CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 202 results for author: <span class="mathjax">Liang, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Liang%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liang, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liang%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liang, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08749">arXiv:2412.08749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08749">pdf</a>, <a href="https://arxiv.org/format/2412.08749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Energy and momentum relaxation through the Curie temperature in an itinerant ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhandia%2C+R">Rishi Bhandia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Priessnitz%2C+T">Tim Priessnitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiahao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabinovich%2C+K+S">Ksenia S. Rabinovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romero%2C+R">Ralph Romero III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsumi%2C+K">Kota Katsumi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+T+T+H">Thi Thu Huong Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christiani%2C+G">Georg Christiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">Gennady Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08749v1-abstract-short" style="display: inline;"> In this work, we combine conventional linear response time-domain THz spectroscopy with non-linear THz-pump THz-probe techniques to study metallic strained thin films of $\mathrm{Ca}_2\mathrm{RuO}_4$, which undergo a transition into a ferromagnetic state at 10 K. Such measurements allowing us to independently measure momentum and energy relaxation rates. We find that while the momentum relaxation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08749v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08749v1-abstract-full" style="display: none;"> In this work, we combine conventional linear response time-domain THz spectroscopy with non-linear THz-pump THz-probe techniques to study metallic strained thin films of $\mathrm{Ca}_2\mathrm{RuO}_4$, which undergo a transition into a ferromagnetic state at 10 K. Such measurements allowing us to independently measure momentum and energy relaxation rates. We find that while the momentum relaxation rate decreases significantly at the ferromagnetic transition, the energy relaxation rate remains unaffected by the emergence of magnetic order. This shows that the dominant changes to scattering across the transition correspond to scatterings that relax momentum without relaxing energy. It is consistent with a scenario where energy is not carried off by coupling to collective magnetic degrees of freedom. Instead, the principal channel for energy relaxation remains the conventional one e.g. coupling to acoustic phonons. This observation validates the approximation used in the conventional understanding of resistive anomalies of ferromagnets across the Curie temperature, which due to critical slowing down, spin fluctuations can be treated as effectively static and scattering off of them elastic. This scenario can likely be extended to resistive anomalies at other phase transitions to charge- and spin-density wave states in kagome metals or pnictide system <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08749v1-abstract-full').style.display = 'none'; document.getElementById('2412.08749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10852">arXiv:2411.10852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10852">pdf</a>, <a href="https://arxiv.org/format/2411.10852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Amplitude mode in a multi-gap superconductor MgB$_2$ investigated by terahertz two-dimensional coherent spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Katsumi%2C+K">Kota Katsumi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiahao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romero%2C+R">Ralph Romero III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Ke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+X">Xiaoxing Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10852v1-abstract-short" style="display: inline;"> We have investigated terahertz (THz) nonlinear responses in a multi-gap superconductor, MgB$_2$, using THz two-dimensional coherent spectroscopy (THz 2DCS). With broad-band THz drives, we identified a well-defined nonlinear response near the lower superconducting gap energy $2螖_蟺$ only at the lowest temperatures. Using narrow-band THz driving pulses, we observed first (FH) and third harmonic respo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10852v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10852v1-abstract-full" style="display: none;"> We have investigated terahertz (THz) nonlinear responses in a multi-gap superconductor, MgB$_2$, using THz two-dimensional coherent spectroscopy (THz 2DCS). With broad-band THz drives, we identified a well-defined nonlinear response near the lower superconducting gap energy $2螖_蟺$ only at the lowest temperatures. Using narrow-band THz driving pulses, we observed first (FH) and third harmonic responses, and the FH intensity shows a monotonic increase with decreasing temperature when properly normalized by the driving field strength. This is distinct from the single-gap superconductor NbN, where the FH signal exhibited a resonant enhancement at temperatures near the superconducting transition temperature $T_{\text{c}}$ when the superconducting gap energy was resonant with the driving photon energy and which had been interpreted to originate from the superconducting amplitude mode. Our results in MgB$_2$ are consistent with a well-defined amplitude mode only at the lowest temperatures and indicate strong damping as temperature increases. This likely indicates the importance of interband coupling in MgB$_2$ and its influence on the nature of the amplitude mode and its damping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10852v1-abstract-full').style.display = 'none'; document.getElementById('2411.10852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03754">arXiv:2411.03754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03754">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic order induced truly chiral phonons in a ferromagnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+M">Mengqian Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinxuan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yunpeng Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bingru Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sang%2C+W">Wenbo Sang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+T">Tao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tiantian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03754v1-abstract-short" style="display: inline;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03754v1-abstract-full" style="display: none;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectroscopy, we observe the spontaneous splitting of the doubly degenerate in-plane Eg modes into two distinct chiral phonon modes of opposite helicity when the sample is zero-field cooled below the Curie temperature, without the application of an external magnetic field. As we sweep the out-of-plane magnetic field, this Eg phonon splitting exhibits a well-defined hysteresis loop directly correlated with the material&#39;s magnetization. The observed spontaneous splitting reaches up to 1.27 cm-1 at low temperatures and diminishes with increasing temperature, ultimately vanishing at the Curie temperature. Our findings highlight the role of the magnetic order in inducing chiral phonons, paving the way for novel methods to manipulate chiral phonons through magnetization and vice versa. Additionally, our work introduces new possibilities for controlling chiral Weyl fermions using chiral phonons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'none'; document.getElementById('2411.03754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02973">arXiv:2410.02973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02973">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Resolving Polarization Switching Pathways of Sliding Ferroelectricity in Trilayer 3R-MoS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingda Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunhuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dadap%2C+J+I">Jerry I. Dadap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Ziliang Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02973v1-abstract-short" style="display: inline;"> Exploring the pathways of polarization switching in 2D sliding ferroelectrics with multiple internal interfaces is crucial for understanding the switching mechanism and for enhancing their performance in memory-related applications. However, distinguishing the rich configurations of various stacking from a coexistence of polarization domains has remained challenging. In this investigation, we empl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02973v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02973v1-abstract-full" style="display: none;"> Exploring the pathways of polarization switching in 2D sliding ferroelectrics with multiple internal interfaces is crucial for understanding the switching mechanism and for enhancing their performance in memory-related applications. However, distinguishing the rich configurations of various stacking from a coexistence of polarization domains has remained challenging. In this investigation, we employ optical techniques to resolve the stacking degeneracy in a trilayer 3R-MoS2 across several polarization switching cycles. Through a comprehensive analysis of the unique excitonic response exhibited by different layers, we unveil multiple polarization switching pathways that are determined by the sequential release of domain walls initially pinned at various interfaces within the trilayer, providing an understanding of the switching mechanism in multilayered sliding ferroelectrics. Our study not only reveals the intricate dynamics of polarization switching, but also underscores the crucial role of controlling domain walls, pinning centers, and doping levels, offering new insights for enhancing the applications of these materials in sensing and computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02973v1-abstract-full').style.display = 'none'; document.getElementById('2410.02973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14843">arXiv:2409.14843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Creation of independently controllable and long lifetime polar skyrmion textures in ferroelectric-metallic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+F">Fei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jianhua Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongfang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianwei Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Linjie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mengjun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoyue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenpeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Weijin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yue Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14843v1-abstract-short" style="display: inline;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14843v1-abstract-full" style="display: none;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a metallic contact undergo a topological phase transition and stabilize a broad family of skyrmion-like textures (e.g., skyrmion bubbles, multiple 蟺-twist target skyrmions, and skyrmion bags) with independent controllability, analogous to those reported in magnetic systems. Weakly-interacted skyrmion arrays with a density over 300 Gb/inch2 are successfully written, erased and read-out by local electrical and mechanical stimuli of a scanning probe. Interestingly, in contrast to the relatively short lifetime &lt;20 hours of the skyrmion bubbles, the multiple 蟺-twist target skyrmions and skyrmion bags show topology-enhanced stability with lifetime over two weeks. Experimental and theoretical analysis implies the heterostructures carry electric Dzyaloshinskii-Moriya interaction mediated by oxygen octahedral tiltings. Our results demonstrate ferroelectric-metallic heterostructures as fertile playground for topological states and emergent phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'none'; document.getElementById('2409.14843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16910">arXiv:2407.16910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16910">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Operando probing of nanocracking in CuO-derived Cu during CO$_2$ electroreduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+J">Jiawei Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Ershuai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W">Woong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiayun Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Buyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Keon-Han Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xianhu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Meng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+H">Han Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiubo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+C">Changlian Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Ji Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bustillo%2C+K+C">Karen C. Bustillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ercius%2C+P">Peter Ercius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leshchev%2C+D">Denis Leshchev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">Ji Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balushi%2C+Z+Y+A">Zakaria Y. Al Balushi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+A+Z">Adam Z. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asta%2C+M">Mark Asta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+A+T">Alexis T. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drisdell%2C+W+S">Walter S. Drisdell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Haimei Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16910v1-abstract-short" style="display: inline;"> Identifying and controlling active sites in electrocatalysis remains a grand challenge due to restructuring of catalysts in the complex chemical environments during operation. Inactive precatalysts can transform into active catalysts under reaction conditions, such as oxide-derived Cu (OD-Cu) for CO$_2$ electroreduction displaying improved production of multicarbon (C$_{2+}$) chemicals. Revealing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16910v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16910v1-abstract-full" style="display: none;"> Identifying and controlling active sites in electrocatalysis remains a grand challenge due to restructuring of catalysts in the complex chemical environments during operation. Inactive precatalysts can transform into active catalysts under reaction conditions, such as oxide-derived Cu (OD-Cu) for CO$_2$ electroreduction displaying improved production of multicarbon (C$_{2+}$) chemicals. Revealing the mechanism of active site origin in OD-Cu catalysts requires in situ/operando characterizations of structure, morphology, and valence state evolution with high spatial and temporal resolution. Applying newly developed electrochemical liquid cell transmission electron microscopy combined with X-ray absorption spectroscopy, our multimodal operando techniques unveil the formation pathways of OD-Cu active sites from CuO bicrystal nanowire precatalysts. Rapid reduction of CuO directly to Cu within 60 seconds generates a nanocrack network throughout the nanowire, via formation of &#34;boundary nanocracks&#34; along the twin boundary and &#34;transverse nanocracks&#34; propagating from the surface to the center of the nanowire. The nanocrack network further reconstructs, leading to a highly porous structure rich in Cu nanograins, with a boosted specific surface area and density of active sites for C$_{2+}$ products. These findings suggest a means to optimize active OD-Cu nanostructures through nanocracking by tailoring grain boundaries in CuO precatalysts. More generally, our advanced operando approach opens new opportunities for mechanistic insights to enable improved control of catalyst structure and performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16910v1-abstract-full').style.display = 'none'; document.getElementById('2407.16910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16131">arXiv:2407.16131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16131">pdf</a>, <a href="https://arxiv.org/format/2407.16131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> CrysToGraph: A Comprehensive Predictive Model for Crystal Materials Properties and the Benchmark </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hongyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Ji Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinzhe Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+L">Li Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zitian Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zijian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+W">Wei Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xusheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weihao Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+S">Sheng Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16131v2-abstract-short" style="display: