_on_the_Australian_tectonic_plate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765359-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765516"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765516/%C3%89_Papp_Results_of_the_Artificial_Intelligence_based_classification_of_the_Keringal_Transient_Electromagnetic_dataset"><img alt="Research paper thumbnail of É. Papp: Results of the Artificial Intelligence - based classification of the Keringal Transient Electromagnetic dataset" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Results of the Artificial Intelligence - based classification of the Keringal Transient Electromagnetic dataset</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765516"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765516"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765516; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765516]").text(description); $(".js-view-count[data-work-id=1765516]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765516; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765516']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765516]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765516,"title":"É. Papp: Results of the Artificial Intelligence - based classification of the Keringal Transient Electromagnetic dataset","translated_title":"","metadata":{"more_info":"Seminar for Industry Sponsors, Placer Exploration Ltd., Perth, April 1997.","event_date":{"day":null,"month":4,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765516/%C3%89_Papp_Results_of_the_Artificial_Intelligence_based_classification_of_the_Keringal_Transient_Electromagnetic_dataset","translated_internal_url":"","created_at":"2012-07-04T20:23:59.198-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Results_of_the_Artificial_Intelligence_based_classification_of_the_Keringal_Transient_Electromagnetic_dataset","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765516-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765513"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765513/%C3%89_Papp_Factor_Analysis_results_for_the_Keringal_Transient_Electromagnetic_data_set_identification_of_rock_type_and_transported_overburden_"><img alt="Research paper thumbnail of É. Papp: Factor Analysis results for the Keringal Transient Electromagnetic data set - identification of rock type and transported overburden, " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Factor Analysis results for the Keringal Transient Electromagnetic data set - identification of rock type and transported overburden, </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765513"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765513"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765513; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765513]").text(description); $(".js-view-count[data-work-id=1765513]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765513; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765513']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765513]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765513,"title":"É. Papp: Factor Analysis results for the Keringal Transient Electromagnetic data set - identification of rock type and transported overburden, ","translated_title":"","metadata":{"more_info":"Seminar for Industry Sponsors, Granny Smith Mines, WA, March 1997.","event_date":{"day":null,"month":3,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765513/%C3%89_Papp_Factor_Analysis_results_for_the_Keringal_Transient_Electromagnetic_data_set_identification_of_rock_type_and_transported_overburden_","translated_internal_url":"","created_at":"2012-07-04T20:22:41.519-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Factor_Analysis_results_for_the_Keringal_Transient_Electromagnetic_data_set_identification_of_rock_type_and_transported_overburden_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765513-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765510"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765510/%C3%89_Papp_Factor_Analysis_as_a_Tool_for_TEM_Interpretation"><img alt="Research paper thumbnail of É. Papp: Factor Analysis as a Tool for TEM Interpretation." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Factor Analysis as a Tool for TEM Interpretation.</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765510"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765510"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765510; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765510]").text(description); $(".js-view-count[data-work-id=1765510]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765510; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765510']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765510]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765510,"title":"É. Papp: Factor Analysis as a Tool for TEM Interpretation.","translated_title":"","metadata":{"more_info":"Departmental Seminar, Department of Earth Sciences, Monash University, Melbourne, Feb 1997.","event_date":{"day":null,"month":2,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765510/%C3%89_Papp_Factor_Analysis_as_a_Tool_for_TEM_Interpretation","translated_internal_url":"","created_at":"2012-07-04T20:21:24.087-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Factor_Analysis_as_a_Tool_for_TEM_Interpretation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765510-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765496"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765496/%C3%89_Papp_Mapping_the_Regolith"><img alt="Research paper thumbnail of É. Papp: Mapping the Regolith " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Mapping the Regolith </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765496"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765496"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765496; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765496]").text(description); $(".js-view-count[data-work-id=1765496]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765496; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765496']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765496]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765496,"title":"É. Papp: Mapping the Regolith ","translated_title":"","metadata":{"more_info":"ANU Field Conference, Kioloa, Jan 1997.","event_date":{"day":null,"month":1,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765496/%C3%89_Papp_Mapping_the_Regolith","translated_internal_url":"","created_at":"2012-07-04T20:16:05.026-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Mapping_the_Regolith","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765496-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765484"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765484/%C3%89_Papp_A_new_method_of_Interpreting_Transient_Electromagnetic_Data_using_Artificial_Intelligence_based_Classification_and_3D_Correlation"><img alt="Research paper thumbnail of É. Papp: A new method of Interpreting Transient Electromagnetic Data using Artificial Intelligence-based Classification and 3D Correlation. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: A new method of Interpreting Transient Electromagnetic Data using Artificial Intelligence-based Classification and 3D Correlation. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765484"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765484"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765484; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765484]").text(description); $(".js-view-count[data-work-id=1765484]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765484; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765484']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765484]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765484,"title":"É. Papp: A new method of Interpreting Transient Electromagnetic Data using Artificial Intelligence-based Classification and 3D Correlation. ","translated_title":"","metadata":{"more_info":"The Leewin Centre Seminar Series, Perth, Jan 1997","event_date":{"day":null,"month":1,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765484/%C3%89_Papp_A_new_method_of_Interpreting_Transient_Electromagnetic_Data_using_Artificial_Intelligence_based_Classification_and_3D_Correlation","translated_internal_url":"","created_at":"2012-07-04T20:13:57.976-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_A_new_method_of_Interpreting_Transient_Electromagnetic_Data_using_Artificial_Intelligence_based_Classification_and_3D_Correlation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765484-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765476"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765476/%C3%89_Papp_Artificially_Intelligent_Gold_Exploration"><img alt="Research paper thumbnail of É. Papp: Artificially Intelligent Gold Exploration." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Artificially Intelligent Gold Exploration.</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765476"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765476"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765476; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765476]").text(description); $(".js-view-count[data-work-id=1765476]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765476; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765476']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765476]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765476,"title":"É. Papp: Artificially Intelligent Gold Exploration.","translated_title":"","metadata":{"more_info":"Department of Geology and Geophysics, University of Western Australia, Perth, Sept 1996.","event_date":{"day":null,"month":9,"year":1996,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765476/%C3%89_Papp_Artificially_Intelligent_Gold_Exploration","translated_internal_url":"","created_at":"2012-07-04T20:12:15.944-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Artificially_Intelligent_Gold_Exploration","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765476-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1767154"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1767154/%C3%89_Papp_Relational_Data_Model_for_a_GIS_Database"><img alt="Research paper thumbnail of É. Papp: Relational Data Model for a GIS Database." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Relational Data Model for a GIS Database.</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1767154"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1767154"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1767154; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1767154]").text(description); $(".js-view-count[data-work-id=1767154]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1767154; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1767154']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1767154]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1767154,"title":"É. Papp: Relational Data Model for a GIS Database.","translated_title":"","metadata":{"more_info":"in Proceedings of the International Meeting: Spherules and Global Events, ed. Detre \u0026 al, Hungarian Academy of Sciences, Central Research Institute for Physics, KFKI-1996-05/C. pp.15-22."},"translated_abstract":null,"internal_url":"https://www.academia.edu/1767154/%C3%89_Papp_Relational_Data_Model_for_a_GIS_Database","translated_internal_url":"","created_at":"2012-07-05T12:02:14.204-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Relational_Data_Model_for_a_GIS_Database","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1767154-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765468"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765468/%C3%89_Papp_Data_reduction_in_Bore_Hole_Logging_using_Factor_Analysis"><img alt="Research paper thumbnail of É. Papp: Data reduction in Bore Hole Logging using Factor Analysis. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Data reduction in Bore Hole Logging using Factor Analysis. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765468"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765468"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765468; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765468]").text(description); $(".js-view-count[data-work-id=1765468]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765468; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765468']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765468]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765468,"title":"É. Papp: Data reduction in Bore Hole Logging using Factor Analysis. ","translated_title":"","metadata":{"more_info":"Exploration Geophysics Departmental Seminar, Curtin University, Perth, Nov 1994.","event_date":{"day":null,"month":11,"year":1994,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765468/%C3%89_Papp_Data_reduction_in_Bore_Hole_Logging_using_Factor_Analysis","translated_internal_url":"","created_at":"2012-07-04T20:08:26.011-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Data_reduction_in_Bore_Hole_Logging_using_Factor_Analysis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765468-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765456"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765456/P_Wilkes_%C3%89_Papp_Geological_applications_of_Geographic_Information_Systems"><img alt="Research paper thumbnail of P. Wilkes, É. Papp: Geological applications of Geographic Information Systems. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">P. Wilkes, É. Papp: Geological applications of Geographic Information Systems. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765456"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765456"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765456; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765456]").text(description); $(".js-view-count[data-work-id=1765456]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765456; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765456']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765456]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765456,"title":"P. Wilkes, É. Papp: Geological applications of Geographic Information Systems. ","translated_title":"","metadata":{"more_info":"in Mining Expo, AURISA Information Seminar, Kalgoorlie, Oct 1994.","event_date":{"day":null,"month":10,"year":1994,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765456/P_Wilkes_%C3%89_Papp_Geological_applications_of_Geographic_Information_Systems","translated_internal_url":"","created_at":"2012-07-04T20:06:50.491-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"talk","co_author_tags":[],"downloadable_attachments":[],"slug":"P_Wilkes_É_Papp_Geological_applications_of_Geographic_Information_Systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765456-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1178067" id="students"><div class="js-work-strip profile--work_container" data-work-id="25900866"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25900866/Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_Special_Topic_3050_Semester_2_2015_"><img alt="Research paper thumbnail of Manon Dalaison: Investigation of the nature of a major resistive boundary at Majors Creek, New South Wales, Australia. (Special Topic 3050 - Semester 2, 2015)." class="work-thumbnail" src="https://attachments.academia-assets.com/46265059/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25900866/Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_Special_Topic_3050_Semester_2_2015_">Manon Dalaison: Investigation of the nature of a major resistive boundary at Majors Creek, New South Wales, Australia. (Special Topic 3050 - Semester 2, 2015).</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fec6bf7d5ac4da04d9d4573fb70fa54a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46265059,"asset_id":25900866,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46265059/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25900866"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25900866"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25900866; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25900866]").text(description); $(".js-view-count[data-work-id=25900866]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25900866; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25900866']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fec6bf7d5ac4da04d9d4573fb70fa54a" } } $('.js-work-strip[data-work-id=25900866]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25900866,"title":"Manon Dalaison: Investigation of the nature of a major resistive boundary at Majors Creek, New South Wales, Australia. (Special Topic 3050 - Semester 2, 2015).","translated_title":"","metadata":{"abstract":"The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use. "},"translated_abstract":"The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use. ","internal_url":"https://www.academia.edu/25900866/Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_Special_Topic_3050_Semester_2_2015_","translated_internal_url":"","created_at":"2016-06-05T20:55:38.927-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":20999613,"work_id":25900866,"tagging_user_id":498748,"tagged_user_id":32078299,"co_author_invite_id":null,"email":"u***h@anu.edu.au","display_order":4194304,"name":"Ulrike Troitzsch","title":"Manon Dalaison: Investigation of the nature of a major resistive boundary at Majors Creek, New South Wales, Australia. (Special Topic 3050 - Semester 2, 2015)."}],"downloadable_attachments":[{"id":46265059,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46265059/thumbnails/1.jpg","file_name":"Special_Topics_Thesis_final.pdf","download_url":"https://www.academia.edu/attachments/46265059/download_file","bulk_download_file_name":"Manon_Dalaison_Investigation_of_the_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46265059/Special_Topics_Thesis_final-libre.pdf?1465185382=\u0026response-content-disposition=attachment%3B+filename%3DManon_Dalaison_Investigation_of_the_natu.pdf\u0026Expires=1744157149\u0026Signature=QiV7rrM2J-GOqmj0ukL56MtjQ4Jpe21CyAimms2pbeB5fDkPiZ6jy628h7xONtemnnAFtKu9bTpukzq-Wl2qTzA7l3LGIOt-hKj7fIlQ44jdzMBwmueBmcyEavbTz7ow-74ttF8XD60iBgXcO8gN-1Mehp2SHqYA5U7kuAmT--aPb~pTkvlH93R1lXEJx~7Q1Olo-sU5YHUEs-Kf1w4sqEP-5M5LyLHuCbYQyZcYhPA22Z3~QsGrzzh~z1YUmoZRrveIPmGfLrW5nnaYExB~w0cVwOI~33kVmbF2vBKLv~1inful3X11BqQCUxMoKI-bwgzeZyJlCHx1V2o9oys~6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_Special_Topic_3050_Semester_2_2015_","translated_slug":"","page_count":44,"language":"en","content_type":"Work","summary":"The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use. ","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":46265059,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46265059/thumbnails/1.jpg","file_name":"Special_Topics_Thesis_final.pdf","download_url":"https://www.academia.edu/attachments/46265059/download_file","bulk_download_file_name":"Manon_Dalaison_Investigation_of_the_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46265059/Special_Topics_Thesis_final-libre.pdf?1465185382=\u0026response-content-disposition=attachment%3B+filename%3DManon_Dalaison_Investigation_of_the_natu.pdf\u0026Expires=1744157149\u0026Signature=QiV7rrM2J-GOqmj0ukL56MtjQ4Jpe21CyAimms2pbeB5fDkPiZ6jy628h7xONtemnnAFtKu9bTpukzq-Wl2qTzA7l3LGIOt-hKj7fIlQ44jdzMBwmueBmcyEavbTz7ow-74ttF8XD60iBgXcO8gN-1Mehp2SHqYA5U7kuAmT--aPb~pTkvlH93R1lXEJx~7Q1Olo-sU5YHUEs-Kf1w4sqEP-5M5LyLHuCbYQyZcYhPA22Z3~QsGrzzh~z1YUmoZRrveIPmGfLrW5nnaYExB~w0cVwOI~33kVmbF2vBKLv~1inful3X11BqQCUxMoKI-bwgzeZyJlCHx1V2o9oys~6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6951,"name":"Groundwater","url":"https://www.academia.edu/Documents/in/Groundwater"},{"id":16493,"name":"Rock weathering","url":"https://www.academia.edu/Documents/in/Rock_weathering"},{"id":1003492,"name":"Resistivity Method","url":"https://www.academia.edu/Documents/in/Resistivity_Method"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25900866-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="25900724"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25900724/Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_using_inversion_techniques_and_mineralogy_of_surface_samples_Preview_179_December_2015_page_36_"><img alt="Research paper thumbnail of Manon Dalaison: Investigation of the nature of a major resistive boundary at Majors Creek, New South Wales, Australia using inversion techniques and mineralogy of surface samples. (Preview 179, December 2015. page 36.)" class="work-thumbnail" src="https://attachments.academia-assets.com/46395821/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25900724/Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_using_inversion_techniques_and_mineralogy_of_surface_samples_Preview_179_December_2015_page_36_">Manon Dalaison: Investigation of the nature of a major resistive boundary at Majors Creek, New South Wales, Australia using inversion techniques and mineralogy of surface samples. (Preview 179, December 2015. page 36.)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f257cf63a2b6a233b89916c7fcc75d48" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46395821,"asset_id":25900724,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46395821/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25900724"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25900724"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25900724; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25900724]").text(description); $(".js-view-count[data-work-id=25900724]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25900724; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25900724']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f257cf63a2b6a233b89916c7fcc75d48" } } $('.js-work-strip[data-work-id=25900724]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25900724,"title":"Manon Dalaison: Investigation of the nature of a major resistive boundary at Majors Creek, New South Wales, Australia using inversion techniques and mineralogy of surface samples. (Preview 179, December 2015. page 36.)","translated_title":"","metadata":{"abstract":"The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use.","ai_title_tag":"Resistive Boundary Analysis Using Inversion Techniques at Majors Creek"},"translated_abstract":"The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use.","internal_url":"https://www.academia.edu/25900724/Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_using_inversion_techniques_and_mineralogy_of_surface_samples_Preview_179_December_2015_page_36_","translated_internal_url":"","created_at":"2016-06-05T20:46:03.621-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[{"id":46395821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46395821/thumbnails/1.jpg","file_name":"Preview_2015n179p25.pdf","download_url":"https://www.academia.edu/attachments/46395821/download_file","bulk_download_file_name":"Manon_Dalaison_Investigation_of_the_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46395821/Preview_2015n179p25-libre.pdf?1465644511=\u0026response-content-disposition=attachment%3B+filename%3DManon_Dalaison_Investigation_of_the_natu.pdf\u0026Expires=1744157149\u0026Signature=VS7GxIPfeiCAfVSMi1cQeJXCcNOQzrgv9fBxDrDwtWuo-qTCHTIr6yYhVqOYn5LdRZhpprDpV~v65WXvxkSPtretSKzu3KrBZ2Sz2Fr6ba2rVoz2LfiJXpQ4IM6X7yWib-TIApyAy5yq5CvVqqIvMv23X5KGJfLNsisIlTYx6g89KezDGBFbd9rdKEa4WkXUhQ-u0mGr47aKLaAIuFVtsk0mhkc1cCjmwxeuDzFby084AU5pUd92fz1oLKLbDQAXHjdHYXid3shEi-TFohXfKXEBl1KfRnbnqr4C3SH8AY2RkSUAkm758BN34Xx8QpRpVsgsp3iOc4xB804VcckA3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46264932,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/46264932/thumbnails/1.jpg","file_name":"Abstract_for_Preview.docx","download_url":"https://www.academia.edu/attachments/46264932/download_file","bulk_download_file_name":"Manon_Dalaison_Investigation_of_the_natu.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46264932/Abstract_for_Preview.docx?1738322217=\u0026response-content-disposition=attachment%3B+filename%3DManon_Dalaison_Investigation_of_the_natu.docx\u0026Expires=1744157149\u0026Signature=WBJ84sYaQ9oVX~5KZGQKpssM704i4bUcb~2TvJdeXlTAea6q62-z8SzNhB8O7L0GyywFm6r9afzCUFHSi68z-qiQ2xOrPAgkAkDlne-b4OgrNAAxJxmuVy9ZZ49nhMzZVPdDQ4VQdiWsiakmocRMOY~Vp1otJMHyMlaZminEEn9rTHOG8yJDNNwxV5kBYLY2RTdLRSYpQVWvYDcxFy1ewJO5Cqq5RAYtmgrh~z2x95d-RurpJ7GlW3DZuWF9kpjcpuHv~yxpnFveeurr5cbRCdzu7Vmb74Qh6MW-fxAPTh5Mp7xlwRr6YJYTLHCZbv3UR6CQVinsmMVnyu~c-NiJeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Manon_Dalaison_Investigation_of_the_nature_of_a_major_resistive_boundary_at_Majors_Creek_New_South_Wales_Australia_using_inversion_techniques_and_mineralogy_of_surface_samples_Preview_179_December_2015_page_36_","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"The electrical resistivity of the subsurface was measured along a 400m line up to 60m deep in the Majors Creek area, southeastern New South Wales. Manual auger samples, collected up to 250cm depth, were analysed using X-Ray powder diffractometry, to characterise the resistivity anomalies. Particular attention was paid to the geophysical inversion method and to the identification and quantification of minerals in auger samples. The smoothness-constrained least-squares optimisation method produced a modelled resistivity bounded between 20 and 600 Ωm, with a vertical discontinuity at depth (~15m and downwards) near the middle of the pseudosection, and a clear delimitation of groundwater in the first 15m below the surface. The regularly sampled subsurface was made up of in-situ weathering products, comprising mottled clays and moderately weathered saprolite of felsic igneous rock with preserved granitic texture. The effect of weathering was found to override all the other trends in the mineral quantification, correlating zones of water storage and mottling with high clays and amorphous content and low plagioclase, micas, magnetite and, in a lesser extent, low K-feldspar and inversely in dryer area, for relatively constant quartz. The nature of the deep resistive discontinuity could be the result of a conductive/resistive dyke or a local fault, interpretations that are supported by previously published geological map and aeromagnetic data, but for which the auger samples are of little use.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":46395821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46395821/thumbnails/1.jpg","file_name":"Preview_2015n179p25.pdf","download_url":"https://www.academia.edu/attachments/46395821/download_file","bulk_download_file_name":"Manon_Dalaison_Investigation_of_the_natu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46395821/Preview_2015n179p25-libre.pdf?1465644511=\u0026response-content-disposition=attachment%3B+filename%3DManon_Dalaison_Investigation_of_the_natu.pdf\u0026Expires=1744157149\u0026Signature=VS7GxIPfeiCAfVSMi1cQeJXCcNOQzrgv9fBxDrDwtWuo-qTCHTIr6yYhVqOYn5LdRZhpprDpV~v65WXvxkSPtretSKzu3KrBZ2Sz2Fr6ba2rVoz2LfiJXpQ4IM6X7yWib-TIApyAy5yq5CvVqqIvMv23X5KGJfLNsisIlTYx6g89KezDGBFbd9rdKEa4WkXUhQ-u0mGr47aKLaAIuFVtsk0mhkc1cCjmwxeuDzFby084AU5pUd92fz1oLKLbDQAXHjdHYXid3shEi-TFohXfKXEBl1KfRnbnqr4C3SH8AY2RkSUAkm758BN34Xx8QpRpVsgsp3iOc4xB804VcckA3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46264932,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/46264932/thumbnails/1.jpg","file_name":"Abstract_for_Preview.docx","download_url":"https://www.academia.edu/attachments/46264932/download_file","bulk_download_file_name":"Manon_Dalaison_Investigation_of_the_natu.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46264932/Abstract_for_Preview.docx?1738322217=\u0026response-content-disposition=attachment%3B+filename%3DManon_Dalaison_Investigation_of_the_natu.docx\u0026Expires=1744157149\u0026Signature=WBJ84sYaQ9oVX~5KZGQKpssM704i4bUcb~2TvJdeXlTAea6q62-z8SzNhB8O7L0GyywFm6r9afzCUFHSi68z-qiQ2xOrPAgkAkDlne-b4OgrNAAxJxmuVy9ZZ49nhMzZVPdDQ4VQdiWsiakmocRMOY~Vp1otJMHyMlaZminEEn9rTHOG8yJDNNwxV5kBYLY2RTdLRSYpQVWvYDcxFy1ewJO5Cqq5RAYtmgrh~z2x95d-RurpJ7GlW3DZuWF9kpjcpuHv~yxpnFveeurr5cbRCdzu7Vmb74Qh6MW-fxAPTh5Mp7xlwRr6YJYTLHCZbv3UR6CQVinsmMVnyu~c-NiJeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":16493,"name":"Rock weathering","url":"https://www.academia.edu/Documents/in/Rock_weathering"},{"id":61623,"name":"Applied Geophysics","url":"https://www.academia.edu/Documents/in/Applied_Geophysics"},{"id":191577,"name":"Resistivity","url":"https://www.academia.edu/Documents/in/Resistivity"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25900724-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="11287700"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11287700/Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW_Special_Topic_3050_Semester_2_2014_"><img alt="Research paper thumbnail of Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in-situ regolith at Major’s Creek, NSW. (Special Topic 3050 – Semester 2, 2014)." class="work-thumbnail" src="https://attachments.academia-assets.com/36866858/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11287700/Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW_Special_Topic_3050_Semester_2_2014_">Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in-situ regolith at Major’s Creek, NSW. (Special Topic 3050 – Semester 2, 2014).</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A 400 m electrical resistivity survey over the Braidwood Granodiorite suite at Major’s creek and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A 400 m electrical resistivity survey over the Braidwood Granodiorite suite at Major’s creek and 5 drill core samples at depth situated on the survey line has resulted in an interesting relationship between pore space and electrical resistivity. Unexpected trends between pore space and the electrical resistivity signature of the 5 samples provide an interesting incite to delineate in-situ regolith from fresh bed rock in a porphyry environment. The deeper samples (3, 4 and 5) seem to follow an exponential trend; increase in resistivity and depth with a decrease in pore space, a trend that mirrors Archie’s law (1942). The shallower samples (1 and 2) follow the opposite trend, an increase in pore space with a decrease in resistivity. The disparity between shallow (samples 1 and 2) and deeper (Samples 3, 4, and 5) trend might be consistent with the enrichment of Fe-Oxide (Fe-Ox) at the depth of sample 2 (17.5m). Consequently, electrical resistivity signature induced from the Fe-Ox enrichment and limited pore space of sample 2 might be the signpost for delineating fresh rock from in-situ regolith. The presence of Fe-Ox enrichment and limited pore space (0.14%) could act as a conductive aquitard to meteroric waters above, providing a boundary between the interface of highly weathered and fresh granitic rock. Despite some promise in the trends made apparent in this paper, a greater range of area, deeper core samples and more accurate sampling techniques are required to establish any further trends or theories.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d3a1b57b8d2fc5926c9af86a146890a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36866858,"asset_id":11287700,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36866858/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11287700"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11287700"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11287700; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11287700]").text(description); $(".js-view-count[data-work-id=11287700]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11287700; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11287700']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d3a1b57b8d2fc5926c9af86a146890a" } } $('.js-work-strip[data-work-id=11287700]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11287700,"title":"Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in-situ regolith at Major’s Creek, NSW. (Special Topic 3050 – Semester 2, 2014).","translated_title":"","metadata":{"abstract":"A 400 m electrical resistivity survey over the Braidwood Granodiorite suite at Major’s creek and 5 drill core samples at depth situated on the survey line has resulted in an interesting relationship between pore space and electrical resistivity. Unexpected trends between pore space and the electrical resistivity signature of the 5 samples provide an interesting incite to delineate in-situ regolith from fresh bed rock in a porphyry environment. The deeper samples (3, 4 and 5) seem to follow an exponential trend; increase in resistivity and depth with a decrease in pore space, a trend that mirrors Archie’s law (1942). The shallower samples (1 and 2) follow the opposite trend, an increase in pore space with a decrease in resistivity. The disparity between shallow (samples 1 and 2) and deeper (Samples 3, 4, and 5) trend might be consistent with the enrichment of Fe-Oxide (Fe-Ox) at the depth of sample 2 (17.5m). Consequently, electrical resistivity signature induced from the Fe-Ox enrichment and limited pore space of sample 2 might be the signpost for delineating fresh rock from in-situ regolith. The presence of Fe-Ox enrichment and limited pore space (0.14%) could act as a conductive aquitard to meteroric waters above, providing a boundary between the interface of highly weathered and fresh granitic rock. Despite some promise in the trends made apparent in this paper, a greater range of area, deeper core samples and more accurate sampling techniques are required to establish any further trends or theories."},"translated_abstract":"A 400 m electrical resistivity survey over the Braidwood Granodiorite suite at Major’s creek and 5 drill core samples at depth situated on the survey line has resulted in an interesting relationship between pore space and electrical resistivity. Unexpected trends between pore space and the electrical resistivity signature of the 5 samples provide an interesting incite to delineate in-situ regolith from fresh bed rock in a porphyry environment. The deeper samples (3, 4 and 5) seem to follow an exponential trend; increase in resistivity and depth with a decrease in pore space, a trend that mirrors Archie’s law (1942). The shallower samples (1 and 2) follow the opposite trend, an increase in pore space with a decrease in resistivity. The disparity between shallow (samples 1 and 2) and deeper (Samples 3, 4, and 5) trend might be consistent with the enrichment of Fe-Oxide (Fe-Ox) at the depth of sample 2 (17.5m). Consequently, electrical resistivity signature induced from the Fe-Ox enrichment and limited pore space of sample 2 might be the signpost for delineating fresh rock from in-situ regolith. The presence of Fe-Ox enrichment and limited pore space (0.14%) could act as a conductive aquitard to meteroric waters above, providing a boundary between the interface of highly weathered and fresh granitic rock. Despite some promise in the trends made apparent in this paper, a greater range of area, deeper core samples and more accurate sampling techniques are required to establish any further trends or theories.","internal_url":"https://www.academia.edu/11287700/Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW_Special_Topic_3050_Semester_2_2014_","translated_internal_url":"","created_at":"2015-03-05T04:27:14.121-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":233218,"work_id":11287700,"tagging_user_id":498748,"tagged_user_id":9559421,"co_author_invite_id":null,"email":"s***2@gmail.com","affiliation":"The Australian National University","display_order":null,"name":"Sanjay Govindan","title":"Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in-situ regolith at Major’s Creek, NSW. (Special Topic 3050 – Semester 2, 2014)."}],"downloadable_attachments":[{"id":36866858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36866858/thumbnails/1.jpg","file_name":"Sanjay_Govindan_Special_Topics_Final_Report_2014.pdf","download_url":"https://www.academia.edu/attachments/36866858/download_file","bulk_download_file_name":"Sanjay_Govindan_The_relationship_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36866858/Sanjay_Govindan_Special_Topics_Final_Report_2014-libre.pdf?1425558280=\u0026response-content-disposition=attachment%3B+filename%3DSanjay_Govindan_The_relationship_between.pdf\u0026Expires=1744157149\u0026Signature=DCsPuzFymAP6HPisxiasrZ4m7leBsOC2G2imZlSNycQCFeYMeobwoJJptllT1Cu5Ouo94WpP5bs1-BrM3buppLUHv8T9uioA4IF6K-T2rcNLNgrtfQtQC2zIOPqGgV8eX5iO-451QtHxsT~x8ZACtu~qMhOb8dc-r-ybXzvqi7lYBFX8pyGHTX9ss4E19hE69ar4tzkQQBcXuZ2botSW4AiMECPUM~nLWqisRGBvZBQzsWYMSiC187AkqfAHWRP2bpgV2MVJy3hfcbvlbKgJXrnC0hV0tfSJ3PDixGN0VSyXu~gfj605yxlUPpRZWI3ujWwLOtQnssrJTBVNudS5NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW_Special_Topic_3050_Semester_2_2014_","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"A 400 m electrical resistivity survey over the Braidwood Granodiorite suite at Major’s creek and 5 drill core samples at depth situated on the survey line has resulted in an interesting relationship between pore space and electrical resistivity. Unexpected trends between pore space and the electrical resistivity signature of the 5 samples provide an interesting incite to delineate in-situ regolith from fresh bed rock in a porphyry environment. The deeper samples (3, 4 and 5) seem to follow an exponential trend; increase in resistivity and depth with a decrease in pore space, a trend that mirrors Archie’s law (1942). The shallower samples (1 and 2) follow the opposite trend, an increase in pore space with a decrease in resistivity. The disparity between shallow (samples 1 and 2) and deeper (Samples 3, 4, and 5) trend might be consistent with the enrichment of Fe-Oxide (Fe-Ox) at the depth of sample 2 (17.5m). Consequently, electrical resistivity signature induced from the Fe-Ox enrichment and limited pore space of sample 2 might be the signpost for delineating fresh rock from in-situ regolith. The presence of Fe-Ox enrichment and limited pore space (0.14%) could act as a conductive aquitard to meteroric waters above, providing a boundary between the interface of highly weathered and fresh granitic rock. Despite some promise in the trends made apparent in this paper, a greater range of area, deeper core samples and more accurate sampling techniques are required to establish any further trends or theories.