CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 112 results for author: <span class="mathjax">Fert, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Fert%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fert, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fert%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fert, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00403">arXiv:2501.00403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00403">pdf</a>, <a href="https://arxiv.org/format/2501.00403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Alternative harmonic detection approach for quantitative determination of spin and orbital torques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Y. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bony%2C+B">B. Bony</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnia%2C+S">S. Krishnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Victor%2C+R+T">R. Torr茫o Victor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">S. Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">H. Jaffr猫s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00403v1-abstract-short" style="display: inline;"> In this study, the spin-orbit torque (SOT) in light metal oxide systems is investigated using an experimental approach based on harmonic Hall voltage techniques in out-of-plane (OOP) angular geometry for samples with in-plane magnetic anisotropy. In parallel, an analytical derivation of this alternative OOP harmonic Hall detection geometry has been developed, followed by experimental validation to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00403v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00403v1-abstract-full" style="display: none;"> In this study, the spin-orbit torque (SOT) in light metal oxide systems is investigated using an experimental approach based on harmonic Hall voltage techniques in out-of-plane (OOP) angular geometry for samples with in-plane magnetic anisotropy. In parallel, an analytical derivation of this alternative OOP harmonic Hall detection geometry has been developed, followed by experimental validation to extract SOT effective fields. In addition, to accurately quantifying SOT, this method allows complete characterization of thermoelectric effects, opening promising avenues for accurate SOT characterization in related systems. In particular, this study corroborates the critical role of naturally oxidized copper interfaced with metallic Cu in the generation of orbital current in Co(2)|Pt(4)|CuOx(3), demonstrating a two-fold increase in damping-like torques compared to a reference sample with an oxidized Al capping layer. These findings offer promising directions for future research on the application aspect of non-equilibrium orbital angular momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00403v1-abstract-full').style.display = 'none'; document.getElementById('2501.00403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, 44 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09957">arXiv:2410.09957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09957">pdf</a>, <a href="https://arxiv.org/format/2410.09957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01607">10.1021/acs.nanolett.4c01607 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Chiral Orbital Texture and Orbital Edelstein Effect in Co/Al Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nikolaev%2C+S+A">Sergey A. Nikolaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ibrahim%2C+F">Fatima Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnia%2C+S">Sachin Krishnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebe%2C+N">Nicolas Sebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J">Jean-Marie George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">Henri Jaffr猫s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09957v1-abstract-short" style="display: inline;"> Recent experiments by S. Krishnia et al., Nano Lett. 23, 6785 (2023) reported an unprecedentedly large enhancement of torques upon inserting thin Al layer in Co/Pt heterostructure that suggested the presence of a Rashba-like interaction at the metallic Co/Al interface. Based on first-principles calculations, we reveal the emergence of a large helical orbital texture in reciprocal space at the inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09957v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09957v1-abstract-full" style="display: none;"> Recent experiments by S. Krishnia et al., Nano Lett. 23, 6785 (2023) reported an unprecedentedly large enhancement of torques upon inserting thin Al layer in Co/Pt heterostructure that suggested the presence of a Rashba-like interaction at the metallic Co/Al interface. Based on first-principles calculations, we reveal the emergence of a large helical orbital texture in reciprocal space at the interfacial Co layer, whose origin is attributed to the orbital Rashba effect due to the formation of the surface states at the Co/Al interface and where spin-orbit coupling is found to produce smaller contributions with a higher-order winding of the orbital momentum. Our results unveil that the orbital texture gives rise to a non-equilibrium orbital accumulation producing large current-induced torques, thus providing an essential theoretical background for the experimental data and advancing the use of orbital transport phenomena in all-metallic magnetic systems with light elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09957v1-abstract-full').style.display = 'none'; document.getElementById('2410.09957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ACS Nano Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 24, 43, 13465-13472 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10685">arXiv:2409.10685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10685">pdf</a>, <a href="https://arxiv.org/format/2409.10685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Interfacial