inline;"> The ionic bonding across the lattice and ordered microscopic structures endow crystals with unique symmetry and determine their macroscopic properties. Unconventional crystals, in particular, exhibit non-traditional lattice structures or possess exotic physical properties, making them intriguing subjects for investigation. Therefore, to accurately predict the physical and chemical properties of cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16131v2-abstract-full').style.display = 'inline'; document.getElementById('2407.16131v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16131v2-abstract-full" style="display: none;"> The ionic bonding across the lattice and ordered microscopic structures endow crystals with unique symmetry and determine their macroscopic properties. Unconventional crystals, in particular, exhibit non-traditional lattice structures or possess exotic physical properties, making them intriguing subjects for investigation. Therefore, to accurately predict the physical and chemical properties of crystals, it is crucial to consider long-range orders. While GNN excels at capturing the local environment of atoms in crystals, they often face challenges in effectively capturing longer-ranged interactions due to their limited depth. In this paper, we propose CrysToGraph ($\textbf{Crys}$tals with $\textbf{T}$ransformers $\textbf{o}$n $\textbf{Graph}$s), a novel transformer-based geometric graph network designed specifically for unconventional crystalline systems, and UnconvBench, a comprehensive benchmark to evaluate models&#39; predictive performance on unconventional crystal materials such as defected crystals, low-dimension crystals and MOF. CrysToGraph effectively captures short-range interactions with transformer-based graph convolution blocks as well as long-range interactions with graph-wise transformer blocks. CrysToGraph proofs its effectiveness in modelling unconventional crystal materials in multiple tasks, and moreover, it outperforms most existing methods, achieving new state-of-the-art results on the benchmarks of both unconventional crystals and traditional crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16131v2-abstract-full').style.display = 'none'; document.getElementById('2407.16131v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11479">arXiv:2407.11479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11479">pdf</a>, <a href="https://arxiv.org/format/2407.11479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Glass Transition in Monolayers of Rough Colloidal Ellipsoids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jian Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xuan Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+N">Ning Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huaguang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+R">Ran Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zexin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11479v2-abstract-short" style="display: inline;"> Structure-dynamics correlation is one of the major ongoing debates in the glass transition, although a number of structural features have been found connected to the dynamic heterogeneity in different glass-forming colloidal systems. Here using colloidal experiments combined with coarse-grained molecular dynamics simulations, we investigate the glass transition in monolayers of rough colloidal ell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11479v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11479v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11479v2-abstract-full" style="display: none;"> Structure-dynamics correlation is one of the major ongoing debates in the glass transition, although a number of structural features have been found connected to the dynamic heterogeneity in different glass-forming colloidal systems. Here using colloidal experiments combined with coarse-grained molecular dynamics simulations, we investigate the glass transition in monolayers of rough colloidal ellipsoids. Compared with smooth colloidal ellipsoids, the surface roughness of ellipsoids is found to significantly change the nature of glass transition. In particular, we find that the surface roughness induced by coating only a few small hemispheres on the ellipsoids can eliminate the existence of orientational glass and the two-step glass transition found in monolayers of smooth ellipsoids. This is due to the surface roughness-induced coupling between the translational and rotational degrees of freedom in colloidal ellipsoids, which also destroys the structure-dynamics correlation found in glass-forming suspensions of colloidal ellipsoids. Our results not only suggest a new way of using surface roughness to manipulate the glass transition in colloidal systems, but also highlight the importance of detailed particle shape on the glass transition and structure-dynamics correlation in suspensions of anisotropic colloids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11479v2-abstract-full').style.display = 'none'; document.getElementById('2407.11479v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19791">arXiv:2405.19791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19791">pdf</a>, <a href="https://arxiv.org/format/2405.19791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.116903">10.1103/PhysRevLett.133.116903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trembling Motion of Exciton-Polaritons Close to the Rashba-Dresselhaus Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+W">Wen Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jie Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Huawen Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubo%2C+Y+G">Yuri G. Rubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liew%2C+T+C+H">Timothy C. H. Liew</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+R">Rui Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19791v1-abstract-short" style="display: inline;"> We report the experimental emulation of trembling quantum motion, or Zitterbewegung, of exciton polaritons in a perovskite microcavity at room temperature. By introducing liquid crystal molecules into the microcavity, we achieve spinor states with synthetic Rashba-Dresselhaus spin-orbit coupling and tunable energy splitting. Under a resonant excitation, the polariton fluid exhibits clear trembling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19791v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19791v1-abstract-full" style="display: none;"> We report the experimental emulation of trembling quantum motion, or Zitterbewegung, of exciton polaritons in a perovskite microcavity at room temperature. By introducing liquid crystal molecules into the microcavity, we achieve spinor states with synthetic Rashba-Dresselhaus spin-orbit coupling and tunable energy splitting. Under a resonant excitation, the polariton fluid exhibits clear trembling motion perpendicular to its flowing direction, accompanied by a unique spin pattern resembling interlocked fingers. Furthermore, leveraging on the sizable tunability of energy gaps by external electrical voltages, we observe the continuous transition of polariton Zitterbewegung from relativistic (small gaps) to non-relativistic (large gaps) regimes. Our findings pave the way for using exciton polaritons in the emulation of relativistic quantum physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19791v1-abstract-full').style.display = 'none'; document.getElementById('2405.19791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 116903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09120">arXiv:2404.09120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09120">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interfacial reaction boosts thermal conductance of room-temperature integrated semiconductor interfaces stable up to 1100 C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhe Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+X">Xiaoyang Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohno%2C+Y">Yutaka Ohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inoue%2C+K">Koji Inoue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagai%2C+Y">Yasusyohi Nagai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakaida%2C+Y">Yoshiki Sakaida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uratani%2C+H">Hiroki Uratani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shigekawa%2C+N">Naoteru Shigekawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianbo Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09120v1-abstract-short" style="display: inline;"> Overheating has emerged as a primary challenge constraining the reliability and performance of next-generation high-performance electronics, such as chiplets and (ultra)wide bandgap electronics. Advanced heterogeneous integration not only constitutes a pivotal technique for fabricating these electronics but also offers potential solutions for thermal management. This study presents the integration&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09120v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09120v1-abstract-full" style="display: none;"> Overheating has emerged as a primary challenge constraining the reliability and performance of next-generation high-performance electronics, such as chiplets and (ultra)wide bandgap electronics. Advanced heterogeneous integration not only constitutes a pivotal technique for fabricating these electronics but also offers potential solutions for thermal management. This study presents the integration of high thermal conductivity semiconductors, specifically, 3C-SiC thin films and diamond substrates, through a room-temperature surface-activated bonding technique. Notably, the thermal conductivity of the 3C-SiC films is among the highest for all semiconductor films which can be integrated near room temperature with similar thicknesses. Furthermore, following annealing, the interfaces between 3C-SiC and diamond demonstrate a remarkable enhancement in thermal boundary conductance (TBC), reaching up to approximately 300%, surpassing all other grown and bonded heterointerfaces. This enhancement is attributed to interfacial reactions, specifically the transformation of amorphous silicon into SiC upon interaction with diamond, which is further corroborated by picosecond ultrasonics measurements. Subsequent to annealing at 1100 C, the achieved TBC (150 MW/m2-K) is record-high among all bonded diamond interfaces. Additionally, the visualization of large-area TBC, facilitated by femtosecond laser-based time-domain thermoreflectance measurements, shows the uniformity of the interfaces which are capable of withstanding temperatures as high as 1100 C. Our research marks a significant advancement in the realm of thermally conductive heterogeneous integration, which is promising for enhanced cooling of next-generation electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09120v1-abstract-full').style.display = 'none'; document.getElementById('2404.09120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16195">arXiv:2403.16195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16195">pdf</a>, <a href="https://arxiv.org/format/2403.16195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ideal spin-polarized Weyl-half-semimetal with a single pair of Weyl points in half-Heusler compounds XCrTe (X=K, Rb) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongshuang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Jin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zeying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiashuo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Liying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S+A">Shengyuan A. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16195v1-abstract-short" style="display: inline;"> Realizing ideal Weyl semimetal state with a single pair of Weyl points has been a long-sought goal in the field of topological semimetals. Here, we reveal such a state in the Cr-based half-Heusler compounds XCrTe (X=K, Rb). We show that these materials have a half metal ground state, with Fermi level crossing only one spin channel. Importantly, the Fermi surface is clean, consisting of the minimal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16195v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16195v1-abstract-full" style="display: none;"> Realizing ideal Weyl semimetal state with a single pair of Weyl points has been a long-sought goal in the field of topological semimetals. Here, we reveal such a state in the Cr-based half-Heusler compounds XCrTe (X=K, Rb). We show that these materials have a half metal ground state, with Fermi level crossing only one spin channel. Importantly, the Fermi surface is clean, consisting of the minimal number (i.e., a single pair) of spin-polarized Weyl points, so the state represents an ideal Weyl half semimetal. We show that the locations of the two Weyl points and the associated Chern vector can be flexibly tuned by rotating the magnetization vector. The minimal surface Fermi arc pattern and its contribution to anomalous Hall transport are discussed. Our finding offers an ideal material platform for exploring magnetic Weyl fermions, which will also facilitate the interplay between Weyl physics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16195v1-abstract-full').style.display = 'none'; document.getElementById('2403.16195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04458">arXiv:2403.04458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04458">pdf</a>, <a href="https://arxiv.org/ps/2403.04458">ps</a>, <a href="https://arxiv.org/format/2403.04458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Extended Time-Dependent Density Functional Theory for Multi-Body Densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiong-Hang Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tian-Xing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">D. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zheng-Mao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04458v1-abstract-short" style="display: inline;"> Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, van Leeuwen&#39;s theorem [Phys. Rev. Lett. 82, 3863 (1999)] guarantees how to construct a unique potential with the same one-body density evolution. Here we extend van Leeuwen&#39;s theorem by exploring truncation criteria in BBG&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04458v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04458v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04458v1-abstract-full" style="display: none;"> Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, van Leeuwen&#39;s theorem [Phys. Rev. Lett. 82, 3863 (1999)] guarantees how to construct a unique potential with the same one-body density evolution. Here we extend van Leeuwen&#39;s theorem by exploring truncation criteria in BBGKY-hierarchy. Our generalized theorem demonstrates the existence of a unique non-local potential to accurately reconstruct the multi-body density evolution in binary interacting systems. Under non-stringent conditions, truncation of the BBGKY-hierarchy equations aligns with the behavior of multi-body density evolution, and maintains consistency in the reduced equations. As one of applications within the extended TDDFT supported by our theorem, multiple excitation energy can be typically solved as the eigenvalue of a generalized Casida&#39;s equation. The extended TDDFT provides an accurate and first-principle framework capable of describing the kinetic processes of correlated system, including strongly coupled particle transport, multiple excitation and ionization processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04458v1-abstract-full').style.display = 'none'; document.getElementById('2403.04458v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04136">arXiv:2403.04136</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04136">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Optically Probing Unconventional Superconductivity in Atomically Thin Bi$_2$Sr$_2$Ca$_{0.92}$Y$_{0.08}$Cu$_2$O$_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunhuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingda Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dadap%2C+J+I">Jerry I Dadap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awan%2C+K+M">Kashif Masud Awan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">Martin Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">Martin Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Ziliang Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04136v1-abstract-short" style="display: inline;"> Atomically thin cuprates exhibiting a superconducting phase transition temperature similar to bulk have recently been realized, although the device fabrication remains a challenge and limits the potential for many novel studies and applications. Here we use an optical pump-probe approach to noninvasively study the unconventional superconductivity in atomically thin