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":36866858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36866858/thumbnails/1.jpg","file_name":"Sanjay_Govindan_Special_Topics_Final_Report_2014.pdf","download_url":"https://www.academia.edu/attachments/36866858/download_file","bulk_download_file_name":"Sanjay_Govindan_The_relationship_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36866858/Sanjay_Govindan_Special_Topics_Final_Report_2014-libre.pdf?1425558280=\u0026response-content-disposition=attachment%3B+filename%3DSanjay_Govindan_The_relationship_between.pdf\u0026Expires=1744157149\u0026Signature=DCsPuzFymAP6HPisxiasrZ4m7leBsOC2G2imZlSNycQCFeYMeobwoJJptllT1Cu5Ouo94WpP5bs1-BrM3buppLUHv8T9uioA4IF6K-T2rcNLNgrtfQtQC2zIOPqGgV8eX5iO-451QtHxsT~x8ZACtu~qMhOb8dc-r-ybXzvqi7lYBFX8pyGHTX9ss4E19hE69ar4tzkQQBcXuZ2botSW4AiMECPUM~nLWqisRGBvZBQzsWYMSiC187AkqfAHWRP2bpgV2MVJy3hfcbvlbKgJXrnC0hV0tfSJ3PDixGN0VSyXu~gfj605yxlUPpRZWI3ujWwLOtQnssrJTBVNudS5NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":9138,"name":"Applied Physics","url":"https://www.academia.edu/Documents/in/Applied_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-11287700-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="11287093"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11287093/Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW"><img alt="Research paper thumbnail of Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in situ regolith at Major’s Creek, NSW. " class="work-thumbnail" src="https://attachments.academia-assets.com/36866515/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11287093/Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW">Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in situ regolith at Major’s Creek, NSW. </a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Although strongly biased to more porous and conductive media such as solution-filled sedimentary ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Although strongly biased to more porous and conductive media such as solution-filled sedimentary environments (Duba et al, 1978), Archie’s law can arguably be applied to less porous and conductive settings such as crystalline rocks (Barker, 1979; Brace et al, 1968 and 1968a). This poster explores the relationship between near-surface electrical resistivity and pore space within a mineralised (Au) and altered crystalline rock environment at Dargue's Reef, Majors Creek, NSW.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-11287093-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-11287093-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/3202830/figure-1-acquiring-apparent-resistivity-is-two-stage-process"><img alt="Acquiring apparent resistivity is a two stage process requiring the collection and inversion of apparent resistivity data from field measurements. " class="figure-slide-image" src="https://figures.academia-assets.com/36866515/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/3202840/figure-2-the-results-of-the-thresholded-and-analysed-images"><img alt="3. The results of the thresholded and analysed images were subtracted from each ther, resulting in a single image. This image was then thresholded and segmented o only black pixels. A particle analyser algorithm eliminated all pixel cumulates yreater than 3000 (the largest pore space noted in hornblende). " class="figure-slide-image" src="https://figures.academia-assets.com/36866515/figure_002.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-11287093-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5044d7bf0bc951420b22575a89e2a47" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36866515,"asset_id":11287093,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36866515/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11287093"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11287093"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11287093; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11287093]").text(description); $(".js-view-count[data-work-id=11287093]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11287093; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11287093']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5044d7bf0bc951420b22575a89e2a47" } } $('.js-work-strip[data-work-id=11287093]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11287093,"title":"Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in situ regolith at Major’s Creek, NSW. ","translated_title":"","metadata":{"abstract":"Although strongly biased to more porous and conductive media such as solution-filled sedimentary environments (Duba et al, 1978), Archie’s law can arguably be applied to less porous and conductive settings such as crystalline rocks (Barker, 1979; Brace et al, 1968 and 1968a). This poster explores the relationship between near-surface electrical resistivity and pore space within a mineralised (Au) and altered crystalline rock environment at Dargue's Reef, Majors Creek, NSW.","more_info":"Poster paper presented at the ASEG-PESA Conference, Feb 2015, Perth Australia. Winner of the ASEG ACT Division Student Travel Award."},"translated_abstract":"Although strongly biased to more porous and conductive media such as solution-filled sedimentary environments (Duba et al, 1978), Archie’s law can arguably be applied to less porous and conductive settings such as crystalline rocks (Barker, 1979; Brace et al, 1968 and 1968a). This poster explores the relationship between near-surface electrical resistivity and pore space within a mineralised (Au) and altered crystalline rock environment at Dargue's Reef, Majors Creek, NSW.","internal_url":"https://www.academia.edu/11287093/Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW","translated_internal_url":"","created_at":"2015-03-05T03:47:14.724-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":233104,"work_id":11287093,"tagging_user_id":498748,"tagged_user_id":9559421,"co_author_invite_id":null,"email":"s***2@gmail.com","affiliation":"The Australian National University","display_order":null,"name":"Sanjay Govindan","title":"Sanjay Govindan: The relationship between pore space and the electrical resistivity signature of in situ regolith at Major’s Creek, NSW. "}],"downloadable_attachments":[{"id":36866515,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36866515/thumbnails/1.jpg","file_name":"Govindan_2015.pdf","download_url":"https://www.academia.edu/attachments/36866515/download_file","bulk_download_file_name":"Sanjay_Govindan_The_relationship_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36866515/Govindan_2015-libre.pdf?1425555913=\u0026response-content-disposition=attachment%3B+filename%3DSanjay_Govindan_The_relationship_between.pdf\u0026Expires=1744157149\u0026Signature=GvlgFl1~CPSQQX1IBVBumlE546YUuNpSVqW0mSgtXNzWaXGn6RSdum~lCEMqctERvRbXdcRuCY~uM1CJ14z-xgH2pfujA59T3StfVGlMd~szRYTnBi9VqxuwDezlzaBAr04mxJrqNg778SH4M7eed1k4Gn0XH5ezY89pv1Gui6lx6CcZyyUrSdRLt-VWh6hAMmG8BOAtFFu6Rf2g0U-Vn7kubrI2c0nBA974jPDVv34Z3-J-xMSKSUR5jZ2VUcLgN7K3r4eMCFyMhHhXepl~hkA09tc-lYWhAlPin~aLkyx2UaJVpM2zRn6P9Z57Mvvo-Lc9k-1umP-lpVlwU-uoqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sanjay_Govindan_The_relationship_between_pore_space_and_the_electrical_resistivity_signature_of_in_situ_regolith_at_Major_s_Creek_NSW","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Although strongly biased to more porous and conductive media such as solution-filled sedimentary environments (Duba et al, 1978), Archie’s law can arguably be applied to less porous and conductive settings such as crystalline rocks (Barker, 1979; Brace et al, 1968 and 1968a). This poster explores the relationship between near-surface electrical resistivity and pore space within a mineralised (Au) and altered crystalline rock environment at Dargue's Reef, Majors Creek, NSW.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":36866515,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36866515/thumbnails/1.jpg","file_name":"Govindan_2015.pdf","download_url":"https://www.academia.edu/attachments/36866515/download_file","bulk_download_file_name":"Sanjay_Govindan_The_relationship_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36866515/Govindan_2015-libre.pdf?1425555913=\u0026response-content-disposition=attachment%3B+filename%3DSanjay_Govindan_The_relationship_between.pdf\u0026Expires=1744157149\u0026Signature=GvlgFl1~CPSQQX1IBVBumlE546YUuNpSVqW0mSgtXNzWaXGn6RSdum~lCEMqctERvRbXdcRuCY~uM1CJ14z-xgH2pfujA59T3StfVGlMd~szRYTnBi9VqxuwDezlzaBAr04mxJrqNg778SH4M7eed1k4Gn0XH5ezY89pv1Gui6lx6CcZyyUrSdRLt-VWh6hAMmG8BOAtFFu6Rf2g0U-Vn7kubrI2c0nBA974jPDVv34Z3-J-xMSKSUR5jZ2VUcLgN7K3r4eMCFyMhHhXepl~hkA09tc-lYWhAlPin~aLkyx2UaJVpM2zRn6P9Z57Mvvo-Lc9k-1umP-lpVlwU-uoqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":24963,"name":"Exploration Geophysics","url":"https://www.academia.edu/Documents/in/Exploration_Geophysics"}],"urls":[{"id":4573767,"url":"http://www.conference.aseg.org.au/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-11287093-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="8657773"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/8657773/Diana_Cato_Smith_Eva_Papp_and_Bear_McPhail_Electrical_geophysical_sand_exploration_at_Lake_George_New_South_Wales"><img alt="Research paper thumbnail of Diana Cato-Smith, Eva Papp and Bear McPhail: Electrical geophysical sand exploration at Lake George, New South Wales " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Diana Cato-Smith, Eva Papp and Bear McPhail: Electrical geophysical sand exploration at Lake George, New South Wales </div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The sand deposits in the Lake George area are economically viable and have been broadly mapped (M...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The sand deposits in the Lake George area are economically viable and have been broadly mapped (Mason 1995). This study aims to further the understanding of the sand, to aid in the prediction of economically viable deposits. <br />Resistivity transects were measured in the southeastern area of Lake George. The data was integrated with additional techniques to develop an efficient method of sand exploration. <br />This study confirmed strandline deposit ‘15’ extends further north than mapped (Mason 1995) and there is an adjoining up to 19m deep deposit. This study highlights the advantages of utilizing an integrated method in sand exploration.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8657773"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8657773"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8657773; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8657773]").text(description); $(".js-view-count[data-work-id=8657773]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8657773; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8657773']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8657773]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8657773,"title":"Diana Cato-Smith, Eva Papp and Bear McPhail: Electrical geophysical sand exploration at Lake George, New South Wales ","translated_title":"","metadata":{"abstract":"The sand deposits in the Lake George area are economically viable and have been broadly mapped (Mason 1995). This study aims to further the understanding of the sand, to aid in the prediction of economically viable deposits. \r\nResistivity transects were measured in the southeastern area of Lake George. The data was integrated with additional techniques to develop an efficient method of sand exploration.\r\nThis study confirmed strandline deposit ‘15’ extends further north than mapped (Mason 1995) and there is an adjoining up to 19m deep deposit. This study highlights the advantages of utilizing an integrated method in sand exploration. \r\n","more_info":"Poster Paper at IMARC 2014 Melbourne Conference, http://www.imarcmelbourne.com/"},"translated_abstract":"The sand deposits in the Lake George area are economically viable and have been broadly mapped (Mason 1995). This study aims to further the understanding of the sand, to aid in the prediction of economically viable deposits. \r\nResistivity transects were measured in the southeastern area of Lake George. The data was integrated with additional techniques to develop an efficient method of sand exploration.\r\nThis study confirmed strandline deposit ‘15’ extends further north than mapped (Mason 1995) and there is an adjoining up to 19m deep deposit. This study highlights the advantages of utilizing an integrated method in sand exploration. \r\n","internal_url":"https://www.academia.edu/8657773/Diana_Cato_Smith_Eva_Papp_and_Bear_McPhail_Electrical_geophysical_sand_exploration_at_Lake_George_New_South_Wales","translated_internal_url":"","created_at":"2014-10-06T07:10:22.463-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"Diana_Cato_Smith_Eva_Papp_and_Bear_McPhail_Electrical_geophysical_sand_exploration_at_Lake_George_New_South_Wales","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The sand deposits in the Lake George area are economically viable and have been broadly mapped (Mason 1995). This study aims to further the understanding of the sand, to aid in the prediction of economically viable deposits. \r\nResistivity transects were measured in the southeastern area of Lake George. The data was integrated with additional techniques to develop an efficient method of sand exploration.\r\nThis study confirmed strandline deposit ‘15’ extends further north than mapped (Mason 1995) and there is an adjoining up to 19m deep deposit. This study highlights the advantages of utilizing an integrated method in sand exploration. \r\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":427638,"name":"Engineering Applications of Electrical Geophysical Methods","url":"https://www.academia.edu/Documents/in/Engineering_Applications_of_Electrical_Geophysical_Methods"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-8657773-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="8657845"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/8657845/Diana_Cato_Smith_Electrical_geophysical_sand_exploration_at_Lake_George_New_South_Wales_BSc_Honours_Thesis_2014_RSES_ANU_"><img alt="Research paper thumbnail of Diana Cato-Smith: Electrical geophysical sand exploration at Lake George, New South Wales (BSc Honours Thesis, 2014, RSES ANU)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Diana Cato-Smith: Electrical geophysical sand exploration at Lake George, New South Wales (BSc Honours Thesis, 2014, RSES ANU)</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8657845"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8657845"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8657845; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8657845]").text(description); $(".js-view-count[data-work-id=8657845]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8657845; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8657845']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8657845]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8657845,"title":"Diana Cato-Smith: Electrical geophysical sand exploration at Lake George, New South Wales (BSc Honours Thesis, 2014, RSES ANU)","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/8657845/Diana_Cato_Smith_Electrical_geophysical_sand_exploration_at_Lake_George_New_South_Wales_BSc_Honours_Thesis_2014_RSES_ANU_","translated_internal_url":"","created_at":"2014-10-06T07:17:31.467-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"Diana_Cato_Smith_Electrical_geophysical_sand_exploration_at_Lake_George_New_South_Wales_BSc_Honours_Thesis_2014_RSES_ANU_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":992645,"name":"Geophysics: Electrical","url":"https://www.academia.edu/Documents/in/Geophysics_Electrical"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-8657845-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="8657921"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/8657921/Lauren_Burraston_Identification_of_interactions_between_surface_irrigation_water_and_groundwater_using_the_resistivity_imaging_method_in_the_Coleambally_Irrigation_Area_NSW_BSc_Honours_Thesis_2011_RSES_ANU_"><img alt="Research paper thumbnail of Lauren Burraston: Identification of interactions between surface-irrigation water and groundwater using the resistivity imaging method in the Coleambally Irrigation Area, NSW (BSc Honours Thesis, 2011, RSES ANU)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Lauren Burraston: Identification of interactions between surface-irrigation water and groundwater using the resistivity imaging method in the Coleambally Irrigation Area, NSW (BSc Honours Thesis, 2011, RSES ANU)</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Lower Murrumbidgee Catchment in New South Wales is host to major agricultural irrigation area...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Lower Murrumbidgee Catchment in New South Wales is host to major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Groundwater mounding and associated shallow groundwater salinity represents a significant threat to the future of irrigation in the CIA. Many groundwater studies are focussed on interactions between groundwater and natural surface water features such as rivers and lakes. This study seeks to develop an improved understanding of the specific impact of irrigation on surface water and groundwater interactions.<br />Four resistivity surveys totalling 2.8 km in length and with a depth penetration of 60 m were carried out parallel to irrigation channels at a site within the heavily irrigated CIA. Geophysical inversion was carried out, and subsequent geological interpretation was achieved with the use of multiple ancillary data types including airborne radiometrics, Landsat imagery, hydrogeochemical and hydrogeological data, as well as information from geological logs.<br />A previously unmapped branch of a known palaeochannel system was discovered from radiometrics images. Detailed subsurface geometry of this palaeochannel from resistivity imaging combined with information from geological logs revealed a broad sandy feature partially filled with clay sediments. Combined analysis of hydrogeological and hydrogeochemical data showed how the partially clay-filled palaeochannel acts as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. Evidence of leakage from irrigation channels was identified using the resistivity imaging method.<br />This study shows how the presence of a major geomorphological feature exerts significant influence on groundwater mounding in a heavily irrigated area which, coupled with intensive groundwater extraction from deeper aquifers, influences both local and regional groundwater gradients, flow directions and groundwater chemistry. This study illustrates the usefulness of the resistivity imaging method in conjunction with complementary investigation techniques for obtaining detailed information about the geometry and spatial extent of significant geological features, and the resulting effects on interactions between surface water and groundwater.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8657921"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8657921"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8657921; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8657921]").text(description); $(".js-view-count[data-work-id=8657921]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8657921; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8657921']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8657921]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8657921,"title":"Lauren Burraston: Identification of interactions between surface-irrigation water and groundwater using the resistivity imaging method in the Coleambally Irrigation Area, NSW (BSc Honours Thesis, 2011, RSES ANU)","translated_title":"","metadata":{"abstract":"The Lower Murrumbidgee Catchment in New South Wales is host to major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Groundwater mounding and associated shallow groundwater salinity represents a significant threat to the future of irrigation in the CIA. Many groundwater studies are focussed on interactions between groundwater and natural surface water features such as rivers and lakes. This study seeks to develop an improved understanding of the specific impact of irrigation on surface water and groundwater interactions.\nFour resistivity surveys totalling 2.8 km in length and with a depth penetration of 60 m were carried out parallel to irrigation channels at a site within the heavily irrigated CIA. Geophysical inversion was carried out, and subsequent geological interpretation was achieved with the use of multiple ancillary data types including airborne radiometrics, Landsat imagery, hydrogeochemical and hydrogeological data, as well as information from geological logs.\nA previously unmapped branch of a known palaeochannel system was discovered from radiometrics images. Detailed subsurface geometry of this palaeochannel from resistivity imaging combined with information from geological logs revealed a broad sandy feature partially filled with clay sediments. Combined analysis of hydrogeological and hydrogeochemical data showed how the partially clay-filled palaeochannel acts as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. Evidence of leakage from irrigation channels was identified using the resistivity imaging method.\nThis study shows how the presence of a major geomorphological feature exerts significant influence on groundwater mounding in a heavily irrigated area which, coupled with intensive groundwater extraction from deeper aquifers, influences both local and regional groundwater gradients, flow directions and groundwater chemistry. This study illustrates the usefulness of the resistivity imaging method in conjunction with complementary investigation techniques for obtaining detailed information about the geometry and spatial extent of significant geological features, and the resulting effects on interactions between surface water and groundwater."},"translated_abstract":"The Lower Murrumbidgee Catchment in New South Wales is host to major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Groundwater mounding and associated shallow groundwater salinity represents a significant threat to the future of irrigation in the CIA. Many groundwater studies are focussed on interactions between groundwater and natural surface water features such as rivers and lakes. This study seeks to develop an improved understanding of the specific impact of irrigation on surface water and groundwater interactions.\nFour resistivity surveys totalling 2.8 km in length and with a depth penetration of 60 m were carried out parallel to irrigation channels at a site within the heavily irrigated CIA. Geophysical inversion was carried out, and subsequent geological interpretation was achieved with the use of multiple ancillary data types including airborne radiometrics, Landsat imagery, hydrogeochemical and hydrogeological data, as well as information from geological logs.\nA previously unmapped branch of a known palaeochannel system was discovered from radiometrics images. Detailed subsurface geometry of this palaeochannel from resistivity imaging combined with information from geological logs revealed a broad sandy feature partially filled with clay sediments. Combined analysis of hydrogeological and hydrogeochemical data showed how the partially clay-filled palaeochannel acts as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. Evidence of leakage from irrigation channels was identified using the resistivity imaging method.\nThis study shows how the presence of a major geomorphological feature exerts significant influence on groundwater mounding in a heavily irrigated area which, coupled with intensive groundwater extraction from deeper aquifers, influences both local and regional groundwater gradients, flow directions and groundwater chemistry. This study illustrates the usefulness of the resistivity imaging method in conjunction with complementary investigation techniques for obtaining detailed information about the geometry and spatial extent of significant geological features, and the resulting effects on interactions between surface water and groundwater.","internal_url":"https://www.academia.edu/8657921/Lauren_Burraston_Identification_of_interactions_between_surface_irrigation_water_and_groundwater_using_the_resistivity_imaging_method_in_the_Coleambally_Irrigation_Area_NSW_BSc_Honours_Thesis_2011_RSES_ANU_","translated_internal_url":"","created_at":"2014-10-06T07:24:35.822-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"Lauren_Burraston_Identification_of_interactions_between_surface_irrigation_water_and_groundwater_using_the_resistivity_imaging_method_in_the_Coleambally_Irrigation_Area_NSW_BSc_Honours_Thesis_2011_RSES_ANU_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Lower Murrumbidgee Catchment in New South Wales is host to major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Groundwater mounding and associated shallow groundwater salinity represents a significant threat to the future of irrigation in the CIA. Many groundwater studies are focussed on interactions between groundwater and natural surface water features such as rivers and lakes. This study seeks to develop an improved understanding of the specific impact of irrigation on surface water and groundwater interactions.\nFour resistivity surveys totalling 2.8 km in length and with a depth penetration of 60 m were carried out parallel to irrigation channels at a site within the heavily irrigated CIA. Geophysical inversion was carried out, and subsequent geological interpretation was achieved with the use of multiple ancillary data types including airborne radiometrics, Landsat imagery, hydrogeochemical and hydrogeological data, as well as information from geological logs.\nA previously unmapped branch of a known palaeochannel system was discovered from radiometrics images. Detailed subsurface geometry of this palaeochannel from resistivity imaging combined with information from geological logs revealed a broad sandy feature partially filled with clay sediments. Combined analysis of hydrogeological and hydrogeochemical data showed how the partially clay-filled palaeochannel acts as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. Evidence of leakage from irrigation channels was identified using the resistivity imaging method.\nThis study shows how the presence of a major geomorphological feature exerts significant influence on groundwater mounding in a heavily irrigated area which, coupled with intensive groundwater extraction from deeper aquifers, influences both local and regional groundwater gradients, flow directions and groundwater chemistry. This study illustrates the usefulness of the resistivity imaging method in conjunction with complementary investigation techniques for obtaining detailed information about the geometry and spatial extent of significant geological features, and the resulting effects on interactions between surface water and groundwater.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":121880,"name":"Application of Electrical Resistivity Method in Assesment of the Ground Water Potentials","url":"https://www.academia.edu/Documents/in/Application_of_Electrical_Resistivity_Method_in_Assesment_of_the_Ground_Water_Potentials"},{"id":213575,"name":"Resistivity Imaging","url":"https://www.academia.edu/Documents/in/Resistivity_Imaging"},{"id":351709,"name":"2D and 3D geoelectrical resistivity imaging: Theory and field design","url":"https://www.academia.edu/Documents/in/2D_and_3D_geoelectrical_resistivity_imaging_Theory_and_field_design"},{"id":685186,"name":"Use of Electrical Resistivity Method for Ground Water Investigation","url":"https://www.academia.edu/Documents/in/Use_of_Electrical_Resistivity_Method_for_Ground_Water_Investigation"},{"id":1074560,"name":"Resistivity Method Groundwater Exploration","url":"https://www.academia.edu/Documents/in/Resistivity_Method_Groundwater_Exploration"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-8657921-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="11286844"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/11286844/Rebecca_Garner_Resistivity_imaging_and_surface_water_groundwater_interactions_in_the_Lower_Murrumbidgee_Catchment_A_thesis_submitted_for_the_degree_Bachelor_of_Science_Honours_at_the_Australian_National_University_2010_"><img alt="Research paper thumbnail of Rebecca Garner: Resistivity imaging and surface water – groundwater interactions in the Lower Murrumbidgee Catchment. (A thesis submitted for the degree Bachelor of Science (Honours) at the Australian National University 2010)." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Rebecca Garner: Resistivity imaging and surface water – groundwater interactions in the Lower Murrumbidgee Catchment. (A thesis submitted for the degree Bachelor of Science (Honours) at the Australian National University 2010).</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Understanding surface water – groundwater interactions is of great importance for sustai...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract<br />Understanding surface water – groundwater interactions is of great importance for sustainably managing water resources. This study investigates how the geophysical technique of resistivity imaging can be combined with more established techniques of hydrogeology and hydrogeochemistry to improve understanding of surface water – groundwater interactions, focusing on the Narrandera area of the Lower Murrumbidgee Catchment.<br />Four resistivity surveys totalling 3.3 km were conducted in three locations: along the line of an existing hydrogeology cross-section; within a meander of the Murrumbidgee River; and at a site of ongoing groundwater monitoring, 15 km south of the river. The resulting resistivity sections were interpreted with the assistance of drillers’ logs, water chemistry data, hydraulic head measurements, Landsat imagery and radiometrics data.<br />Both the resistivity imaging and Landsat imagery provides evidence that there is a paleochannel that acts as a high hydraulic conductivity conduit, parallel to the current Murrumbidgee River. Evidence of groundwater flow following the river meander is seen in two resistivity sections. There is evidence of water flowing along surface features and entering the groundwater system near the river. This, combined with hydraulic gradients away from the river downstream of Narrandera, provides strong evidence for recharge coming from the river. The groundwater composition is progressively less river-like further from the river suggesting mixing of river water and existing groundwater.<br />Two possible mechanisms for vertical flow between aquifers have been identified. The first is leakage associated with bores. Significant leakage through a monitoring bore (GW025395) has been identified by its strong resistivity signature. Given the large number of bores in the catchment, leakage may substantially influence the region’s hydrodynamics. The second mechanism is a density driven flow due to highly saline shallow groundwater sinking.<br />This study demonstrates the power of resistivity imaging in studying groundwater particularly when combined with other methods. Resistivity imaging has been most useful for detailed mapping of features associated with paleochannels.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11286844"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11286844"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11286844; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11286844]").text(description); $(".js-view-count[data-work-id=11286844]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11286844; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11286844']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=11286844]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11286844,"title":"Rebecca Garner: Resistivity imaging and surface water – groundwater interactions in the Lower Murrumbidgee Catchment. (A thesis submitted for the degree Bachelor of Science (Honours) at the Australian National University 2010).","translated_title":"","metadata":{"abstract":"Abstract\nUnderstanding surface water – groundwater interactions is of great importance for sustainably managing water resources. This study investigates how the geophysical technique of resistivity imaging can be combined with more established techniques of hydrogeology and hydrogeochemistry to improve understanding of surface water – groundwater interactions, focusing on the Narrandera area of the Lower Murrumbidgee Catchment.\nFour resistivity surveys totalling 3.3 km were conducted in three locations: along the line of an existing hydrogeology cross-section; within a meander of the Murrumbidgee River; and at a site of ongoing groundwater monitoring, 15 km south of the river. The resulting resistivity sections were interpreted with the assistance of drillers’ logs, water chemistry data, hydraulic head measurements, Landsat imagery and radiometrics data.\nBoth the resistivity imaging and Landsat imagery provides evidence that there is a paleochannel that acts as a high hydraulic conductivity conduit, parallel to the current Murrumbidgee River. Evidence of groundwater flow following the river meander is seen in two resistivity sections. There is evidence of water flowing along surface features and entering the groundwater system near the river. This, combined with hydraulic gradients away from the river downstream of Narrandera, provides strong evidence for recharge coming from the river. The groundwater composition is progressively less river-like further from the river suggesting mixing of river water and existing groundwater.\nTwo possible mechanisms for vertical flow between aquifers have been identified. The first is leakage associated with bores. Significant leakage through a monitoring bore (GW025395) has been identified by its strong resistivity signature. Given the large number of bores in the catchment, leakage may substantially influence the region’s hydrodynamics. The second mechanism is a density driven flow due to highly saline shallow groundwater sinking.\nThis study demonstrates the power of resistivity imaging in studying groundwater particularly when combined with other methods. Resistivity imaging has been most useful for detailed mapping of features associated with paleochannels."},"translated_abstract":"Abstract\nUnderstanding surface water – groundwater interactions is of great importance for sustainably managing water resources. This study investigates how the geophysical technique of resistivity imaging can be combined with more established techniques of hydrogeology and hydrogeochemistry to improve understanding of surface water – groundwater interactions, focusing on the Narrandera area of the Lower Murrumbidgee Catchment.\nFour resistivity surveys totalling 3.3 km were conducted in three locations: along the line of an existing hydrogeology cross-section; within a meander of the Murrumbidgee River; and at a site of ongoing groundwater monitoring, 15 km south of the river. The resulting resistivity sections were interpreted with the assistance of drillers’ logs, water chemistry data, hydraulic head measurements, Landsat imagery and radiometrics data.\nBoth the resistivity imaging and Landsat imagery provides evidence that there is a paleochannel that acts as a high hydraulic conductivity conduit, parallel to the current Murrumbidgee River. Evidence of groundwater flow following the river meander is seen in two resistivity sections. There is evidence of water flowing along surface features and entering the groundwater system near the river. This, combined with hydraulic gradients away from the river downstream of Narrandera, provides strong evidence for recharge coming from the river. The groundwater composition is progressively less river-like further from the river suggesting mixing of river water and existing groundwater.\nTwo possible mechanisms for vertical flow between aquifers have been identified. The first is leakage associated with bores. Significant leakage through a monitoring bore (GW025395) has been identified by its strong resistivity signature. Given the large number of bores in the catchment, leakage may substantially influence the region’s hydrodynamics. The second mechanism is a density driven flow due to highly saline shallow groundwater sinking.\nThis study demonstrates the power of resistivity imaging in studying groundwater particularly when combined with other methods. Resistivity imaging has been most useful for detailed mapping of features associated with paleochannels.","internal_url":"https://www.academia.edu/11286844/Rebecca_Garner_Resistivity_imaging_and_surface_water_groundwater_interactions_in_the_Lower_Murrumbidgee_Catchment_A_thesis_submitted_for_the_degree_Bachelor_of_Science_Honours_at_the_Australian_National_University_2010_","translated_internal_url":"","created_at":"2015-03-05T03:34:41.599-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"Rebecca_Garner_Resistivity_imaging_and_surface_water_groundwater_interactions_in_the_Lower_Murrumbidgee_Catchment_A_thesis_submitted_for_the_degree_Bachelor_of_Science_Honours_at_the_Australian_National_University_2010_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract\nUnderstanding surface water – groundwater interactions is of great importance for sustainably managing water resources. This study investigates how the geophysical technique of resistivity imaging can be combined with more established techniques of hydrogeology and hydrogeochemistry to improve understanding of surface water – groundwater interactions, focusing on the Narrandera area of the Lower Murrumbidgee Catchment.\nFour resistivity surveys totalling 3.3 km were conducted in three locations: along the line of an existing hydrogeology cross-section; within a meander of the Murrumbidgee River; and at a site of ongoing groundwater monitoring, 15 km south of the river. The resulting resistivity sections were interpreted with the assistance of drillers’ logs, water chemistry data, hydraulic head measurements, Landsat imagery and radiometrics data.\nBoth the resistivity imaging and Landsat imagery provides evidence that there is a paleochannel that acts as a high hydraulic conductivity conduit, parallel to the current Murrumbidgee River. Evidence of groundwater flow following the river meander is seen in two resistivity sections. There is evidence of water flowing along surface features and entering the groundwater system near the river. This, combined with hydraulic gradients away from the river downstream of Narrandera, provides strong evidence for recharge coming from the river. The groundwater composition is progressively less river-like further from the river suggesting mixing of river water and existing groundwater.\nTwo possible mechanisms for vertical flow between aquifers have been identified. The first is leakage associated with bores. Significant leakage through a monitoring bore (GW025395) has been identified by its strong resistivity signature. Given the large number of bores in the catchment, leakage may substantially influence the region’s hydrodynamics. The second mechanism is a density driven flow due to highly saline shallow groundwater sinking.