spin-orbitronic effects controlled with different oxidation levels at the Co|Al interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krishnia%2C+S">Sachin Krishnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voj%C3%A1%C4%8Dek%2C+L">Libor Voj谩膷ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomes%2C+T+D+C+S+C">Tristan Da C芒mara Santa Clara Gomes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebe%2C+N">Nicolas Sebe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ibrahim%2C+F">Fatima Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vicente-Arche%2C+L+M">Luis Moreno Vicente-Arche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">Sophie Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denneulin%2C+T">Thibaud Denneulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunin-Borkowski%2C+R+E">Rafal E. Dunin-Borkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohresser%2C+P">Philippe Ohresser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">Nicolas Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiaville%2C+A">Andr茅 Thiaville</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">Henri Jaffr猫s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10685v1-abstract-short" style="display: inline;"> Perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interactions are key interactions in modern spintronics. These interactions are thought to be dominated by the oxidation of the Co|Al interface in the archetypal Platinum-Cobalt-Aluminum oxide system. Here, we observe a double sign change in the anisotropy and about threefold variation in interfacial chiral interaction, influenced n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10685v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10685v1-abstract-full" style="display: none;"> Perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interactions are key interactions in modern spintronics. These interactions are thought to be dominated by the oxidation of the Co|Al interface in the archetypal Platinum-Cobalt-Aluminum oxide system. Here, we observe a double sign change in the anisotropy and about threefold variation in interfacial chiral interaction, influenced not only by the oxidation, but also by the metallic Al thickness. Contrary to previous assumptions about negligible spin-orbit effects at light metal interfaces, we not only observe strong PMA with fully oxidized Al, decreasing and turning negative (in-plane) with less oxygen at the Co|Al interface, we also observe that the magnetic anisotropy reverts to positive (out-of-plane) values at fully metallic Co|Al interface. These findings suggest modification in Co d band via Co|Al orbital hybridization, an effect supported by X-ray absorption spectroscopy and ab initio theory calculations, highlighting the key impact of strain on interfacial mechanisms at fully metallic Co|Al interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10685v1-abstract-full').style.display = 'none'; document.getElementById('2409.10685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05759">arXiv:2408.05759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05759">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A seamless graphene spin valve based on proximity to van der Waals magnet Cr$_2$Ge$_2$Te$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haozhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gobbi%2C+M">Marco Gobbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herling%2C+F">Franz Herling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pham%2C+V+T">Van Tuong Pham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calavalle%2C+F">Francesco Calavalle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mart%C3%ADn-Garc%C3%ADa%2C+B">Beatriz Mart铆n-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hueso%2C+L+E">Luis E. Hueso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casanova%2C+F">F猫lix Casanova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05759v1-abstract-short" style="display: inline;"> Pristine graphene is potentially an ideal medium to transport spin information. Proximity effects, where a neighbouring material is used to alter the properties of a material in adjacent (or proximitized) regions, can also be used in graphene to generate and detect spins by acquiring spin-orbit coupling or magnetic exchange coupling. However, the development of seamless spintronic devices that are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05759v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05759v1-abstract-full" style="display: none;"> Pristine graphene is potentially an ideal medium to transport spin information. Proximity effects, where a neighbouring material is used to alter the properties of a material in adjacent (or proximitized) regions, can also be used in graphene to generate and detect spins by acquiring spin-orbit coupling or magnetic exchange coupling. However, the development of seamless spintronic devices that are based uniquely on proximity effects remains challenging. Here, we report a two-dimensional graphene spin valve that is enabled by proximity to the van der Waals magnet Cr$_2$Ge$_2$Te$_6$. Spin precession measurements show that graphene acquires both spin-orbit coupling and magnetic exchange coupling when interfaced with the Cr$_2$Ge$_2$Te$_6$. This leads to spin generation by both electrical spin injection and the spin Hall effect, while retaining long-distance spin transport. The simultaneous presence of spin-orbit coupling and magnetic exchange coupling also leads to a sizeable anomalous Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05759v1-abstract-full').style.display = 'none'; document.getElementById('2408.05759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, and Supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17389">arXiv:2406.17389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17389">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Symmetry