Bi$_2$Sr$_2$Ca$_{0.92}$Y&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04136v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04136v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04136v1-abstract-full" style="display: none;"> Atomically thin cuprates exhibiting a superconducting phase transition temperature similar to bulk have recently been realized, although the device fabrication remains a challenge and limits the potential for many novel studies and applications. Here we use an optical pump-probe approach to noninvasively study the unconventional superconductivity in atomically thin Bi$_2$Sr$_2$Ca$_{0.92}$Y$_{0.08}$Cu$_2$O$_{8+未}$ (Y-Bi2212). Apart from finding an optical response due to the superconducting phase transition that is similar to bulk Y-Bi2212, we observe that the sign and amplitude of the pump-probe signal in the atomically thin flake vary significantly in different dielectric environments depending on the nature of the optical excitation. By exploiting the spatial resolution of the optical probe, we uncover the exceptional sensitivity of monolayer Y-Bi2212 to the environment. Our results provide the first optical evidence for the intralayer nature of the superconducting condensate in Bi2212, and highlight the role of double-sided encapsulation in preserving superconductivity in atomically thin cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04136v1-abstract-full').style.display = 'none'; document.getElementById('2403.04136v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Nano Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02202">arXiv:2402.02202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02202">pdf</a>, <a href="https://arxiv.org/format/2402.02202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Three-body scattering area for particles with infinite or zero scattering length in two dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Junjie Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+S">Shina Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02202v2-abstract-short" style="display: inline;"> We derive the asymptotic expansions of the wave function of three particles having equal mass with finite-range interactions and infinite or zero two-dimensional scattering length colliding at zero energy and zero orbital angular momentum, from which a three-body parameter $D$ is defined. The dimension of $D$ is length squared, and we call $D$ three-body scattering area. We find that the ground st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02202v2-abstract-full').style.display = 'inline'; document.getElementById('2402.02202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02202v2-abstract-full" style="display: none;"> We derive the asymptotic expansions of the wave function of three particles having equal mass with finite-range interactions and infinite or zero two-dimensional scattering length colliding at zero energy and zero orbital angular momentum, from which a three-body parameter $D$ is defined. The dimension of $D$ is length squared, and we call $D$ three-body scattering area. We find that the ground state energy per particle of a zero-temperature dilute Bose gas with these interactions is approximately $\frac{\hbar^2 D }{6m}蟻^2$, where $蟻$ is the number density of the bosons, $m$ is the mass of each boson, and $\hbar$ is Planck&#39;s constant over $2蟺$. Such a Bose gas is stable at $D\geq 0$ in the thermodynamic limit, and metastable at $D&lt;0$ in the harmonic trap if the number of bosons is less than $N_{cr}\approx 3.6413 \sqrt{\frac{\hbar}{m蠅|D|}}$, where $蠅$ is the angular frequency of the harmonic trap. If the two-body interaction supports bound states, $D$ typically acquires a negative imaginary part, and we find the relation between this imaginary part and the amplitudes of the pair-boson production processes. We derive a formula for the three-body recombination rate constant of the many-boson system in terms of the imaginary part of $D$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02202v2-abstract-full').style.display = 'none'; document.getElementById('2402.02202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00530">arXiv:2401.00530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00530">pdf</a>, <a href="https://arxiv.org/format/2401.00530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Probing topological phase transition with non-Hermitian perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jingcheng Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+C">Chen Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00530v1-abstract-short" style="display: inline;"> We demonstrate that non-Hermitian perturbations can probe topological phase transitions and unambiguously detect non-Abelian zero modes. We show that under carefully designed non-Hermitian perturbations, the Loschmidt echo(LE) decays into 1/N where N is the ground state degeneracy in the topological non-trivial phase, while it approaches 1 in the trivial phase. This distinction is robust against s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00530v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00530v1-abstract-full" style="display: none;"> We demonstrate that non-Hermitian perturbations can probe topological phase transitions and unambiguously detect non-Abelian zero modes. We show that under carefully designed non-Hermitian perturbations, the Loschmidt echo(LE) decays into 1/N where N is the ground state degeneracy in the topological non-trivial phase, while it approaches 1 in the trivial phase. This distinction is robust against small parameter deviations in the non-Hermitian perturbations. We further study four well-known models that support Majorana or parafermionic zero modes. By calculating their dynamical responses to specific non-Hermitian perturbations, we prove that the steady-state LE can indeed differentiate between different phases. This method avoids the ambiguity introduced by trivial zero-energy states and thus provides an alternative and promising way to demonstrate the emergence of topologically non-trivial phases. The experimental realizations of non-Hermitian perturbations are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00530v1-abstract-full').style.display = 'none'; document.getElementById('2401.00530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12060">arXiv:2312.12060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12060">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-dependent localization of helical edge states in a non-Hermitian phononic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Junpeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+R">Riyi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jialuo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+M">Manzhu Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiuyang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+W">Weiyin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xueqin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengyou Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12060v1-abstract-short" style="display: inline;"> As a distinctive feature unique to non-Hermitian systems, non-Hermitian skin effect displays fruitful exotic phenomena in one or higher dimensions, especially when conventional topological phases are involved. Among them, hybrid skin-topological effect is theoretically proposed recently, which exhibits anomalous localization of topological boundary states at lower-dimensional boundaries accompanie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12060v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12060v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12060v1-abstract-full" style="display: none;"> As a distinctive feature unique to non-Hermitian systems, non-Hermitian skin effect displays fruitful exotic phenomena in one or higher dimensions, especially when conventional topological phases are involved. Among them, hybrid skin-topological effect is theoretically proposed recently, which exhibits anomalous localization of topological boundary states at lower-dimensional boundaries accompanied by extended bulk states. Here we experimentally realize the hybrid skin-topological effect in a non-Hermitian phononic crystal. The phononic crystal, before tuning to be non-Hermitian, is an ideal acoustic realization of the Kane-Mele model, which hosts gapless helical edge states at the boundaries. By introducing a staggered distribution of loss, the spin-dependent edge modes pile up to opposite corners, leading to a direct observation of the spin-dependent hybrid skin-topological effect. Our work highlights the interplay between topology and non-Hermiticity and opens new routes to non-Hermitian wave manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12060v1-abstract-full').style.display = 'none'; document.getElementById('2312.12060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12126">arXiv:2311.12126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.12126">pdf</a>, <a href="https://arxiv.org/format/2311.12126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Non-volatile electrical polarization switching via domain wall release in 3R-MoS$_2$ bilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingda Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunhuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dadap%2C+J+I">Jerry I. Dadap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Ziliang Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12126v1-abstract-short" style="display: inline;"> Understanding the nature of sliding ferroelectricity is of fundamental importance for the discovery and application of two-dimensional ferroelectric materials. In this work, we investigate the phenomenon of switchable polarization in a bilayer MoS$_2$ with a natural rhombohedral stacking, where the spontaneous polarization is coupled with excitonic effects through an asymmetric interlayer coupling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12126v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12126v1-abstract-full" style="display: none;"> Understanding the nature of sliding ferroelectricity is of fundamental importance for the discovery and application of two-dimensional ferroelectric materials. In this work, we investigate the phenomenon of switchable polarization in a bilayer MoS$_2$ with a natural rhombohedral stacking, where the spontaneous polarization is coupled with excitonic effects through an asymmetric interlayer coupling. Using optical spectroscopy and imaging techniques, we observe how a released domain wall switches the polarization of a large single domain. Our results highlight the importance of domain walls in the polarization switching of non-twisted rhombohedral transition metal dichalcogenides and open new opportunities for the non-volatile control of their optical response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12126v1-abstract-full').style.display = 'none'; document.getElementById('2311.12126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12998">arXiv:2310.12998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12998">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtsust.2023.100574">10.1016/j.mtsust.2023.100574 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined Experimental and Theoretical Studies on Iodine Capture of Zr-based Metal-Organic Frameworks: Effect of N-functionalization and Adsorption Mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jie Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Haoyi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiaomei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+H">Huizhao Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+X">Xiangfei Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+G">Guangcun Shan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12998v1-abstract-short" style="display: inline;"> The potential leakage of nuclear waste, especially radioiodine, is a major safety concerning issue around the world. To remove radioiodine from nuclear waste efficiently, there is an urgent demand for adsorbents that possess both high stability and strong adsorption affinity for environmental remediation. Herein, two Zr-based metal-organic frameworks (Zr-MOFs) and their N-functionalized analogues&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12998v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12998v1-abstract-full" style="display: none;"> The potential leakage of nuclear waste, especially radioiodine, is a major safety concerning issue around the world. To remove radioiodine from nuclear waste efficiently, there is an urgent demand for adsorbents that possess both high stability and strong adsorption affinity for environmental remediation. Herein, two Zr-based metal-organic frameworks (Zr-MOFs) and their N-functionalized analogues have been synthesized and researched for iodine adsorption in both vapours and solutions. It was found that Zr-MOFs with N-enriched ligands (e.g., pyridine and amino) exhibited the faster iodine adsorption rate and the higher iodine uptake amount (e.g., reaching adsorption equilibrium within 4 hours with the removal rate of above 85% for iodine solution adsorption) than their unfunctionalized counterparts (UiO-66 and UiO-67). The critical role played by N-enriched groups in enhancing iodine adsorption has been revealed through versatile model fittings, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy characterizations, as well as density functional theory (DFT) calculations. Compared to those in amino-group, the N-atoms in pyridine-groups showed a deeper affinity towards iodine molecules. Remarkably, the N-enriched UiOs adsorbents also exhibited good recyclability, especially UiO-66-PYDC and UiO-67-NH2 could maintain the removal efficiency of 89.05% and 85.49% after four adsorption-desorption recycling tests. With the strong iodine uptake affinity and outstanding regeneration performance, this work has systematically investigated the impact of N-functionalization on the enhanced performance for iodine capture by using the N-enriched UiO MOFs as promising adsorbents, providing an insightful guideline into the physical chemistry of adsorption mechanism behind the radioiodine capture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12998v1-abstract-full').style.display = 'none'; document.getElementById('2310.12998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, in press, Materials Today Sustainability Available online 4 October 2023, 100574</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Sustainability, 2023, 100574 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10916">arXiv:2310.10916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10916">pdf</a>, <a href="https://arxiv.org/ps/2310.10916">ps</a>, <a href="https://arxiv.org/format/2310.10916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Low energy electrodynamics and a hidden Fermi liquid in the heavy-fermion CeCoIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L+Y">L. Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tagay%2C+Z">Zhenisbek Tagay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiahao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duong%2C+K">Khoan Duong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K">Kyle Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10916v1-abstract-short" style="display: inline;"> We present time-domain THz spectroscopy of thin films of the heavy-fermion superconductor CeCoIn$_5$. The complex optical conductivity is analyzed through a Drude model and extended Drude model analysis. Below the $\approx$ 40 K Kondo coherence temperature, a narrow Drude-like peak forms, as the result of the $f$ orbital - conduction electron hybridization and the formation of the heavy-fermion st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10916v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10916v1-abstract-full" style="display: none;"> We present time-domain THz spectroscopy of thin films of the heavy-fermion superconductor CeCoIn$_5$. The complex optical conductivity is analyzed through a Drude model and extended Drude model analysis. Below the $\approx$ 40 K Kondo coherence temperature, a narrow Drude-like peak forms, as the result of the $f$ orbital - conduction electron hybridization and the formation of the heavy-fermion state. Via an extended Drude model analysis, we measure the frequency-dependent scattering rate ($1/ 蟿$) and effective mass ($m^*/m_b$). This scattering rate shows a linear dependence on temperature, which matches the dependence of the resistivity as expected. Nonetheless, the width of the low-frequency Drude peak (characterized by a {\it renormalized} quasiparticle scattering rate ($1 / 蟿^* = m_b/ m^* 蟿$) does show a $T^2$ dependence giving evidence for a hidden Fermi state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10916v1-abstract-full').style.display = 'none'; document.getElementById('2310.10916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03116">arXiv:2309.03116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03116">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Strong magnon-magnon coupling in an ultralow damping all-magnetic-insulator heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jingming Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xuezhao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheung%2C+S+K">Shun Kong Cheung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zheyu Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ruizi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christy%2C+A">Andrew Christy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zehan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nugraha%2C+F+P">Ferris Prima Nugraha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi-Xiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leung%2C+C+W">Chi Wah Leung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03116v1-abstract-short" style="display: inline;"> Magnetic insulators such as yttrium iron garnets (YIGs) are of paramount importance for spin-wave or magnonic devices as their ultralow damping enables ultralow power dissipation that is free of Joule heating, exotic magnon quantum state, and coherent coupling to other wave excitations. Magnetic insulator heterostructures bestow superior structural and magnetic properties and house immense design&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03116v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03116v1-abstract-full" style="display: none;"> Magnetic insulators such as yttrium iron garnets (YIGs) are of paramount importance for spin-wave or magnonic devices as their ultralow damping enables ultralow power dissipation that is free of Joule heating, exotic magnon quantum state, and coherent coupling to other wave excitations. Magnetic insulator heterostructures bestow superior structural and magnetic properties and house immense design space thanks to the strong and engineerable exchange interaction between individual layers. To fully unleash their potential, realizing low damping and strong exchange coupling simultaneously is critical, which often requires high quality interface. Here, we show that such a demand is realized in an all-insulator thulium iron garnet (TmIG)/YIG bilayer system. The ultralow dissipation rates in both YIG and TmIG, along with their significant spin-spin interaction at the interface, enable strong and coherent magnon-magnon coupling with a benchmarking cooperativity value larger than the conventional ferromagnetic metal-based heterostructures. The coupling strength can be tuned by varying the magnetic insulator layer thickness and magnon modes, which is consistent with analytical calculations and micromagnetic simulations. Our results demonstrate TmIG/YIG as a novel platform for investigating hybrid magnonic phenomena and open opportunities in magnon devices comprising all-insulator heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03116v1-abstract-full').style.display = 'none'; document.getElementById('2309.03116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 18 figures, and 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12825">arXiv:2307.12825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12825">pdf</a>, <a href="https://arxiv.org/format/2307.12825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coherent Dynamics of Charge Carriers in 纬-InSe Revealed by Ultrafast Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jianwei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiayu Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Qixu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+M">Menghui Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jinquan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Haitao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Q">Qinghong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+H">Hong-Guang Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jha%2C+A">Ajay Jha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenrong Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12825v1-abstract-short" style="display: inline;"> For highly efficient ultrathin solar cells, layered indium selenide (InSe), a van der Waals solid, has shown a great promise. In this paper, we study the coherent dynamics of charge carriers generation in 纬-InSe single crystals. We employ ultrafast transient absorption spectroscopy to examine the dynamics of hot electrons after resonant photoexcitation. To study the effect of excess kinetic energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12825v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12825v1-abstract-full" style="display: none;"> For highly efficient ultrathin solar cells, layered indium selenide (InSe), a van der Waals solid, has shown a great promise. In this paper, we study the coherent dynamics of charge carriers generation in 纬-InSe single crystals. We employ ultrafast transient absorption spectroscopy to examine the dynamics of hot electrons after resonant photoexcitation. To study the effect of excess kinetic energy of electrons after creating A exciton (VB1 to CB transition), we excite the sample with broadband pulses centered at 600, 650, 700 and 750 nm, respectively. We analyze the relaxation and recombination dynamics in 纬-InSe by global fitting approach. Five decay associated spectra with their associated lifetimes are obtained, which have been assigned to intraband vibrational relaxation and interband recombination processes. We extract characteristic carrier thermalization times from 1 to 10 ps. To examine the coherent vibrations accompanying intraband relaxation dynamics, we analyze the kinetics by fitting to exponential functions and the obtained residuals are further processed for vibrational analysis. A few key phonon coherences are resolved and ab-initio quantum calculations reveal the nature of the associated phonons. The wavelet analysis is employed to study the time evolution of the observed coherences, which show that the low-frequency coherences last for more than 5 ps. Associated calculations reveal that the contribution of the intralayer phonon modes is the key determining factor for the scattering between free electrons and lattice. Our results provide fundamental insights into the photophysics in InSe and help to unravel their potential for high-performance optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12825v1-abstract-full').style.display = 'none'; document.getElementById('2307.12825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12595">arXiv:2306.12595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.12595">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Shear-strain-induced two-dimensional slip avalanches in rhombohedral MoS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunhuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Sean Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dadap%2C+J+I">Jerry I. Dadap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rottler%2C+J">Joerg Rottler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Ziliang Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12595v1-abstract-short" style="display: inline;"> Slip avalanches are ubiquitous phenomena occurring in 3D materials under shear strain and their study contributes immensely to our understanding of plastic deformation, fragmentation, and earthquakes. So far, little is known about the role of shear strain in 2D materials. Here we show some evidence of two-dimensional slip avalanches in exfoliated rhombohedral MoS2, triggered by shear strain near t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12595v1-abstract-full').style.display = 'inline'; document.getElementById('2306.12595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12595v1-abstract-full" style="display: none;"> Slip avalanches are ubiquitous phenomena occurring in 3D materials under shear strain and their study contributes immensely to our understanding of plastic deformation, fragmentation, and earthquakes. So far, little is known about the role of shear strain in 2D materials. Here we show some evidence of two-dimensional slip avalanches in exfoliated rhombohedral MoS2, triggered by shear strain near the threshold level. Utilizing interfacial polarization in 3R-MoS2, we directly probe the stacking order in multilayer flakes and discover a wide variety of polarization domains with sizes following a power-law distribution. These findings suggest slip avalanches can occur during the exfoliation of 2D materials, and the stacking orders can be changed via shear strain. Our observation has far-reaching implications for developing new materials and technologies, where precise control over the atomic structure of these materials is essential for optimizing their properties as well as for our understanding of fundamental physical phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12595v1-abstract-full').style.display = 'none'; document.getElementById('2306.12595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Nano Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11778">arXiv:2304.11778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.11778">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202302984">10.1002/adfm.202302984 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of colossal topological Hall effect in noncoplanar ferromagnet Cr5Te6 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yequan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yingmei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+R">Renju Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+W">Wei Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ruxin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+W">Wenzhuo Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">Wenxuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhongqiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yongsheng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+F">Fengqi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jian Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+B">Binghui Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuefeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11778v1-abstract-short" style="display: inline;"> The topological Hall effect (THE) is critical to the exploration of the spin chirality generated by the real-space Berry curvature, which has attracted worldwide attention for its prospective applications in spintronic devices. However, the prominent THE remains elusive at room temperature, which severely restricts the practical integration of chiral spin textures. Here, we show a colossal intrins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11778v1-abstract-full').style.display = 'inline'; document.getElementById('2304.11778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11778v1-abstract-full" style="display: none;"> The topological Hall effect (THE) is critical to the exploration of the spin chirality generated by the real-space Berry curvature, which has attracted worldwide attention for its prospective applications in spintronic devices. However, the prominent THE remains elusive at room temperature, which severely restricts the practical integration of chiral spin textures. Here, we show a colossal intrinsic THE in large-area ferromagnet Cr5Te6 thin films epitaxially grown by pulsed laser deposition. Such a THE can be maintained until 270 K, which is attributed to the field-stimulated noncoplanar spin textures induced by the interaction of the in-plane ferromagnet and antiferromagnet infrastructures. Our first-principles calculations further verify the considerable Dzyaloshinskii-Moriya interaction in Cr5Te6. This work not only paves the way for robust chiral spin textures near room temperature in large-area low-dimensional ferromagnetic films for practical applications, but also facilitates the development of high-density and dissipationless spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11778v1-abstract-full').style.display = 'none'; document.getElementById('2304.11778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Functional Materials 33, 2302984 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01939">arXiv:2304.01939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01939">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene Heterointerfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiayun Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+K">Ke Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+G">Guanyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riffle%2C+J+V">Jake V. Riffle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrei%2C+C">Carmen Andrei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chengye Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Furkan%2C+T">Turker Furkan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajabpour%2C+S">Siavash Rajabpour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakar%2C+R+R">Rajiv Ramanujam Prabhakar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+J+A">Joshua A. Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vasquez%2C+M+R">Magdaleno R. Vasquez Jr.</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trinh%2C+Q+T">Quang Thang Trinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ager%2C+J+W">Joel W. Ager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salmeron%2C+M">Miquel Salmeron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aloni%2C+S">Shaul Aloni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caldwell%2C+J+D">Joshua D. Caldwell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hollen%2C+S+M">Shawna M. Hollen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bechtel%2C+H+A">Hans A. Bechtel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bassim%2C+N">Nabil Bassim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sherburne%2C+M+P">Matthew P. Sherburne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balushi%2C+Z+Y+A">Zakaria Y. Al Balushi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01939v1-abstract-short" style="display: inline;"> Intercalation is a process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on intercalating metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains highly unexplored. In this work, we present a new mechanism for intercalating large molecules thr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01939v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01939v1-abstract-full" style="display: none;"> Intercalation is a process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on intercalating metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains highly unexplored. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene heterointerface using various techniques. Density functional theory (DFT) corroborate the experimental results and reveal the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from pre-dissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This study is a significant milestone in advancing our understanding of intercalation routes of large molecules via the basal plane of graphene, as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01939v1-abstract-full').style.display = 'none'; document.getElementById('2304.01939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01525">arXiv:2302.01525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01525">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0135138">10.1063/5.0135138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the Interlayer Microstructure and Residual Stress of Buffer-Free Direct Bonding GaN/Si Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+S">Shun Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+B">Bo Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yuxia Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+R">Rui Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Heng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P">Pingheng Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shigekawa%2C+N">Naoteru Shigekawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianbo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuball%2C+M">Martin Kuball</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01525v1-abstract-short" style="display: inline;"> The direct integration of GaN with Si can boost great potential for low-cost, large-scale, and high-power device applications. However, it is still challengeable to directly grow GaN on Si without using thick strain relief buffer layers due to their large lattice and thermal-expansion-coefficient mismatches. In this work, a GaN/Si heterointerface without any buffer layer is successfully fabricated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01525v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01525v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01525v1-abstract-full" style="display: none;"> The direct integration of GaN with Si can boost great potential for low-cost, large-scale, and high-power device applications. However, it is still challengeable to directly grow GaN on Si without using thick strain relief buffer layers due to their large lattice and thermal-expansion-coefficient mismatches. In this work, a GaN/Si heterointerface without any buffer layer is successfully fabricated at room temperature via surface activated bonding (SAB). The residual stress states and interfacial microstructures of GaN/Si heterostructures were systematically investigated through micro-Raman spectroscopy and transmission electron microscopy. Compared to the large compressive stress that existed in GaN layers grown-on-Si by MOCVD, a significantly relaxed and uniform small tensile stress was observed in GaN layers bonded-to-Si by SAB; this is mainly ascribed to the amorphous layer formed at the bonding interface. In addition, the interfacial microstructure and stress states of bonded