\nThis study demonstrates the power of resistivity imaging in studying groundwater particularly when combined with other methods. Resistivity imaging has been most useful for detailed mapping of features associated with paleochannels.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":6951,"name":"Groundwater","url":"https://www.academia.edu/Documents/in/Groundwater"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-11286844-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6155537"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6155537/Christopher_Leslie_Using_shallow_seismic_techniques_to_determine_structure_in_the_regolith"><img alt="Research paper thumbnail of Christopher Leslie: Using shallow seismic techniques to determine structure in the regolith." class="work-thumbnail" src="https://attachments.academia-assets.com/33093793/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6155537/Christopher_Leslie_Using_shallow_seismic_techniques_to_determine_structure_in_the_regolith">Christopher Leslie: Using shallow seismic techniques to determine structure in the regolith.</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Seismic methods were used to determine structure and depths in the regolith near West Wyalong, NS...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Seismic methods were used to determine structure and depths in the regolith near West Wyalong, NSW. The area is known for gold-bearing 'deep leads' and thus geological interpretations were to assist in further studies to determine possible mineralisation migration paths resulting from groundwater movement.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="82a59089b5fe140d33582985da4feb50" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33093793,"asset_id":6155537,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33093793/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6155537"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6155537"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6155537; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6155537]").text(description); $(".js-view-count[data-work-id=6155537]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6155537; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6155537']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "82a59089b5fe140d33582985da4feb50" } } $('.js-work-strip[data-work-id=6155537]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6155537,"title":"Christopher Leslie: Using shallow seismic techniques to determine structure in the regolith.","translated_title":"","metadata":{"ai_title_tag":"Seismic Analysis of Regolith Near West Wyalong","grobid_abstract":"Seismic methods were used to determine structure and depths in the regolith near West Wyalong, NSW. The area is known for gold-bearing 'deep leads' and thus geological interpretations were to assist in further studies to determine possible mineralisation migration paths resulting from groundwater movement.","grobid_abstract_attachment_id":33093793},"translated_abstract":null,"internal_url":"https://www.academia.edu/6155537/Christopher_Leslie_Using_shallow_seismic_techniques_to_determine_structure_in_the_regolith","translated_internal_url":"","created_at":"2014-02-20T21:16:23.809-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[{"id":33093793,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/33093793/thumbnails/1.jpg","file_name":"Leslie_ASEG_website.docx","download_url":"https://www.academia.edu/attachments/33093793/download_file","bulk_download_file_name":"Christopher_Leslie_Using_shallow_seismic.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33093793/Leslie_ASEG_website.docx?1738108659=\u0026response-content-disposition=attachment%3B+filename%3DChristopher_Leslie_Using_shallow_seismic.docx\u0026Expires=1744157149\u0026Signature=DoVOINoPKAMyaiNDXi~PAN-XmqpeNO3ZgrEfVKI2~u2IhYIAGwFcmOTndMs6FM-bwSLQItmP1pIfXg3YKaxxNPXh16fszn8xMrpiFcX4a-76KAIko-wXqrsLjWIFRST0kktrldhzsczg2XtStmAl7jG4EL3VwRZCi8TECO~vRs57xyRqLDmm2BdCQXk72zlUfpVB-mLtFayqIt6ryy4GGCnMHFym6WYHjfQvlAZMkxEB7DsqxAYF65R5dW2LW5K8QfDp3XNiAWrTx-kfOfSs99ewREFxLIgi5K-RPTWIlW~3BVutt4TgEoWNQea36jociLjNbAjlMDkSBE2HVkQ44Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Christopher_Leslie_Using_shallow_seismic_techniques_to_determine_structure_in_the_regolith","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":"Seismic methods were used to determine structure and depths in the regolith near West Wyalong, NSW. The area is known for gold-bearing 'deep leads' and thus geological interpretations were to assist in further studies to determine possible mineralisation migration paths resulting from groundwater movement.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":33093793,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/33093793/thumbnails/1.jpg","file_name":"Leslie_ASEG_website.docx","download_url":"https://www.academia.edu/attachments/33093793/download_file","bulk_download_file_name":"Christopher_Leslie_Using_shallow_seismic.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33093793/Leslie_ASEG_website.docx?1738108659=\u0026response-content-disposition=attachment%3B+filename%3DChristopher_Leslie_Using_shallow_seismic.docx\u0026Expires=1744157149\u0026Signature=DoVOINoPKAMyaiNDXi~PAN-XmqpeNO3ZgrEfVKI2~u2IhYIAGwFcmOTndMs6FM-bwSLQItmP1pIfXg3YKaxxNPXh16fszn8xMrpiFcX4a-76KAIko-wXqrsLjWIFRST0kktrldhzsczg2XtStmAl7jG4EL3VwRZCi8TECO~vRs57xyRqLDmm2BdCQXk72zlUfpVB-mLtFayqIt6ryy4GGCnMHFym6WYHjfQvlAZMkxEB7DsqxAYF65R5dW2LW5K8QfDp3XNiAWrTx-kfOfSs99ewREFxLIgi5K-RPTWIlW~3BVutt4TgEoWNQea36jociLjNbAjlMDkSBE2HVkQ44Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":239154,"name":"Geo","url":"https://www.academia.edu/Documents/in/Geo"}],"urls":[{"id":2458098,"url":"https://aseg.org.au/cleslie"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6155537-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5330297" id="postersconferencepresentations"><div class="js-work-strip profile--work_container" data-work-id="121404736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121404736/Geophysics_palaeochannels_and_groundwater_resources_in_alluvial_plains_Lower_Murrumbidgee_catchment_NSW"><img alt="Research paper thumbnail of Geophysics, palaeochannels and groundwater resources in alluvial plains: Lower Murrumbidgee catchment, NSW" class="work-thumbnail" src="https://attachments.academia-assets.com/116290288/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121404736/Geophysics_palaeochannels_and_groundwater_resources_in_alluvial_plains_Lower_Murrumbidgee_catchment_NSW">Geophysics, palaeochannels and groundwater resources in alluvial plains: Lower Murrumbidgee catchment, NSW</a></div><div class="wp-workCard_item"><span>AQUA Biennial meeting</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The alluvial plain of the Lower Murrumbidgee Catchment, NSW, hosts major agricultural irrigation ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The alluvial plain of the Lower Murrumbidgee Catchment, NSW, hosts major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Ongoing use of groundwater resources for irrigation is problematical because of the complexity of multiple aquifer systems there, a result of past changes in fluvial environments. Groundwater extraction from deep aquifers, plus groundwater mounding and associated shallow salinity, represent a significant threat to the future of irrigation in the CIA. In this study, we combined several methods to characterise the complex alluvial environment at a site in the CIA and understand the potential impacts of extraction and irrigation on water resources. From radiometrics images, we discovered a previously unmapped branch of a known palaeochannel system. Detailed subsurface geometry of this palaeochannel from resistivity imaging, combined with information from geological logs, revealed a broad sandy feature partially filled with clay sediments. There is also evidence of leakage from nearby irrigation channels into the groundwater system. Hydrogeological and hydrogeochemical data help understand how the partially clay-filled palaeochannel can act as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. This study highlights the need to identify major geomorphological features and how they can influence the use of groundwater resources, especially in irrigated areas, and shows the effectiveness of using multiple geophysical techniques, in combination with other methods, to characterise complex alluvial paleoenvironments.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-121404736-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-121404736-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596127/figure-1-australasian-quaternary-association-inc-za-aqua"><img alt="Australasian Quaternary Association Inc. za AQUA Biennial Meeting " class="figure-slide-image" src="https://figures.academia-assets.com/116290288/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596150/figure-2-geophysics-palaeochannels-and-groundwater-resources"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/116290288/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596161/figure-3-geophysics-palaeochannels-and-groundwater-resources"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/116290288/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596168/figure-4-geophysics-palaeochannels-and-groundwater-resources"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/116290288/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596176/table-1-geophysics-palaeochannels-and-groundwater-resources"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/116290288/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596181/table-2-geophysics-palaeochannels-and-groundwater-resources"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/116290288/table_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596186/table-3-geophysics-palaeochannels-and-groundwater-resources"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/116290288/table_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/29596192/table-4-geophysics-palaeochannels-and-groundwater-resources"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/116290288/table_004.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-121404736-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="038784ad4b4d1b8cade0bb6f2f1b6cca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":116290288,"asset_id":121404736,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/116290288/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121404736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121404736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121404736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121404736]").text(description); $(".js-view-count[data-work-id=121404736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121404736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121404736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "038784ad4b4d1b8cade0bb6f2f1b6cca" } } $('.js-work-strip[data-work-id=121404736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121404736,"title":"Geophysics, palaeochannels and groundwater resources in alluvial plains: Lower Murrumbidgee catchment, NSW","translated_title":"","metadata":{"abstract":"The alluvial plain of the Lower Murrumbidgee Catchment, NSW, hosts major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Ongoing use of groundwater resources for irrigation is problematical because of the complexity of multiple aquifer systems there, a result of past changes in fluvial environments. Groundwater extraction from deep aquifers, plus groundwater mounding and associated shallow salinity, represent a significant threat to the future of irrigation in the CIA. In this study, we combined several methods to characterise the complex alluvial environment at a site in the CIA and understand the potential impacts of extraction and irrigation on water resources. From radiometrics images, we discovered a previously unmapped branch of a known palaeochannel system. Detailed subsurface geometry of this palaeochannel from resistivity imaging, combined with information from geological logs, revealed a broad sandy feature partially filled with clay sediments. There is also evidence of leakage from nearby irrigation channels into the groundwater system. Hydrogeological and hydrogeochemical data help understand how the partially clay-filled palaeochannel can act as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. This study highlights the need to identify major geomorphological features and how they can influence the use of groundwater resources, especially in irrigated areas, and shows the effectiveness of using multiple geophysical techniques, in combination with other methods, to characterise complex alluvial paleoenvironments.","ai_title_tag":"Groundwater and Geophysical Insights in Lower Murrumbidgee","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"AQUA Biennial meeting"},"translated_abstract":"The alluvial plain of the Lower Murrumbidgee Catchment, NSW, hosts major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Ongoing use of groundwater resources for irrigation is problematical because of the complexity of multiple aquifer systems there, a result of past changes in fluvial environments. Groundwater extraction from deep aquifers, plus groundwater mounding and associated shallow salinity, represent a significant threat to the future of irrigation in the CIA. In this study, we combined several methods to characterise the complex alluvial environment at a site in the CIA and understand the potential impacts of extraction and irrigation on water resources. From radiometrics images, we discovered a previously unmapped branch of a known palaeochannel system. Detailed subsurface geometry of this palaeochannel from resistivity imaging, combined with information from geological logs, revealed a broad sandy feature partially filled with clay sediments. There is also evidence of leakage from nearby irrigation channels into the groundwater system. Hydrogeological and hydrogeochemical data help understand how the partially clay-filled palaeochannel can act as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. This study highlights the need to identify major geomorphological features and how they can influence the use of groundwater resources, especially in irrigated areas, and shows the effectiveness of using multiple geophysical techniques, in combination with other methods, to characterise complex alluvial paleoenvironments.","internal_url":"https://www.academia.edu/121404736/Geophysics_palaeochannels_and_groundwater_resources_in_alluvial_plains_Lower_Murrumbidgee_catchment_NSW","translated_internal_url":"","created_at":"2024-06-23T05:22:50.582-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[{"id":41932603,"work_id":121404736,"tagging_user_id":498748,"tagged_user_id":37685653,"co_author_invite_id":null,"email":"b***l@anu.edu.au","display_order":1,"name":"D. McPhail","title":"Geophysics, palaeochannels and groundwater resources in alluvial plains: Lower Murrumbidgee catchment, NSW"},{"id":41932604,"work_id":121404736,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6392835,"email":"l***n@anu.edu.au","display_order":2,"name":"L. Burraston","title":"Geophysics, palaeochannels and groundwater resources in alluvial plains: Lower Murrumbidgee catchment, NSW"}],"downloadable_attachments":[{"id":116290288,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116290288/thumbnails/1.jpg","file_name":"Full_program_and_abstracts_AQUA_2014.pdf","download_url":"https://www.academia.edu/attachments/116290288/download_file","bulk_download_file_name":"Geophysics_palaeochannels_and_groundwate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116290288/Full_program_and_abstracts_AQUA_2014-libre.pdf?1719145586=\u0026response-content-disposition=attachment%3B+filename%3DGeophysics_palaeochannels_and_groundwate.pdf\u0026Expires=1744157149\u0026Signature=dqEAIhxXeki0WYtJJqJG~5dd8Zr~Wbx3nBzwEDWxuSkrB3hWqY2qtXIS8ExThmqGEBkOPhbgSH4UJaozyGZfLJ2UDGGzKmrfpqJHEqcrhZ-aRRiO8wLdULMNGDg1BMN6N74bDSC-eMQBv~J9PLb6A3Xc-zQl1KD6LggTQgfj7~DW2ToCSUZuqJF~nDn676ZwUwaFv7zqT2eOtXWJZBGUKunSBC5zR6Lfugq5faaO0vjYQik4s7oP9M2DRACA7mvpKoXMLx5E7NBWFJKPsGe25HQFXRzVcMDVETA4xEZ9zR7OQyYMA41XKy-isDQd3QlliaKbDZnAiaeF0iGG0KznnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Geophysics_palaeochannels_and_groundwater_resources_in_alluvial_plains_Lower_Murrumbidgee_catchment_NSW","translated_slug":"","page_count":98,"language":"en","content_type":"Work","summary":"The alluvial plain of the Lower Murrumbidgee Catchment, NSW, hosts major agricultural irrigation areas, including the Coleambally Irrigation Area (CIA). Ongoing use of groundwater resources for irrigation is problematical because of the complexity of multiple aquifer systems there, a result of past changes in fluvial environments. Groundwater extraction from deep aquifers, plus groundwater mounding and associated shallow salinity, represent a significant threat to the future of irrigation in the CIA. In this study, we combined several methods to characterise the complex alluvial environment at a site in the CIA and understand the potential impacts of extraction and irrigation on water resources. From radiometrics images, we discovered a previously unmapped branch of a known palaeochannel system. Detailed subsurface geometry of this palaeochannel from resistivity imaging, combined with information from geological logs, revealed a broad sandy feature partially filled with clay sediments. There is also evidence of leakage from nearby irrigation channels into the groundwater system. Hydrogeological and hydrogeochemical data help understand how the partially clay-filled palaeochannel can act as an aquitard to groundwater flow, contributing to rising water tables and elevated levels of shallow groundwater salinity. This study highlights the need to identify major geomorphological features and how they can influence the use of groundwater resources, especially in irrigated areas, and shows the effectiveness of using multiple geophysical techniques, in combination with other methods, to characterise complex alluvial paleoenvironments.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":116290288,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116290288/thumbnails/1.jpg","file_name":"Full_program_and_abstracts_AQUA_2014.pdf","download_url":"https://www.academia.edu/attachments/116290288/download_file","bulk_download_file_name":"Geophysics_palaeochannels_and_groundwate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116290288/Full_program_and_abstracts_AQUA_2014-libre.pdf?1719145586=\u0026response-content-disposition=attachment%3B+filename%3DGeophysics_palaeochannels_and_groundwate.pdf\u0026Expires=1744157149\u0026Signature=dqEAIhxXeki0WYtJJqJG~5dd8Zr~Wbx3nBzwEDWxuSkrB3hWqY2qtXIS8ExThmqGEBkOPhbgSH4UJaozyGZfLJ2UDGGzKmrfpqJHEqcrhZ-aRRiO8wLdULMNGDg1BMN6N74bDSC-eMQBv~J9PLb6A3Xc-zQl1KD6LggTQgfj7~DW2ToCSUZuqJF~nDn676ZwUwaFv7zqT2eOtXWJZBGUKunSBC5zR6Lfugq5faaO0vjYQik4s7oP9M2DRACA7mvpKoXMLx5E7NBWFJKPsGe25HQFXRzVcMDVETA4xEZ9zR7OQyYMA41XKy-isDQd3QlliaKbDZnAiaeF0iGG0KznnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7075,"name":"Paleoenvironment","url":"https://www.academia.edu/Documents/in/Paleoenvironment"},{"id":34760,"name":"Irrigation water Management","url":"https://www.academia.edu/Documents/in/Irrigation_water_Management"},{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-121404736-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="40373621"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/40373621/Trace_fossils_as_indicators_of_Quaternary_environmental_changes_at_Weereewa_Lake_George"><img alt="Research paper thumbnail of Trace fossils as indicators of Quaternary environmental changes at Weereewa (Lake George" class="work-thumbnail" src="https://attachments.academia-assets.com/60622145/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/40373621/Trace_fossils_as_indicators_of_Quaternary_environmental_changes_at_Weereewa_Lake_George">Trace fossils as indicators of Quaternary environmental changes at Weereewa (Lake George</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unideb.academia.edu/DavidArpad">David Arpad</a></span></div><div class="wp-workCard_item"><span>IAS Roma </span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The present lake bed is about 20 km by 10 km in size, set at an elevation of 673 metres above sea level. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. <br />Drill core sediments were obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984; Singh & Geissler 1985; Jacobson, Jankowski and Abell 1991; etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres deep sequence of sediments deposited over the last 4 million years, based on magnetostratigraphy (McEwan Mason1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).<br />Endorheic basins are greatly affected by climate change. Pollen analyses by Singh & Geissler (1985) indicate fluctuating vegetation changes from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal).<br />During 2015, the Australian National University obtained a new 77 m sediment core from the lake bed, which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.<br />As part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs of the 77 m core. This method has never been applied to the study of Lake George sediments before. There are thirty-two core sections, where trace fossils have been observed. These can be arranged into thirteen different groups. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine (within lacustrine lake bottom and shallow lake) and terrestrial (within terrestrial lake margin and flood-plain) environments.<br />Characteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments. Terrestrial trace fossils are eartworm burrows, ant nest remains, crayfish burrows and dominantly root traces. Five types of root traces have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies. The water level in the lake bed, indicated by trace fossils, follows a similar trend to that is indicated by the high resolution sedimentary log, obtained from the same drill hole.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa3932e2d2149c7517a3c55802c1bef6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":60622145,"asset_id":40373621,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/60622145/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="40373621"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="40373621"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 40373621; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=40373621]").text(description); $(".js-view-count[data-work-id=40373621]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 40373621; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='40373621']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa3932e2d2149c7517a3c55802c1bef6" } } $('.js-work-strip[data-work-id=40373621]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":40373621,"title":"Trace fossils as indicators of Quaternary environmental changes at Weereewa (Lake George","translated_title":"","metadata":{"abstract":"Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The present lake bed is about 20 km by 10 km in size, set at an elevation of 673 metres above sea level. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. \nDrill core sediments were obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984; Singh \u0026 Geissler 1985; Jacobson, Jankowski and Abell 1991; etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres deep sequence of sediments deposited over the last 4 million years, based on magnetostratigraphy (McEwan Mason1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).\nEndorheic basins are greatly affected by climate change. Pollen analyses by Singh \u0026 Geissler (1985) indicate fluctuating vegetation changes from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal).\nDuring 2015, the Australian National University obtained a new 77 m sediment core from the lake bed, which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.\nAs part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs of the 77 m core. This method has never been applied to the study of Lake George sediments before. There are thirty-two core sections, where trace fossils have been observed. These can be arranged into thirteen different groups. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine (within lacustrine lake bottom and shallow lake) and terrestrial (within terrestrial lake margin and flood-plain) environments.\nCharacteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments. Terrestrial trace fossils are eartworm burrows, ant nest remains, crayfish burrows and dominantly root traces. Five types of root traces have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies. The water level in the lake bed, indicated by trace fossils, follows a similar trend to that is indicated by the high resolution sedimentary log, obtained from the same drill hole.\n","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IAS Roma "},"translated_abstract":"Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The present lake bed is about 20 km by 10 km in size, set at an elevation of 673 metres above sea level. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. \nDrill core sediments were obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984; Singh \u0026 Geissler 1985; Jacobson, Jankowski and Abell 1991; etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres deep sequence of sediments deposited over the last 4 million years, based on magnetostratigraphy (McEwan Mason1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).\nEndorheic basins are greatly affected by climate change. Pollen analyses by Singh \u0026 Geissler (1985) indicate fluctuating vegetation changes from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal).\nDuring 2015, the Australian National University obtained a new 77 m sediment core from the lake bed, which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.\nAs part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs of the 77 m core. This method has never been applied to the study of Lake George sediments before. There are thirty-two core sections, where trace fossils have been observed. These can be arranged into thirteen different groups. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine (within lacustrine lake bottom and shallow lake) and terrestrial (within terrestrial lake margin and flood-plain) environments.\nCharacteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments. Terrestrial trace fossils are eartworm burrows, ant nest remains, crayfish burrows and dominantly root traces. Five types of root traces have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies. The water level in the lake bed, indicated by trace fossils, follows a similar trend to that is indicated by the high resolution sedimentary log, obtained from the same drill hole.\n","internal_url":"https://www.academia.edu/40373621/Trace_fossils_as_indicators_of_Quaternary_environmental_changes_at_Weereewa_Lake_George","translated_internal_url":"","created_at":"2019-09-17T04:35:00.024-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[{"id":33026555,"work_id":40373621,"tagging_user_id":498748,"tagged_user_id":698845,"co_author_invite_id":null,"email":"c***a@yahoo.com","affiliation":"University of Debrecen","display_order":2,"name":"David Arpad","title":"Trace fossils as indicators of Quaternary environmental changes at Weereewa (Lake George"},{"id":33026556,"work_id":40373621,"tagging_user_id":498748,"tagged_user_id":699132,"co_author_invite_id":null,"email":"f***8@gmail.com","affiliation":"University of Debrecen","display_order":3,"name":"Rozália Fodor","title":"Trace fossils as indicators of Quaternary environmental changes at Weereewa (Lake George"},{"id":33026554,"work_id":40373621,"tagging_user_id":498748,"tagged_user_id":32080961,"co_author_invite_id":null,"email":"b***e@anu.edu.au","affiliation":"The Australian National University","display_order":4,"name":"Bradley Opdyke","title":"Trace fossils as indicators of Quaternary environmental changes at Weereewa (Lake George"},{"id":33026557,"work_id":40373621,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6812883,"email":"a***e@uow.edu.au","display_order":5,"name":"Alexander Francke","title":"Trace fossils as indicators of Quaternary environmental changes at Weereewa (Lake George"}],"downloadable_attachments":[{"id":60622145,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/60622145/thumbnails/1.jpg","file_name":"IASROMA_2019_Poster_final_DA_EP1020190917-114400-l467jf.pdf","download_url":"https://www.academia.edu/attachments/60622145/download_file","bulk_download_file_name":"Trace_fossils_as_indicators_of_Quaternar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/60622145/IASROMA_2019_Poster_final_DA_EP1020190917-114400-l467jf-libre.pdf?1568720553=\u0026response-content-disposition=attachment%3B+filename%3DTrace_fossils_as_indicators_of_Quaternar.pdf\u0026Expires=1744157150\u0026Signature=WKRx8n2OvqfmXD-ReFcLhZrEFHnbWtwhxajZn0FTwFZJ3nvBaROoiCmmLZQqUNYS6ZD5o5w5J2wiMqr2JwlQDTvI11Fgc30~JBd3SvLASXvFcnQ1wLBaTKMUejyZ0GB8VCRWhEY3loOM5RVLlLLbIyDn7gkxsTRY19srS3DcpzKU6JrywY97scB1qYnTvhd4WzBuT8Y115lIYZdTjjawbcOXtOpGY38iZ6tzbcKp9xsiCli5gjpOlYIHVQWyzjVvRVKdZCHY49pqyo2pI-n20CmzzylxcXJvEeJsE69euColy16sRJ3NVgJXRzEKA7keIbWPsHDE3juShEClfQNviQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trace_fossils_as_indicators_of_Quaternary_environmental_changes_at_Weereewa_Lake_George","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The present lake bed is about 20 km by 10 km in size, set at an elevation of 673 metres above sea level. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. \nDrill core sediments were obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984; Singh \u0026 Geissler 1985; Jacobson, Jankowski and Abell 1991; etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres deep sequence of sediments deposited over the last 4 million years, based on magnetostratigraphy (McEwan Mason1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).\nEndorheic basins are greatly affected by climate change. Pollen analyses by Singh \u0026 Geissler (1985) indicate fluctuating vegetation changes from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal).\nDuring 2015, the Australian National University obtained a new 77 m sediment core from the lake bed, which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.\nAs part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs of the 77 m core. This method has never been applied to the study of Lake George sediments before. There are thirty-two core sections, where trace fossils have been observed. These can be arranged into thirteen different groups. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine (within lacustrine lake bottom and shallow lake) and terrestrial (within terrestrial lake margin and flood-plain) environments.\nCharacteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments. Terrestrial trace fossils are eartworm burrows, ant nest remains, crayfish burrows and dominantly root traces. Five types of root traces have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies. The water level in the lake bed, indicated by trace fossils, follows a similar trend to that is indicated by the high resolution sedimentary log, obtained from the same drill hole.\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":60622145,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/60622145/thumbnails/1.jpg","file_name":"IASROMA_2019_Poster_final_DA_EP1020190917-114400-l467jf.pdf","download_url":"https://www.academia.edu/attachments/60622145/download_file","bulk_download_file_name":"Trace_fossils_as_indicators_of_Quaternar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/60622145/IASROMA_2019_Poster_final_DA_EP1020190917-114400-l467jf-libre.pdf?1568720553=\u0026response-content-disposition=attachment%3B+filename%3DTrace_fossils_as_indicators_of_Quaternar.pdf\u0026Expires=1744157150\u0026Signature=WKRx8n2OvqfmXD-ReFcLhZrEFHnbWtwhxajZn0FTwFZJ3nvBaROoiCmmLZQqUNYS6ZD5o5w5J2wiMqr2JwlQDTvI11Fgc30~JBd3SvLASXvFcnQ1wLBaTKMUejyZ0GB8VCRWhEY3loOM5RVLlLLbIyDn7gkxsTRY19srS3DcpzKU6JrywY97scB1qYnTvhd4WzBuT8Y115lIYZdTjjawbcOXtOpGY38iZ6tzbcKp9xsiCli5gjpOlYIHVQWyzjVvRVKdZCHY49pqyo2pI-n20CmzzylxcXJvEeJsE69euColy16sRJ3NVgJXRzEKA7keIbWPsHDE3juShEClfQNviQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":9890,"name":"Quaternary Geology","url":"https://www.academia.edu/Documents/in/Quaternary_Geology"},{"id":23422,"name":"Paleoclimate","url":"https://www.academia.edu/Documents/in/Paleoclimate"},{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"},{"id":60487,"name":"Quaternary environments","url":"https://www.academia.edu/Documents/in/Quaternary_environments"},{"id":70233,"name":"Trace Fossils","url":"https://www.academia.edu/Documents/in/Trace_Fossils"},{"id":96118,"name":"Quaternary environmental change","url":"https://www.academia.edu/Documents/in/Quaternary_environmental_change"},{"id":199677,"name":"Canberra","url":"https://www.academia.edu/Documents/in/Canberra"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-40373621-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="39934384"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/39934384/The_interaction_between_vegetation_megafauna_and_fire_regimes_at_Lake_George_southeastern_Australia"><img alt="Research paper thumbnail of The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/60121692/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/39934384/The_interaction_between_vegetation_megafauna_and_fire_regimes_at_Lake_George_southeastern_Australia">The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/PhillipRoberts">Phillip Roberts</a></span></div><div class="wp-workCard_item"><span>INQUA, Dublin</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Lake George basin on the Southern Tablelands of New South Wales, in southeastern Australia, c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Lake George basin on the Southern Tablelands of New South Wales, in southeastern Australia, contains the longest known quasi-continuous sedimentary record of any Australian lake basin. A multi-coring campaign by RSES funded by an ARC Linkage Project LP140100911, is examining the tectonic, sedimentary, hydrological, vegetation, climatic and archaeological history of Lake George with initial results broadly supporting the findings of Singh and Geissler. However the preliminary chronology suggests a younger age than that purposed by Singh and Geissler. More extensive dating is underway especially on ostracods and shell fragments to confirm this younger age model.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26bfabaf6648d3d04768b9cf54d9a4c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":60121692,"asset_id":39934384,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/60121692/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="39934384"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="39934384"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 39934384; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=39934384]").text(description); $(".js-view-count[data-work-id=39934384]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 39934384; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='39934384']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26bfabaf6648d3d04768b9cf54d9a4c3" } } $('.js-work-strip[data-work-id=39934384]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":39934384,"title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia","translated_title":"","metadata":{"abstract":"The Lake George basin on the Southern Tablelands of New South Wales, in southeastern Australia, contains the longest known quasi-continuous sedimentary record of any Australian lake basin. A multi-coring campaign by RSES funded by an ARC Linkage Project LP140100911, is examining the tectonic, sedimentary, hydrological, vegetation, climatic and archaeological history of Lake George with initial results broadly supporting the findings of Singh and Geissler. However the preliminary chronology suggests a younger age than that purposed by Singh and Geissler. More extensive dating is underway especially on ostracods and shell fragments to confirm this younger age model.\n","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"INQUA, Dublin"},"translated_abstract":"The Lake George basin on the Southern Tablelands of New South Wales, in southeastern Australia, contains the longest known quasi-continuous sedimentary record of any Australian lake basin. A multi-coring campaign by RSES funded by an ARC Linkage Project LP140100911, is examining the tectonic, sedimentary, hydrological, vegetation, climatic and archaeological history of Lake George with initial results broadly supporting the findings of Singh and Geissler. However the preliminary chronology suggests a younger age than that purposed by Singh and Geissler. More extensive dating is underway especially on ostracods and shell fragments to confirm this younger age model.