Origin and Microscopic Mechanism of Electrical Magnetochiral Anisotropy in Tellurium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%C3%A1rez-Rodr%C3%ADguez%2C+M">Manuel Su谩rez-Rodr铆guez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mart%C3%ADn-Garc%C3%ADa%2C+B">Beatriz Mart铆n-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calavalle%2C+F">Francesco Calavalle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirkin%2C+S+S">Stepan S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Souza%2C+I">Ivo Souza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Juan%2C+F">Fernando De Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gobbi%2C+M">Marco Gobbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hueso%2C+L+E">Luis E. Hueso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casanova%2C+F">F猫lix Casanova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17389v2-abstract-short" style="display: inline;"> Non-linear transport effects in response to external magnetic fields, i.e. electrical magnetochiral anisotropy (eMChA), have attracted much attention for their importance to study quantum and spin-related phenomena. Indeed, they have permitted the exploration of topological surface states and charge-to-spin conversion processes in low-symmetry systems. Nevertheless, despite the inherent correlatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17389v2-abstract-full').style.display = 'inline'; document.getElementById('2406.17389v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17389v2-abstract-full" style="display: none;"> Non-linear transport effects in response to external magnetic fields, i.e. electrical magnetochiral anisotropy (eMChA), have attracted much attention for their importance to study quantum and spin-related phenomena. Indeed, they have permitted the exploration of topological surface states and charge-to-spin conversion processes in low-symmetry systems. Nevertheless, despite the inherent correlation between the symmetry of the material under examination and its non-linear transport characteristics, there is a lack of experimental demonstration to delve into this relationship and to unveil their microscopic mechanisms. Here, we study eMChA in chiral elemental Tellurium (Te) along different crystallographic directions, establishing the connection between the different eMChA components and the crystal symmetry of Te. We observed different longitudinal eMChA components with collinear current and magnetic field, demonstrating experimentally the radial angular momentum texture of Te. We also measured a transverse non-linear resistance which, as the longitudinal counterpart, scales bilinearly with current and magnetic fields, illustrating that they are different manifestations of the same effect. Finally, we study the scaling law of the eMChA, evidencing that extrinsic scattering from dynamic sources is the dominant microscopic mechanism. These findings underscore the efficacy of symmetry-based investigations in understanding and predicting non-linear transport phenomena, with potential applications in spintronics and energy harvesting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17389v2-abstract-full').style.display = 'none'; document.getElementById('2406.17389v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, and Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09228">arXiv:2402.09228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09228">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Efficient Terahertz Generation from CoPt-based Terahertz Emitters via Orbital-to-Charge Conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yongshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffres%2C+H">Henri-Yves Jaffres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eimer%2C+S">Sylvain Eimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoqiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09228v1-abstract-short" style="display: inline;"> Orbitronics devices operate by manipulating orbitally-polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in ferromagnet as Ni and converted into ultrafast charge current via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitter based on Ni is still much weaker than the typical spintronic ter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09228v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09228v1-abstract-full" style="display: none;"> Orbitronics devices operate by manipulating orbitally-polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in ferromagnet as Ni and converted into ultrafast charge current via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitter based on Ni is still much weaker than the typical spintronic terahertz emitter. Here, we report more efficient light-induced generation of orbital current from CoPt alloy and the orbitronic terahertz emission by CoPt/Cu/MgO shows terahertz radiation comparable to that of efficient spintronic terahertz emitters. By varying the concentration of CoPt alloy, the thickness of Cu, and the capping layer, we confirm that THz emission primarily originates from the orbital accumulation generated within CoPt, propagating through Cu and followed by the subsequent orbital-to-charge conversion from the inverse orbital Rashba-Edelstein effect at the Cu/MgO interface. This study provides strong evidence for the very efficient orbital current generation in CoPt alloy, paving the way to efficient orbital terahertz emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09228v1-abstract-full').style.display = 'none'; document.getElementById('2402.09228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11724">arXiv:2311.11724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11724">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/RevModPhys.96.015005">10.1103/RevModPhys.96.015005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical control of magnetism by electric field and current-induced torques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramesh%2C+R">Ramamoorthy Ramesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+V">Vincent Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casanova%2C+F">F猫lix Casanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bibes%2C+M">Manuel Bibes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11724v1-abstract-short" style="display: inline;"> While early magnetic memory designs relied on magnetization switching by locally generated magnetic fields, key insights in condensed matter physics later suggested the possibility to do it electrically. In the 1990s, Slonczewzki and Berger formulated the concept of current-induced spin torques in magnetic multilayers through which a spin-polarized current may switch the magnetization of a ferroma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11724v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11724v1-abstract-full" style="display: none;"> While early magnetic memory designs relied on magnetization switching by locally generated magnetic fields, key insights in condensed matter physics later suggested the possibility to do it electrically. In the 1990s, Slonczewzki and Berger formulated the concept of current-induced spin torques in magnetic multilayers through which a spin-polarized current may switch the magnetization of a ferromagnet. This discovery drove the development of spin-transfer-torque magnetic random-access memories (STT-MRAMs). More recent research unveiled spin-orbit-torques (SOTs) and will lead to a new generation of devices including SOT-MRAMs. Parallel to these advances, multiferroics and their magnetoelectric coupling experienced a renaissance, leading to novel device concepts for information and communication technology such as the MESO transistor. The story of the electrical control of magnetization is that of a dance between fundamental research (in spintronics, condensed matter physics, and materials science) and technology (MRAMs, MESO, microwave emitters, spin-diodes, skyrmion-based devices, components for neuromorphics, etc). This pas de deux led to major breakthroughs over the last decades (pure spin currents, magnetic skyrmions, spin-charge interconversion, etc). As a result, this field has propelled MRAMs into consumer electronics products but also fueled discoveries in adjacent research areas such as ferroelectrics or magnonics. Here, we cover recent advances in the control of magnetism by electric fields and by current-induced torques. We first review fundamental concepts in these two directions, then discuss their combination, and finally present various families of devices harnessing the electrical control of magnetic properties for various application fields. We conclude by giving perspectives in terms of both emerging fundamental physics concepts and new directions in materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11724v1-abstract-full').style.display = 'none'; document.getElementById('2311.11724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version accepted for publication in Reviews of Modern Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Mod. Phys. 96, 015005 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08267">arXiv:2311.08267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08267">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.046303">10.1103/PhysRevLett.132.046303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Odd non-linear conductivity under spatial inversion in chiral Tellurium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%C3%A1rez-Rodr%C3%ADguez%2C+M">Manuel Su谩rez-Rodr铆guez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mart%C3%ADn-Garc%C3%ADa%2C+B">Beatriz Mart铆n-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skowro%C5%84ski%2C+W">Witold Skowro艅ski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calavalle%2C+F">F. Calavalle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirkin%2C+S+S">Stepan S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Souza%2C+I">Ivo Souza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Juan%2C+F">Fernando De Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuvilin%2C+A">Andrey Chuvilin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gobbi%2C+M">Marco Gobbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casanova%2C+F">F猫lix Casanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hueso%2C+L+E">Luis E. Hueso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08267v2-abstract-short" style="display: inline;"> Electrical transport in non-centrosymmetric materials departs from the well-established phenomenological Ohm&#39;s law. Instead of a linear relation between current and electric field, a non-linear conductivity emerges along specific crystallographic directions. This non-linear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08267v2-abstract-full').style.display = 'inline'; document.getElementById('2311.08267v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08267v2-abstract-full" style="display: none;"> Electrical transport in non-centrosymmetric materials departs from the well-established phenomenological Ohm&#39;s law. Instead of a linear relation between current and electric field, a non-linear conductivity emerges along specific crystallographic directions. This non-linear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an inversion symmetry operation on the non-linear conductivity remain to be explored. Here, we report on a large, non-linear conductivity in chiral Tellurium. By measuring samples with opposite handedness, we demonstrate that the non-linear transport is odd under spatial inversion. Furthermore, by applying an electrostatic gate, we modulate the non-linear output by a factor of 300, reaching the highest reported value excluding