GaN/Si heterointerfaces was found can be significantly tuned by appropriate thermal annealing. This work moves an important step forward directly integrating GaN to the present Si CMOS technology with high quality thin interfaces, and brings great promises for wafer-scale low-cost fabrication of GaN electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01525v1-abstract-full').style.display = 'none'; document.getElementById('2302.01525v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05741">arXiv:2212.05741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.05741">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c03973">10.1021/acs.nanolett.2c03973 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gradient-induced Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05741v1-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI) that arises in the magnetic systems with broken inversion symmetry plays an essential role in topological spintronics. Here, by means of atomistic spin calculations, we study an intriguing type of DMI (g-DMI) that emerges in the films with composition gradient. We show that both the strength and chirality of g-DMI can be controlled by the composition gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05741v1-abstract-full').style.display = 'inline'; document.getElementById('2212.05741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05741v1-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI) that arises in the magnetic systems with broken inversion symmetry plays an essential role in topological spintronics. Here, by means of atomistic spin calculations, we study an intriguing type of DMI (g-DMI) that emerges in the films with composition gradient. We show that both the strength and chirality of g-DMI can be controlled by the composition gradient even in the disordered system. The layer-resolved analysis of g-DMI unveils its additive nature inside the bulk layers and clarifies the linear thickness dependence of g-DMI observed in experiments. Furthermore, we demonstrate the g-DMI induced chiral magnetic structures, such as spin spirals and skyrmions, and the g-DMI driven field-free spin-orbit torque (SOT) switching, both of which are crucial towards practical device application. These results elucidate the underlying mechanisms of g-DMI and open up a new way to engineer the topological magnetic textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05741v1-abstract-full').style.display = 'none'; document.getElementById('2212.05741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in production in Nano Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06787">arXiv:2211.06787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06787">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Light Induced Surface Tension Gradients for Hierarchical Assembly of Particles from Liquid Metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiayun Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balushi%2C+Z+Y+A">Zakaria Y. Al Balushi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06787v1-abstract-short" style="display: inline;"> Achieving control over the motion of dissolved particles in liquid metals is of importance for the meticulous realization of hierarchical particle assemblies in a variety of nanofabrication processes. Brownian forces can impede the motion of such particles, impacting the degree of perfection that can be realized in assembled structures. Here we show that light induced Marangoni flow in liquid meta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06787v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06787v1-abstract-full" style="display: none;"> Achieving control over the motion of dissolved particles in liquid metals is of importance for the meticulous realization of hierarchical particle assemblies in a variety of nanofabrication processes. Brownian forces can impede the motion of such particles, impacting the degree of perfection that can be realized in assembled structures. Here we show that light induced Marangoni flow in liquid metals (i.e., liquid-gallium) with Laguerre-gaussian (LG) lasers as heating sources, is an effective approach to overcome Brownian forces on particles, giving rise to predictable assemblies with high degree of order. We show that by carefully engineering surface tension gradients in liquid-gallium using non-gaussian LG lasers, the Marangoni and convective flow that develops in the fluid drives the trajectory of randomly dispersed particles to assemble into 100 um wide ring-shaped particle assemblies. Careful control over the parameters of the LG laser (i.e., laser mode, spot size, and intensity of the electric field) can tune the temperature and fluid dynamics of the liquid-gallium as well as the balance of forces on the particle. This in turn can tune the structure of the ring-shaped particle assembly with a high degree of fidelity. The use of light to control the motion of particles in liquid metals represents a tunable and rapidly reconfigurable approach to spatially design surface tension gradients in fluids for more complex assembly of particles and small-scale solutes. This work can be extended to a variety of liquid-metals, complementary to what has been realized in particle assembly out of ferrofluids using magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06787v1-abstract-full').style.display = 'none'; document.getElementById('2211.06787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06746">arXiv:2211.06746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06746">pdf</a>, <a href="https://arxiv.org/format/2211.06746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast response of spontaneous photovoltaic effect in 3R-MoS2-based heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingda Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+M">Max Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ostroumov%2C+E">Evgeny Ostroumov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunhuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dadap%2C+J+I">Jerry I. Dadap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D">David Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Ziliang Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06746v1-abstract-short" style="display: inline;"> Rhombohedrally stacked MoS2 has been shown to exhibit spontaneous polarization down to the bilayer limit and can sustain a strong depolarization field when sandwiched between graphene. Such a field gives rise to a spontaneous photovoltaic effect without needing any p-n junction. In this work, we show the photovoltaic effect has an external quantum efficiency of 10\% for devices with only two atomi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06746v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06746v1-abstract-full" style="display: none;"> Rhombohedrally stacked MoS2 has been shown to exhibit spontaneous polarization down to the bilayer limit and can sustain a strong depolarization field when sandwiched between graphene. Such a field gives rise to a spontaneous photovoltaic effect without needing any p-n junction. In this work, we show the photovoltaic effect has an external quantum efficiency of 10\% for devices with only two atomic layers of MoS2 at low temperatures, and identify a picosecond-fast photocurrent response, which translates to an intrinsic device bandwidth at ~ 100-GHz level. To this end, we have developed a non-degenerate pump-probe photocurrent spectroscopy technique to deconvolute the thermal and charge-transfer processes, thus successfully revealing the multi-component nature of the photocurrent dynamics. The fast component approaches the limit of the charge-transfer speed at the graphene-MoS2 interface. The remarkable efficiency and ultrafast photoresponse in the graphene-3R-MoS2 devices support the use of ferroelectric van der Waals materials for future high-performance optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06746v1-abstract-full').style.display = 'none'; document.getElementById('2211.06746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Science Advances</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06775">arXiv:2210.06775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06775">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/3/037502">10.1088/0256-307X/40/3/037502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum anomalous Hall effects controlled by chiral domain walls </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yingmei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+X">Xiong Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06775v1-abstract-short" style="display: inline;"> We report the interplay between two different topological phases in condensed matter physics, the magnetic chiral domain wall (DW), and the quantum anomalous Hall (QAH) effect. We show that the chiral DW driven by Dzyaloshinskii-Moriya interaction (DMI) can divide the uniform domain into several zones where the neighboring zone possesses opposite quantized Hall conductance. The separated domain wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06775v1-abstract-full').style.display = 'inline'; document.getElementById('2210.06775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06775v1-abstract-full" style="display: none;"> We report the interplay between two different topological phases in condensed matter physics, the magnetic chiral domain wall (DW), and the quantum anomalous Hall (QAH) effect. We show that the chiral DW driven by Dzyaloshinskii-Moriya interaction (DMI) can divide the uniform domain into several zones where the neighboring zone possesses opposite quantized Hall conductance. The separated domain with a chiral edge state (CES) can be continuously modified by external magnetic field-induced domain expansion and thermal fluctuation, which gives rise to the reconfigurable QAH effect. More interestingly, we show that the position of CES can be tuned by spin current-driven chiral DW motion. Several two-dimensional magnets with high Curie temperatures and large topological band gaps are proposed for realizing these phenomena. Our work thus reveals the possibility of chiral DW controllable QAH effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06775v1-abstract-full').style.display = 'none'; document.getElementById('2210.06775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11399">arXiv:2209.11399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11399">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.054426">10.1103/PhysRevB.106.054426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dzyaloshinskii-Moriya interaction and magnetic skyrmions induced by curvature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ga%2C+Y">Yonglong Ga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dongxing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yingmei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Liming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11399v1-abstract-short" style="display: inline;"> Realizing sizeable Dzyaloshinskii-Moriya interaction (DMI) in intrinsic two-dimensional (2D) magnets without any manipulation will greatly enrich potential application of spintronics devices. The simplest and most desirable situation should be 2D magnets with intrinsic DMI and intrinsic chiral spin textures. Here, we propose to realize DMI by designing periodic ripple structures with different cur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11399v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11399v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11399v1-abstract-full" style="display: none;"> Realizing sizeable Dzyaloshinskii-Moriya interaction (DMI) in intrinsic two-dimensional (2D) magnets without any manipulation will greatly enrich potential application of spintronics devices. The simplest and most desirable situation should be 2D magnets with intrinsic DMI and intrinsic chiral spin textures. Here, we propose to realize DMI by designing periodic ripple structures with different curvatures in low-dimensional magnets and demonstrate the concept in both one-dimensional (1D) CrBr2 and two-dimensional (2D) MnSe2 magnets by using first-principles calculations. We find that DMIs in curved CrBr2 and MnSe2 can be efficiently controlled by varying the size of curvature c, where c is defined as the ratio between the height h and the length l of curved structure. Moreover, we unveil that the dependence of first-principles calculated DMI on size of curvature c can be well described by the three-site Fert-L茅vy model. At last, we uncover that field-free magnetic skyrmions can be realized in curved MnSe2 by using atomistic spin model simulations based on first-principles calculated magnetic parameters. The work will open a new avenue for inducing DMI and chiral spin textures in simple 2D magnets via curvature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11399v1-abstract-full').style.display = 'none'; document.getElementById('2209.11399v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published on Physical Review B 106, 054426</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, 054426 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11394">arXiv:2209.11394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ac91df">10.1088/2053-1583/ac91df <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity controlled chiral spin textures and anomalous valley Hall effect in the Janus magnet-based multiferroic heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yingmei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ga%2C+Y">Yonglong Ga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11394v1-abstract-short" style="display: inline;"> Realizing effective manipulation and explicit identification of topological spin textures are two crucial ingredients to make them as information carrier in spintronic devices with high storage density, high data handling speed and low energy consumption. Electric-field manipulation of magnetism has been achieved as a dissipationless method compared with traditional regulations. However, the magne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11394v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11394v1-abstract-full" style="display: none;"> Realizing effective manipulation and explicit identification of topological spin textures are two crucial ingredients to make them as information carrier in spintronic devices with high storage density, high data handling speed and low energy consumption. Electric-field manipulation of magnetism has been achieved as a dissipationless method compared with traditional regulations. However, the magnetization is normally insensitive to the electric field since it does not break time-reversal symmetry directly, and distribution of topological magnetic quasiparticles is difficult to maintain due to the drift arising from external fluctuation, which could result in ambiguous recognition between quasiparticles and uniform magnetic background. Here, we demonstrate that electric polarization-driven skyrmionic and uniform ferromagnetic states can be easily and explicitly distinguished by transverse voltage arising from anomalous valley Hall effect in the Janus magnet-based multiferroic heterostructure LaClBr/In2Se3. Our work provides an alternative approach for data encoding, in which data are encoded by combing topological spin textures with detectable electronic transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11394v1-abstract-full').style.display = 'none'; document.getElementById('2209.11394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in 2D materials, 9, 045030 (2022)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D materials 9, 045030 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06966">arXiv:2209.06966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06966">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Optically probing the asymmetric interlayer coupling in rhombohedral-stacked MoS2 bilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingda Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dadap%2C+J+I">Jerry I Dadap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Ziliang Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06966v1-abstract-short" style="display: inline;"> The interlayer coupling is emerging as a new parameter for tuning the physical properties of two-dimensional (2D) van der Waals materials. When two identical semiconductor monolayers are stacked with a twist angle, the periodic interlayer coupling modulation due to the moir茅 superlattice may endow exotic physical phenomena, such as moir茅 excitons and correlated electronic phases. To gain insight i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06966v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06966v1-abstract-full" style="display: none;"> The interlayer coupling is emerging as a new parameter for tuning the physical properties of two-dimensional (2D) van der Waals materials. When two identical semiconductor monolayers are stacked with a twist angle, the periodic interlayer coupling modulation due to the moir茅 superlattice may endow exotic physical phenomena, such as moir茅 excitons and correlated electronic phases. To gain insight into these new phenomena, it is crucial to unveil the underlying coupling between atomic layers. Recently, the rhombohedral-stacked transition metal dichalcogenide (TMD) bilayer has