\n","internal_url":"https://www.academia.edu/39934384/The_interaction_between_vegetation_megafauna_and_fire_regimes_at_Lake_George_southeastern_Australia","translated_internal_url":"","created_at":"2019-07-26T03:36:16.283-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[{"id":32852345,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6879222,"email":"s***e@utas.edu.au","display_order":1,"name":"Susan Rule","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"},{"id":32852346,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6879223,"email":"c***n@utas.edu.au","display_order":2,"name":"Chris Johnson","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"},{"id":32852347,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":37851926,"co_author_invite_id":null,"email":"b***k@utas.edu.au","display_order":3,"name":"Barry Brook","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"},{"id":32852348,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":1104470,"co_author_invite_id":null,"email":"s***e@anu.edu.au","affiliation":"The Australian National University","display_order":4,"name":"Simon Haberle","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"},{"id":32852349,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6879224,"email":"b***s@anu.edu.au","display_order":5,"name":"Brad Pillans","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"},{"id":32852350,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":127603252,"co_author_invite_id":6879213,"email":"j***n@anu.edu.au","display_order":6,"name":"Janelle Stevenson","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"},{"id":32852351,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":32080961,"co_author_invite_id":null,"email":"b***e@anu.edu.au","affiliation":"The Australian National University","display_order":7,"name":"Bradley Opdyke","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"},{"id":32852352,"work_id":39934384,"tagging_user_id":498748,"tagged_user_id":267735,"co_author_invite_id":null,"email":"p***s@anu.edu.au","affiliation":"The Australian National University","display_order":8,"name":"Phillip Roberts","title":"The interaction between vegetation, megafauna and fire regimes at Lake George, southeastern Australia"}],"downloadable_attachments":[{"id":60121692,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/60121692/thumbnails/1.jpg","file_name":"2019_Inqua_LakeGeorgePoster20190726-55536-1c7m0ka.pdf","download_url":"https://www.academia.edu/attachments/60121692/download_file","bulk_download_file_name":"The_interaction_between_vegetation_megaf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/60121692/2019_Inqua_LakeGeorgePoster20190726-55536-1c7m0ka-libre.pdf?1564145178=\u0026response-content-disposition=attachment%3B+filename%3DThe_interaction_between_vegetation_megaf.pdf\u0026Expires=1744157150\u0026Signature=ZI5Eu3r0dSEtHWL6OIEjnhrBUrCVNqyH-mz9uYqhjMmt16j--~OcpSROJq~ppRJlknqs~lPuGdrK1tun0foOeVFkFMuhxhgsmH3hVO0QLiQyU8yrg4azYms6E9BfHWN11yTT1HsNahkws9kjVcJXP3PiSjHDtFMWKw6w3h~Tdx6G2HelNUDhL0~PoiaX-aJQkSs6W30pGO1ii6vyWgNTPwwrf-Gc0QzvWS-Y3P0kRvZTkj9DLffZaTqgZ9r2SIwwteYO8obBa5QwFNB8NPfB2exLdMAfpp1SAs6yDTFJaXWXZzfwnD6R1jHMNJ6TjcMPDFIreUDEjxU~FrTXfKsQFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_interaction_between_vegetation_megafauna_and_fire_regimes_at_Lake_George_southeastern_Australia","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"The Lake George basin on the Southern Tablelands of New South Wales, in southeastern Australia, contains the longest known quasi-continuous sedimentary record of any Australian lake basin. A multi-coring campaign by RSES funded by an ARC Linkage Project LP140100911, is examining the tectonic, sedimentary, hydrological, vegetation, climatic and archaeological history of Lake George with initial results broadly supporting the findings of Singh and Geissler. However the preliminary chronology suggests a younger age than that purposed by Singh and Geissler. More extensive dating is underway especially on ostracods and shell fragments to confirm this younger age model.\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":60121692,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/60121692/thumbnails/1.jpg","file_name":"2019_Inqua_LakeGeorgePoster20190726-55536-1c7m0ka.pdf","download_url":"https://www.academia.edu/attachments/60121692/download_file","bulk_download_file_name":"The_interaction_between_vegetation_megaf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/60121692/2019_Inqua_LakeGeorgePoster20190726-55536-1c7m0ka-libre.pdf?1564145178=\u0026response-content-disposition=attachment%3B+filename%3DThe_interaction_between_vegetation_megaf.pdf\u0026Expires=1744157150\u0026Signature=ZI5Eu3r0dSEtHWL6OIEjnhrBUrCVNqyH-mz9uYqhjMmt16j--~OcpSROJq~ppRJlknqs~lPuGdrK1tun0foOeVFkFMuhxhgsmH3hVO0QLiQyU8yrg4azYms6E9BfHWN11yTT1HsNahkws9kjVcJXP3PiSjHDtFMWKw6w3h~Tdx6G2HelNUDhL0~PoiaX-aJQkSs6W30pGO1ii6vyWgNTPwwrf-Gc0QzvWS-Y3P0kRvZTkj9DLffZaTqgZ9r2SIwwteYO8obBa5QwFNB8NPfB2exLdMAfpp1SAs6yDTFJaXWXZzfwnD6R1jHMNJ6TjcMPDFIreUDEjxU~FrTXfKsQFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":3255,"name":"Climate Change Adaptation","url":"https://www.academia.edu/Documents/in/Climate_Change_Adaptation"},{"id":20692,"name":"Ostracodology","url":"https://www.academia.edu/Documents/in/Ostracodology"},{"id":211168,"name":"Pollen analysis","url":"https://www.academia.edu/Documents/in/Pollen_analysis"},{"id":236794,"name":"Pleistocene megafauna","url":"https://www.academia.edu/Documents/in/Pleistocene_megafauna"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-39934384-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="38190447"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38190447/Lake_George_Weereewa_a_multi_proxy_record_spanning_the_past_100_000_years"><img alt="Research paper thumbnail of Lake George (Weereewa): a multi-proxy record spanning the past 100,000 years" class="work-thumbnail" src="https://attachments.academia-assets.com/58227647/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38190447/Lake_George_Weereewa_a_multi_proxy_record_spanning_the_past_100_000_years">Lake George (Weereewa): a multi-proxy record spanning the past 100,000 years</a></div><div class="wp-workCard_item"><span>Australasian Quaternary Association (AQUA) annual conference, Canberra</span><span>, 2018</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-38190447-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-38190447-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/13528326/figure-4-results-suggest-that-vegetational-shifts-are-likely"><img alt="Results suggest that vegetational shifts are likely related to glacial-interglacial cycles which will be confirmed once radiocarbor dates have been obtained while local shifts, for example the alternating pattern found for Chenopodiaceae and Asteraceae, are likely due to changing lake level conditions. The similar trending of Eucalytpus and at times Casuarinaceae with the microcharcoa and macrocharcoal may suggest a local to regional origin for both charcoals. The abundance of saline tolerant algal spores Zygnema, Mougeotia, Spirogyra and Botryococcus may suggest relatively shallow saline lake conditions, while the presence o Pediastrum, Tetraedron and Azolla suggests periods where more fresh water conditions and/or input is present. The significan values for Pediastrum in the middle of the record may be influential in the high fern values seen at this time which may sugges an extra-local rather than local origin. A closer look at the sedimentology and depositional environment may provide answers tc the fern origin. The presence of dung fungi, especially Sporormiella, suggests the presence of large herbivores within the Lake \. George basin 5 Chenopodiaceae (Amaranthaceae), Asteraceae, Poaceae and the sclerophylls (Casuarinaceae and Eucalyptus) are the major contributors to the dryland taxa (Figure 4). Through the barren/sparse pollen zone, Figure 2 (A and B) and Figure 4, ferns are abundant. In the latter part of the record a diverse suite of taxa are present (Figure 4) including Tasmannia, Amperea, Acaena, Coprosma, Astrotricha, Stackhousia and Gyrostemon which are not found at the top of the record. Dung fungi, Sporormiella, Podospora and Sordaria, are present at the top of the record and when dryland pollen is abundant. Algal spores from the Zygnemataceae family, Spirogryra, Mougeotia and Zygnema are found through most of the record while Tetraedron (Hydrodictyaceae) is only in the earlier part of the record. Botryococcus and Pediastrum are abundant through the middle to the earlier part of the record. The microcharcoal and macrocharcoal (Figure 3) have a similar patterning except for the top where high microcharcoal values are present which is also found in Singh’s record ~ (Ciaran JA\ " class="figure-slide-image" src="https://figures.academia-assets.com/58227647/figure_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-38190447-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="16446ec4ef179cb02af914c730d83703" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58227647,"asset_id":38190447,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58227647/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38190447"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38190447"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38190447; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38190447]").text(description); $(".js-view-count[data-work-id=38190447]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38190447; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38190447']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "16446ec4ef179cb02af914c730d83703" } } $('.js-work-strip[data-work-id=38190447]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38190447,"title":"Lake George (Weereewa): a multi-proxy record spanning the past 100,000 years","translated_title":"","metadata":{"ai_abstract":"The study investigates the geological and ecological history of Lake George over the past 100,000 years through a multi-proxy analysis involving pollen, charcoal, and algal records. Initial findings indicate that vegetational changes are influenced by glacial-interglacial cycles and local environmental conditions, such as lake levels. The presence of dung fungi suggests herbivore activity in the basin, while varying algal spore types indicate shifts between saline and freshwater conditions.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Australasian Quaternary Association (AQUA) annual conference, Canberra"},"translated_abstract":null,"internal_url":"https://www.academia.edu/38190447/Lake_George_Weereewa_a_multi_proxy_record_spanning_the_past_100_000_years","translated_internal_url":"","created_at":"2019-01-21T05:18:27.199-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[{"id":32225403,"work_id":38190447,"tagging_user_id":498748,"tagged_user_id":1104470,"co_author_invite_id":null,"email":"s***e@anu.edu.au","affiliation":"The Australian National University","display_order":1,"name":"Simon Haberle","title":"Lake George (Weereewa): a multi-proxy record spanning the past 100,000 years"},{"id":32225404,"work_id":38190447,"tagging_user_id":498748,"tagged_user_id":32080961,"co_author_invite_id":null,"email":"b***e@anu.edu.au","affiliation":"The Australian National University","display_order":2,"name":"Bradley Opdyke","title":"Lake George (Weereewa): a multi-proxy record spanning the past 100,000 years"}],"downloadable_attachments":[{"id":58227647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58227647/thumbnails/1.jpg","file_name":"2018_Rule_at_al_2018_AQUA_poster.pdf","download_url":"https://www.academia.edu/attachments/58227647/download_file","bulk_download_file_name":"Lake_George_Weereewa_a_multi_proxy_recor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58227647/2018_Rule_at_al_2018_AQUA_poster-libre.pdf?1548085084=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_Weereewa_a_multi_proxy_recor.pdf\u0026Expires=1744157150\u0026Signature=JGHNMEzK01yzuddyQ~pagNg-PIs07xqO6VagvDKXg2JrAUrV2xHlJK-EcagVIzyx9IIDqADibSBLoJibGsyDYbuulRACrmABaDuo8uf6Qnc6HmZLDFDlx2Kcst9BB7-qYYSNyatL6oriBbjIqDmpqqdzsTBqeAYXUgoQho5BSvyfeGWaOlvSXXJEsJP64jznS82f-QqTgHuEbdQQXpRPk1FP2sLCLJu8nwx3GUhO9-rd0Ms-gDVxVvTGJo4KTG0BhuJV6huCLxQMMcshoJJ3oqF6yJeZ6lHYQBseX1F-MjYorWUFAI~CaSPvZAZXEXgnAUbSL2wJV~UK4KB6iV~wYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lake_George_Weereewa_a_multi_proxy_record_spanning_the_past_100_000_years","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":58227647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58227647/thumbnails/1.jpg","file_name":"2018_Rule_at_al_2018_AQUA_poster.pdf","download_url":"https://www.academia.edu/attachments/58227647/download_file","bulk_download_file_name":"Lake_George_Weereewa_a_multi_proxy_recor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58227647/2018_Rule_at_al_2018_AQUA_poster-libre.pdf?1548085084=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_Weereewa_a_multi_proxy_recor.pdf\u0026Expires=1744157150\u0026Signature=JGHNMEzK01yzuddyQ~pagNg-PIs07xqO6VagvDKXg2JrAUrV2xHlJK-EcagVIzyx9IIDqADibSBLoJibGsyDYbuulRACrmABaDuo8uf6Qnc6HmZLDFDlx2Kcst9BB7-qYYSNyatL6oriBbjIqDmpqqdzsTBqeAYXUgoQho5BSvyfeGWaOlvSXXJEsJP64jznS82f-QqTgHuEbdQQXpRPk1FP2sLCLJu8nwx3GUhO9-rd0Ms-gDVxVvTGJo4KTG0BhuJV6huCLxQMMcshoJJ3oqF6yJeZ6lHYQBseX1F-MjYorWUFAI~CaSPvZAZXEXgnAUbSL2wJV~UK4KB6iV~wYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":7933,"name":"Palynology","url":"https://www.academia.edu/Documents/in/Palynology"},{"id":211168,"name":"Pollen analysis","url":"https://www.academia.edu/Documents/in/Pollen_analysis"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":2554321,"name":"Weereewa NSW","url":"https://www.academia.edu/Documents/in/Weereewa_NSW"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-38190447-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="38163447"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38163447/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_in_clay_sediments_Lake_George_NSW_Australia_KOMPLEX_P%C3%93RUSSZERKEZET_VIZSG%C3%81LATI_M%C3%93DSZERTAN_KIDOLGOZ%C3%81SA_AZ_AUSZTR%C3%81L_LAKE_GEORGE_T%C3%93_FIATAL_AGYAGOS_%C3%9CLED%C3%89KEINEK_VIZSG%C3%81LATA_C%C3%89LJ%C3%81B%C3%93L"><img alt="Research paper thumbnail of Development of a complex laboratory procedure for characterisation of pore structure in clay sediments, Lake George, NSW, Australia KOMPLEX PÓRUSSZERKEZET VIZSGÁLATI MÓDSZERTAN KIDOLGOZÁSA AZ AUSZTRÁL LAKE GEORGE-TÓ FIATAL AGYAGOS ÜLEDÉKEINEK VIZSGÁLATA CÉLJÁBÓL" class="work-thumbnail" src="https://attachments.academia-assets.com/58197768/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38163447/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_in_clay_sediments_Lake_George_NSW_Australia_KOMPLEX_P%C3%93RUSSZERKEZET_VIZSG%C3%81LATI_M%C3%93DSZERTAN_KIDOLGOZ%C3%81SA_AZ_AUSZTR%C3%81L_LAKE_GEORGE_T%C3%93_FIATAL_AGYAGOS_%C3%9CLED%C3%89KEINEK_VIZSG%C3%81LATA_C%C3%89LJ%C3%81B%C3%93L">Development of a complex laboratory procedure for characterisation of pore structure in clay sediments, Lake George, NSW, Australia KOMPLEX PÓRUSSZERKEZET VIZSGÁLATI MÓDSZERTAN KIDOLGOZÁSA AZ AUSZTRÁL LAKE GEORGE-TÓ FIATAL AGYAGOS ÜLEDÉKEINEK VIZSGÁLATA CÉLJÁBÓL</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AnitaFedorSzasz">Anita Fedor-Szasz</a></span></div><div class="wp-workCard_item"><span>FÖLDTUDOMÁNYOK ÉS KÖRNYEZET – harmóniában</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in Ne...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract<br />Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied<br />methodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary<br />environments.<br /><br />Összefoglaló<br />A Lake George Ausztráliában, Canberrától 40 km-re északra, Új Dél Wales-ben található zárt vízgyűjtő medencéjű időszakos tó. 2015 során, egy multidiszciplináris kutatási projekt keretében végzett kutatófúrás 77 méter jó minőségű fúrásmagot eredményezett, melyből 17 minta került a GEOCHEM Kft. laboratóriumába részletes elemzésre. Az előzetes eredmények alapján a He-piknometria, a fiziszorpció és a szemcseméret analízis adták a komplex értelmezéshez leginkább használható információkat. Az alkalmazott módszerek bemutatása céljából három, eltérő mélységből származó minta került kiválasztásra. Az eredmények azt mutatják, hogy bár mindhárom minta nyugodtvízi, áramlásoktól mentes üledékes lerakódási környezetben képződött, alapvetően különböző pórusszerkezeti tulajdonságokkal bírnak, különösen a mezopórusok tartományában. Ezek a különbségek felhasználhatóak az üledékképződés egészen finom változásainak nyomon követésére.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b7e41c18ea66778a717ddbba4a9dc419" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58197768,"asset_id":38163447,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58197768/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38163447"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38163447"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38163447; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38163447]").text(description); $(".js-view-count[data-work-id=38163447]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38163447; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38163447']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b7e41c18ea66778a717ddbba4a9dc419" } } $('.js-work-strip[data-work-id=38163447]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38163447,"title":"Development of a complex laboratory procedure for characterisation of pore structure in clay sediments, Lake George, NSW, Australia KOMPLEX PÓRUSSZERKEZET VIZSGÁLATI MÓDSZERTAN KIDOLGOZÁSA AZ AUSZTRÁL LAKE GEORGE-TÓ FIATAL AGYAGOS ÜLEDÉKEINEK VIZSGÁLATA CÉLJÁBÓL","translated_title":"","metadata":{"abstract":"Abstract\nLake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied\nmethodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary\nenvironments.\n\nÖsszefoglaló\nA Lake George Ausztráliában, Canberrától 40 km-re északra, Új Dél Wales-ben található zárt vízgyűjtő medencéjű időszakos tó. 2015 során, egy multidiszciplináris kutatási projekt keretében végzett kutatófúrás 77 méter jó minőségű fúrásmagot eredményezett, melyből 17 minta került a GEOCHEM Kft. laboratóriumába részletes elemzésre. Az előzetes eredmények alapján a He-piknometria, a fiziszorpció és a szemcseméret analízis adták a komplex értelmezéshez leginkább használható információkat. Az alkalmazott módszerek bemutatása céljából három, eltérő mélységből származó minta került kiválasztásra. Az eredmények azt mutatják, hogy bár mindhárom minta nyugodtvízi, áramlásoktól mentes üledékes lerakódási környezetben képződött, alapvetően különböző pórusszerkezeti tulajdonságokkal bírnak, különösen a mezopórusok tartományában. Ezek a különbségek felhasználhatóak az üledékképződés egészen finom változásainak nyomon követésére.\n","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"FÖLDTUDOMÁNYOK ÉS KÖRNYEZET – harmóniában"},"translated_abstract":"Abstract\nLake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied\nmethodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary\nenvironments.\n\nÖsszefoglaló\nA Lake George Ausztráliában, Canberrától 40 km-re északra, Új Dél Wales-ben található zárt vízgyűjtő medencéjű időszakos tó. 2015 során, egy multidiszciplináris kutatási projekt keretében végzett kutatófúrás 77 méter jó minőségű fúrásmagot eredményezett, melyből 17 minta került a GEOCHEM Kft. laboratóriumába részletes elemzésre. Az előzetes eredmények alapján a He-piknometria, a fiziszorpció és a szemcseméret analízis adták a komplex értelmezéshez leginkább használható információkat. Az alkalmazott módszerek bemutatása céljából három, eltérő mélységből származó minta került kiválasztásra. Az eredmények azt mutatják, hogy bár mindhárom minta nyugodtvízi, áramlásoktól mentes üledékes lerakódási környezetben képződött, alapvetően különböző pórusszerkezeti tulajdonságokkal bírnak, különösen a mezopórusok tartományában. Ezek a különbségek felhasználhatóak az üledékképződés egészen finom változásainak nyomon követésére.\n","internal_url":"https://www.academia.edu/38163447/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_in_clay_sediments_Lake_George_NSW_Australia_KOMPLEX_P%C3%93RUSSZERKEZET_VIZSG%C3%81LATI_M%C3%93DSZERTAN_KIDOLGOZ%C3%81SA_AZ_AUSZTR%C3%81L_LAKE_GEORGE_T%C3%93_FIATAL_AGYAGOS_%C3%9CLED%C3%89KEINEK_VIZSG%C3%81LATA_C%C3%89LJ%C3%81B%C3%93L","translated_internal_url":"","created_at":"2019-01-16T07:44:58.901-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":32216316,"work_id":38163447,"tagging_user_id":498748,"tagged_user_id":138793899,"co_author_invite_id":6491352,"email":"f***a@geochem-ltd.eu","display_order":0,"name":"Anita Fedor-Szasz","title":"Development of a complex laboratory procedure for characterisation of pore structure in clay sediments, Lake George, NSW, Australia KOMPLEX PÓRUSSZERKEZET VIZSGÁLATI MÓDSZERTAN KIDOLGOZÁSA AZ AUSZTRÁL LAKE GEORGE-TÓ FIATAL AGYAGOS ÜLEDÉKEINEK VIZSGÁLATA CÉLJÁBÓL"},{"id":32216318,"work_id":38163447,"tagging_user_id":498748,"tagged_user_id":67736234,"co_author_invite_id":null,"email":"f***c@geochem-ltd.eu","display_order":6291456,"name":"Ferenc Fedor","title":"Development of a complex laboratory procedure for characterisation of pore structure in clay sediments, Lake George, NSW, Australia KOMPLEX PÓRUSSZERKEZET VIZSGÁLATI MÓDSZERTAN KIDOLGOZÁSA AZ AUSZTRÁL LAKE GEORGE-TÓ FIATAL AGYAGOS ÜLEDÉKEINEK VIZSGÁLATA CÉLJÁBÓL"},{"id":32216319,"work_id":38163447,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6491351,"email":"a***r@geochem-ltd.eu","display_order":7340032,"name":"Peter Acs","title":"Development of a complex laboratory procedure for characterisation of pore structure in clay sediments, Lake George, NSW, Australia KOMPLEX PÓRUSSZERKEZET VIZSGÁLATI MÓDSZERTAN KIDOLGOZÁSA AZ AUSZTRÁL LAKE GEORGE-TÓ FIATAL AGYAGOS ÜLEDÉKEINEK VIZSGÁLATA CÉLJÁBÓL"}],"downloadable_attachments":[{"id":58197768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58197768/thumbnails/1.jpg","file_name":"HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1.pdf","download_url":"https://www.academia.edu/attachments/58197768/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58197768/HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1-libre.pdf?1547660538=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157150\u0026Signature=N12qBvkHlbK0mdDG0FsouCMABUpGId6N8bY8DQgX6geNu4AUD5V3HgXBaUpS3TV8q0sXZXCdnmdaB6M4AuAHfbbfR3gQn1vQt1BOIIrAyHEm3FnvxvZdekYcXf4uZ2A0Gsu3MBvdiu94n9UMksANKl8gphODAXDK1zczUIW-cdXiP7vM6WYqEi1NGshejHvV19RnBywss6cTPjtwnL~0w4f0sC2gD18ECI9DqYjApBUi7-euBUSn2q7GsvLag0iKcwrjgiWxibzLvJMpUJDqH6HfOPhiMxW1inU3OreOUENdItzxvp-JbSib01jf3yDTZRN2brRTUnz-kCFzs3j9Xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_in_clay_sediments_Lake_George_NSW_Australia_KOMPLEX_PÓRUSSZERKEZET_VIZSGÁLATI_MÓDSZERTAN_KIDOLGOZÁSA_AZ_AUSZTRÁL_LAKE_GEORGE_TÓ_FIATAL_AGYAGOS_ÜLEDÉKEINEK_VIZSGÁLATA_CÉLJÁBÓL","translated_slug":"","page_count":162,"language":"hu","content_type":"Work","summary":"Abstract\nLake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 meter-long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analyzed in the GEOCHEM laboratories to understand sedimentary pore structure and its changes. From several methods tried, He-pycnometry, physisorption and grain size analysis provided the most useful information for complex interpretation. Here the applied\nmethodology is demonstrated, on the example of three samples selected from different depth. Although all three samples have been deposited in a calm, flow-free sedimentary environment, the pore structure of each of them is different, particularly on mesopore level. These differences allow a very high-resolution study of past sedimentary\nenvironments.\n\nÖsszefoglaló\nA Lake George Ausztráliában, Canberrától 40 km-re északra, Új Dél Wales-ben található zárt vízgyűjtő medencéjű időszakos tó. 2015 során, egy multidiszciplináris kutatási projekt keretében végzett kutatófúrás 77 méter jó minőségű fúrásmagot eredményezett, melyből 17 minta került a GEOCHEM Kft. laboratóriumába részletes elemzésre. Az előzetes eredmények alapján a He-piknometria, a fiziszorpció és a szemcseméret analízis adták a komplex értelmezéshez leginkább használható információkat. Az alkalmazott módszerek bemutatása céljából három, eltérő mélységből származó minta került kiválasztásra. Az eredmények azt mutatják, hogy bár mindhárom minta nyugodtvízi, áramlásoktól mentes üledékes lerakódási környezetben képződött, alapvetően különböző pórusszerkezeti tulajdonságokkal bírnak, különösen a mezopórusok tartományában. Ezek a különbségek felhasználhatóak az üledékképződés egészen finom változásainak nyomon követésére.\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":58197768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58197768/thumbnails/1.jpg","file_name":"HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1.pdf","download_url":"https://www.academia.edu/attachments/58197768/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58197768/HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1-libre.pdf?1547660538=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157150\u0026Signature=N12qBvkHlbK0mdDG0FsouCMABUpGId6N8bY8DQgX6geNu4AUD5V3HgXBaUpS3TV8q0sXZXCdnmdaB6M4AuAHfbbfR3gQn1vQt1BOIIrAyHEm3FnvxvZdekYcXf4uZ2A0Gsu3MBvdiu94n9UMksANKl8gphODAXDK1zczUIW-cdXiP7vM6WYqEi1NGshejHvV19RnBywss6cTPjtwnL~0w4f0sC2gD18ECI9DqYjApBUi7-euBUSn2q7GsvLag0iKcwrjgiWxibzLvJMpUJDqH6HfOPhiMxW1inU3OreOUENdItzxvp-JbSib01jf3yDTZRN2brRTUnz-kCFzs3j9Xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":58197769,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58197769/thumbnails/1.jpg","file_name":"HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1.pdf","download_url":"https://www.academia.edu/attachments/58197769/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58197769/HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1-libre.pdf?1547661030=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157150\u0026Signature=HYre2l6zLcThaFGQa3dCZ8TJS27nkP7KY0U2~rKowXU7o-aitkxpEJy0bdj1sDFj-DFhOXHMW~aWWxaB4x3QmfQytD6jZGTXv02JhJSXUHTWFiPFFekkwEFoc21NJZVTbzPGgXI5hIdeQy-p2a5wSVPD14L1114EjElQaEB0tjvZRFHer1Gt7t1jk1jREW1yMmAFb5reL2rP6fmIRMrC3aZ40X4yy-fs07nQ5290zMWAjeSvDD3PZe29SfOTGODnBngmmOin129wU-bE~TyMBNqBtr9YKrkYj3Nia9mLIthAiDCu0NULKpvuZOos4tslpCu83xjslhJk-61IzyCCtQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48807,"name":"Sedimentary geology and stratigraphy","url":"https://www.academia.edu/Documents/in/Sedimentary_geology_and_stratigraphy"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":2554321,"name":"Weereewa NSW","url":"https://www.academia.edu/Documents/in/Weereewa_NSW"}],"urls":[{"id":8677452,"url":"http://foldtan.hu/sites/default/files/HUNGEO%20Tanulm%C3%A1nyk%C3%B6tet_v2.8.1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-38163447-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="38163363"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38163363/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/58197759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38163363/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia">AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unideb.academia.edu/DavidArpad">David Arpad</a></span></div><div class="wp-workCard_item"><span>Földtudományok és Környezet Harmóniában</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszint feletti magasságban helyezkedik el. 2015-ben az Australian National University egy új, 77 m mélységű fúrást mélyített a tó medencéjének NY-i peremén. Ez a mag kevesebb mállott részt tartalmaz, és a pollenek is job megtartásúak benne, mint az előzőekben. A fúrás alapjának becsült kora 2,2-2,5 millió év. A mag számos tudományágra kiterjedő vizsgálatának részeként paleoichnológiai elemzést végeztünk nagy felbontású fényképek felhasználásával. Ezen rövid tanulmány célja, hogy bemutassa a különböző őséletnyomokat és az általuk jelzett őskörnyezeti viszonyokat.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="825959ae21321ffa1c2c1efe0de30328" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58197759,"asset_id":38163363,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58197759/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38163363"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38163363"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38163363; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38163363]").text(description); $(".js-view-count[data-work-id=38163363]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38163363; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38163363']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "825959ae21321ffa1c2c1efe0de30328" } } $('.js-work-strip[data-work-id=38163363]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38163363,"title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia","translated_title":"","metadata":{"abstract":"A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszint feletti magasságban helyezkedik el. 2015-ben az Australian National University egy új, 77 m mélységű fúrást mélyített a tó medencéjének NY-i peremén. Ez a mag kevesebb mállott részt tartalmaz, és a pollenek is job megtartásúak benne, mint az előzőekben. A fúrás alapjának becsült kora 2,2-2,5 millió év. A mag számos tudományágra kiterjedő vizsgálatának részeként paleoichnológiai elemzést végeztünk nagy felbontású fényképek felhasználásával. Ezen rövid tanulmány célja, hogy bemutassa a különböző őséletnyomokat és az általuk jelzett őskörnyezeti viszonyokat. ","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Földtudományok és Környezet Harmóniában"},"translated_abstract":"A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszint feletti magasságban helyezkedik el. 2015-ben az Australian National University egy új, 77 m mélységű fúrást mélyített a tó medencéjének NY-i peremén. Ez a mag kevesebb mállott részt tartalmaz, és a pollenek is job megtartásúak benne, mint az előzőekben. A fúrás alapjának becsült kora 2,2-2,5 millió év. A mag számos tudományágra kiterjedő vizsgálatának részeként paleoichnológiai elemzést végeztünk nagy felbontású fényképek felhasználásával. Ezen rövid tanulmány célja, hogy bemutassa a különböző őséletnyomokat és az általuk jelzett őskörnyezeti viszonyokat. ","internal_url":"https://www.academia.edu/38163363/AZ_%C5%90S%C3%89LETNYOMOK_K%C3%96RNYEZETJELZ%C5%90_SZEREPE_A_WEEREEWA_T%C3%93_LAKE_GEORGE_%C3%9AJ_D%C3%89L_WALES_AUSZTR%C3%81LIA_NEGYEDID%C5%90SZAKI_K%C3%89PZ%C5%90DM%C3%89NYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2019-01-16T07:28:53.628-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":32216253,"work_id":38163363,"tagging_user_id":498748,"tagged_user_id":698845,"co_author_invite_id":null,"email":"c***a@yahoo.com","affiliation":"University of Debrecen","display_order":0,"name":"David Arpad","title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"},{"id":32216254,"work_id":38163363,"tagging_user_id":498748,"tagged_user_id":699132,"co_author_invite_id":null,"email":"f***8@gmail.com","affiliation":"University of Debrecen","display_order":4194304,"name":"Rozália Fodor","title":"AZ ŐSÉLETNYOMOK KÖRNYEZETJELZŐ SZEREPE A WEEREEWA – TÓ (LAKE GEORGE, ÚJ-DÉL-WALES, AUSZTRÁLIA) NEGYEDIDŐSZAKI KÉPZŐDMÉNYEIBEN Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"}],"downloadable_attachments":[{"id":58197759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58197759/thumbnails/1.jpg","file_name":"HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1.pdf","download_url":"https://www.academia.edu/attachments/58197759/download_file","bulk_download_file_name":"AZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58197759/HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1-libre.pdf?1547660106=\u0026response-content-disposition=attachment%3B+filename%3DAZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf\u0026Expires=1744157150\u0026Signature=MzJqLoOiKdMudAOHctpxlncjeXo5gViuqjCvPV-uPdwHEAi3K8hYy9ffsugK3hzf2Az-hAQWhnAQ2oDiylgVTnCX1WwVAx2iLGJwwnn6KsztX-CK3bfPtGom2ggw36Q623atPObXm~cOoDDwotHIeYkdlZrkkQIT4Yz-66sb4Po6QdVzVQlp2Ko3cvAJntvzWnZjvZ5YCYbuvx18V1rufvQEfuAUYm2K-9MOGZYBGqXq4NzfHWI9QBdlFyCxy~whTY6ejDMKH4Oaz7tFxA5MFqL0FyAJmyMWiEcnDSLE4Wy1MrL3S6ySL6FO~6tVYSD8JOIjKPJtZ3vw8jwcHtDl5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"AZ_ŐSÉLETNYOMOK_KÖRNYEZETJELZŐ_SZEREPE_A_WEEREEWA_TÓ_LAKE_GEORGE_ÚJ_DÉL_WALES_AUSZTRÁLIA_NEGYEDIDŐSZAKI_KÉPZŐDMÉNYEIBEN_Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_slug":"","page_count":162,"language":"hu","content_type":"Work","summary":"A Weereewa, melyet a fehér telepesek Lake George névre kereszteltek 1820-ban, egy időszakos tó Canberrától, Ausztrália fővárosától negyven kilométerre északkeletre. A tó a Kelet-Ausztráliai Tábla D-i részén egy lefolyástalan medencében helyezkedik el, melyet nyugaton a Lake George törésvonal, keleten pedig paleozoos földtani képződmények határolnak. A jelenlegi tómedence mintegy 20 km x 10 km kiterjedésű, és 680 m tengerszint feletti magasságban helyezkedik el. 2015-ben az Australian National University egy új, 77 m mélységű fúrást mélyített a tó medencéjének NY-i peremén. Ez a mag kevesebb mállott részt tartalmaz, és a pollenek is job megtartásúak benne, mint az előzőekben. A fúrás alapjának becsült kora 2,2-2,5 millió év. A mag számos tudományágra kiterjedő vizsgálatának részeként paleoichnológiai elemzést végeztünk nagy felbontású fényképek felhasználásával. Ezen rövid tanulmány célja, hogy bemutassa a különböző őséletnyomokat és az általuk jelzett őskörnyezeti viszonyokat. ","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":58197759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58197759/thumbnails/1.jpg","file_name":"HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1.pdf","download_url":"https://www.academia.edu/attachments/58197759/download_file","bulk_download_file_name":"AZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58197759/HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1-libre.pdf?1547660106=\u0026response-content-disposition=attachment%3B+filename%3DAZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf\u0026Expires=1744157150\u0026Signature=MzJqLoOiKdMudAOHctpxlncjeXo5gViuqjCvPV-uPdwHEAi3K8hYy9ffsugK3hzf2Az-hAQWhnAQ2oDiylgVTnCX1WwVAx2iLGJwwnn6KsztX-CK3bfPtGom2ggw36Q623atPObXm~cOoDDwotHIeYkdlZrkkQIT4Yz-66sb4Po6QdVzVQlp2Ko3cvAJntvzWnZjvZ5YCYbuvx18V1rufvQEfuAUYm2K-9MOGZYBGqXq4NzfHWI9QBdlFyCxy~whTY6ejDMKH4Oaz7tFxA5MFqL0FyAJmyMWiEcnDSLE4Wy1MrL3S6ySL6FO~6tVYSD8JOIjKPJtZ3vw8jwcHtDl5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":58197758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58197758/thumbnails/1.jpg","file_name":"HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1.pdf","download_url":"https://www.academia.edu/attachments/58197758/download_file","bulk_download_file_name":"AZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58197758/HUNGEO_20Tanulm_C3_A1nyk_C3_B6tet_v2.8.1-libre.pdf?1547660098=\u0026response-content-disposition=attachment%3B+filename%3DAZ_OSELETNYOMOK_KORNYEZETJELZO_SZEREPE_A.pdf\u0026Expires=1744157150\u0026Signature=NBs9uw7DEgTowFyjM~exoA1cSuY479KOTFCOKGN9D-kFZK4fTL68eGxpyEzBtNy7HgG-KjlXQ8jiMaLNfa6Gs-VgVvxli6~6vowkIIyK7BlzMaH1G4D6RXMlh6H1Z~8J2yvjG-iWLA-KGwHic2Kp4wrtnpDKaJLPOg8LpjRHuwRdAAVxEwehXY~Ks5ZDZUsERL6FFWz3cOVN48JBB6dD486svGTtCRxK79QgGzHxIvUdkYixDh5rFVrP5hcwX4V11-51VoKEqLmSgLWL-zilFS7DeBSkzJoi2p~z5uyczmNOkNqACr0BOdvaMCa0uHPmemnyIdhH56R3HohayrYBTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2258,"name":"Paleoclimatology","url":"https://www.academia.edu/Documents/in/Paleoclimatology"},{"id":7075,"name":"Paleoenvironment","url":"https://www.academia.edu/Documents/in/Paleoenvironment"},{"id":11674,"name":"Paleoichnology","url":"https://www.academia.edu/Documents/in/Paleoichnology"},{"id":142995,"name":"Ichnology and its usage in interpretation of paleoenvironments","url":"https://www.academia.edu/Documents/in/Ichnology_and_its_usage_in_interpretation_of_paleoenvironments"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":2554321,"name":"Weereewa NSW","url":"https://www.academia.edu/Documents/in/Weereewa_NSW"}],"urls":[{"id":8677432,"url":"http://foldtan.hu/sites/default/files/HUNGEO%20Tanulm%C3%A1nyk%C3%B6tet_v2.8.1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-38163363-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34878976"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34878976/Reconstruction_and_anatomical_description_of_the_auditory_region_of_an_extinct_herbivorous_marsupial_from_the_megafauna_of_South_East_NSW_Australia"><img alt="Research paper thumbnail of Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/54738676/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34878976/Reconstruction_and_anatomical_description_of_the_auditory_region_of_an_extinct_herbivorous_marsupial_from_the_megafauna_of_South_East_NSW_Australia">Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/AlannahPearson">Alannah Pearson</a></span></div><div class="wp-workCard_item"><span>CAVEPS 2017</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The discovery of a fragmented partial skull of a large extinct herbivorous marsupial in a limesto...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The discovery of a fragmented partial skull of a large extinct herbivorous marsupial in a limestone crevice near Lake George in South East New South Wales, Australia, provided a very rare opportunity to reconstruct the auditory region of the animal. High resolution micro-CT and conventional medical CT were acquired and processed using ImageJ1.52 and Amira 3D software. This paper describes results obtained from the anatomical analysis of the CT data with 52.14 micron cubic voxel size, as well as the 3D reconstructed and printed temporal bone and bony labyrinth. The bony labyrinth of this fossil is very well preserved, providing an unprecedented opportunity for detailed anatomical description of this large extinct herbivorous marsupial’s auditory system. The results will assist in identification, and further studies will provide more information on proprioception of this unique animal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fc1d83b8890da368121f3a106f8d31d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54738676,"asset_id":34878976,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54738676/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34878976"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34878976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34878976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34878976]").text(description); $(".js-view-count[data-work-id=34878976]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34878976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34878976']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fc1d83b8890da368121f3a106f8d31d" } } $('.js-work-strip[data-work-id=34878976]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34878976,"title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia","translated_title":"","metadata":{"abstract":"The discovery of a fragmented partial skull of a large extinct herbivorous marsupial in a limestone crevice near Lake George in South East New South Wales, Australia, provided a very rare opportunity to reconstruct the auditory region of the animal. High resolution micro-CT and conventional medical CT were acquired and processed using ImageJ1.52 and Amira 3D software. This paper describes results obtained from the anatomical analysis of the CT data with 52.14 micron cubic voxel size, as well as the 3D reconstructed and printed temporal bone and bony labyrinth. The bony labyrinth of this fossil is very well preserved, providing an unprecedented opportunity for detailed anatomical description of this large extinct herbivorous marsupial’s auditory system. The results will assist in identification, and further studies will provide more information on proprioception of this unique animal. \n","ai_title_tag":"Auditory Reconstruction of Extinct Marsupial","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"CAVEPS 2017"},"translated_abstract":"The discovery of a fragmented partial skull of a large extinct herbivorous marsupial in a limestone crevice near Lake George in South East New South Wales, Australia, provided a very rare opportunity to reconstruct the auditory region of the animal. High resolution micro-CT and conventional medical CT were acquired and processed using ImageJ1.52 and Amira 3D software. This paper describes results obtained from the anatomical analysis of the CT data with 52.14 micron cubic voxel size, as well as the 3D reconstructed and printed temporal bone and bony labyrinth. The bony labyrinth of this fossil is very well preserved, providing an unprecedented opportunity for detailed anatomical description of this large extinct herbivorous marsupial’s auditory system. The results will assist in identification, and further studies will provide more information on proprioception of this unique animal. \n","internal_url":"https://www.academia.edu/34878976/Reconstruction_and_anatomical_description_of_the_auditory_region_of_an_extinct_herbivorous_marsupial_from_the_megafauna_of_South_East_NSW_Australia","translated_internal_url":"","created_at":"2017-10-17T02:31:55.242-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[{"id":30489090,"work_id":34878976,"tagging_user_id":498748,"tagged_user_id":null,"co_author_invite_id":6553399,"email":"g***s@gmail.com","display_order":1,"name":"Andras Grimm","title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia"},{"id":30489146,"work_id":34878976,"tagging_user_id":498748,"tagged_user_id":535529,"co_author_invite_id":null,"email":"m***y@customerlogic.com.au","affiliation":"Flinders University of South Australia","display_order":2,"name":"Michael Curry","title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia"},{"id":30489091,"work_id":34878976,"tagging_user_id":498748,"tagged_user_id":3103748,"co_author_invite_id":null,"email":"a***n@anu.edu.au","affiliation":"The Australian National University","display_order":3,"name":"Alannah Pearson","title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia"},{"id":30489093,"work_id":34878976,"tagging_user_id":498748,"tagged_user_id":1157982,"co_author_invite_id":null,"email":"g***1@uq.edu.au","affiliation":"The University of Queensland, Australia","display_order":5,"name":"Gilbert Price","title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia"},{"id":30489088,"work_id":34878976,"tagging_user_id":498748,"tagged_user_id":191201,"co_author_invite_id":null,"email":"s***e@une.edu.au","affiliation":"University of New England - Australia","display_order":6,"name":"Stephen Wroe","title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia"},{"id":30489089,"work_id":34878976,"tagging_user_id":498748,"tagged_user_id":2672742,"co_author_invite_id":null,"email":"a***n@gmail.com","affiliation":"The Australian National University","display_order":7,"name":"Ken P Aplin","title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia"},{"id":30489094,"work_id":34878976,"tagging_user_id":498748,"tagged_user_id":148017807,"co_author_invite_id":6553400,"email":"f***n@gmail.com","affiliation":"Semmelweis University","display_order":8,"name":"Zoltán Fent","title":"Reconstruction and anatomical description of the auditory region of an extinct herbivorous marsupial from the megafauna of South-East NSW, Australia"}],"downloadable_attachments":[{"id":54738676,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54738676/thumbnails/1.jpg","file_name":"2017_Poster_CAVEPS.pdf","download_url":"https://www.academia.edu/attachments/54738676/download_file","bulk_download_file_name":"Reconstruction_and_anatomical_descriptio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54738676/2017_Poster_CAVEPS-libre.pdf?1508233284=\u0026response-content-disposition=attachment%3B+filename%3DReconstruction_and_anatomical_descriptio.pdf\u0026Expires=1744157150\u0026Signature=CkGLPtgh-x35le0Thj7qKvl7dqZFWpcfZvNU7vLVNyOWdVnMeXX30YllM~r8InvczopsM-muw7nJ0HmHx9tbE893syuyGT88D3lcg57Aipeo4s57VnU9Hn8ctcfF7450qV8dI7avXZQta3E~9Hmw7pTdkBNVztellS7ccHLFq2ZmKaky8CWeVKVSP-TFy5Y8Lztt7GHOzw3J5001VnFNSWixEUd5LoXgKu1EIEljQw7skPr1Ak-vrwo7QDu-VfDs1opIULFFTpZvJSPSSUux9nryPMt04KHgGe4WfcU8RSDlOZhccpjzOMmHEheHaD3b25i71WwGrbpuLd2JOXec~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reconstruction_and_anatomical_description_of_the_auditory_region_of_an_extinct_herbivorous_marsupial_from_the_megafauna_of_South_East_NSW_Australia","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"The discovery of a fragmented partial skull of a large extinct herbivorous marsupial in a limestone crevice near Lake George in South East New South Wales, Australia, provided a very rare opportunity to reconstruct the auditory region of the animal. High resolution micro-CT and conventional medical CT were acquired and processed using ImageJ1.52 and Amira 3D software. This paper describes results obtained from the anatomical analysis of the CT data with 52.14 micron cubic voxel size, as well as the 3D reconstructed and printed temporal bone and bony labyrinth. The bony labyrinth of this fossil is very well preserved, providing an unprecedented opportunity for detailed anatomical description of this large extinct herbivorous marsupial’s auditory system. The results will assist in identification, and further studies will provide more information on proprioception of this unique animal. \n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":54738676,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54738676/thumbnails/1.jpg","file_name":"2017_Poster_CAVEPS.pdf","download_url":"https://www.academia.edu/attachments/54738676/download_file","bulk_download_file_name":"Reconstruction_and_anatomical_descriptio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54738676/2017_Poster_CAVEPS-libre.pdf?1508233284=\u0026response-content-disposition=attachment%3B+filename%3DReconstruction_and_anatomical_descriptio.pdf\u0026Expires=1744157150\u0026Signature=CkGLPtgh-x35le0Thj7qKvl7dqZFWpcfZvNU7vLVNyOWdVnMeXX30YllM~r8InvczopsM-muw7nJ0HmHx9tbE893syuyGT88D3lcg57Aipeo4s57VnU9Hn8ctcfF7450qV8dI7avXZQta3E~9Hmw7pTdkBNVztellS7ccHLFq2ZmKaky8CWeVKVSP-TFy5Y8Lztt7GHOzw3J5001VnFNSWixEUd5LoXgKu1EIEljQw7skPr1Ak-vrwo7QDu-VfDs1opIULFFTpZvJSPSSUux9nryPMt04KHgGe4WfcU8RSDlOZhccpjzOMmHEheHaD3b25i71WwGrbpuLd2JOXec~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":3031,"name":"Auditory Perception","url":"https://www.academia.edu/Documents/in/Auditory_Perception"},{"id":10574,"name":"Auditory Neuroscience","url":"https://www.academia.edu/Documents/in/Auditory_Neuroscience"},{"id":19363,"name":"Vertebrate Evolution","url":"https://www.academia.edu/Documents/in/Vertebrate_Evolution"},{"id":24375,"name":"Vertebrate Paleontology","url":"https://www.academia.edu/Documents/in/Vertebrate_Paleontology"},{"id":54214,"name":"Proprioception","url":"https://www.academia.edu/Documents/in/Proprioception"},{"id":236794,"name":"Pleistocene megafauna","url":"https://www.academia.edu/Documents/in/Pleistocene_megafauna"},{"id":435282,"name":"Diprotodontids","url":"https://www.academia.edu/Documents/in/Diprotodontids"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34878976-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34878730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34878730/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/54738410/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34878730/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia">Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FerencFedor">Ferenc Fedor</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South W...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 " , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d < 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05e432eac12fe700517e9f55e9c639a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54738410,"asset_id":34878730,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54738410/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34878730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34878730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34878730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34878730]").text(description); $(".js-view-count[data-work-id=34878730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34878730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34878730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05e432eac12fe700517e9f55e9c639a2" } } $('.js-work-strip[data-work-id=34878730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34878730,"title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia","translated_title":"","metadata":{"abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes."},"translated_abstract":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","internal_url":"https://www.academia.edu/34878730/Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2017-10-17T02:00:58.786-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[{"id":30488965,"work_id":34878730,"tagging_user_id":498748,"tagged_user_id":67736234,"co_author_invite_id":null,"email":"f***c@geochem-ltd.eu","display_order":1,"name":"Ferenc Fedor","title":"Development of a complex laboratory procedure for characterisation of pore structure, particle size distribution and groundwater electrical properties in sedimentary drill core samples, Lake George, NSW, Australia"}],"downloadable_attachments":[{"id":54738410,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54738410/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_talk_Abstract_English.pdf","download_url":"https://www.academia.edu/attachments/54738410/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54738410/EP_HUNGEO_2017_talk_Abstract_English-libre.pdf?1508230987=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157150\u0026Signature=edF9ZVO57JRSE1~~e5KTlIDDh-yOdx70XqiaszVzYQWLgHatSLBVRAWhs6QsKESrGudo~gJJKWPvly0ZQPt10HZjlxegNTgNzGnAnNf02EzMe6gCytWtRVUXrB3ImKcvxuPlQ38~G4qxNiJKsKrmFf4XPJiBe-lDN~QG6SDxmzD-A-OtOheMf-DyGGatloqAS4wQLbWvLGo0Sg4idGOBIE8KtDvtS1f-nkfNUtS0AzzeKxvcisyTvB6sUvqZLy01NlEn348LzRAhaHz84SkZoys3dqGf0bVZMHNHDE854nlEoYo26kD0CWSltDvN3dP1NnMI7fAZCu54xGPutKet1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_of_a_complex_laboratory_procedure_for_characterisation_of_pore_structure_particle_size_distribution_and_groundwater_electrical_properties_in_sedimentary_drill_core_samples_Lake_George_NSW_Australia","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Lake George is an intermittent lake within a closed basin 40 km north of Canberra, in New South Wales, Australia. A multidisciplinary research project obtained a good quality 77 metres long sedimentary core from the lake bed during 2015. 17 clay samples from the core have been sent to and analysed in the GEOCHEM labs in Pécs, Hungary, during 2016. Analytical methods included He-pycnometry, physisorption, grain size analysis and electrical resistivity measurements. Plugs with different diameters (1 \" , 9 mm) were prepared with manual sampling. Fragments and plugs were dried at 80 °C in a drying oven for 12-14 days before the measurements. The geometric volume of the plugs were measured and calculated before and again after the drying process. He-pycnometry was used to measure the skeletal volume (cm 3) at 25 Celsius in both cases. Skeletal density (g/cm 3), geometric volume (cm 3), bulk density (g/cm 3) and He-porosity (%) were calculated. During physisorption, N2 (77 K) and CO2 (273 K) gas was used to obtain adsorption and desorption isotherms. Nitrogen was used to measure BET surface (m 2 /g), pore size distribution (Barrett-Joyner-Halenda method), fractal dimension (Frenkel-Halsey-Hill method), and pore volume (cm 3 /g). CO2 gas is very suitable for examination of micro-pores (d \u003c 2 nm) (Condon, 2006). In this study we calculated micro-pore volume and surface area using the Dubinin-Radushkevich method. During particle size analysis, we determined average grain size and grain size distribution, using CILAS 1180 LD type laser granulometer. For classification based on grain size, we used the generally accepted nomenclature (Szakmány, 2008) and for classification based on sediment-type we used the Shepard-nomenclature (Shepard, 1954). Determination of fractions based on the phi-scale (Udden-Wentworth, 1922) was also carried out. Electrical resistivity was measured using EPS-700 instrument by Vinci Technologies, using two electrode configuration in the range of 12 Hz-10 kHz. The samples were measured in their original saturated state (SW=1). Results show that the utilised techniques characterise the clay samples to a very good degree, enabling unprecedented accurate analysis of sedimentation and ground water processes.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":54738410,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54738410/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_talk_Abstract_English.pdf","download_url":"https://www.academia.edu/attachments/54738410/download_file","bulk_download_file_name":"Development_of_a_complex_laboratory_proc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54738410/EP_HUNGEO_2017_talk_Abstract_English-libre.pdf?1508230987=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_of_a_complex_laboratory_proc.pdf\u0026Expires=1744157150\u0026Signature=edF9ZVO57JRSE1~~e5KTlIDDh-yOdx70XqiaszVzYQWLgHatSLBVRAWhs6QsKESrGudo~gJJKWPvly0ZQPt10HZjlxegNTgNzGnAnNf02EzMe6gCytWtRVUXrB3ImKcvxuPlQ38~G4qxNiJKsKrmFf4XPJiBe-lDN~QG6SDxmzD-A-OtOheMf-DyGGatloqAS4wQLbWvLGo0Sg4idGOBIE8KtDvtS1f-nkfNUtS0AzzeKxvcisyTvB6sUvqZLy01NlEn348LzRAhaHz84SkZoys3dqGf0bVZMHNHDE854nlEoYo26kD0CWSltDvN3dP1NnMI7fAZCu54xGPutKet1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"},{"id":60487,"name":"Quaternary environments","url":"https://www.academia.edu/Documents/in/Quaternary_environments"},{"id":1226140,"name":"Pore Space","url":"https://www.academia.edu/Documents/in/Pore_Space"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34878730-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="34318123"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/34318123/Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia"><img alt="Research paper thumbnail of Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia" class="work-thumbnail" src="https://attachments.academia-assets.com/54217694/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/34318123/Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia">Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unideb.academia.edu/DavidArpad">David Arpad</a></span></div><div class="wp-workCard_item"><span>HUNGEO 2017, ISBN 978-963-8221-66-7</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. The present lake bed is about 20 km by 10 km in extent, set at an elevation of 680 metres above sea level.<br /><br />Drill core sediments have been obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984, Singh & Geissler 1985, Jacobson Jankowski and Abell 1991, etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres sequence of sediments deposited over the last 4 million years (McEwan Mason 1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).<br /><br />Endorheic basins are greatly affected by climate change. Pollen analyses by Singh & Geissler (1985) indicate fluctuating vegetation changes during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal), from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods.<br /><br />In 2015, the Australian National University obtained a new 77 m sediment core from the lake bed (GG-01), which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.<br /><br />As part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs. This is the first time ever that this method has been applied to the study of Lake George sediments. Over thirty trace fossils have been found. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine and terrestrial (lake margin and flood-plain) environments.<br /><br />Characteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments (Uchman et al. 2007). Terrestrial trace fossils are earthworm burrows, ant nest remains, and dominantly root traces. Five types have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies (Buatois and Mangano 2004).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4fdb476e48537a42c3332d3f159c6294" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":54217694,"asset_id":34318123,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/54217694/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="34318123"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="34318123"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34318123; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34318123]").text(description); $(".js-view-count[data-work-id=34318123]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34318123; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='34318123']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4fdb476e48537a42c3332d3f159c6294" } } $('.js-work-strip[data-work-id=34318123]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":34318123,"title":"Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia","translated_title":"","metadata":{"abstract":"Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. The present lake bed is about 20 km by 10 km in extent, set at an elevation of 680 metres above sea level.\n\nDrill core sediments have been obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984, Singh \u0026 Geissler 1985, Jacobson Jankowski and Abell 1991, etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres sequence of sediments deposited over the last 4 million years (McEwan Mason 1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).\n\nEndorheic basins are greatly affected by climate change. Pollen analyses by Singh \u0026 Geissler (1985) indicate fluctuating vegetation changes during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal), from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods.\n\nIn 2015, the Australian National University obtained a new 77 m sediment core from the lake bed (GG-01), which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.\n\nAs part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs. This is the first time ever that this method has been applied to the study of Lake George sediments. Over thirty trace fossils have been found. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine and terrestrial (lake margin and flood-plain) environments.\n\nCharacteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments (Uchman et al. 2007). Terrestrial trace fossils are earthworm burrows, ant nest remains, and dominantly root traces. Five types have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies (Buatois and Mangano 2004).\n\n","ai_title_tag":"Paleo-environmental Insights from Quaternary Trace Fossils in Lake George, Australia","page_numbers":"69","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"HUNGEO 2017, ISBN 978-963-8221-66-7"},"translated_abstract":"Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. The present lake bed is about 20 km by 10 km in extent, set at an elevation of 680 metres above sea level.\n\nDrill core sediments have been obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984, Singh \u0026 Geissler 1985, Jacobson Jankowski and Abell 1991, etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres sequence of sediments deposited over the last 4 million years (McEwan Mason 1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).\n\nEndorheic basins are greatly affected by climate change. Pollen analyses by Singh \u0026 Geissler (1985) indicate fluctuating vegetation changes during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal), from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods.\n\nIn 2015, the Australian National University obtained a new 77 m sediment core from the lake bed (GG-01), which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.\n\nAs part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs. This is the first time ever that this method has been applied to the study of Lake George sediments. Over thirty trace fossils have been found. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine and terrestrial (lake margin and flood-plain) environments.\n\nCharacteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments (Uchman et al. 2007). Terrestrial trace fossils are earthworm burrows, ant nest remains, and dominantly root traces. Five types have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies (Buatois and Mangano 2004).\n\n","internal_url":"https://www.academia.edu/34318123/Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_internal_url":"","created_at":"2017-08-23T01:33:53.265-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[{"id":30084050,"work_id":34318123,"tagging_user_id":498748,"tagged_user_id":698845,"co_author_invite_id":null,"email":"c***a@yahoo.com","affiliation":"University of Debrecen","display_order":1,"name":"David Arpad","title":"Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"},{"id":30084051,"work_id":34318123,"tagging_user_id":498748,"tagged_user_id":699132,"co_author_invite_id":null,"email":"f***8@gmail.com","affiliation":"University of Debrecen","display_order":2,"name":"Rozália Fodor","title":"Trace fossils as paleo-environmental indicators from the Quaternary of Weereewa, (Lake George), NSW, Australia"}],"downloadable_attachments":[{"id":54217694,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54217694/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_Poster.pdf","download_url":"https://www.academia.edu/attachments/54217694/download_file","bulk_download_file_name":"Trace_fossils_as_paleo_environmental_ind.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54217694/EP_HUNGEO_2017_Poster-libre.pdf?1503478196=\u0026response-content-disposition=attachment%3B+filename%3DTrace_fossils_as_paleo_environmental_ind.pdf\u0026Expires=1744157150\u0026Signature=cjzrJkZatQYb5dgV2n4mHCu5MdDrxH2itsD7KvaRV9E33BVzy~otxj5JeZNwGObmYQTUFVBQMrLyLIzc6-fSP5YVqPyedlDIdbTehh~ukJ5q63Inmwtb94jhuaW2U5wxUDteGlsFU5zypULrzVKFiBKx5OID6H900JQC-qjD0Ec5YbevhPlK2BXx~PDx0WPfQAe6hvUFzsa9Ohm1uNTegz3DtdEqxv~xRiK9fOvVlTmZmDmd01yISbdUbwsWJcL9zYoIfTPu6URTzE6KwlebSeAUIDKMOP7bTd9ddbueWFe8wLoAm2qKgZftbIbTZfkz2fREDNLItq7QfEw7-6PCiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trace_fossils_as_paleo_environmental_indicators_from_the_Quaternary_of_Weereewa_Lake_George_NSW_Australia","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Weereewa, re-named by white settlers to Lake George in 1820, is an intermittent lake 40 km northeast of Canberra, Australia’s National Capital. The Lake George basin is an endorheic basin within the Southern Tablelands of Eastern Australia, bound by the Lake George Fault on the west and Palaeozoic geological units on the east. The present lake bed is about 20 km by 10 km in extent, set at an elevation of 680 metres above sea level.\n\nDrill core sediments have been obtained from the lake bed in the 1970’s and 1980’s by the Bureau of Mineral Resources and the Australian National University (Truswell 1984, Singh \u0026 Geissler 1985, Jacobson Jankowski and Abell 1991, etc.). From those drill cores, it was recognized that the Lake George basin contains the longest known continuous continental Quaternary sedimentary record in Australia and one of the longest in the World – an up to 165 metres sequence of sediments deposited over the last 4 million years (McEwan Mason 1991). The sedimentary sequence therefore spans the late Pliocene and the entire Quaternary Period (Pleistocene and Holocene Epochs).\n\nEndorheic basins are greatly affected by climate change. Pollen analyses by Singh \u0026 Geissler (1985) indicate fluctuating vegetation changes during the last 780,000 years (since the Matuyama/Brunhes paleomagnetic reversal), from subalpine grass/herbfields during glacial periods to sclerophyll woodland during interglacial periods.\n\nIn 2015, the Australian National University obtained a new 77 m sediment core from the lake bed (GG-01), which has fewer weathering intervals and better pollen preservation than previous cores. The base of the core has an estimated age of ~2.2-2.5 million years.\n\nAs part of the multi-disciplinary study of the core, trace fossil analysis have been carried out, based on high resolution photographs. This is the first time ever that this method has been applied to the study of Lake George sediments. Over thirty trace fossils have been found. In agreement with previous models resulting mainly from pollen analysis, the trace fossils indicate alternation of lacustrine and terrestrial (lake margin and flood-plain) environments.\n\nCharacteristic lacustrine trace fosils are: Planolites isp., Palaeophycus isp., and four different types of burrows of invertebrate animals, referring to littoral and lake bottom environments (Uchman et al. 2007). Terrestrial trace fossils are earthworm burrows, ant nest remains, and dominantly root traces. Five types have been distinguished, indicating shrubs and grassy vegetation. The observed trace fossils belong to the Mermia and the Scoyenia ichnofacies (Buatois and Mangano 2004).\n\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":54217694,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54217694/thumbnails/1.jpg","file_name":"EP_HUNGEO_2017_Poster.pdf","download_url":"https://www.academia.edu/attachments/54217694/download_file","bulk_download_file_name":"Trace_fossils_as_paleo_environmental_ind.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54217694/EP_HUNGEO_2017_Poster-libre.pdf?1503478196=\u0026response-content-disposition=attachment%3B+filename%3DTrace_fossils_as_paleo_environmental_ind.pdf\u0026Expires=1744157150\u0026Signature=cjzrJkZatQYb5dgV2n4mHCu5MdDrxH2itsD7KvaRV9E33BVzy~otxj5JeZNwGObmYQTUFVBQMrLyLIzc6-fSP5YVqPyedlDIdbTehh~ukJ5q63Inmwtb94jhuaW2U5wxUDteGlsFU5zypULrzVKFiBKx5OID6H900JQC-qjD0Ec5YbevhPlK2BXx~PDx0WPfQAe6hvUFzsa9Ohm1uNTegz3DtdEqxv~xRiK9fOvVlTmZmDmd01yISbdUbwsWJcL9zYoIfTPu6URTzE6KwlebSeAUIDKMOP7bTd9ddbueWFe8wLoAm2qKgZftbIbTZfkz2fREDNLItq7QfEw7-6PCiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"},{"id":60487,"name":"Quaternary environments","url":"https://www.academia.edu/Documents/in/Quaternary_environments"},{"id":70233,"name":"Trace Fossils","url":"https://www.academia.edu/Documents/in/Trace_Fossils"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":2554321,"name":"Weereewa NSW","url":"https://www.academia.edu/Documents/in/Weereewa_NSW"}],"urls":[{"id":8267682,"url":"http://foldtan.hu/sites/default/files/HUNGEO%20Absztarktk%C3%B6tet_v1.8a.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-34318123-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="29389674"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29389674/Lake_George_Weereewa_Lake_Ngungara_an_unsurpassed_natural_archive"><img alt="Research paper thumbnail of Lake George, Weereewa, Lake Ngungara: an unsurpassed natural archive" class="work-thumbnail" src="https://attachments.academia-assets.com/49831016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29389674/Lake_George_Weereewa_Lake_Ngungara_an_unsurpassed_natural_archive">Lake George, Weereewa, Lake Ngungara: an unsurpassed natural archive</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia’s capital c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia’s capital city. <br />The basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. <br />The site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since.<br />Currently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area.<br />The Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years.<br />Today the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development.<br />Our project is “work in progress”, with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-29389674-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-29389674-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/22918296/figure-1-lake-george-weereewa-lake-ngungara-an-unsurpassed"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/49831016/figure_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-29389674-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8a854d98fbe9a5ebfddd1a7445807f6e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":49831016,"asset_id":29389674,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/49831016/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29389674"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29389674"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29389674; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29389674]").text(description); $(".js-view-count[data-work-id=29389674]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29389674; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29389674']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8a854d98fbe9a5ebfddd1a7445807f6e" } } $('.js-work-strip[data-work-id=29389674]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29389674,"title":"Lake George, Weereewa, Lake Ngungara: an unsurpassed natural archive","translated_title":"","metadata":{"abstract":"The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia’s capital city. \nThe basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. \nThe site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since.\nCurrently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area.\nThe Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years.\nToday the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development.\nOur project is “work in progress”, with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work.\n"},"translated_abstract":"The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia’s capital city. \nThe basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. \nThe site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since.\nCurrently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area.\nThe Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years.\nToday the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development.\nOur project is “work in progress”, with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work.\n","internal_url":"https://www.academia.edu/29389674/Lake_George_Weereewa_Lake_Ngungara_an_unsurpassed_natural_archive","translated_internal_url":"","created_at":"2016-10-24T04:40:55.555-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"draft","co_author_tags":[{"id":25396309,"work_id":29389674,"tagging_user_id":498748,"tagged_user_id":38018322,"co_author_invite_id":null,"email":"b***s@anu.edu.au","display_order":1,"name":"Brad Pillans","title":"Lake George, Weereewa, Lake Ngungara: an unsurpassed natural archive"},{"id":25396311,"work_id":29389674,"tagging_user_id":498748,"tagged_user_id":2672742,"co_author_invite_id":null,"email":"a***n@gmail.com","affiliation":"The Australian National University","display_order":2,"name":"Ken P Aplin","title":"Lake George, Weereewa, Lake Ngungara: an unsurpassed natural archive"},{"id":25396312,"work_id":29389674,"tagging_user_id":498748,"tagged_user_id":908624,"co_author_invite_id":null,"email":"a***0@gmail.com","affiliation":"Australian Museum","display_order":3,"name":"Amy Mosig Way","title":"Lake George, Weereewa, Lake Ngungara: an unsurpassed natural archive"}],"downloadable_attachments":[{"id":49831016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49831016/thumbnails/1.jpg","file_name":"EP_Krakow_Poster.pdf","download_url":"https://www.academia.edu/attachments/49831016/download_file","bulk_download_file_name":"Lake_George_Weereewa_Lake_Ngungara_an_un.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49831016/EP_Krakow_Poster-libre.pdf?1477309954=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_Weereewa_Lake_Ngungara_an_un.pdf\u0026Expires=1744157150\u0026Signature=J~k1o9GnUeOD4eKnQgChSSxBTKx2xPpBndtznAfxU9pP3zI2nL94aqxsr3gCvWDI~DkXLJp40Zhj5L7jrRq4XsYXVRix3i-nd0ahoH7rA3fJVFSz~a3rpk4nE~lxNPJ6bQWmZhmZo0UUyoy5JEKmZWrpSPqQRzLhyegs39LmXoq5HtVVMjjHtKzUoF-H5q3~VESdte0f-7fI11YZ-qPHQwOJ6gX-j6nwHfil4eRoE7So2kh3KZ5bdDX7VsJb~fIzOC7YA7F2FI-aCB5F~y2M2WYFlXwRwhjbjc4KwUzug0bs5JUUEN8bl~YA0EEmuDSfZ9HtXtCWzXdYXgH8DIpi~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lake_George_Weereewa_Lake_Ngungara_an_unsurpassed_natural_archive","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia’s capital city. \nThe basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. \nThe site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since.\nCurrently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area.\nThe Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years.\nToday the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development.\nOur project is “work in progress”, with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work.\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":49831016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/49831016/thumbnails/1.jpg","file_name":"EP_Krakow_Poster.pdf","download_url":"https://www.academia.edu/attachments/49831016/download_file","bulk_download_file_name":"Lake_George_Weereewa_Lake_Ngungara_an_un.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/49831016/EP_Krakow_Poster-libre.pdf?1477309954=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_Weereewa_Lake_Ngungara_an_un.pdf\u0026Expires=1744157150\u0026Signature=J~k1o9GnUeOD4eKnQgChSSxBTKx2xPpBndtznAfxU9pP3zI2nL94aqxsr3gCvWDI~DkXLJp40Zhj5L7jrRq4XsYXVRix3i-nd0ahoH7rA3fJVFSz~a3rpk4nE~lxNPJ6bQWmZhmZo0UUyoy5JEKmZWrpSPqQRzLhyegs39LmXoq5HtVVMjjHtKzUoF-H5q3~VESdte0f-7fI11YZ-qPHQwOJ6gX-j6nwHfil4eRoE7So2kh3KZ5bdDX7VsJb~fIzOC7YA7F2FI-aCB5F~y2M2WYFlXwRwhjbjc4KwUzug0bs5JUUEN8bl~YA0EEmuDSfZ9HtXtCWzXdYXgH8DIpi~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":2795,"name":"Landscape Archaeology","url":"https://www.academia.edu/Documents/in/Landscape_Archaeology"},{"id":5439,"name":"Australian Indigenous Archaeology","url":"https://www.academia.edu/Documents/in/Australian_Indigenous_Archaeology"},{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"},{"id":2478475,"name":"Lake George NSW","url":"https://www.academia.edu/Documents/in/Lake_George_NSW"},{"id":2554321,"name":"Weereewa NSW","url":"https://www.academia.edu/Documents/in/Weereewa_NSW"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-29389674-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="25897690"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25897690/Lake_George_Weereewa_Lake_Ngungara"><img alt="Research paper thumbnail of Lake George, Weereewa, Lake Ngungara" class="work-thumbnail" src="https://attachments.academia-assets.com/46264889/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25897690/Lake_George_Weereewa_Lake_Ngungara">Lake George, Weereewa, Lake Ngungara</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia's capital c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia's capital city. The basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. The site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since. Currently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area. The Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years. Today the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development. Our project is " work in progress " , with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11ba238d4313f7a6b894bb53f839014f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46264889,"asset_id":25897690,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46264889/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25897690"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25897690"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25897690; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25897690]").text(description); $(".js-view-count[data-work-id=25897690]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25897690; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25897690']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11ba238d4313f7a6b894bb53f839014f" } } $('.js-work-strip[data-work-id=25897690]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25897690,"title":"Lake George, Weereewa, Lake Ngungara","translated_title":"","metadata":{"abstract":"The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia's capital city. The basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. The site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since. Currently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area. The Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years. Today the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development. Our project is \" work in progress \" , with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work."},"translated_abstract":"The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia's capital city. The basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. The site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since. Currently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area. The Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years. Today the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development. Our project is \" work in progress \" , with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work.","internal_url":"https://www.academia.edu/25897690/Lake_George_Weereewa_Lake_Ngungara","translated_internal_url":"","created_at":"2016-06-05T17:52:12.858-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[{"id":20996523,"work_id":25897690,"tagging_user_id":498748,"tagged_user_id":2672742,"co_author_invite_id":null,"email":"a***n@gmail.com","affiliation":"The Australian National University","display_order":-1,"name":"Ken P Aplin","title":"Lake George, Weereewa, Lake Ngungara"},{"id":20999311,"work_id":25897690,"tagging_user_id":498748,"tagged_user_id":908624,"co_author_invite_id":null,"email":"a***0@gmail.com","affiliation":"Australian Museum","display_order":1,"name":"Amy Mosig Way","title":"Lake George, Weereewa, Lake Ngungara"}],"downloadable_attachments":[{"id":46264889,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/46264889/thumbnails/1.jpg","file_name":"Abstract.docx","download_url":"https://www.academia.edu/attachments/46264889/download_file","bulk_download_file_name":"Lake_George_Weereewa_Lake_Ngungara.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46264889/Abstract.docx?1738322217=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_Weereewa_Lake_Ngungara.docx\u0026Expires=1744157150\u0026Signature=FfGnC4hfHuTlg3y0tL-una-XLrntNRkK4UAmpHlMliDMOQXzRTmmbMsRhMeZJr429PesRQBSdhOp0UUWrXbdsxbsr3sUrc~WN3dVPbv3gYn-Obj4NA6UnIjOs9dzIZxeT5uAXMCkPf59PMCaNnoRx9hn3qvOLhT650I~r7BCjTkKUJiDxwhLQAFgnOr1Ov6aZNyAGAuv1srrg7~e0jw86jiFXZ53NSohKSMC-LtpbT8k~aLEDqH9N7Op5omISf10-lt91vU9320VFz2cWhl5mMZaW9egViCzpL3L0EKyWBoVIDpHaukJYh9OYJ8OLpBUBxqkkJKgrvSgDej0-QNaWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lake_George_Weereewa_Lake_Ngungara","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"The Lake George Basin is a small, closed basin about 50km NE from Canberra, Australia's capital city. The basin is a very distinct landscape unit, and for many generations it has been a natural meeting place for several Aboriginal groups. There is evidence of at least 6000 years old human artefacts on the shores of the lake, and a currently ongoing PhD project is adding detail to our understanding of the human occupation of this area. There are also known mega-fauna fossil finds, including of the extinct kangaroo genus Procoptodon from deposits originally dated to between 21,000 and 26,000 years BP, but now considered to be older. The site for Canberra was chosen in 1908, resolving a long running debate about where the National Capital should be located. The main rivals were Sydney and Melbourne, and the diplomatic compromise was to establish a new capital midway between the two. Lake George had been a substantial body of water until 1900, and the Lake George Basin had been considered as a possible site for the new capital. Luckily, another nearby site was chosen because lake levels fell during several years of drought and the lake was dry from 1901 to 1915 and on several occasions since. Currently the lake is dry again, giving access for a large interdisciplinary team to study the landscape, its tectonic, sedimentary and hydrogeological evolution, as well as the paleontological and archaeological history of the area. The Lake George Fault, elevated 200 metres above the western shores, is a 75 km long major north-south tectonic feature. The lake bed is filled with up to 165 metres of sediments, providing the longest known continuous Quaternary and Pliocene sedimentary record of any lake in Australia, encompassing approximately 4 million years. Today the land around the lake is privately owned, while the lake bed is Crown Land. The landscape elements are defining features in current land use, planning and development. Our research aims to create new knowledge that will advance the protection and sharing of the landscape without hampering its development. Our project is \" work in progress \" , with funding for another two years. Funding is provided from the Australian Research Council (LP140100911). We acknowledge the First People of Australia as the traditional owners of the land on which we live and work.