attracted significant interest because of the emergence of an out-of-plane polarization from non-ferroelectric monolayer constituents. However, as a key parameter responsible for the physical properties, the interlayer coupling and its relationship with ferroelectricity in them remain elusive. Here we probe the asymmetric interlayer coupling between the conduction band of one layer and the valence band from the other layer in a 3R-MoS2 bilayer, which can be understood as a result of a layer-dependent Berry phase winding. By performing optical spectroscopy in a dual-gated device, we show a type-II band alignment exists at K points in the 3R-MoS2 bilayer. Furthermore, by unraveling various contributions to the band offset, we quantitatively determine the asymmetric interlayer coupling and spontaneous polarization in 3R-MoS2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06966v1-abstract-full').style.display = 'none'; document.getElementById('2209.06966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Physical Review X</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.05669">arXiv:2209.05669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.05669">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Selective Direct Bonding of High Thermal Conductivity 3C-SiC Film to \b{eta}-Ga2O3 for Top-Side Heat Extraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianbo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagai%2C+H">Hiromu Nagai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhe Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawamura%2C+K">Keisuke Kawamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimizu%2C+Y">Yasuo Shimizu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohno%2C+Y">Yutaka Ohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakaida%2C+Y">Yoshiki Sakaida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uratani%2C+H">Hiroki Uratani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+H">Hideto Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagai%2C+Y">Yasuyoshi Nagai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shigekawa%2C+N">Naoteru Shigekawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.05669v1-abstract-short" style="display: inline;"> beta-Ga2O3 is a wide bandgap semiconductor with electrical properties better than SiC and GaN which makes it promising for applications of next-generation power devices. However, the thermal conductivity of \b{eta}-Ga2O3 is more than one order of magnitude lower than that of SiC and GaN, resulting in serious thermal management problems that limit device performance and reliability. This work repor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05669v1-abstract-full').style.display = 'inline'; document.getElementById('2209.05669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.05669v1-abstract-full" style="display: none;"> beta-Ga2O3 is a wide bandgap semiconductor with electrical properties better than SiC and GaN which makes it promising for applications of next-generation power devices. However, the thermal conductivity of \b{eta}-Ga2O3 is more than one order of magnitude lower than that of SiC and GaN, resulting in serious thermal management problems that limit device performance and reliability. This work reports selectively transferring of high thermal conductivity 3C-SiC thin film grown on Si to beta-Ga2O3 (001) substrate using surface activated bonding (SAB) technique at room temperature, to attempt extracting the heat from the surface of the devices. A 4.5-nm-thick interfacial crystal defect layer is formed at the as-bonded 3C-SiC/beta-Ga2O3 interface. The thickness of the interfacial crystal defect layer decreases with increasing annealing temperature, which decreases to 1.5 nm after annealing at 1000 C. No voids and unbonded area are observed at the interfaces, even after annealing at temperature as high as 1000 C. The thermal boundary conductance (TBC) of the 1000 C-annealed 3C-SiC/beta-Ga2O3 interface and thermal conductivity of the beta-Ga2O3 substrate was measured by time-domain thermoreflectance (TDTR). The 3C-SiC/beta-Ga2O3 TBC value was determined to be 244 MW/m2-K, which is the highest value ever reported for SiC/Ga2O3 interfaces, due to the high-quality heterointerface. Our works demonstrate that selective transferring of 3C-SiC film to the beta-Ga2O3 substrate is an efficient path to improve heat dissipation of the \b{eta}-Ga2O3 power devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05669v1-abstract-full').style.display = 'none'; document.getElementById('2209.05669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03919">arXiv:2208.03919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03919">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Interfacial superconductivity and zero bias peak in quasi-one-dimensional Bi2Te3/Fe1+yTe heterostructure nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M+K">Man Kit Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+C+Y">Cheuk Yin Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S+L">Sui Lun Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atanov%2C+O">Omargeldi Atanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+W+T">Wai Ting Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lortz%2C+R">Rolf Lortz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sou%2C+I+K">Iam Keong Sou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03919v4-abstract-short" style="display: inline;"> Bi2Te3/Fe1+yTe heterostructures are known to exhibit interfacial superconductivity between two non-superconducting materials: Fe1+yTe as the parent compound of Fe-based superconducting materials and the topological insulator Bi2Te3. Here, we present a top-down approach starting from two-dimensional (2D) heterostructures to fabricate one-dimensional (1D) Bi2Te3/Fe1+yTe nanowires or narrow nanoribbo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03919v4-abstract-full').style.display = 'inline'; document.getElementById('2208.03919v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03919v4-abstract-full" style="display: none;"> Bi2Te3/Fe1+yTe heterostructures are known to exhibit interfacial superconductivity between two non-superconducting materials: Fe1+yTe as the parent compound of Fe-based superconducting materials and the topological insulator Bi2Te3. Here, we present a top-down approach starting from two-dimensional (2D) heterostructures to fabricate one-dimensional (1D) Bi2Te3/Fe1+yTe nanowires or narrow nanoribbons. We demonstrate that the Bi2Te3/Fe1+yTe heterostructure remains intact in nanostructures of widths on the order of 100 nm and the interfacial superconductivity is preserved, as evidenced by electrical transport and Andreev reflection point contact spectroscopy experiments measured at the end of the nanowire. The differential conductance shows a similar superconducting twin-gap structure as in two-dimensional heterostructures, but with enhanced fluctuation effects due to the lower dimensionality. A zero-bias conductance peak indicates the presence of an Andreev bound state and given the involvement of the topological Bi2Te3 surface state, we discuss a possible topological nature of superconductivity with strong interplay with an emerging ferromagnetism due to the interstitial excess iron in the Fe1+yTe layer, developing in parallel with superconductivity at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03919v4-abstract-full').style.display = 'none'; document.getElementById('2208.03919v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05292">arXiv:2207.05292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05292">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-34943-w">10.1038/s41467-022-34943-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Thermal Conductivity in Wafer Scale Cubic Silicon Carbide Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhe Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianbo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawamura%2C+K">Keisuke Kawamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asamura%2C+H">Hidetoshi Asamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uratani%2C+H">Hiroki Uratani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graham%2C+S">Samuel Graham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohno%2C+Y">Yutaka Ohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagai%2C+Y">Yasuyoshi Nagai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shigekawa%2C+N">Naoteru Shigekawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cahill%2C+D+G">David G. Cahill</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05292v1-abstract-short" style="display: inline;"> High thermal conductivity electronic materials are critical components for high-performance electronic and photonic devices as either active functional materials or thermal management materials. We report an isotropic high thermal conductivity over 500 W m-1K-1 at room temperature in high-quality wafer-scale cubic silicon carbide (3C-SiC) crystals, which is the second highest among large crystals&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05292v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05292v1-abstract-full" style="display: none;"> High thermal conductivity electronic materials are critical components for high-performance electronic and photonic devices as either active functional materials or thermal management materials. We report an isotropic high thermal conductivity over 500 W m-1K-1 at room temperature in high-quality wafer-scale cubic silicon carbide (3C-SiC) crystals, which is the second highest among large crystals (only surpassed by diamond). Furthermore, the corresponding 3C-SiC thin films are found to have record-high in-plane and cross-plane thermal conductivity, even higher than diamond thin films with equivalent thicknesses. Our results resolve a long-lasting puzzle that the literature values of thermal conductivity for 3C-SiC are perplexingly lower than the structurally more complex 6H-SiC. Further analysis reveals that the observed high thermal conductivity in this work arises from the high purity and high crystal quality of 3C-SiC crystals which excludes the exceptionally strong defect-phonon scatterings in 3C-SiC. Moreover, by integrating 3C-SiC with other semiconductors by epitaxial growth, we show that the measured 3C-SiC-Si TBC is among the highest for semiconductor interfaces. These findings not only provide insights for fundamental phonon transport mechanisms, also suggest that 3C-SiC may constitute an excellent wide-bandgap semiconductor for applications of power electronics as either active components or substrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05292v1-abstract-full').style.display = 'none'; document.getElementById('2207.05292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.13030">arXiv:2206.13030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.13030">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.245106">10.1103/PhysRevB.105.245106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybridization and Correlation between f- and d-orbital electrons in a valence fluctuating compound EuNi2P2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z+X">Z. X. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+W+Z">W. Z. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">J. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+S+R">S. R. Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+S">J. S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+X">X. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R+Z">R. Z. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+Q">Q. Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yi-feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+A+J">A. J. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H">H. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.13030v1-abstract-short" style="display: inline;"> The interaction between localized f and itinerant conduction electrons is crucial in the electronic properties of heavy fermion and valence fluctuating compounds. Using high-resolution angle-resolved photoemission spectroscopy, we systematically investigate the electronic structure of the archetypical valence fluctuating compound EuNi2P2 that hosts multiple f electrons. At low temperatures, we rev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13030v1-abstract-full').style.display = 'inline'; document.getElementById('2206.13030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.13030v1-abstract-full" style="display: none;"> The interaction between localized f and itinerant conduction electrons is crucial in the electronic properties of heavy fermion and valence fluctuating compounds. Using high-resolution angle-resolved photoemission spectroscopy, we systematically investigate the electronic structure of the archetypical valence fluctuating compound EuNi2P2 that hosts multiple f electrons. At low temperatures, we reveal the hybridization between Eu 4f and Ni 3d states, which contributes to the electron mass enhancement, consistent with the periodic Anderson model. With increasing temperature, interestingly, we observe opposite temperature evolution of electron spectral function above and below the Kondo coherence temperature near 110 K, which is in contrast to the monotonic valence change and beyond the expectation of the periodic Anderson model. We argue that both f-d hybridization and correlation are imperative in the electronic properties of EuNi2P2. Our results shed light on the understanding of novel properties, such as heavy fermion behaviors and valence fluctuation, of rare-earth transition-metal intermetallic compounds with multiple f electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13030v1-abstract-full').style.display = 'none'; document.getElementById('2206.13030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 245106 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06050">arXiv:2206.06050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.06050">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-022-00809-4">10.1038/s41524-022-00809-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic Dzyaloshinskii-Moriya interaction protected by D2d crystal symmetry in two-dimensional ternary compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ga%2C+Y">Yonglong Ga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yingmei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dongxing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Liming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06050v1-abstract-short" style="display: inline;"> Magnetic skyrmions, topologically protected chiral spin swirling quasiparticles, have attracted great attention in fundamental physics and applications. Recently, the discovery of two-dimensional (2D) van der Waals (vdW) magnets has aroused great interest due to their appealing physical properties. Moreover, both experimental and theoretical works have revealed that isotropic Dzyaloshinskii Moriya&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06050v1-abstract-full').style.display = 'inline'; document.getElementById('2206.06050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06050v1-abstract-full" style="display: none;"> Magnetic skyrmions, topologically protected chiral spin swirling quasiparticles, have attracted great attention in fundamental physics and applications. Recently, the discovery of two-dimensional (2D) van der Waals (vdW) magnets has aroused great interest due to their appealing physical properties. Moreover, both experimental and theoretical works have revealed that isotropic Dzyaloshinskii Moriya interaction (DMI) can be achieved in 2D magnets or ferromagnet-based heterostructures. However, 2D magnets with anisotropic DMI haven&#39;t been reported yet. Here, via using first-principles calculations, we unveil that anisotropic DMI protected by D2d crystal symmetry can exist in 2D ternary compounds MCuX2. Interestingly, by using micromagnetic simulations, we demonstrate that ferromagnetic (FM) antiskyrmions, FM bimerons, antiferromagnetic (AFM) antiskyrmions and AFM bimerons can be realized in MCuX2 family. Our discovery opens up an avenue to creating antiskyrmions and bimerons with anisotropic DMI protected by D2d crystal symmetry in 2D magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06050v1-abstract-full').style.display = 'none'; document.getElementById('2206.06050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text and supplementary materials attached</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Computational Materials 8, 128, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09600">arXiv:2205.09600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09600">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.156401">10.1103/PhysRevLett.129.156401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualization of Chiral Electronic Structure and Anomalous Optical Response in a Material with Chiral Charge Density Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K+Y">K. Y. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koo%2C+J">J. Koo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+S+W">S. W. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+H">S. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">G. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y+Z">Y. Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+A+J">A. J. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">K. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J+J">J. J. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">X. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+P">J. P. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y+P">Y. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S+C">S. C. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B+H">B. H. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+X">X. Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09600v1-abstract-short" style="display: inline;"> Chiral materials have attracted significant research interests as they exhibit intriguing physical properties, such as chiral optical response, spin-momentum locking and chiral induced spin selectivity. Recently, layered transition metal dichalcogenide 1T-TaS2 has been found to host a chiral charge density wave (CDW) order. Nevertheless, the physical consequences of the chiral order, for example,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09600v1-abstract-full').style.display = 'inline'; document.getElementById('2205.09600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09600v1-abstract-full" style="display: none;"> Chiral materials have attracted significant research interests as they exhibit intriguing physical properties, such as chiral optical response, spin-momentum locking and chiral induced spin selectivity. Recently, layered transition metal dichalcogenide 1T-TaS2 has been found to host a chiral charge density wave (CDW) order. Nevertheless, the physical consequences of the chiral order, for example, in electronic structures and the optical properties, are yet to be explored. Here, we report the spectroscopic visualization of an emergent chiral electronic band structure in the CDW phase, characterized by windmill-shape Fermi surfaces. We uncover a remarkable chirality-dependent circularly polarized Raman response due to the salient chiral symmetry of CDW, although the ordinary circular dichroism vanishes. Chiral Fermi surfaces and anomalous Raman responses coincide with the CDW transition, proving their lattice origin. Our work paves a path to manipulate the chiral electronic and optical properties in two-dimensional materials and explore applications in polarization optics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09600v1-abstract-full').style.display = 'none'; document.getElementById('2205.09600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04976">arXiv:2205.04976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04976">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04803">10.1021/acs.nanolett.1c04803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic Dzyaloshinskii-Moriya interaction and topological magnetism in two-dimensional magnets protected by P4-m2 crystal symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yingmei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ga%2C+Y">Yonglong Ga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dongxing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+P">Ping Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04976v1-abstract-short" style="display: inline;"> As a fundamental magnetic parameter, Dzyaloshinskii-Moriya interaction (DMI), has gained a great deal of attention in the last two decades due to its critical role in formation of magnetic skyrmions. Recent discoveries of two-dimensional (2D) van der Waals (vdW) magnets has also gained a great deal of attention due to appealing physical properties, such as gate tunability, flexibility and miniatur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04976v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04976v1-abstract-full" style="display: none;"> As a fundamental magnetic parameter, Dzyaloshinskii-Moriya interaction (DMI), has gained a great deal of attention in the last two decades due to its critical role in formation of magnetic skyrmions. Recent discoveries of two-dimensional (2D) van der Waals (vdW) magnets has also gained a great deal of attention due to appealing physical properties, such as gate tunability, flexibility and miniaturization. Intensive studies have shown that isotropic DMI stabilizes ferromagnetic (FM) topological spin textures in 2D magnets or their corresponding heterostructures. However, the investigation of anisotropic DMI and antiferromagnetic (AFM) topological spin configurations remains elusive. Here, we propose and demonstrate that a family of 2D magnets with P4-m2 symmetry-protected anisotropic DMI. More interestingly, various topological spin configurations, including FM/AFM antiskyrmion and AFM vortex-antivortex pair, emerge in this family. These results give a general method to design anisotropic DMI and pave the way towards topological magnetism in 2D materials using crystal symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04976v1-abstract-full').style.display = 'none'; document.getElementById('2205.04976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 22, 2334 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04118">arXiv:2205.04118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04118">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.174404">10.1103/PhysRevB.105.174404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiferroic materials based on transition-metal dichalcogenides: Potential platform for reversible control of Dzyaloshinskii-Moriya interaction and skyrmion via electric field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Z">Ziji Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">Tiejun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04118v1-abstract-short" style="display: inline;"> Exploring novel two-dimensional multiferroic materials that can realize electric-field control of two-dimensional magnetism has become an emerging topic in spintronics. Using first-principles calculations, we demonstrate that non-metallic bilayer transition metal dichalcogenides (TMDs) can be an ideal platform for building multiferroics by intercalated magnetic atoms. Moreover, we unveil that with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04118v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04118v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04118v1-abstract-full" style="display: none;"> Exploring novel two-dimensional multiferroic materials that can realize electric-field control of two-dimensional magnetism has become an emerging topic in spintronics. Using first-principles calculations, we demonstrate that non-metallic bilayer transition metal dichalcogenides (TMDs) can be an ideal platform for building multiferroics by intercalated magnetic atoms. Moreover, we unveil that with Co intercalated bilayer MoS2, Co(MoS2)2, two energetic degenerate states with opposite chirality of Dzyaloshinskii-Moriya interaction (DMI) are the ground states, indicating electric-field control of the chirality of topologic magnetism such as skyrmions can be realized in this type of materials by reversing the electric polarization. These findings pave the way for electric-field control of topological magnetism in two-dimensional multiferroics with intrinsic magnetoelectric coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04118v1-abstract-full').style.display = 'none'; document.getElementById('2205.04118v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07214">arXiv:2204.07214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.07214">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of non-trivial topological electronic structure of orthorhombic SnSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H+J">H. J. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W+J">W. J. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C+W">C. W. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y+Y">Y. Y. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">W. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B+H">B. H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">F. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">K. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+S+T">S. T. Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+F">H. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+A+J">A. J. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Z. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+S+H">S. H. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+B">Y. B. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+F">Y. F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Q+X">Q. X. Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bahramy%2C+M+S">M. S. Bahramy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07214v1-abstract-short" style="display: inline;"> Topological electronic structures are key to the topological classification of quantum materials and play an important role in their physical properties and applications. Recently, SnSe has attracted great research interests due to its superior thermoelectric performance. However, it&#39;s topological nature has long been ignored. In this work, by combining synchrotron-based angle-resolved photoemissi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07214v1-abstract-full').style.display = 'inline'; document.getElementById('2204.07214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07214v1-abstract-full" style="display: none;"> Topological electronic structures are key to the topological classification of quantum materials and play an important role in their physical properties and applications. Recently, SnSe has attracted great research interests due to its superior thermoelectric performance. However, it&#39;s topological nature has long been ignored. In this work, by combining synchrotron-based angle-resolved photoemission spectroscopy and ab-initio calculations, we systematically investigated the topological electronic structure of orthorhombic SnSe. By identifying the continuous gap in the valence bands due to the band inversion and the topological surface states on its (001) surface, we establish SnSe as a strong topological insulator. Furthermore, we studied the evolution of the topological electronic structure and propose the topological phase diagram in SnSe1-xTex. Our work reveals the topological non-trivial nature of SnSe and provides new understandings of its intriguing transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07214v1-abstract-full').style.display = 'none'; document.getElementById('2204.07214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, accepted for publication in Physical Review Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04203">arXiv:2204.04203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04203">pdf</a>, <a href="https://arxiv.org/format/2204.04203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anomalous high-temperature THz nonlinearity in superconductors near the metal-insulator transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chaudhuri%2C+D">Dipanjan Chaudhuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbalas%2C+D">David Barbalas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romero%2C+R">Ralph Romero III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahmood%2C+F">Fahad Mahmood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiahao Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesudasan%2C+J">John Jesudasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raychaudhuri%2C+P">Pratap Raychaudhuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04203v1-abstract-short" style="display: inline;"> The interplay of strong disorder and superconductivity is a topic of long-term interest in condensed matter physics. Here we explore the nonlinear THz response of superconducting NbN films close to the 3D metal-insulator transition. For the least disordered samples, the magnitude of the nonlinear $蠂^{(3)}$ response follows the temperature dependence of the superfluid density as expected. In contra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04203v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04203v1-abstract-full" style="display: none;"> The interplay of strong disorder and superconductivity is a topic of long-term interest in condensed matter physics. Here we explore the nonlinear THz response of superconducting NbN films close to the 3D metal-insulator transition. For the least disordered samples, the magnitude of the nonlinear $蠂^{(3)}$ response follows the temperature dependence of the superfluid density as expected. In contrast, for high disorder samples near the metal-insulator transition the $蠂^{(3)}$ nonlinearity persists to temperatures as high as even 4 times the $T_c$ of the cleanest sample. We discuss the possible origins of this remarkably large nonlinearity, including the possibility that it arises in an enhancement of the temperature scales of superconductivity close to localization. Our work highlights the importance of finite frequency nonlinear THz experiments in detecting superconducting correlations even into regions where long-range ordered superconductivity does not persist. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04203v1-abstract-full').style.display = 'none'; document.getElementById('2204.04203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09720">arXiv:2203.09720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09720">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwac077">10.1093/nsr/nwac077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer-by-Layer Epitaxy of Multilayer MoS2 Wafers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qinqin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaomei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+J">Jinpeng Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+D">Depeng Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xian%2C+L">Lede Xian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yutuo Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zheng Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yanchong Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H+Y+X">Hua Yu Xuedong Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09720v1-abstract-short" style="display: inline;"> Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2 wafers10-12 are already available and various demonstrations from individual transistors to integrated circuits have also been shown13-15. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and cur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09720v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09720v1-abstract-full" style="display: none;"> Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2 wafers10-12 are already available and various demonstrations from individual transistors to integrated circuits have also been shown13-15. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and current capacities over the monolayer5,16-18. However, achieving high-quality multilayer MoS2 wafers remains a challenge. Here we report the growth of high quality multilayer MoS2 4-inch wafers via the layer-by-layer epitaxy process. The epitaxy leads to well-defined stacking orders between adjacent epitaxial layers and offers a delicate control of layer numbers up to 6. Systematic evaluations on the atomic structures and electronic properties were carried out for achieved wafers with different layer numbers. Significant improvements on device performances were found in thicker-layer field effect transistors (FETs), as expected. For example, the average field-effect mobility (渭FE) at room temperature (RT) can increase from ~80 cm2V-1s-1 for monolayer to ~110/145 cm2V-1s-1 for bilayer/trilayer devices. The highest RT 渭FE=234.7 cm2V-1s-1 and a record-high on-current densities of 1.704 mA渭m-1 at Vds=2 V were also achieved in trilayer MoS2 FETs with a high on/off ratio exceeding 107. Our work hence moves a step closer to practical applications of 2D MoS2 in electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09720v1-abstract-full').style.display = 'none'; document.getElementById('2203.09720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,4 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Natl. Sci. Rev. 9, nwac077 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05220">arXiv:2203.05220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05220">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.167202">10.1103/PhysRevLett.128.167202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying the Dzyaloshinskii-Moriya Interaction Induced by the Bulk Magnetic Asymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qihan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+K">Kaiqi Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Le Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">He Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Heng-An Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hao Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+H">Hongmei Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenjie Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+G">Guozhi Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gladii%2C+O">O. Gladii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schultheiss%2C+H">H. Schultheiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+T">Tao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yong Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05220v1-abstract-short" style="display: inline;"> A broken interfacial inversion symmetry