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":46264889,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/46264889/thumbnails/1.jpg","file_name":"Abstract.docx","download_url":"https://www.academia.edu/attachments/46264889/download_file","bulk_download_file_name":"Lake_George_Weereewa_Lake_Ngungara.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46264889/Abstract.docx?1738322217=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_Weereewa_Lake_Ngungara.docx\u0026Expires=1744157150\u0026Signature=FfGnC4hfHuTlg3y0tL-una-XLrntNRkK4UAmpHlMliDMOQXzRTmmbMsRhMeZJr429PesRQBSdhOp0UUWrXbdsxbsr3sUrc~WN3dVPbv3gYn-Obj4NA6UnIjOs9dzIZxeT5uAXMCkPf59PMCaNnoRx9hn3qvOLhT650I~r7BCjTkKUJiDxwhLQAFgnOr1Ov6aZNyAGAuv1srrg7~e0jw86jiFXZ53NSohKSMC-LtpbT8k~aLEDqH9N7Op5omISf10-lt91vU9320VFz2cWhl5mMZaW9egViCzpL3L0EKyWBoVIDpHaukJYh9OYJ8OLpBUBxqkkJKgrvSgDej0-QNaWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":2795,"name":"Landscape Archaeology","url":"https://www.academia.edu/Documents/in/Landscape_Archaeology"},{"id":11199,"name":"Neolithic Archaeology","url":"https://www.academia.edu/Documents/in/Neolithic_Archaeology"},{"id":24661,"name":"Aboriginal History in Australia","url":"https://www.academia.edu/Documents/in/Aboriginal_History_in_Australia"},{"id":236794,"name":"Pleistocene megafauna","url":"https://www.academia.edu/Documents/in/Pleistocene_megafauna"},{"id":588655,"name":"Landscape and Land-use-history","url":"https://www.academia.edu/Documents/in/Landscape_and_Land-use-history"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25897690-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="25920257"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25920257/Lake_George_a_sedimentary_archive_of_the_Quaternary_Period"><img alt="Research paper thumbnail of Lake George: a sedimentary archive of the Quaternary Period" class="work-thumbnail" src="https://attachments.academia-assets.com/46279935/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25920257/Lake_George_a_sedimentary_archive_of_the_Quaternary_Period">Lake George: a sedimentary archive of the Quaternary Period</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/EvaPapp">Eva Papp</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/GeoffHope">Geoff Hope</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/McPhail">D. McPhail</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake George, at an elevation of 675 m in the Southern Highlands of NSW, contains the longest know...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake George, at an elevation of 675 m in the Southern Highlands of NSW, contains the longest known sedimentary archive of any Australian lake basin and one of the longest in the world. Drill cores obtained in the 1980's, by the Bureau of Mineral Resources (now Geoscience Australia), show that up to 165 m of sediment lies beneath the floor of the lake. A combination of magnetostratigraphy, biostratigraphy and cosmogenic nuclide burial dating indicates an age of ~4 million years (mid-Pliocene) for the base of the sedimentary sequence (Macphail et al. 2015). At present, the lake is an internally draining basin with no outlet. However, dramatic water level fluctuations have occurred during the last 200 years, largely controlled by the balance between rainfall and evaporation. At times the lake has been up several metres deep and at other times, including this year, it has been completely dry. During the Late Pleistocene, gravelly shoreline deposits indicate that the lake reached depths of 35-40 m, at which time the lake may have overflowed to the west or north, into the headwaters of either the Murrumbidgee or Lachlan rivers. The lake is impounded, on its western side, by the Lake George Fault. Quartz-rich fluvial gravels on the upthrown (western) side of the fault are more than 200 m higher than similar gravels in the base of drill holes on the downthrown side of the fault, indicating significant vertical displacement over the past 4 Ma. Palynological results from sediments dated to ~3 Ma (late Pliocene), indicate a wetland dominated by the coral fern family, Gleicheniaceae, while the surrounding dryland vegetation was a mix of sclerophyll and temperate rainforest communities, the latter including trees and shrubs whose nearest living relatives are endemic to New Guinea, New Caledonia and Tasmania; mean annual rainfall is inferred to have been 2000-3000 mm (c.f. ~600-700 mm/year today). By ~2 Ma (Early Pleistocene), rainforest species had disappeared and the dryland vegetation was sclerophyll woodland, but differing from the modern vegetation in that eucalypts were very rare; mean annual rainfall was less than 1200-1300 mm/year. The transition from the Pliocene to the Pleistocene at Lake George was therefore marked by a significant decrease in mean annual rainfall. In November 2015, we obtained a new drill core (Geary's Gap-1) from Lake George, to a depth of 77 m. Based on comparison with nearby BMR drill cores, the estimated basal age of the new core is ~2 Ma. We are undertaking detailed geochemical, mineralogical, geophysical, sedimentological, hydrological, geochronological and paleontological analyses on this core.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="af335324ad0deda1c308675c57e39f78" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46279935,"asset_id":25920257,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46279935/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25920257"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25920257"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25920257; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25920257]").text(description); $(".js-view-count[data-work-id=25920257]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25920257; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25920257']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "af335324ad0deda1c308675c57e39f78" } } $('.js-work-strip[data-work-id=25920257]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25920257,"title":"Lake George: a sedimentary archive of the Quaternary Period","translated_title":"","metadata":{"abstract":"Lake George, at an elevation of 675 m in the Southern Highlands of NSW, contains the longest known sedimentary archive of any Australian lake basin and one of the longest in the world. Drill cores obtained in the 1980's, by the Bureau of Mineral Resources (now Geoscience Australia), show that up to 165 m of sediment lies beneath the floor of the lake. A combination of magnetostratigraphy, biostratigraphy and cosmogenic nuclide burial dating indicates an age of ~4 million years (mid-Pliocene) for the base of the sedimentary sequence (Macphail et al. 2015). At present, the lake is an internally draining basin with no outlet. However, dramatic water level fluctuations have occurred during the last 200 years, largely controlled by the balance between rainfall and evaporation. At times the lake has been up several metres deep and at other times, including this year, it has been completely dry. During the Late Pleistocene, gravelly shoreline deposits indicate that the lake reached depths of 35-40 m, at which time the lake may have overflowed to the west or north, into the headwaters of either the Murrumbidgee or Lachlan rivers. The lake is impounded, on its western side, by the Lake George Fault. Quartz-rich fluvial gravels on the upthrown (western) side of the fault are more than 200 m higher than similar gravels in the base of drill holes on the downthrown side of the fault, indicating significant vertical displacement over the past 4 Ma. Palynological results from sediments dated to ~3 Ma (late Pliocene), indicate a wetland dominated by the coral fern family, Gleicheniaceae, while the surrounding dryland vegetation was a mix of sclerophyll and temperate rainforest communities, the latter including trees and shrubs whose nearest living relatives are endemic to New Guinea, New Caledonia and Tasmania; mean annual rainfall is inferred to have been 2000-3000 mm (c.f. ~600-700 mm/year today). By ~2 Ma (Early Pleistocene), rainforest species had disappeared and the dryland vegetation was sclerophyll woodland, but differing from the modern vegetation in that eucalypts were very rare; mean annual rainfall was less than 1200-1300 mm/year. The transition from the Pliocene to the Pleistocene at Lake George was therefore marked by a significant decrease in mean annual rainfall. In November 2015, we obtained a new drill core (Geary's Gap-1) from Lake George, to a depth of 77 m. Based on comparison with nearby BMR drill cores, the estimated basal age of the new core is ~2 Ma. We are undertaking detailed geochemical, mineralogical, geophysical, sedimentological, hydrological, geochronological and paleontological analyses on this core.","ai_title_tag":"Quaternary Sedimentation and Environmental Change in Lake George"},"translated_abstract":"Lake George, at an elevation of 675 m in the Southern Highlands of NSW, contains the longest known sedimentary archive of any Australian lake basin and one of the longest in the world. Drill cores obtained in the 1980's, by the Bureau of Mineral Resources (now Geoscience Australia), show that up to 165 m of sediment lies beneath the floor of the lake. A combination of magnetostratigraphy, biostratigraphy and cosmogenic nuclide burial dating indicates an age of ~4 million years (mid-Pliocene) for the base of the sedimentary sequence (Macphail et al. 2015). At present, the lake is an internally draining basin with no outlet. However, dramatic water level fluctuations have occurred during the last 200 years, largely controlled by the balance between rainfall and evaporation. At times the lake has been up several metres deep and at other times, including this year, it has been completely dry. During the Late Pleistocene, gravelly shoreline deposits indicate that the lake reached depths of 35-40 m, at which time the lake may have overflowed to the west or north, into the headwaters of either the Murrumbidgee or Lachlan rivers. The lake is impounded, on its western side, by the Lake George Fault. Quartz-rich fluvial gravels on the upthrown (western) side of the fault are more than 200 m higher than similar gravels in the base of drill holes on the downthrown side of the fault, indicating significant vertical displacement over the past 4 Ma. Palynological results from sediments dated to ~3 Ma (late Pliocene), indicate a wetland dominated by the coral fern family, Gleicheniaceae, while the surrounding dryland vegetation was a mix of sclerophyll and temperate rainforest communities, the latter including trees and shrubs whose nearest living relatives are endemic to New Guinea, New Caledonia and Tasmania; mean annual rainfall is inferred to have been 2000-3000 mm (c.f. ~600-700 mm/year today). By ~2 Ma (Early Pleistocene), rainforest species had disappeared and the dryland vegetation was sclerophyll woodland, but differing from the modern vegetation in that eucalypts were very rare; mean annual rainfall was less than 1200-1300 mm/year. The transition from the Pliocene to the Pleistocene at Lake George was therefore marked by a significant decrease in mean annual rainfall. In November 2015, we obtained a new drill core (Geary's Gap-1) from Lake George, to a depth of 77 m. Based on comparison with nearby BMR drill cores, the estimated basal age of the new core is ~2 Ma. We are undertaking detailed geochemical, mineralogical, geophysical, sedimentological, hydrological, geochronological and paleontological analyses on this core.","internal_url":"https://www.academia.edu/25920257/Lake_George_a_sedimentary_archive_of_the_Quaternary_Period","translated_internal_url":"","created_at":"2016-06-06T07:36:54.133-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[{"id":21027060,"work_id":25920257,"tagging_user_id":498748,"tagged_user_id":38018322,"co_author_invite_id":null,"email":"b***s@anu.edu.au","display_order":0,"name":"Brad Pillans","title":"Lake George: a sedimentary archive of the Quaternary Period"},{"id":21027061,"work_id":25920257,"tagging_user_id":498748,"tagged_user_id":32551003,"co_author_invite_id":null,"email":"m***l@anu.edu.au","display_order":4194304,"name":"Mike Macphail","title":"Lake George: a sedimentary archive of the Quaternary Period"},{"id":21027062,"work_id":25920257,"tagging_user_id":498748,"tagged_user_id":32080961,"co_author_invite_id":null,"email":"b***e@anu.edu.au","affiliation":"The Australian National University","display_order":6291456,"name":"Bradley Opdyke","title":"Lake George: a sedimentary archive of the Quaternary Period"},{"id":21027063,"work_id":25920257,"tagging_user_id":498748,"tagged_user_id":36796370,"co_author_invite_id":null,"email":"k***d@anu.edu.au","display_order":7340032,"name":"K. Fifield","title":"Lake George: a sedimentary archive of the Quaternary Period"},{"id":21027064,"work_id":25920257,"tagging_user_id":498748,"tagged_user_id":49828281,"co_author_invite_id":490523,"email":"g***e@anu.edu.au","affiliation":"The Australian National University","display_order":7864320,"name":"Geoff Hope","title":"Lake George: a sedimentary archive of the Quaternary Period"},{"id":21027066,"work_id":25920257,"tagging_user_id":498748,"tagged_user_id":37685653,"co_author_invite_id":null,"email":"b***l@anu.edu.au","display_order":8257536,"name":"D. McPhail","title":"Lake George: a sedimentary archive of the Quaternary Period"},{"id":21027067,"work_id":25920257,"tagging_user_id":498748,"tagged_user_id":19273116,"co_author_invite_id":null,"email":"s***1@gmail.com","display_order":8323072,"name":"Iain McCulloch","title":"Lake George: a sedimentary archive of the Quaternary Period"}],"downloadable_attachments":[{"id":46279935,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46279935/thumbnails/1.jpg","file_name":"Pillans_et_al_AESC_2016_abstract.pdf","download_url":"https://www.academia.edu/attachments/46279935/download_file","bulk_download_file_name":"Lake_George_a_sedimentary_archive_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46279935/Pillans_et_al_AESC_2016_abstract-libre.pdf?1465223320=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_a_sedimentary_archive_of_the.pdf\u0026Expires=1744157150\u0026Signature=QW5wqKr1HvoIhDDKgs9syWN7vW~LOzkQ2ydRUM7ebvy-nMOrOa9A90zCQntEEw7LiBzND-ISBR5O7Jx8Hfiz~iELZTPez7lqrxxDVbw-8FM~0QTPp75RKq0~AFAnU8CjW1NX0vHjf5BO68sg6pDSsdY1JGUgwGiBp2-oKpJQ2~982JQe7WO0Aa8XvFnvK3P4ttTsnDg~XccCn5BGyY98zVI6T3F3YO5BjvoG-zGPDYe09-qfRFf5G02AYOcZFA4hJP7ZpjWRxD7ADd4ibGv9FYbPaMchj~~8f53o-jgObG-VWrEFFMcS5tWdtRx-aC8cU-FsP1MwOLigwNAnMvdD-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lake_George_a_sedimentary_archive_of_the_Quaternary_Period","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Lake George, at an elevation of 675 m in the Southern Highlands of NSW, contains the longest known sedimentary archive of any Australian lake basin and one of the longest in the world. Drill cores obtained in the 1980's, by the Bureau of Mineral Resources (now Geoscience Australia), show that up to 165 m of sediment lies beneath the floor of the lake. A combination of magnetostratigraphy, biostratigraphy and cosmogenic nuclide burial dating indicates an age of ~4 million years (mid-Pliocene) for the base of the sedimentary sequence (Macphail et al. 2015). At present, the lake is an internally draining basin with no outlet. However, dramatic water level fluctuations have occurred during the last 200 years, largely controlled by the balance between rainfall and evaporation. At times the lake has been up several metres deep and at other times, including this year, it has been completely dry. During the Late Pleistocene, gravelly shoreline deposits indicate that the lake reached depths of 35-40 m, at which time the lake may have overflowed to the west or north, into the headwaters of either the Murrumbidgee or Lachlan rivers. The lake is impounded, on its western side, by the Lake George Fault. Quartz-rich fluvial gravels on the upthrown (western) side of the fault are more than 200 m higher than similar gravels in the base of drill holes on the downthrown side of the fault, indicating significant vertical displacement over the past 4 Ma. Palynological results from sediments dated to ~3 Ma (late Pliocene), indicate a wetland dominated by the coral fern family, Gleicheniaceae, while the surrounding dryland vegetation was a mix of sclerophyll and temperate rainforest communities, the latter including trees and shrubs whose nearest living relatives are endemic to New Guinea, New Caledonia and Tasmania; mean annual rainfall is inferred to have been 2000-3000 mm (c.f. ~600-700 mm/year today). By ~2 Ma (Early Pleistocene), rainforest species had disappeared and the dryland vegetation was sclerophyll woodland, but differing from the modern vegetation in that eucalypts were very rare; mean annual rainfall was less than 1200-1300 mm/year. The transition from the Pliocene to the Pleistocene at Lake George was therefore marked by a significant decrease in mean annual rainfall. In November 2015, we obtained a new drill core (Geary's Gap-1) from Lake George, to a depth of 77 m. Based on comparison with nearby BMR drill cores, the estimated basal age of the new core is ~2 Ma. We are undertaking detailed geochemical, mineralogical, geophysical, sedimentological, hydrological, geochronological and paleontological analyses on this core.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":46279935,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46279935/thumbnails/1.jpg","file_name":"Pillans_et_al_AESC_2016_abstract.pdf","download_url":"https://www.academia.edu/attachments/46279935/download_file","bulk_download_file_name":"Lake_George_a_sedimentary_archive_of_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46279935/Pillans_et_al_AESC_2016_abstract-libre.pdf?1465223320=\u0026response-content-disposition=attachment%3B+filename%3DLake_George_a_sedimentary_archive_of_the.pdf\u0026Expires=1744157150\u0026Signature=QW5wqKr1HvoIhDDKgs9syWN7vW~LOzkQ2ydRUM7ebvy-nMOrOa9A90zCQntEEw7LiBzND-ISBR5O7Jx8Hfiz~iELZTPez7lqrxxDVbw-8FM~0QTPp75RKq0~AFAnU8CjW1NX0vHjf5BO68sg6pDSsdY1JGUgwGiBp2-oKpJQ2~982JQe7WO0Aa8XvFnvK3P4ttTsnDg~XccCn5BGyY98zVI6T3F3YO5BjvoG-zGPDYe09-qfRFf5G02AYOcZFA4hJP7ZpjWRxD7ADd4ibGv9FYbPaMchj~~8f53o-jgObG-VWrEFFMcS5tWdtRx-aC8cU-FsP1MwOLigwNAnMvdD-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2258,"name":"Paleoclimatology","url":"https://www.academia.edu/Documents/in/Paleoclimatology"},{"id":7933,"name":"Palynology","url":"https://www.academia.edu/Documents/in/Palynology"},{"id":9890,"name":"Quaternary Geology","url":"https://www.academia.edu/Documents/in/Quaternary_Geology"},{"id":60446,"name":"Quaternary Sedimentology and Geomorphology","url":"https://www.academia.edu/Documents/in/Quaternary_Sedimentology_and_Geomorphology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25920257-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="16565476"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16565476/_Topos_space_time_Dreamtime"><img alt="Research paper thumbnail of "Topos", space-time, Dreamtime" class="work-thumbnail" src="https://attachments.academia-assets.com/39053629/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16565476/_Topos_space_time_Dreamtime">"Topos", space-time, Dreamtime</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">“Topos”, space-time, Dreamtime Éva Papp Emeritus Faculty Research School of Earth Sciences The A...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">“Topos”, space-time, Dreamtime<br /><br />Éva Papp<br />Emeritus Faculty<br />Research School of Earth Sciences<br />The Australian National University<br /><br />Invited plenary lecture<br />EASA-13, 30 September 2015, University of Pannonia, Veszprém, Hungary<br />The Australian Aboriginal notions of “place” and “Dreamtime” are examined in the context of the relativistic and quantum physical concept of “space-time” and contrasted against concepts of classical physics’ “space” and “time”. In this talk, the usual meaning of “Topos”, as well as “Space” and “Time”, as they have been referred to in various disciplines of the Humanities, is extended to include “space-time”.<br />As Dreamtime is probably the oldest conceptual framework by Humanity we can access today, and I show that Dreamtime has “space-time” properties, the contemporary assumption that space-time is one of the latest and most difficult-to-grasp conceptual framework, only known from modern physics, is challenged. Attention is drawn to the responsibilities of translators, interpreters of Dreamtime stories and visual art, to expand the concept of “Space” and “Time” and consider “Space-time” as the frame of reference.<br />Examples are given from Arnhem Land, from the Central Desert Region, and from South-East Australia, especially from the Lake George area. Lake George, in its original Ngunawal name Lake Ngungara, and in its original Wiradjury name Weereewa, lies about 40km north-east from the capital Canberra. It is the largest freshwater inland lake in Australia with one of the longest continuous sedimentary record in the world, dating back to at least 3.5 million years. There is documented human occupation of the region for more than 40,000 years. Dreamtime stories of space-time include, for example, the Ngunawal people’s story of Budjabulya the water spirit that lives in Lake Ngungara and created the rivers, valleys, hills, mountains, people, animals and plants. The spiritual significance of Weereewa is also depicted on many contemporary Wiradjury paintings as a place in space-time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="86536dfc4507599fd1e06a38aca3cb91" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":39053629,"asset_id":16565476,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/39053629/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16565476"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16565476"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16565476; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16565476]").text(description); $(".js-view-count[data-work-id=16565476]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16565476; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16565476']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "86536dfc4507599fd1e06a38aca3cb91" } } $('.js-work-strip[data-work-id=16565476]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16565476,"title":"\"Topos\", space-time, Dreamtime","translated_title":"","metadata":{"abstract":"“Topos”, space-time, Dreamtime\n\nÉva Papp\nEmeritus Faculty\nResearch School of Earth Sciences\nThe Australian National University\n\nInvited plenary lecture\nEASA-13, 30 September 2015, University of Pannonia, Veszprém, Hungary\nThe Australian Aboriginal notions of “place” and “Dreamtime” are examined in the context of the relativistic and quantum physical concept of “space-time” and contrasted against concepts of classical physics’ “space” and “time”. In this talk, the usual meaning of “Topos”, as well as “Space” and “Time”, as they have been referred to in various disciplines of the Humanities, is extended to include “space-time”.\nAs Dreamtime is probably the oldest conceptual framework by Humanity we can access today, and I show that Dreamtime has “space-time” properties, the contemporary assumption that space-time is one of the latest and most difficult-to-grasp conceptual framework, only known from modern physics, is challenged. Attention is drawn to the responsibilities of translators, interpreters of Dreamtime stories and visual art, to expand the concept of “Space” and “Time” and consider “Space-time” as the frame of reference.\nExamples are given from Arnhem Land, from the Central Desert Region, and from South-East Australia, especially from the Lake George area. Lake George, in its original Ngunawal name Lake Ngungara, and in its original Wiradjury name Weereewa, lies about 40km north-east from the capital Canberra. It is the largest freshwater inland lake in Australia with one of the longest continuous sedimentary record in the world, dating back to at least 3.5 million years. There is documented human occupation of the region for more than 40,000 years. Dreamtime stories of space-time include, for example, the Ngunawal people’s story of Budjabulya the water spirit that lives in Lake Ngungara and created the rivers, valleys, hills, mountains, people, animals and plants. The spiritual significance of Weereewa is also depicted on many contemporary Wiradjury paintings as a place in space-time.\n","ai_title_tag":"Dreamtime and Space-Time Conceptions"},"translated_abstract":"“Topos”, space-time, Dreamtime\n\nÉva Papp\nEmeritus Faculty\nResearch School of Earth Sciences\nThe Australian National University\n\nInvited plenary lecture\nEASA-13, 30 September 2015, University of Pannonia, Veszprém, Hungary\nThe Australian Aboriginal notions of “place” and “Dreamtime” are examined in the context of the relativistic and quantum physical concept of “space-time” and contrasted against concepts of classical physics’ “space” and “time”. In this talk, the usual meaning of “Topos”, as well as “Space” and “Time”, as they have been referred to in various disciplines of the Humanities, is extended to include “space-time”.\nAs Dreamtime is probably the oldest conceptual framework by Humanity we can access today, and I show that Dreamtime has “space-time” properties, the contemporary assumption that space-time is one of the latest and most difficult-to-grasp conceptual framework, only known from modern physics, is challenged. Attention is drawn to the responsibilities of translators, interpreters of Dreamtime stories and visual art, to expand the concept of “Space” and “Time” and consider “Space-time” as the frame of reference.\nExamples are given from Arnhem Land, from the Central Desert Region, and from South-East Australia, especially from the Lake George area. Lake George, in its original Ngunawal name Lake Ngungara, and in its original Wiradjury name Weereewa, lies about 40km north-east from the capital Canberra. It is the largest freshwater inland lake in Australia with one of the longest continuous sedimentary record in the world, dating back to at least 3.5 million years. There is documented human occupation of the region for more than 40,000 years. Dreamtime stories of space-time include, for example, the Ngunawal people’s story of Budjabulya the water spirit that lives in Lake Ngungara and created the rivers, valleys, hills, mountains, people, animals and plants. The spiritual significance of Weereewa is also depicted on many contemporary Wiradjury paintings as a place in space-time.\n","internal_url":"https://www.academia.edu/16565476/_Topos_space_time_Dreamtime","translated_internal_url":"","created_at":"2015-10-08T06:15:40.119-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[{"id":39053629,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/39053629/thumbnails/1.jpg","file_name":"Abstract.docx","download_url":"https://www.academia.edu/attachments/39053629/download_file","bulk_download_file_name":"Topos_space_time_Dreamtime.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39053629/Abstract.docx?1738239861=\u0026response-content-disposition=attachment%3B+filename%3DTopos_space_time_Dreamtime.docx\u0026Expires=1744157150\u0026Signature=IoCWDmm4Lk6dpoVyV7ZYaf04sWLaseoCFrXdIhMVVyv6ZZdcSlBlwV0fSxc6T~vpnzyvwuW7fojYvNkGlDPES4ymQDPSj70LHfsj4duAb8hTmNnLbJnoaz54HLlv3o3QILyNmmuVmNoccxQuqHVJe4xk7asXRLA2wlfoTnE3hkiaFpEBqNWiFkPXAQ-8BY0UodMHsaCcAmvUCFFwV-IrHCq3oUWzQKYDh9uDMK~Ac4iFpv30c5ZOS6IiuheLNQJKg3g~0hJiKHuku8Oj7ccM1GYMdVyXfqXF6bRWBCyjHS8JvtvyEEC43C6btQL7dIIfl86~E0RzRnLo5B2QdFGAiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_Topos_space_time_Dreamtime","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"“Topos”, space-time, Dreamtime\n\nÉva Papp\nEmeritus Faculty\nResearch School of Earth Sciences\nThe Australian National University\n\nInvited plenary lecture\nEASA-13, 30 September 2015, University of Pannonia, Veszprém, Hungary\nThe Australian Aboriginal notions of “place” and “Dreamtime” are examined in the context of the relativistic and quantum physical concept of “space-time” and contrasted against concepts of classical physics’ “space” and “time”. In this talk, the usual meaning of “Topos”, as well as “Space” and “Time”, as they have been referred to in various disciplines of the Humanities, is extended to include “space-time”.\nAs Dreamtime is probably the oldest conceptual framework by Humanity we can access today, and I show that Dreamtime has “space-time” properties, the contemporary assumption that space-time is one of the latest and most difficult-to-grasp conceptual framework, only known from modern physics, is challenged. Attention is drawn to the responsibilities of translators, interpreters of Dreamtime stories and visual art, to expand the concept of “Space” and “Time” and consider “Space-time” as the frame of reference.\nExamples are given from Arnhem Land, from the Central Desert Region, and from South-East Australia, especially from the Lake George area. Lake George, in its original Ngunawal name Lake Ngungara, and in its original Wiradjury name Weereewa, lies about 40km north-east from the capital Canberra. It is the largest freshwater inland lake in Australia with one of the longest continuous sedimentary record in the world, dating back to at least 3.5 million years. There is documented human occupation of the region for more than 40,000 years. Dreamtime stories of space-time include, for example, the Ngunawal people’s story of Budjabulya the water spirit that lives in Lake Ngungara and created the rivers, valleys, hills, mountains, people, animals and plants. The spiritual significance of Weereewa is also depicted on many contemporary Wiradjury paintings as a place in space-time.\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":39053629,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/39053629/thumbnails/1.jpg","file_name":"Abstract.docx","download_url":"https://www.academia.edu/attachments/39053629/download_file","bulk_download_file_name":"Topos_space_time_Dreamtime.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39053629/Abstract.docx?1738239861=\u0026response-content-disposition=attachment%3B+filename%3DTopos_space_time_Dreamtime.docx\u0026Expires=1744157151\u0026Signature=IYZHGt8nRhly0oIfGP5wCBLeMY96u1Nu3r85gQDjAG~H5fALPStYdoDJl7SlAAgvpjPvLFc76nQ8q0HWBcV8XgxXgMLx4hgjjXqQJBcSgJUEsACLnr30X0VywtwHjYm9gvdedeGbgxbrn8hZ9PD00QcqQrPAIp5yDbNF2~TvtHiBz1FPPxR5x9~gvJlF5q0iTiwSmrg2fc9XhHA4y0hNEkwxelUejZYFvvrQ93Dse9xc2kSUB1hsSfIysi2w1Zg3e3-e2Dddr6~k4RxYJBgszKLSPfQW55e4zQwMj5Kn~VfLePlz~oYGcKsldxvWb39RL-f3jt2wTBpLeKvrD~PBOA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":65678,"name":"Philosophy of Mind, Space and Time","url":"https://www.academia.edu/Documents/in/Philosophy_of_Mind_Space_and_Time"},{"id":82659,"name":"Space-time","url":"https://www.academia.edu/Documents/in/Space-time"},{"id":138600,"name":"Aboriginal dreamtime","url":"https://www.academia.edu/Documents/in/Aboriginal_dreamtime"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-16565476-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765287"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765287/Papp_E_and_Lukacs_B_TEM_Maxwells_equations_and_diffusion"><img alt="Research paper thumbnail of Papp, E. and Lukacs, B. TEM, Maxwell's equations and diffusion" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Papp, E. and Lukacs, B. TEM, Maxwell's equations and diffusion</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">EM signal propagation in applied geophysics context is discussed widely. Nabighian generalises hi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">EM signal propagation in applied geophysics context is discussed widely. Nabighian generalises his solutions for frequency and time domain, solving Maxwell’s equations using Green’s functions and super potentials. Others, such as Loseth et al. use the full set of Maxwell’s equations and investigate the propagation of different transmitter signal shapes under different ground conductivities. They conclude that TEM signal propagation in conductive half space has both wave propagation and diffusion properties. Here we demonstrate that the solution for low frequency square wave TEM signal propagation from an electric dipole source in homogeneous conductive half-space can be fully and correctly described by diffusion-type equations containing only first order time derivatives. We determine the range of parameters for the frequency of a square wave transmitter signal and the conductivity of the half space within which the diffusion approach is valid. <br /> <br />Keywords: TEM, Maxwell’s equations, diffusion</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765287"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765287"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765287; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765287]").text(description); $(".js-view-count[data-work-id=1765287]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765287; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765287']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765287]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765287,"title":"Papp, E. and Lukacs, B. TEM, Maxwell's equations and diffusion","translated_title":"","metadata":{"abstract":"EM signal propagation in applied geophysics context is discussed widely. Nabighian generalises his solutions for frequency and time domain, solving Maxwell’s equations using Green’s functions and super potentials. Others, such as Loseth et al. use the full set of Maxwell’s equations and investigate the propagation of different transmitter signal shapes under different ground conductivities. They conclude that TEM signal propagation in conductive half space has both wave propagation and diffusion properties. Here we demonstrate that the solution for low frequency square wave TEM signal propagation from an electric dipole source in homogeneous conductive half-space can be fully and correctly described by diffusion-type equations containing only first order time derivatives. We determine the range of parameters for the frequency of a square wave transmitter signal and the conductivity of the half space within which the diffusion approach is valid.\r\n\r\nKeywords: TEM, Maxwell’s equations, diffusion","location":"21st EM Inversion Workshop, Darwin","more_info":"Abstract will be available in the Proceedings of the 21st EM Induction Workshop, 25-31 July 2012.","event_date":{"day":26,"month":7,"year":2012,"errors":{}},"conference_end_date":{"day":29,"month":7,"year":2012,"errors":{}},"conference_start_date":{"day":25,"month":7,"year":2012,"errors":{}}},"translated_abstract":"EM signal propagation in applied geophysics context is discussed widely. Nabighian generalises his solutions for frequency and time domain, solving Maxwell’s equations using Green’s functions and super potentials. Others, such as Loseth et al. use the full set of Maxwell’s equations and investigate the propagation of different transmitter signal shapes under different ground conductivities. They conclude that TEM signal propagation in conductive half space has both wave propagation and diffusion properties. Here we demonstrate that the solution for low frequency square wave TEM signal propagation from an electric dipole source in homogeneous conductive half-space can be fully and correctly described by diffusion-type equations containing only first order time derivatives. We determine the range of parameters for the frequency of a square wave transmitter signal and the conductivity of the half space within which the diffusion approach is valid.\r\n\r\nKeywords: TEM, Maxwell’s equations, diffusion","internal_url":"https://www.academia.edu/1765287/Papp_E_and_Lukacs_B_TEM_Maxwells_equations_and_diffusion","translated_internal_url":"","created_at":"2012-07-04T18:56:07.827-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[],"slug":"Papp_E_and_Lukacs_B_TEM_Maxwells_equations_and_diffusion","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"EM signal propagation in applied geophysics context is discussed widely. Nabighian generalises his solutions for frequency and time domain, solving Maxwell’s equations using Green’s functions and super potentials. Others, such as Loseth et al. use the full set of Maxwell’s equations and investigate the propagation of different transmitter signal shapes under different ground conductivities. They conclude that TEM signal propagation in conductive half space has both wave propagation and diffusion properties. Here we demonstrate that the solution for low frequency square wave TEM signal propagation from an electric dipole source in homogeneous conductive half-space can be fully and correctly described by diffusion-type equations containing only first order time derivatives. We determine the range of parameters for the frequency of a square wave transmitter signal and the conductivity of the half space within which the diffusion approach is valid.\r\n\r\nKeywords: TEM, Maxwell’s equations, diffusion","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765287-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765369"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765369/Snape_I_Riddle_M_J_Papp_%C3%89_Davies_R_and_Maggs_T_An_example_of_3D_GIS_modelling_as_a_tool_to_assist_with_the_assessment_and_management_of_the_abandoned_Wilkes_station_in_Antarctica"><img alt="Research paper thumbnail of Snape I., Riddle M.J., Papp É., Davies R. and Maggs T., An example of 3D-GIS modelling as a tool to assist with the assessment and management of the abandoned Wilkes station in Antarctica. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Snape I., Riddle M.J., Papp É., Davies R. and Maggs T., An example of 3D-GIS modelling as a tool to assist with the assessment and management of the abandoned Wilkes station in Antarctica. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765369"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765369"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765369; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765369]").text(description); $(".js-view-count[data-work-id=1765369]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765369; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765369']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765369]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765369,"title":"Snape I., Riddle M.J., Papp É., Davies R. and Maggs T., An example of 3D-GIS modelling as a tool to assist with the assessment and management of the abandoned Wilkes station in Antarctica. ","translated_title":"","metadata":{"more_info":"Poster paper, Snape,I. And Warren,R. (eds) Proceedings of the Third International Conference on Contaminants in Freezing Ground. 141 pp, Australian Antarctic Division 2002."},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765369/Snape_I_Riddle_M_J_Papp_%C3%89_Davies_R_and_Maggs_T_An_example_of_3D_GIS_modelling_as_a_tool_to_assist_with_the_assessment_and_management_of_the_abandoned_Wilkes_station_in_Antarctica","translated_internal_url":"","created_at":"2012-07-04T19:52:02.445-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[],"slug":"Snape_I_Riddle_M_J_Papp_É_Davies_R_and_Maggs_T_An_example_of_3D_GIS_modelling_as_a_tool_to_assist_with_the_assessment_and_management_of_the_abandoned_Wilkes_station_in_Antarctica","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765369-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765339"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1765339/Papp_%C3%89_Riddle_M_Snape_I_Ground_penetrating_radar_as_a_tool_for_road_management_and_contaminated_site_assessment_in_snow_covered_areas"><img alt="Research paper thumbnail of Papp É., Riddle M., Snape I., Ground penetrating radar as a tool for road management and contaminated site assessment in snow covered areas." class="work-thumbnail" src="https://attachments.academia-assets.com/46397205/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1765339/Papp_%C3%89_Riddle_M_Snape_I_Ground_penetrating_radar_as_a_tool_for_road_management_and_contaminated_site_assessment_in_snow_covered_areas">Papp É., Riddle M., Snape I., Ground penetrating radar as a tool for road management and contaminated site assessment in snow covered areas.</a></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-1765339-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-1765339-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11788974/figure-1-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11788983/figure-2-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11788990/figure-3-sweden-has-cold-soils-the-soil-temperature-is"><img alt="Sweden has cold soils, the soil temperature is typically in average 0.5-6° Celsius only a few meters below surface. Even if permafrost is not a big problem, seasonal freezing occurs in large parts of the country. In the northern parts, the thawed season only lasts for a few months in the summer. During the last 10 years, 26 000 contaminated sites have been identified within Sweden. The estimated number is as high as 38 000. The sites include mainly historical industrial areas, airports and sites for different fuel handling activities. Further investigation is needed to estimate contaminant properties, leakage potential and exposure risks at each site. In addition, an increasing knowledge is also needed when it comes to remediation of the sites. About 4 000 areas are classified as having a high exposure risk. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11788997/figure-2-freeze-dredging-in-lake-in-the-north-of-sweden"><img alt="Figure 2. Freeze dredging in a lake in the north of Sweden. Every year, Sweden suffers from acute spills, most often these include different types oil products. There is a recognized need for increased knowledge of soil processes a1 transport mechanisms of contaminants in soils located in cold regions. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789245/figure-33-the-results-show-that-biodegradation-of"><img alt="The results show that biodegradation of hydrocarbons in Arctic soils proceeds after the soi is frozen and that the relative hydrocarbon respiration rates are only slowly reduced ir the following months. The season where cold adapted microorganisms are able to degrade hydrocarbons is not restricted to the short Arctic summer as earlier anticipated, but last: into the winter months. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_033.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789260/figure-34-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_034.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789004/figure-5-note-white-contours-overlain-on-image-map-represent"><img alt="Note: White contours overlain on image map represent approximate location of spills. This was from visual inspection and some areas were obscured by snow preventing comprehensive mapping. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789010/figure-6-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789021/figure-7-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789034/figure-1-diagram-of-physical-and-chemical-weathering"><img alt="Figure 1. Diagram of physical and chemical weathering processes within active layer. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789044/figure-9-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789051/figure-10-total-digests-micron-nested-marine-sediments-hcl"><img alt="Total digests - <63 micron nested marine sediments HCL partial extraction - <63 micron nested marine sediments " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789062/figure-11-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789071/figure-1-again-potential-sources-of-pahs-in-the-base-are"><img alt="Again, potential sources of PAHs in the Base are power plants, waste incinerator, vehicles (excavators, caterpillars), helicopters, spillage of fuels, etc. In figure 1, as an example, the average levels of the PAHs, determined during three expeditions, are reported. Literature data on PAHs levels in atmospheric particulate show concentrations range, generally, from 10 to 500 pg/ m3 for the single compounds. The obtained data show levels for the individual PAHs for 95% in the range 1-50 pg/ m3 and are comparable to the low values reported in the literature for remote sites, confirming the absence of significant contamination produced up to now by the activities of the Italian base and the Antarctic environment as an uncontamined area. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789081/figure-13-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789086/figure-1-conductivity-and-in-waters-of-broknes-during"><img alt="Figure 1. Conductivity and 6O in waters of Broknes during December-February 1997-98: a) Ancient lake bed 200 m southwest of Lake Cameron, a natural site; b) Heart Lake SW inflow; c) Heart Lake piezometers (average of two piezometers, located 2 and 7 m from the inflow). The Heart Lake site is impacted by the road between Zhong Shan and Progress 2 Stations " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789092/figure-15-dgt-devices-to-date-have-been-used-for-sampling"><img alt="DGT devices to date have been used for sampling trace metals i in oceans’, lake water’, and river water’ and trace metals in pore waters at high spatial resolutions’. Potential applications in the Antarctic include sampling pore waters in contaminated sediments and melt water from contaminated sites. The use of DGT devices at subzero temperatures has not been assessed and work is currently underway to determine if DGT devices can be used in the Antarctic. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789099/figure-16-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789103/figure-1-nmds-ordination-of-heavy-metals-from-potentially"><img alt="Figure 1. (a) nMDS ordination of heavy metals from potentially impacted (triangles) and non-impacted locations (squares) extracted using 1 M HCl. (6b) nMDS ordination of heavy metals extracted using HF + HNO, Although chemical studies are included routinely in environmental monitoring programs, chemical data are often not absolute values with unambiguous ecological meaning. Nevertheless, most guidelines that govern permissible discharge concentrations or decisions about whether to remediate contaminated sites are based on the concentrations of contaminants in sediments or water rather than more involved and costly studies based on the identification of biological impacts. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789108/figure-2-there-was-close-association-between-hcl-heavy-metal"><img alt="There was a close association between 1M HCl heavy metal data from sediments and heavy metals concentrations in tissues of the bivalve, Laternula elliptica (Figure 2a), and the heart urchins, Abatus nimrodi and A. ingens, collected at the same sites. There was no such association between the HF + HNO, data and the biota (figure 2b) because the concentration of total iron is greater than the enrichment by anthropogenic iron and it is this anthropogenic fraction that is weakly bound and hence available to be taken up by biota. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789116/figure-19-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_019.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789124/figure-2-petroleum-contamination-of-atlas-cove-soils"><img alt="Figure 2. Petroleum contamination of Atlas Cove soils " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_020.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789133/figure-21-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_021.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789142/figure-22-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_022.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789150/figure-23-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_023.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789157/figure-24-an-important-requirement-for-the-development-of"><img alt="An important requirement for the development of a water treatment system is careful physical and chemical characterisation of heavy metal-sediment interactions. Sediment manganese and iron. Scanning electron microscopy and energy dispersive x-ray methods have found evidence of surface active soil components in tip sediments. These have been characterised as organic material, alumino silicate clays and iron oxide particles. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_024.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789163/figure-2-lead-concentration-within-particle-size-ranges"><img alt="Figure 2. Lead concentration within particle size ranges " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_025.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789171/figure-26-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_026.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789180/figure-27-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_027.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789186/figure-1-field-study-was-initiated-in-january-in"><img alt="A field study was initiated in January 1997 in 2 contaminated soils in the Terre Adélie land area with the objective of determining the long-term effects of some bioremediation agents on the biodegradation rate of oil residues under severe Antarctic conditions. This study was conducted from January to July 1997 and from February to November 1999 in the Géologie Archipelago (Adélie Land, 66°40’S; 140°01’E). The changes in bacterial abundance were studied in situ after crude or diesel oil addition in 600 cm? sectors (20 x 30 cm). Four contaminated sectors were used for each station (Figure 1): diesel oil (10 ml), diesel oil (10 ml) + fertilizer (1 ml), “arabian light” crude oil (BAL; 10 ml) and crude oil (10 ml) + fertilizer (1ml). " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_028.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789197/figure-29-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_029.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789207/figure-1-degradation-of-diesel-at-in-liquid-cultures-data"><img alt="Figure 1. Degradation of diesel at 5°C in liquid cultures, data corrected for abiotic loss (initial diesel concentration 1000 l/l). 1-1, 1-2 and 1-3 indicate soil samples from sampling point 1 at 0.5, 2.0 and 3.5 m depths, respectively. 2-1, 2-2 and 2-3 indicate samples from point 2 at similar depths. Each point represents the mean from duplicate cultures. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_030.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789220/figure-2-accumulated-hexadecane-mineralisation-in-soil"><img alt="Figure 2. Accumulated hexadecane mineralisation in soil samples (initial hexadecane concentration 5000 mg/kg). 1-1, 1-2 and 1-3 indicate soil samples from sampling point 1 at 0.5, 2.0 and 3.5 m depths, respectively. 2-1, 2-2 and 2-3 indicate samples from point 2 at similar depths. Each point represents the mean from duplicate microcosms. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_031.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789232/figure-1-temperatures-in-the-soil-profile-from-june-to"><img alt="Figure 1. Temperatures in the soil profile from June to February. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_032.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789270/figure-1-the-meta-pathway-the-conversion-of-catechol-to"><img alt="Figure 1. The meta pathway. The conversion of catechol to 2-hydroxymuconic semialdehyd is shown inside the box. ST41 is able to degrade a variety of hydrocarbons, including a many aromatic compounds, at low temperatures. A well charaterized pathway for aromatic biodegradation is the meta pathway, which takes benzoate through to acetyl CoA. A crucial enzyme in this pathway is catechol 2,3-dioxygenase (C230). This enzyme is responsible for the cleavage of catechol, which forms 2-hydroxymuconic semialdehyde; breaking an aromatic ring to produce an aliphatic compound (Figure 1). " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_035.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789281/figure-36-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_036.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789293/figure-2-moisture-contents-grain-size-distributions"><img alt="Moisture contents, grain size distributions, analytical testing, and macro-photography were employed in assessing groundwater impact and in answering investigative question: about a residential fuel-oil release within the floodplain of the Tanana River, in interio1 Alaska. A recent acid-xylenes spill at Prudhoe Bay, Alaska required grid mapping photogrammetry, and evaluation of pH, conductivity, chlorides, and hydrocarbons for post recovery site characterization (Figure 2). High acid and xylene concentrations limitec standard analytical testing. Core sampling and a new digital imaging technique are being considered in determining soil properties and frozen/unfrozen moisture contents ir assessing impact with depth. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_037.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789304/figure-1-contribution-of-contaminated-particles-expressed-in"><img alt="Figure 1. Contribution of contaminated particles, expressed in percent of total heavy metals found in Old Casey tip waters. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_038.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789312/figure-39-these-parameters-are-determined-by-laboratory"><img alt="These parameters are determined by laboratory experiments and are used to predict compressibility and permeability of thickened sludges and filter cakes and ultimately the time of filtration and final solids concentrations achievable for solid-liquid separation processes. This information is very important for design and scale up of pressure filters and industrial thickeners. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_039.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789322/figure-40-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_040.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789330/figure-1-the-spill-site-at-casey-showing-the-predicted-flow"><img alt="Figure 1. The spill site at Casey showing the predicted flow path (flow path A) from the fuel tank and the small drainage basin (drainage basin A) behind the spill. Relative hydrocarbon concentrations measured by PID are indicated by the size of circle and the soil moisture content by shading. Predicted drainage basins and predicted flow paths are also shown for two locations on the road. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_041.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789338/figure-42-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_042.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789344/figure-2-pristine-samples-were-collected-from-areas-such-as"><img alt="Figure 2. Pristine samples were collected from areas such as the Browning Penisula Figure 1. Some of the oil contaminated soil samples were taken from the tip at Wilkes. Twenty-five soil samples were collected from six sites around the Windmill Island Antarctica. Twelve samples were taken from areas where an oil spill had previous! occurred, and thirteen samples were collected from apparently pristine areg (Figures 1 and 2). " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_043.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789350/figure-44-bacteria-from-the-soil-samples-were-dispersed-in"><img alt="Bacteria from the soil samples were dispersed in phosphate buffer and serial dilutions were prepared. Aliquots were then spread on to nutrient agar and minimal media agar which " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_044.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789357/figure-45-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_045.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789363/figure-46-controlled-release-fertilizers-have-the-ability-to"><img alt="Controlled release fertilizers have the ability to supply nutrients over a longer perioc of time than conventional fertilizers. They can reduce the potential of inhibitior from osmotic potential depression, maintaining higher petroleum biodegradation rates In addition, they may reduce risk of contaminating nearby waters with excess nitrate. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_046.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789369/figure-47-papp-riddle-snape-ground-penetrating-radar-as-tool"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46397205/figure_047.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789376/table-1-reception-formal-dinner"><img alt="Reception Formal Dinner " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789383/table-2-the-porous-surface-of-permafrost-cores-were"><img alt="the porous surface of permafrost. Cores were collected in a grid pattern radiating out approximately four meters from the borehole. Permafrost cores were sampled at intervals with depth, and analyzed for TPH by extraction with hexane and acetone, followed by gas chromatography. Of the nine cores collected and analyzed, contamination was detected in only 2 samples near the surface, at 430 and 860 ppm. This is the only site visit where surface contamination was not found, likely owing to the January 1999 restoration effort, where 28,000 lbs of contaminated soil was removed from the site. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/table_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789390/table-2-concentration-levels-of-the-selected-heavy-metals-in"><img alt="Concentration levels of the selected “heavy metals” in the samples of atmospheric particulate matter collected during the XVI Italian Antarctic Expedition (2000-2001) are reported in Table 2. Filters collected from the air sampler at the different cardinal points for the same sampling time were extracted together in the microwave digestion oven so data obtained represent the average values for the monitored area. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/table_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789395/table-2-the-standard-method-for-determining-salt-content-of"><img alt="The standard method for determining salt content of soils is generally to shake a 1:5 soil: water mix (e.g. Blakemore et¢ al., 1987) and measure conductivity and elemental concentrations on the resulting extract. When salt concentrations are high, or where some salts are sparingly soluble, the method must be expected to be problematic. This is illustrated in table 2 by some sequential extractions made on soils from both moist coastal and arid inland sites in Antarctica. Table 1. Identified salt minerals in Antarctic soils. The data is from Claridge and Campbi (1977), Campbell and Claridge (1987), Keys and Williams (1981) and Gore et al., (199! The cold water solubilities are listed (CRC 1974). " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/table_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789398/table-2-some-implications-compositions-of-mass-of-extracted"><img alt="Some Implications Table 2. Compositions of mass of extracted salt components in different soil:water ratios, from 8 sites in the Ross Dependency. Mass extracted is mg/g soil. Ratio is of standard 1:5 (5:25) to 1:1000 extract. Total SO, was analysed as S by XRF on dry soil, and recalculated as sulphate. The use of biological, chemical and physical techniques for the remediation of contaminated soils in Antarctica are all likely to be affected by the presence of salts. For instance, the ability of the soil microorganisms to survive and metabolise is determined strictly by the presence of liquid water (Horowitz et al., 1972) rather than temperature. The tension between the availability of liquid water and the osmotic effects of the salinity of the liquid phase (e.g. Klinger and Vishniac, 1988) must be expected to play a part in the biological activity and viability of organisms in the soils. Experimental studies have shown that significant quantities of unfrozen water (~2% of the initial water remains unfrozen at temperatures as low as —70°C, Anderson and Tice, 1971, 1989) exist in Antarctic soils. This water has been shown to exist as thin (30 to 500 pm) films on soil particles, but below —5°C, the film thickness is almost invariant between 30 and 60 ym (Hoekstra 1966, Anderson 1967, Anderson and Tice 1971). The composition and properties of this water is unknown. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/table_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789401/table-1-numbers-and-presumptive-identification-of"><img alt="Table 1: Numbers and presumptive identification of phenanthrene degraders in soil samples from three location in the Ross Sea region. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/table_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/11789406/table-1-ba-and-pb-content-of-air-and-snow-at-summit"><img alt="Table 1. Ba and Pb content of air and snow at Summit. " class="figure-slide-image" src="https://figures.academia-assets.com/46397205/table_007.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-1765339-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28011181820a53b22293f31ef23dfada" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46397205,"asset_id":1765339,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46397205/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765339"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765339"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765339; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765339]").text(description); $(".js-view-count[data-work-id=1765339]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765339; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765339']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28011181820a53b22293f31ef23dfada" } } $('.js-work-strip[data-work-id=1765339]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765339,"title":"Papp É., Riddle M., Snape I., Ground penetrating radar as a tool for road management and contaminated site assessment in snow covered areas.","translated_title":"","metadata":{"more_info":"Snape,I. And Warren,R. (eds) Proceedings of the Third International Conference on Contaminants in Freezing Ground. 141 pp, Australian Antarctic Division 2002.","event_date":{"day":null,"month":null,"year":2002,"errors":{}},"ai_abstract":"The research highlights contamination issues in cold regions, particularly in previous oil and gas extraction, mining, and military activities. It discusses the unique challenges posed by contaminants in freezing ground, emphasizing the necessity of new management and assessment techniques to address these problems effectively. The paper underscores the historical context of research in this field, detailing two international conferences focused on contaminants in freezing ground, and sets the stage for further advancements and innovative strategies, such as GIS-based dispersion models and innovative remediation techniques."},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765339/Papp_%C3%89_Riddle_M_Snape_I_Ground_penetrating_radar_as_a_tool_for_road_management_and_contaminated_site_assessment_in_snow_covered_areas","translated_internal_url":"","created_at":"2012-07-04T19:42:21.452-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[{"id":46397205,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46397205/thumbnails/1.jpg","file_name":"Australian_g_i_zin_Antarctic_Cover_photograph__Di.pdf","download_url":"https://www.academia.edu/attachments/46397205/download_file","bulk_download_file_name":"Papp_E_Riddle_M_Snape_I_Ground_penetrati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46397205/Australian_g_i_zin_Antarctic_Cover_photograph__Di-libre.pdf?1465650100=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_Riddle_M_Snape_I_Ground_penetrati.pdf\u0026Expires=1744157151\u0026Signature=dqDlQAa5Ba-n1e7R-z5cJA8953JBAb-D~GB53DX-fOpxe7IwS6z1y5khnp-KrRJDcklFfDe2qGHWf7p8sIXqtRzUDtgnG00hk5pHXEbjEfI5-TYXdOjfG8gdaijZ-naDlJOWlsrjuaoEvIx6l4TJFcGXPJ~SakFDmHzAbsGyL9fTOjAiJLVKM0xbCTGAxJvqAS-X5vvxEs~0E9jmqHgIcktHa7Dfk3CWysPmRf4--9Q46o7EbERj~x8rxTj77zCP0DlmNsG~OTr1PhvJ563Cfgo8HYaOHv08gm-l3Ec89HEbLLsvLZ4ZrLiI~EQK9SUxkxLaRmeRa1R1HI15zbY5vA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Papp_É_Riddle_M_Snape_I_Ground_penetrating_radar_as_a_tool_for_road_management_and_contaminated_site_assessment_in_snow_covered_areas","translated_slug":"","page_count":143,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":46397205,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46397205/thumbnails/1.jpg","file_name":"Australian_g_i_zin_Antarctic_Cover_photograph__Di.pdf","download_url":"https://www.academia.edu/attachments/46397205/download_file","bulk_download_file_name":"Papp_E_Riddle_M_Snape_I_Ground_penetrati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46397205/Australian_g_i_zin_Antarctic_Cover_photograph__Di-libre.pdf?1465650100=\u0026response-content-disposition=attachment%3B+filename%3DPapp_E_Riddle_M_Snape_I_Ground_penetrati.pdf\u0026Expires=1744157151\u0026Signature=dqDlQAa5Ba-n1e7R-z5cJA8953JBAb-D~GB53DX-fOpxe7IwS6z1y5khnp-KrRJDcklFfDe2qGHWf7p8sIXqtRzUDtgnG00hk5pHXEbjEfI5-TYXdOjfG8gdaijZ-naDlJOWlsrjuaoEvIx6l4TJFcGXPJ~SakFDmHzAbsGyL9fTOjAiJLVKM0xbCTGAxJvqAS-X5vvxEs~0E9jmqHgIcktHa7Dfk3CWysPmRf4--9Q46o7EbERj~x8rxTj77zCP0DlmNsG~OTr1PhvJ563Cfgo8HYaOHv08gm-l3Ec89HEbLLsvLZ4ZrLiI~EQK9SUxkxLaRmeRa1R1HI15zbY5vA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-1765339-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765471"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1765471/%C3%89_Papp_Establishment_of_the_Data_Base_Working_Group_of_IGCP384_Project_Aims_Methods"><img alt="Research paper thumbnail of É. Papp: Establishment of the Data Base Working Group of IGCP384 Project - Aims, Methods. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">É. Papp: Establishment of the Data Base Working Group of IGCP384 Project - Aims, Methods. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765471"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765471"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765471; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765471]").text(description); $(".js-view-count[data-work-id=1765471]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765471; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765471']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1765471]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765471,"title":"É. Papp: Establishment of the Data Base Working Group of IGCP384 Project - Aims, Methods. ","translated_title":"","metadata":{"more_info":"Inaugural Meeting of IGCP384 in conjunction with the 30th International Geological Congress, Beijing, China, Aug 1996.","event_date":{"day":null,"month":8,"year":1996,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765471/%C3%89_Papp_Establishment_of_the_Data_Base_Working_Group_of_IGCP384_Project_Aims_Methods","translated_internal_url":"","created_at":"2012-07-04T20:10:02.755-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[],"slug":"É_Papp_Establishment_of_the_Data_Base_Working_Group_of_IGCP384_Project_Aims_Methods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1765471-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1767146"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1767146/G_Don_%C3%89_Papp_Database_of_the_IGCP_384_Project_Impact_and_Extraterrestrial_Spherules_New_tools_for_global_correlation"><img alt="Research paper thumbnail of G. Don, É. Papp: Database of the IGCP 384 Project. Impact and Extraterrestrial Spherules: New tools for global correlation " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">G. Don, É. Papp: Database of the IGCP 384 Project. Impact and Extraterrestrial Spherules: New tools for global correlation </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1767146"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1767146"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1767146; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1767146]").text(description); $(".js-view-count[data-work-id=1767146]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1767146; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1767146']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1767146]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1767146,"title":"G. Don, É. Papp: Database of the IGCP 384 Project. Impact and Extraterrestrial Spherules: New tools for global correlation ","translated_title":"","metadata":{"more_info":"Impact and Extraterrestrial Spherules: New tools for global correlation - International Symposium Excursion Guide and Abstracts, p. 23. Tallinn, Estonia, July 1997.","event_date":{"day":null,"month":7,"year":1997,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1767146/G_Don_%C3%89_Papp_Database_of_the_IGCP_384_Project_Impact_and_Extraterrestrial_Spherules_New_tools_for_global_correlation","translated_internal_url":"","created_at":"2012-07-05T11:57:09.549-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[],"slug":"G_Don_É_Papp_Database_of_the_IGCP_384_Project_Impact_and_Extraterrestrial_Spherules_New_tools_for_global_correlation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1767146-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1765347"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/1765347/P_de_Caritat_B_Cruikshank_D_Gibson_S_Hill_M_Killick_N_Lavitt_%C3%89_Papp_E_Tonui_Landscape_Evolution_and_Mineral_Exploration_in_the_Broken_Hill_Region_A_New_Initiative_by_CRCLEME_1998_2002"><img alt="Research paper thumbnail of P. de Caritat, B. Cruikshank, D. Gibson, S. Hill, M. Killick, N. Lavitt, É. Papp, E. Tonui: Landscape Evolution and Mineral Exploration in the Broken Hill Region: A New Initiative by CRCLEME, 1998-2002. " class="work-thumbnail" src="https://attachments.academia-assets.com/46396146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/1765347/P_de_Caritat_B_Cruikshank_D_Gibson_S_Hill_M_Killick_N_Lavitt_%C3%89_Papp_E_Tonui_Landscape_Evolution_and_Mineral_Exploration_in_the_Broken_Hill_Region_A_New_Initiative_by_CRCLEME_1998_2002">P. de Caritat, B. Cruikshank, D. Gibson, S. Hill, M. Killick, N. Lavitt, É. Papp, E. Tonui: Landscape Evolution and Mineral Exploration in the Broken Hill Region: A New Initiative by CRCLEME, 1998-2002. </a></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-1765347-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-1765347-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182329/figure-1-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182333/figure-2-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182337/figure-3-screen-snapshot-of-the-broken-hill-gis-arcview"><img alt="Screen snapshot of the Broken Hill GIS, Arcview version " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182343/figure-4-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182353/figure-5-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182362/figure-6-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182371/figure-7-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182377/figure-8-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182387/figure-9-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182393/figure-1-geological-sketch-map-of-the-broken-hill-inlier"><img alt="Fig. 1 - Geological sketch map of the Broken Hill Inlier showing major traverse locations where sampling for “°Ar-*’Ar and AFT thermochronology was conducted. MMF = Mund: Mundi Fault. The Precambrian Willyama basement of the Broken Hill Inlier of western New South Wales and the overlying thin veneer of Neoproterozoic sedimentary rock have experienced an ongoing tectonothermal history post-dating the high grade Olarian Orogeny (~1600 Ma). " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182398/figure-1-results-from-ar-ar-laser-and-furnace-step-heating"><img alt="Results from “°Ar-*?Ar laser and furnace step heating analyses of separates collected from over 60 outcrop locations (Fig. 1) across the Inlier, reveal plateau and total fusion ages between ~1600Ma-280 Ma (Fig.2). This extensive time span was punctuated by periods of tectonic reactivation typified by crustal heating, exhumation and cooling, and fault reactivation. Major events revealed by the results include the ~1250-1100 Ma Musgravian (Grenville) and the ~500 Ma Delamerian (Pan-African) orogenies (Fig. 2). Relatively strong tectonothermal overprints across the basement have obscured much of the early history of the Willyama Inliers. Oe te age spectra from basement samples across the three major traverses (Fig. 1) show a broad mixing of ages from ~1200-500 Ma implying that tectonometamorphic temperatures hadn’t reached higher than ~300-400°C (greenschist facies) based on retentivity in muscovite and biotite. K-feldspar data indicate that the basement, outside of shear zones, cooled to <200°C at ~630-610 Ma. " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182401/figure-3-outcrop-samples-over-much-of-the-willyama-inlier"><img alt="Outcrop samples over much of the Willyama Inlier display similar Phanerozoic thermal histories to those published recently for the adjacent Curnamona Craton and Adelaide Fold Belt, suggesting events of regional extent. Two stages of regional cooling are recognised from AFT data (Fig. 3); the first being associated with the Alice Springs Orogeny (~300-400 Ma) and a second of smaller magnitude occurring during the Late Cretaceous to Tertiary times. A more accurate constraint on the timing and magnitude of the later cooling event comes from two boreholes in the Broken Hill Mine area which indicates ~25-30°C cooling between ~60- 20Ma. This cooling phase is possibly associated with denudation in response to intraplate stresses related to the reconfiguration of the Australian Plate and its margins during this time. " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182404/figure-13-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182406/figure-1-clunclusions-analysis-of-three-plausible-genetic"><img alt="CLUNCLUSIONS Analysis of three plausible genetic models for the Broken Hill deposit suggests that empirical exploration models can be refined from an understanding of geologic processes that occur in mineral systems. Suprisingly, many essential and desirable ingredients determined assuming epigenetic (e.g. carbonate replacement) and syngenetic models overlap. For instance, in both instances, the mineralisation should be stratiform and associated with structures. However, major differences between the models exist regarding the significance of high grade shear zones and sedimentary facies changes. Model-independent mass balance calculations indicate that large base metal accumulations such as at Broken Hill require large mineral systems. Mineral system size. The final characteristic of a mineral system with exploration implications is its size. Many world class base metal districts are characterised by a single giant deposit surrounded by many much smaller deposits. Examples of such districts include BHT deposits at Broken Hill, Sullivan and Cannington. The size of individual mineral systems may, in part, account for this distribution. Figure 1 illustrates the relationship between the size of a deposit and the size of the associated mineral system using Pb mass balance constraints. It suggests that giant deposits such as Broken Hill require large mineral systems to supply sufficient Pb. Given the constraints used to construct Figure 1 and assuming a 10% extraction efficiency, the size of the Broken Hill mineral system is on the order of 8000 km?; if a depth of 7 km is assumed for the mineral system, this translates into a surface area in excess of 1000 km”, or a square over 30 km on a side. The potential size of base metal depletion zones in albite-rich rocks from the Lady Brassey and Himalaya Formations are consistent with these calculations. " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182408/figure-1-schematic-plan-of-surface-geology-with-projection"><img alt="Figure 1 Schematic plan of surface geology with projection of Main Lode and Potos: Mineralisation and location of Potosi Open Cut Mine " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182409/figure-16-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182410/figure-17-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182412/figure-18-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182414/figure-19-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_019.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182418/figure-20-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_020.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182423/figure-21-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_021.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182428/figure-1-zirconological-synthesis-for-the-willyama"><img alt="Figure 1. Zirconological synthesis for the Willyama Supergroup, Broken Hill block. *Signifies that at least some rocks assigned to a particular Group have the age constraints indicated. This does not imply that all rocks assigned to that Group on the basis of lithological mapping have the same age. Gaps have been left between the Groups. This is because the zirconology at present provides no constraints on whether the contacts between Groups are hiatii, unconformities or tectonic breaks. " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_022.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182434/figure-23-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_023.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182443/figure-24-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_024.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182452/figure-1-simplified-rock-relationship-diagram-for-the"><img alt="Figure 1: Simplified rock relationship diagram for the Willyama Supergroup, showing zircon U-Pb dates (Ma) accepted by the author, as depositional ages or detrital ages (youngest detrital age in metasediments shown as maximum age for that unit). Dates from Page and Laing (1992), Nutman et al. (1997), Nutman and Ehlers (1998). " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_025.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182458/figure-1-example-of-swir-spectral-reflectance-data-arranged"><img alt="Figure 1. Example of SWIR spectral reflectance data arranged in increasing depth. " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_026.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182464/figure-27-de-caritat-cruikshank-gibson-hill-killick-lavitt"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/46396146/figure_027.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182469/table-1-over-the-last-four-years-new-data-sets-have-been"><img alt="Over the last four years new data sets have been collected, new maps and images produced and new interpretations developed. As a result of this work our knowledge of the Broken Hill region has significantly improved and exploration activity has increased by an order of magnitude. The project area includes the Broken Hill and Olary regions, the Mount Painter and Mount Babbage Inliers, and the Koonenberry Belt. The objective of the project is to encourage mineral exploration and facilitate new ore discoveries in the Broken Hill region by providing new geoscientific information for use by mineral exploration companies. " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182473/table-2-the-totals-include-estimates-of-direct-salary-costs"><img alt="The totals include estimates of direct salary costs but not overheads. The AGSO contribution includes its in-kind contribution to the Australian Geodynamics CRC but not the funds contributed by the Australian Geodynamics CRC to undertake its research activities. The table below summarises the contributions of each organisation since 1994. " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/table_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/17182476/table-3-data-from-media-and-open-file-reports-gold-and"><img alt="*data from media and open file reports Gold and copper grades*, Curnamona Craton " class="figure-slide-image" src="https://figures.academia-assets.com/46396146/table_003.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-1765347-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="38f07468f83ee6a7fa91c5f6f8d3f7a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46396146,"asset_id":1765347,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46396146/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1765347"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1765347"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1765347; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1765347]").text(description); $(".js-view-count[data-work-id=1765347]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1765347; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1765347']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "38f07468f83ee6a7fa91c5f6f8d3f7a1" } } $('.js-work-strip[data-work-id=1765347]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1765347,"title":"P. de Caritat, B. Cruikshank, D. Gibson, S. Hill, M. Killick, N. Lavitt, É. Papp, E. Tonui: Landscape Evolution and Mineral Exploration in the Broken Hill Region: A New Initiative by CRCLEME, 1998-2002. ","translated_title":"","metadata":{"more_info":"in AGSO Record: 1998/25. Compiled by G. M. Gibson. Conference Paper, Broken Hill Exploration Initiative, Fourth Annual Meeting, 19-21 October 1998","event_date":{"day":null,"month":null,"year":1998,"errors":{}},"ai_abstract":"The research presents a comprehensive analysis of the geological evolution in the Broken Hill region focused on the formation of Pb-Zn-Ag mineralization. It critiques the concept of post-tectonic/metamorphic models by demonstrating that mineralization predates significant tectonic events. The intricate geology, including syndepositional activities and structural complexities, are explored to better understand mineral deposits and guide future mineral exploration initiatives.","conference_end_date":{"day":21,"month":10,"year":1998,"errors":{}},"conference_start_date":{"day":19,"month":10,"year":1998,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1765347/P_de_Caritat_B_Cruikshank_D_Gibson_S_Hill_M_Killick_N_Lavitt_%C3%89_Papp_E_Tonui_Landscape_Evolution_and_Mineral_Exploration_in_the_Broken_Hill_Region_A_New_Initiative_by_CRCLEME_1998_2002","translated_internal_url":"","created_at":"2012-07-04T19:48:06.250-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[{"id":46396146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46396146/thumbnails/1.jpg","file_name":"BMR_Rec1998_025.pdf","download_url":"https://www.academia.edu/attachments/46396146/download_file","bulk_download_file_name":"P_de_Caritat_B_Cruikshank_D_Gibson_S_Hil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46396146/BMR_Rec1998_025-libre.pdf?1465646958=\u0026response-content-disposition=attachment%3B+filename%3DP_de_Caritat_B_Cruikshank_D_Gibson_S_Hil.pdf\u0026Expires=1744157151\u0026Signature=Ch9dUy8fDPXLgROHfKGkksSdSPRD8QYCdXoEfXAFIzCzu-lIB~mfMXPcSfYks6OYk4f4d2LP5zVPHWyXcAR9MfxJcax4afPXQ1a-0Ym0St8dm81oAT4szPIfQvrlNK9zg52bL5ZyJONEremHe7RmkMABlqeLQ2ragoBTRytUSS6GEAUeBE52UchrlebxxNV0F7poAes1rz6kC7~Bn0GKZ7Qxac89T1PPAHnKwAcF9obusaRQEIWmQa7kn92MhYvEBXA6uc7diKWgYxZ~YD5eyqm8sNpQ83euDoh42fVJeUkZB7oxR1hVnDAHiCzUQrvvNvdjKg7cubUhiMLRMR7cNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"P_de_Caritat_B_Cruikshank_D_Gibson_S_Hill_M_Killick_N_Lavitt_É_Papp_E_Tonui_Landscape_Evolution_and_Mineral_Exploration_in_the_Broken_Hill_Region_A_New_Initiative_by_CRCLEME_1998_2002","translated_slug":"","page_count":134,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":46396146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46396146/thumbnails/1.jpg","file_name":"BMR_Rec1998_025.pdf","download_url":"https://www.academia.edu/attachments/46396146/download_file","bulk_download_file_name":"P_de_Caritat_B_Cruikshank_D_Gibson_S_Hil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46396146/BMR_Rec1998_025-libre.pdf?1465646958=\u0026response-content-disposition=attachment%3B+filename%3DP_de_Caritat_B_Cruikshank_D_Gibson_S_Hil.pdf\u0026Expires=1744157151\u0026Signature=Ch9dUy8fDPXLgROHfKGkksSdSPRD8QYCdXoEfXAFIzCzu-lIB~mfMXPcSfYks6OYk4f4d2LP5zVPHWyXcAR9MfxJcax4afPXQ1a-0Ym0St8dm81oAT4szPIfQvrlNK9zg52bL5ZyJONEremHe7RmkMABlqeLQ2ragoBTRytUSS6GEAUeBE52UchrlebxxNV0F7poAes1rz6kC7~Bn0GKZ7Qxac89T1PPAHnKwAcF9obusaRQEIWmQa7kn92MhYvEBXA6uc7diKWgYxZ~YD5eyqm8sNpQ83euDoh42fVJeUkZB7oxR1hVnDAHiCzUQrvvNvdjKg7cubUhiMLRMR7cNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-1765347-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="1767071"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1767071/P_de_Caritat_D_Gibson_S_Hill_M_Killick_N_Lavitt_%C3%89_Papp_E_Tonui_Exploring_Australian_sedimentary_basins_for_concealed_ore_deposits_the_CRCLEME_Basins_Program"><img alt="Research paper thumbnail of P. de Caritat, D. Gibson, S. Hill, M. Killick, N. Lavitt, É. Papp, E. Tonui: Exploring Australian sedimentary basins for concealed ore deposits: the CRCLEME Basins Program. " class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">P. de Caritat, D. Gibson, S. Hill, M. Killick, N. Lavitt, É. Papp, E. Tonui: Exploring Australian sedimentary basins for concealed ore deposits: the CRCLEME Basins Program. </div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1767071"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1767071"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1767071; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1767071]").text(description); $(".js-view-count[data-work-id=1767071]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1767071; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1767071']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1767071]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1767071,"title":"P. de Caritat, D. Gibson, S. Hill, M. Killick, N. Lavitt, É. Papp, E. Tonui: Exploring Australian sedimentary basins for concealed ore deposits: the CRCLEME Basins Program. ","translated_title":"","metadata":{"more_info":"19th International Geochemical Exploration Symposium, Vancouver, Canada, , Abstracts Volume, 10-16 April 1999","conference_end_date":{"day":16,"month":4,"year":1999,"errors":{}},"conference_start_date":{"day":10,"month":4,"year":1999,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/1767071/P_de_Caritat_D_Gibson_S_Hill_M_Killick_N_Lavitt_%C3%89_Papp_E_Tonui_Exploring_Australian_sedimentary_basins_for_concealed_ore_deposits_the_CRCLEME_Basins_Program","translated_internal_url":"","created_at":"2012-07-05T11:27:54.785-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"conference_presentation","co_author_tags":[],"downloadable_attachments":[],"slug":"P_de_Caritat_D_Gibson_S_Hill_M_Killick_N_Lavitt_É_Papp_E_Tonui_Exploring_Australian_sedimentary_basins_for_concealed_ore_deposits_the_CRCLEME_Basins_Program","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1767071-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="7137997" id="scienceoutreachartandscience"><div class="js-work-strip profile--work_container" data-work-id="40373980"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/40373980/CSIRO_Art_and_Science_Workshops"><img alt="Research paper thumbnail of CSIRO Art and Science Workshops" class="work-thumbnail" src="https://attachments.academia-assets.com/60622531/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/40373980/CSIRO_Art_and_Science_Workshops">CSIRO Art and Science Workshops</a></div><div class="wp-workCard_item"><span>CSIRO Art and Science Workshops</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">When Éva was six years old, she was glued to the television every Sunday morning, listening to Pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">When Éva was six years old, she was glued to the television every Sunday morning, listening to Professor Öveges, after whom now a room is named in the Palace of Miracles, the Hungarian equivalent of the CSIRO Discovery Centre.<br />This is what she remembers most from the words of Professor Öveges: “When I was walking towards the Television Studio this morning, I suddenly noticed this light. All colours of the rainbow were shining towards me from the footpath. It was so BEAUTIFUL that I had to stop and look. I bent down and I picked up something. Do you know what was that?? It was a piece of BROKEN GLASS!!<br />I held it against the Sun and I saw the most beautiful optical phenomenon – a rainbow!! I will draw you Children, and I will explain to you, because I am sure you all want to know, how can the broken glass create these beautiful colours of the rainbow…”</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8aa839b51113975eabfa09e72b3f5772" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":60622531,"asset_id":40373980,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/60622531/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="40373980"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="40373980"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 40373980; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=40373980]").text(description); $(".js-view-count[data-work-id=40373980]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 40373980; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='40373980']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8aa839b51113975eabfa09e72b3f5772" } } $('.js-work-strip[data-work-id=40373980]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":40373980,"title":"CSIRO Art and Science Workshops","translated_title":"","metadata":{"abstract":"When Éva was six years old, she was glued to the television every Sunday morning, listening to Professor Öveges, after whom now a room is named in the Palace of Miracles, the Hungarian equivalent of the CSIRO Discovery Centre.\nThis is what she remembers most from the words of Professor Öveges: “When I was walking towards the Television Studio this morning, I suddenly noticed this light. All colours of the rainbow were shining towards me from the footpath. It was so BEAUTIFUL that I had to stop and look. I bent down and I picked up something. Do you know what was that?? It was a piece of BROKEN GLASS!!\nI held it against the Sun and I saw the most beautiful optical phenomenon – a rainbow!! I will draw you Children, and I will explain to you, because I am sure you all want to know, how can the broken glass create these beautiful colours of the rainbow…”\n","ai_title_tag":"Exploring Light and Color Through Art and Science Workshops","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"CSIRO Art and Science Workshops"},"translated_abstract":"When Éva was six years old, she was glued to the television every Sunday morning, listening to Professor Öveges, after whom now a room is named in the Palace of Miracles, the Hungarian equivalent of the CSIRO Discovery Centre.\nThis is what she remembers most from the words of Professor Öveges: “When I was walking towards the Television Studio this morning, I suddenly noticed this light. All colours of the rainbow were shining towards me from the footpath. It was so BEAUTIFUL that I had to stop and look. I bent down and I picked up something. Do you know what was that?? It was a piece of BROKEN GLASS!!\nI held it against the Sun and I saw the most beautiful optical phenomenon – a rainbow!! I will draw you Children, and I will explain to you, because I am sure you all want to know, how can the broken glass create these beautiful colours of the rainbow…”\n","internal_url":"https://www.academia.edu/40373980/CSIRO_Art_and_Science_Workshops","translated_internal_url":"","created_at":"2019-09-17T05:13:31.819-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[],"downloadable_attachments":[{"id":60622531,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/60622531/thumbnails/1.jpg","file_name":"CSIRO_Brochure20190917-107188-16oqx77.pdf","download_url":"https://www.academia.edu/attachments/60622531/download_file","bulk_download_file_name":"CSIRO_Art_and_Science_Workshops.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/60622531/CSIRO_Brochure20190917-107188-16oqx77-libre.pdf?1568722815=\u0026response-content-disposition=attachment%3B+filename%3DCSIRO_Art_and_Science_Workshops.pdf\u0026Expires=1744157151\u0026Signature=DQelMfAQ6DpcHzbF0rDC~p8lF3hxZ5At3syc2N6w6r8ZUjUwVR31QlVXfOt5Na6QFXihD-HcGp~IpwCxG-vmzfuKjdzJAVys7YDaKoiTJoEjzZRzA690GZyEStNSXF60tEp8GZ0rSFszBoVC6djx9dXKKEBaLYbq04hXI5tGazNmw~hL2J63NahFZShEydWoT5QYdM9N6JD1SKmaXqGuyCitEMsmCcPbxS8xwXqZkan2-TlYExtKpC7Wmie~PB8JyH0SrvPhvj-R6mEFnscnwq59p6AijPYuONYg5tcSf4FDb2O5YIl-kua3jGSltAfx5wGGIvIc4emyaiupzzFa1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"CSIRO_Art_and_Science_Workshops","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":"When Éva was six years old, she was glued to the television every Sunday morning, listening to Professor Öveges, after whom now a room is named in the Palace of Miracles, the Hungarian equivalent of the CSIRO Discovery Centre.\nThis is what she remembers most from the words of Professor Öveges: “When I was walking towards the Television Studio this morning, I suddenly noticed this light. All colours of the rainbow were shining towards me from the footpath. It was so BEAUTIFUL that I had to stop and look. I bent down and I picked up something. Do you know what was that?? It was a piece of BROKEN GLASS!!\nI held it against the Sun and I saw the most beautiful optical phenomenon – a rainbow!! I will draw you Children, and I will explain to you, because I am sure you all want to know, how can the broken glass create these beautiful colours of the rainbow…”\n","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":60622531,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/60622531/thumbnails/1.jpg","file_name":"CSIRO_Brochure20190917-107188-16oqx77.pdf","download_url":"https://www.academia.edu/attachments/60622531/download_file","bulk_download_file_name":"CSIRO_Art_and_Science_Workshops.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/60622531/CSIRO_Brochure20190917-107188-16oqx77-libre.pdf?1568722815=\u0026response-content-disposition=attachment%3B+filename%3DCSIRO_Art_and_Science_Workshops.pdf\u0026Expires=1744157151\u0026Signature=DQelMfAQ6DpcHzbF0rDC~p8lF3hxZ5At3syc2N6w6r8ZUjUwVR31QlVXfOt5Na6QFXihD-HcGp~IpwCxG-vmzfuKjdzJAVys7YDaKoiTJoEjzZRzA690GZyEStNSXF60tEp8GZ0rSFszBoVC6djx9dXKKEBaLYbq04hXI5tGazNmw~hL2J63NahFZShEydWoT5QYdM9N6JD1SKmaXqGuyCitEMsmCcPbxS8xwXqZkan2-TlYExtKpC7Wmie~PB8JyH0SrvPhvj-R6mEFnscnwq59p6AijPYuONYg5tcSf4FDb2O5YIl-kua3jGSltAfx5wGGIvIc4emyaiupzzFa1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1279,"name":"Science Communication","url":"https://www.academia.edu/Documents/in/Science_Communication"},{"id":8927,"name":"Art and Science","url":"https://www.academia.edu/Documents/in/Art_and_Science"},{"id":916950,"name":"Public Awareness of Geosciences","url":"https://www.academia.edu/Documents/in/Public_Awareness_of_Geosciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-40373980-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="33545042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33545042/TIME_Exhibition_2013"><img alt="Research paper thumbnail of TIME Exhibition 2013" class="work-thumbnail" src="https://attachments.academia-assets.com/53574884/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33545042/TIME_Exhibition_2013">TIME Exhibition 2013</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The opening speaker, Dr Eva Papp has experience interpreting visual imagery with remote sensing, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The opening speaker, Dr Eva Papp has experience interpreting visual imagery with remote sensing, multispectral imagery and mapping. Her deep knowledge of geological time gives her experiences of time on an expansive scale. It is a great honour to welcome Dr Eva Papp to the Belconnen Community Gallery to open the Time exhibition.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a73ef87e67c096bf06e9a77c27b7227f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":53574884,"asset_id":33545042,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/53574884/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33545042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33545042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33545042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33545042]").text(description); $(".js-view-count[data-work-id=33545042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33545042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33545042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a73ef87e67c096bf06e9a77c27b7227f" } } $('.js-work-strip[data-work-id=33545042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33545042,"title":"TIME Exhibition 2013","translated_title":"","metadata":{"abstract":"The opening speaker, Dr Eva Papp has experience interpreting visual imagery with remote sensing, multispectral imagery and mapping. Her deep knowledge of geological time gives her experiences of time on an expansive scale. It is a great honour to welcome Dr Eva Papp to the Belconnen Community Gallery to open the Time exhibition."},"translated_abstract":"The opening speaker, Dr Eva Papp has experience interpreting visual imagery with remote sensing, multispectral imagery and mapping. Her deep knowledge of geological time gives her experiences of time on an expansive scale. It is a great honour to welcome Dr Eva Papp to the Belconnen Community Gallery to open the Time exhibition.","internal_url":"https://www.academia.edu/33545042/TIME_Exhibition_2013","translated_internal_url":"","created_at":"2017-06-18T22:36:35.754-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[],"downloadable_attachments":[{"id":53574884,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/53574884/thumbnails/1.jpg","file_name":"TIME_Exhibition_2013.docx","download_url":"https://www.academia.edu/attachments/53574884/download_file","bulk_download_file_name":"TIME_Exhibition_2013.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53574884/TIME_Exhibition_2013.docx?1738364048=\u0026response-content-disposition=attachment%3B+filename%3DTIME_Exhibition_2013.docx\u0026Expires=1744157151\u0026Signature=Kn90HWMzYOFlKM7IZD8ica2oEmbO2dz4N208egTtZRYWhhUfcgeQrLeJ~Qt0mAG6kTpEGBjfdrk4Sd4z4WmSOBPjxxxuvOFWkyO87~BTbHaDlU5z2BGDc4sTpyiu57mGePTF1ro9r1TTBxw4uubTUvzvGmgvy5zOkhoo6RY7PEaopXf1iP~nSH8VTKKK4vlDf~aA8sh7kZnRygd1fh68AYVH67u13HmZz7Pm90fWdNMqg5CBIadf4tKzrxo7ksOcp0IH6SEfrxwO0s~C~GgCFLw4Y6s81Tz06lywQYPx~xVlX36AH5ZEw1hxltcmXZKeLhkAcBDt9gLY~~F3U8EpiQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"TIME_Exhibition_2013","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":"The opening speaker, Dr Eva Papp has experience interpreting visual imagery with remote sensing, multispectral imagery and mapping. Her deep knowledge of geological time gives her experiences of time on an expansive scale. It is a great honour to welcome Dr Eva Papp to the Belconnen Community Gallery to open the Time exhibition.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[{"id":53574884,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/53574884/thumbnails/1.jpg","file_name":"TIME_Exhibition_2013.docx","download_url":"https://www.academia.edu/attachments/53574884/download_file","bulk_download_file_name":"TIME_Exhibition_2013.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53574884/TIME_Exhibition_2013.docx?1738364048=\u0026response-content-disposition=attachment%3B+filename%3DTIME_Exhibition_2013.docx\u0026Expires=1744157151\u0026Signature=Kn90HWMzYOFlKM7IZD8ica2oEmbO2dz4N208egTtZRYWhhUfcgeQrLeJ~Qt0mAG6kTpEGBjfdrk4Sd4z4WmSOBPjxxxuvOFWkyO87~BTbHaDlU5z2BGDc4sTpyiu57mGePTF1ro9r1TTBxw4uubTUvzvGmgvy5zOkhoo6RY7PEaopXf1iP~nSH8VTKKK4vlDf~aA8sh7kZnRygd1fh68AYVH67u13HmZz7Pm90fWdNMqg5CBIadf4tKzrxo7ksOcp0IH6SEfrxwO0s~C~GgCFLw4Y6s81Tz06lywQYPx~xVlX36AH5ZEw1hxltcmXZKeLhkAcBDt9gLY~~F3U8EpiQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":14989,"name":"Philosophy of Time","url":"https://www.academia.edu/Documents/in/Philosophy_of_Time"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-33545042-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="11604256" id="data"><div class="js-work-strip profile--work_container" data-work-id="51041592"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/51041592/The_use_of_ground_penetrating_radar_in_contaminated_site_assessment_in_Antarctica_a_pilot_study_at_Casey_and_Wilkes"><img alt="Research paper thumbnail of The use of ground penetrating radar in contaminated site assessment in Antarctica - a pilot study at Casey and Wilkes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The use of ground penetrating radar in contaminated site assessment in Antarctica - a pilot study at Casey and Wilkes</div><div class="wp-workCard_item"><span> Australian Antarctic Data Centre</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">GPR data collected over two abandoned tip sites in Antarctica: Wilkes tip and Thala Valley tip. R...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">GPR data collected over two abandoned tip sites in Antarctica: Wilkes tip and Thala Valley tip. Ramac 250 MHz antenna was used. Data format is .rad and .rd3. Data collected during the 2001/2002 Antarctic summer season.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51041592"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51041592"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51041592; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51041592]").text(description); $(".js-view-count[data-work-id=51041592]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51041592; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51041592']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51041592]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51041592,"title":"The use of ground penetrating radar in contaminated site assessment in Antarctica - a pilot study at Casey and Wilkes","translated_title":"","metadata":{"doi":"10.26179/5b6cf22a90145","abstract":"GPR data collected over two abandoned tip sites in Antarctica: Wilkes tip and Thala Valley tip. Ramac 250 MHz antenna was used. Data format is .rad and .rd3. Data collected during the 2001/2002 Antarctic summer season.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":" Australian Antarctic Data Centre"},"translated_abstract":"GPR data collected over two abandoned tip sites in Antarctica: Wilkes tip and Thala Valley tip. Ramac 250 MHz antenna was used. Data format is .rad and .rd3. Data collected during the 2001/2002 Antarctic summer season.","internal_url":"https://www.academia.edu/51041592/The_use_of_ground_penetrating_radar_in_contaminated_site_assessment_in_Antarctica_a_pilot_study_at_Casey_and_Wilkes","translated_internal_url":"","created_at":"2021-08-27T15:47:01.597-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"The_use_of_ground_penetrating_radar_in_contaminated_site_assessment_in_Antarctica_a_pilot_study_at_Casey_and_Wilkes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"GPR data collected over two abandoned tip sites in Antarctica: Wilkes tip and Thala Valley tip. Ramac 250 MHz antenna was used. Data format is .rad and .rd3. Data collected during the 2001/2002 Antarctic summer season.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":57487,"name":"Antarctica","url":"https://www.academia.edu/Documents/in/Antarctica"},{"id":530958,"name":"Antarctic geophysics","url":"https://www.academia.edu/Documents/in/Antarctic_geophysics"}],"urls":[{"id":10761013,"url":"https://researchdata.edu.au/use-ground-penetrating-casey-wilkes/701052"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-51041592-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="51041496"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/51041496/Ground_Penetrating_Radar_data_collected_at_Macquarie_Island_at_the_Station_tip_and_transmitter_hut_sites"><img alt="Research paper thumbnail of Ground Penetrating Radar data collected at Macquarie Island at the Station, tip and transmitter hut sites" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Ground Penetrating Radar data collected at Macquarie Island at the Station, tip and transmitter hut sites</div><div class="wp-workCard_item"><span>Australian Antarctic Data Centre</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">GPR data collected at Macquarie Island at three locations, at the station area, above the abandon...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">GPR data collected at Macquarie Island at three locations, at the station area, above the abandoned tip and around the ionosonde hut. The instrument used was Ramac GPR with 250 MHz antennas. The station data are positioned, the other two data sets are not, only description of location is available. Data are in .rad and .rd3 format.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51041496"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51041496"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51041496; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51041496]").text(description); $(".js-view-count[data-work-id=51041496]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51041496; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51041496']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51041496]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51041496,"title":"Ground Penetrating Radar data collected at Macquarie Island at the Station, tip and transmitter hut sites","translated_title":"","metadata":{"doi":"10.26179/5b6bbf37a55b1","abstract":"GPR data collected at Macquarie Island at three locations, at the station area, above the abandoned tip and around the ionosonde hut. The instrument used was Ramac GPR with 250 MHz antennas. The station data are positioned, the other two data sets are not, only description of location is available. Data are in .rad and .rd3 format.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Australian Antarctic Data Centre"},"translated_abstract":"GPR data collected at Macquarie Island at three locations, at the station area, above the abandoned tip and around the ionosonde hut. The instrument used was Ramac GPR with 250 MHz antennas. The station data are positioned, the other two data sets are not, only description of location is available. Data are in .rad and .rd3 format.","internal_url":"https://www.academia.edu/51041496/Ground_Penetrating_Radar_data_collected_at_Macquarie_Island_at_the_Station_tip_and_transmitter_hut_sites","translated_internal_url":"","created_at":"2021-08-27T15:38:51.507-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"Ground_Penetrating_Radar_data_collected_at_Macquarie_Island_at_the_Station_tip_and_transmitter_hut_sites","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"GPR data collected at Macquarie Island at three locations, at the station area, above the abandoned tip and around the ionosonde hut. The instrument used was Ramac GPR with 250 MHz antennas. The station data are positioned, the other two data sets are not, only description of location is available. Data are in .rad and .rd3 format.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":57487,"name":"Antarctica","url":"https://www.academia.edu/Documents/in/Antarctica"},{"id":530958,"name":"Antarctic geophysics","url":"https://www.academia.edu/Documents/in/Antarctic_geophysics"}],"urls":[{"id":10760970,"url":"https://researchdata.edu.au/ground-penetrating-radar-hut-sites/701046"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-51041496-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="51041425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/51041425/The_use_of_ground_penetrating_radar_for_road_management_in_Antarctica"><img alt="Research paper thumbnail of The use of ground penetrating radar for road management in Antarctica" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The use of ground penetrating radar for road management in Antarctica</div><div class="wp-workCard_item"><span>Australian Antarctic Data Centre</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">10 lines of ground penetrating radar (GPR) data along and around Casey road, collected using Rama...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">10 lines of ground penetrating radar (GPR) data along and around Casey road, collected using Ramac GPR 250 MHz antenna. Data are in .rad and .rd3 format. Data collected during the 2001/2002 Antarctic summer season.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51041425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51041425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51041425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51041425]").text(description); $(".js-view-count[data-work-id=51041425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51041425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51041425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51041425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51041425,"title":"The use of ground penetrating radar for road management in Antarctica","translated_title":"","metadata":{"doi":"10.26179/5b6bcaa9eefcf","abstract":"10 lines of ground penetrating radar (GPR) data along and around Casey road, collected using Ramac GPR 250 MHz antenna. Data are in .rad and .rd3 format. Data collected during the 2001/2002 Antarctic summer season.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Australian Antarctic Data Centre"},"translated_abstract":"10 lines of ground penetrating radar (GPR) data along and around Casey road, collected using Ramac GPR 250 MHz antenna. Data are in .rad and .rd3 format. Data collected during the 2001/2002 Antarctic summer season.","internal_url":"https://www.academia.edu/51041425/The_use_of_ground_penetrating_radar_for_road_management_in_Antarctica","translated_internal_url":"","created_at":"2021-08-27T15:30:47.033-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"The_use_of_ground_penetrating_radar_for_road_management_in_Antarctica","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"10 lines of ground penetrating radar (GPR) data along and around Casey road, collected using Ramac GPR 250 MHz antenna. Data are in .rad and .rd3 format. Data collected during the 2001/2002 Antarctic summer season.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":57487,"name":"Antarctica","url":"https://www.academia.edu/Documents/in/Antarctica"},{"id":530958,"name":"Antarctic geophysics","url":"https://www.academia.edu/Documents/in/Antarctic_geophysics"}],"urls":[{"id":10760935,"url":"https://researchdata.edu.au/use-ground-penetrating-management-antarctica/701051"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-51041425-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="51041349"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/51041349/Use_of_ground_penetrating_radar_to_elucidate_ice_structure_and_moraine_formation_processes_in_the_Windmill_Islands"><img alt="Research paper thumbnail of Use of ground penetrating radar to elucidate ice structure and moraine formation processes in the Windmill Islands" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Use of ground penetrating radar to elucidate ice structure and moraine formation processes in the Windmill Islands</div><div class="wp-workCard_item"><span>Australian Antarctic Data Centre</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">GPR cross sections collected above the Loken Moraines, near Casey Station, Antarctica. The instru...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">GPR cross sections collected above the Loken Moraines, near Casey Station, Antarctica. The instrument used was Ramac GPR with 50 MHz and 25 MHz unshielded antennas. Data are in .rad and .rd3 format.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="51041349"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="51041349"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51041349; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51041349]").text(description); $(".js-view-count[data-work-id=51041349]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51041349; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='51041349']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=51041349]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":51041349,"title":"Use of ground penetrating radar to elucidate ice structure and moraine formation processes in the Windmill Islands","translated_title":"","metadata":{"doi":"10.26179/5b6bc5b023ff3","abstract":"GPR cross sections collected above the Loken Moraines, near Casey Station, Antarctica. The instrument used was Ramac GPR with 50 MHz and 25 MHz unshielded antennas. Data are in .rad and .rd3 format.","more_info":" https://data.aad.gov.au/metadata/records/GPR_MORAINE_ANARE53_CASEY","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Australian Antarctic Data Centre"},"translated_abstract":"GPR cross sections collected above the Loken Moraines, near Casey Station, Antarctica. The instrument used was Ramac GPR with 50 MHz and 25 MHz unshielded antennas. Data are in .rad and .rd3 format.","internal_url":"https://www.academia.edu/51041349/Use_of_ground_penetrating_radar_to_elucidate_ice_structure_and_moraine_formation_processes_in_the_Windmill_Islands","translated_internal_url":"","created_at":"2021-08-27T15:20:22.676-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":498748,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"Use_of_ground_penetrating_radar_to_elucidate_ice_structure_and_moraine_formation_processes_in_the_Windmill_Islands","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"GPR cross sections collected above the Loken Moraines, near Casey Station, Antarctica. The instrument used was Ramac GPR with 50 MHz and 25 MHz unshielded antennas. Data are in .rad and .rd3 format.","impression_tracking_id":null,"owner":{"id":498748,"first_name":"Eva","middle_initials":null,"last_name":"Papp","page_name":"EvaPapp","domain_name":"anu-au","created_at":"2011-06-18T15:04:45.613-07:00","display_name":"Eva Papp","url":"https://anu-au.academia.edu/EvaPapp"},"attachments":[],"research_interests":[{"id":57487,"name":"Antarctica","url":"https://www.academia.edu/Documents/in/Antarctica"},{"id":530958,"name":"Antarctic geophysics","url":"https://www.academia.edu/Documents/in/Antarctic_geophysics"}],"urls":[{"id":10760905,"url":"https://researchdata.edu.au/use-ground-penetrating-windmill-islands/701050"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-51041349-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 4 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "fa1538b0528ba4b6dccab834c7fd2098fd44d6fe951f293b6af2fe4067864cc2", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="BmTxuY7U2TofBgrztl4U2tiZnqSsVgci44OnKamjXDIyHb6T9FAAEs3GHMYnlkr-pnyLqJ9dJ1cPKAikBAdRYA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://anu-au.academia.edu/EvaPapp" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="L9FqURct2CoOit9GzPb2yQTv6d6EGl-YKnQcOZ-Jap0bqCV7bakBAtxKyXNdPqjtegr80rcRf-3G37O0Mi1nzw" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li><a rel="nofollow" href="https://www.academia.edu/content_policy">Content Policy</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>