in ultrathin ferromagnet/heavy metal (FM/HM) bilayers is generally believed to be a prerequisite for accommodating the Dzyaloshinskii-Moriya interaction (DMI) and for stabilizing chiral spin textures. In these bilayers, the strength of the DMI decays as the thickness of the FM layer increases and vanishes around a few nanometers. In the present study, throug&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05220v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05220v1-abstract-full" style="display: none;"> A broken interfacial inversion symmetry in ultrathin ferromagnet/heavy metal (FM/HM) bilayers is generally believed to be a prerequisite for accommodating the Dzyaloshinskii-Moriya interaction (DMI) and for stabilizing chiral spin textures. In these bilayers, the strength of the DMI decays as the thickness of the FM layer increases and vanishes around a few nanometers. In the present study, through synthesizing relatively thick films of compositions CoPt or FePt, CoCu or FeCu, FeGd and FeNi, contributions to DMI from the composition gradient induced bulk magnetic asymmetry (BMA) and spin-orbit coupling (SOC) are systematically examined. Using Brillouin light scattering spectroscopy, both the sign and amplitude of DMI in films with controllable direction and strength of BMA, in the presence and absence of SOC are experimentally studied. In particular, we show that a sizable amplitude of DMI (0.15 mJ/m^2) can be realized in CoPt or FePt films with BMA and strong SOC, whereas negligible DMI strengths are observed in other thick films with BMA but without significant SOC. The pivotal roles of BMA and SOC are further examined based on the three-site Fert-Levy model and first-principles calculations. It is expected that our findings may help to further understand the origin of chiral magnetism and to design novel non-collinear spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05220v1-abstract-full').style.display = 'none'; document.getElementById('2203.05220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Physical Review Letters, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02138">arXiv:2203.02138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02138">pdf</a>, <a href="https://arxiv.org/format/2203.02138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-022-01008-9">10.1038/s41566-022-01008-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous Polarization Induced Photovoltaic Effect In Rhombohedrally Stacked MoS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dongyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jingda Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B+T">Benjamin T. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ideue%2C+T">Toshiya Ideue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siu%2C+T">Teri Siu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awan%2C+K+M">Kashif Masud Awan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iwasa%2C+Y">Yoshihiro Iwasa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+M">Marcel Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Ziliang Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02138v1-abstract-short" style="display: inline;"> Stacking order in van der Waals materials determines the coupling between atomic layers and is therefore key to the materials&#39; properties. By exploring different stacking orders, many novel physical phenomena have been realized in artificial vdW stacks. Recently, 2D ferroelectricity has been observed in zero-degree aligned hBN and graphene-hBN heterostructures, holding promise in a range of electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02138v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02138v1-abstract-full" style="display: none;"> Stacking order in van der Waals materials determines the coupling between atomic layers and is therefore key to the materials&#39; properties. By exploring different stacking orders, many novel physical phenomena have been realized in artificial vdW stacks. Recently, 2D ferroelectricity has been observed in zero-degree aligned hBN and graphene-hBN heterostructures, holding promise in a range of electronic applications. In those artificial stacks, however, the single domain size is limited by the stacking-angle misalignment to about 0.1 to 1 $渭$m, which is incompatible with most optical or optoelectronic applications. Here we show MoS$_2$ in the rhombohedral phase can host a homogeneous spontaneous polarization throughout few-$渭$m-sized exfoliated flakes, as it is a natural crystal requiring no stacking and is, therefore free of misalignment. Utilizing this homogeneous polarization and its induced depolarization field (DEP), we build a graphene-MoS$_2$ based photovoltaic device with high efficiency. The few-layer MoS$_2$ is thinner than most oxide-based ferroelectric films, which allows us to maximize the DEP and study its impact at the atomically thin limit, while the highly uniform polarization achievable in the commensurate crystal enables a tangible path for up-scaling. The external quantum efficiency of our device is up to 16% at room temperature, over one order larger than the highest efficiency observed in bulk photovoltaic devices, owing to the reduced screening in graphene, the exciton-enhanced light-matter interaction, and the ultrafast interlayer relaxation in MoS$_2$. In view of the wide range of bandgap energy in other TMDs, our findings make rhombohedral TMDs a promising and versatile candidate for applications such as energy-efficient photo-detection with high speed and programmable polarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02138v1-abstract-full').style.display = 'none'; document.getElementById('2203.02138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13208">arXiv:2202.13208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.13208">pdf</a>, <a href="https://arxiv.org/format/2202.13208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.2c00160">10.1021/acs.jctc.2c00160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the performance of time-dependent density functional theory for electronic excitations: Assessment of 43 popular and recently developed functionals from rungs one to four </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiashu Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xintian Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hait%2C+D">Diptarka Hait</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Head-Gordon%2C+M">Martin Head-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13208v3-abstract-short" style="display: inline;"> In this paper, the performance of more than 40 popular or recently developed density functionals is assessed for the calculation of 463 vertical excitation energies against the large and accurate QuestDB benchmark set. For this purpose, the Tamm-Dancoff approximation offers a good balance between performance and accuracy. The functionals $蠅$B97X-D and BMK are found to offer the best performance ov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13208v3-abstract-full').style.display = 'inline'; document.getElementById('2202.13208v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13208v3-abstract-full" style="display: none;"> In this paper, the performance of more than 40 popular or recently developed density functionals is assessed for the calculation of 463 vertical excitation energies against the large and accurate QuestDB benchmark set. For this purpose, the Tamm-Dancoff approximation offers a good balance between performance and accuracy. The functionals $蠅$B97X-D and BMK are found to offer the best performance overall with a Root-Mean Square Error (RMSE) of 0.28 eV, better than the computationally more demanding CIS(D) wavefunction method with a RMSE of 0.36 eV. The results also suggest that Jacob&#39;s ladder still holds for TDDFT excitation energies, though hybrid meta-GGAs are not generally better than hybrid GGAs. Effects of basis set convergence, gauge invariance correction to meta-GGAs, and nonlocal correlation (VV10) are also studied, and practical basis set recommendations are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13208v3-abstract-full').style.display = 'none'; document.getElementById('2202.13208v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures; 8 pages, 7 figures for supporting info</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09675">arXiv:2201.09675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09675">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of short-period helical spin order and magnetic transition in a non-chiral centrosymmetric helimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+B">Bei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinjing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zefang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+X">Xuekui Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhenxiang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jianli Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09675v1-abstract-short" style="display: inline;"> The search for materials exhibiting nanoscale spiral order continues to be fuelled by the promise of emergent inductors. Although such spin textures have been reported in many materials, most of them exhibit long periods or are limited to operate far below room temperature. Here, we present the real-space observation of an ordered helical spin order with a period of 3.2 nm in a non-chiral centrosy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09675v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09675v1-abstract-full" style="display: none;"> The search for materials exhibiting nanoscale spiral order continues to be fuelled by the promise of emergent inductors. Although such spin textures have been reported in many materials, most of them exhibit long periods or are limited to operate far below room temperature. Here, we present the real-space observation of an ordered helical spin order with a period of 3.2 nm in a non-chiral centrosymmetric helimagnet MnCoSi at room temperature via multi-angle and multi-azimuth approach of Lorentz transmission electron microscopy (TEM). A magnetic transition from the ordered helical spin order to a cycloidal spin order below 228 K is clearly revealed by in situ neutron powder diffraction and Lorentz TEM, which is closely correlated with temperature-induced variation in magneto-crystalline anisotropy. These results reveal the origin of spiral ordered spin textures in non-chiral centrosymmetric helimagnet, which can serve as a new strategy for searching materials with nanoscale spin order with potential applications in emergent electromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09675v1-abstract-full').style.display = 'none'; document.getElementById('2201.09675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01406">arXiv:2201.01406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01406">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A special cross-tie domain wall in helimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+B">Bei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinjing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xi Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Richeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01406v1-abstract-short" style="display: inline;"> A special cross-tie (SCT) domain wall was discovered in the helimagnet MnCoSi alloy via the magnetic vector field tomography in Lorentz transmission electron microscopy (LTEM). Different to the traditional cross-tie (TCT) domain wall where the convergent/divergent magnetic moment configuration line up one by one, the relative large Bloch type sub-walls emerge in this brand-new SCT domain wall and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01406v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01406v1-abstract-full" style="display: none;"> A special cross-tie (SCT) domain wall was discovered in the helimagnet MnCoSi alloy via the magnetic vector field tomography in Lorentz transmission electron microscopy (LTEM). Different to the traditional cross-tie (TCT) domain wall where the convergent/divergent magnetic moment configuration line up one by one, the relative large Bloch type sub-walls emerge in this brand-new SCT domain wall and two mutually perpendicular rotation axes coexist in this special feature. The straight magnetic stripes accompanied with the unraveled domain walls hint the complex mechanism to form this SCT structure. Interestingly, different orientation of this domain wall in LTEM can easily exhibit various magnetic features, including meron/antimeron chains or bimeron strings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01406v1-abstract-full').style.display = 'none'; document.getElementById('2201.01406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14898">arXiv:2110.14898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.14898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33700-3">10.1038/s41467-022-33700-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The dynamic chirality flips of Skyrmion bubbles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+B">Bei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinjing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xi Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Richeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14898v1-abstract-short" style="display: inline;"> Magnetic skyrmion, a topological magnetic domain with complex non-coplanar spin texture, appears a disk-like structure in two dimensions. Exploring three-dimensional spin texture and related chirality switching has drawn enormous interests from the perspective of fundamental research. Here, the three-dimensional magnetic moment of the skyrmion bubbles in centrosymmetric Mn-Ni-Ga were reconstructed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14898v1-abstract-full').style.display = 'inline'; document.getElementById('2110.14898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14898v1-abstract-full" style="display: none;"> Magnetic skyrmion, a topological magnetic domain with complex non-coplanar spin texture, appears a disk-like structure in two dimensions. Exploring three-dimensional spin texture and related chirality switching has drawn enormous interests from the perspective of fundamental research. Here, the three-dimensional magnetic moment of the skyrmion bubbles in centrosymmetric Mn-Ni-Ga were reconstructed with the vector field tomography approach via Lorentz transmission electron microscopy. The type of the bubbles was determined from investigating the magnetic vectors in entire space. We found that the bubbles switched their chirality easily but still keep the polarity to remain the singularity of the bubbles within the material. Our results offer valuable insights into the fundamental mechanisms underlying the spin chirality flips dynamics of skyrmion bubbles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14898v1-abstract-full').style.display = 'none'; document.getElementById('2110.14898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.02980">arXiv:2109.02980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.02980">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac11d2">10.1088/1674-1056/ac11d2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-dependent resistance and giant gauge factor in monolayer WSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mao-Sen Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+X">Xing-Guo Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+P">Peng-Fei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Wen-Zheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhi-Min Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.02980v1-abstract-short" style="display: inline;"> We report the strong dependence of resistance on uniaxial strain in monolayer WSe2 at various temperatures, where the gauge factor can reach as large as 2400. The observation of strain-dependent resistance and giant gauge factor is attributed to the emergence of nonzero Berry curvature dipole. Upon increasing strain, Berry curvature dipole can generate net orbital magnetization, which would introd&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02980v1-abstract-full').style.display = 'inline'; document.getElementById('2109.02980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.02980v1-abstract-full" style="display: none;"> We report the strong dependence of resistance on uniaxial strain in monolayer WSe2 at various temperatures, where the gauge factor can reach as large as 2400. The observation of strain-dependent resistance and giant gauge factor is attributed to the emergence of nonzero Berry curvature dipole. Upon increasing strain, Berry curvature dipole can generate net orbital magnetization, which would introduce additional magnetic scattering, decreasing the mobility and thus conductivity. Our work demonstrates the strain engineering of Berry curvature and thus the transport properties, making monolayer WSe2 potential for the application in the high-performance flexible and transparent electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02980v1-abstract-full').style.display = 'none'; document.getElementById('2109.02980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 30, 097203 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liang%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10