engineered heterostructures. Our results establish chiral Te as an ideal compound not just to study the fundamental interplay between crystal structure, symmetry operations and non-linear transport, but also to develop wireless rectifiers and energy-harvesting chiral devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08267v2-abstract-full').style.display = 'none'; document.getElementById('2311.08267v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 046303 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15987">arXiv:2309.15987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15987">pdf</a>, <a href="https://arxiv.org/format/2309.15987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantifying the large contribution from orbital Rashba effect to the effective damping-like torque on magnetization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krishnia%2C+S">S. Krishnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bony%2C+B">B. Bony</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rongione%2C+E">E. Rongione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vicente-Arche%2C+L+M">L. Moreno Vicente-Arche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denneulin%2C+T">T. Denneulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunin-Borkowski%2C+R+E">R. E. Dunin-Borkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">S. Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">H. Jaffr猫s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15987v2-abstract-short" style="display: inline;"> The generation of large spin currents, and the associated spin torques, which are at the heart of modern spintronics, have long been achieved by charge-to-spin conversion mechanisms, i.e. the spin Hall effect and/or the Rashba effect, intrinsically linked to a strong spin-orbit coupling. Recently, a novel path has been predicted and observed for achieving significant current-induced torques origin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15987v2-abstract-full').style.display = 'inline'; document.getElementById('2309.15987v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15987v2-abstract-full" style="display: none;"> The generation of large spin currents, and the associated spin torques, which are at the heart of modern spintronics, have long been achieved by charge-to-spin conversion mechanisms, i.e. the spin Hall effect and/or the Rashba effect, intrinsically linked to a strong spin-orbit coupling. Recently, a novel path has been predicted and observed for achieving significant current-induced torques originating from light elements, hence possessing a weak spin-orbit interaction. These findings point out to the potential involvement of the orbital counterpart of electrons, namely the orbital Hall and orbital Rashba effects. In this study, we aim at quantifying these orbital-related contributions to the effective torques acting on a thin Co layer in different systems. First, in Pt|Co|Cu|AlOx stacking, we demonstrate a comparable torque strength coming from the conversion due to the orbital Rashba effect at the Cu|AlOx interface and the one from the effective spin Hall effect in bottom Pt|Co system. Secondly, in order to amplify the orbital-to-spin conversion, we investigate the impact of an intermediate Pt layer in Co|Pt|Cu|CuOx. From the Pt thickness dependence of the effective torques determined by harmonic Hall measurements complemented by spin Hall magneto-resistance and THz spectroscopy experiments, we demonstrate that a large orbital Rashba effect is present at the Cu|CuOx interface, leading to a twofold enhancement of the net torques on Co for the optimal Pt thickness. Our findings not only demonstrate the crucial role that orbital currents can play in low-dimensional systems with weak spin-orbit coupling, but also reveal that they enable more energy efficient manipulation of magnetization in spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15987v2-abstract-full').style.display = 'none'; document.getElementById('2309.15987v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03490">arXiv:2307.03490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03490">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Orbitronics: Light-induced Orbit Currents in Terahertz Emission Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffres%2C+H">Henri-Yves Jaffres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yongshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Renyou Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuhao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+H">Houyi Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03490v1-abstract-short" style="display: inline;"> Orbitronics is based on the use of orbit currents as information carriers. Up to now, orbit currents were created from the conversion of charge or spin currents, and inversely, they could be converted back to charge or spin currents. Here we demonstrate that orbit currents can also be generated by femtosecond light pulses on Ni. In multilayers associating Ni with oxides and nonmagnetic metals such&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03490v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03490v1-abstract-full" style="display: none;"> Orbitronics is based on the use of orbit currents as information carriers. Up to now, orbit currents were created from the conversion of charge or spin currents, and inversely, they could be converted back to charge or spin currents. Here we demonstrate that orbit currents can also be generated by femtosecond light pulses on Ni. In multilayers associating Ni with oxides and nonmagnetic metals such as Cu, we detect the orbit currents by their conversion into charge currents and the resulting terahertz emission. We show that the orbit currents extraordinarily predominate the light-induced spin currents in Ni-based systems, whereas only spin currents can be detected with CoFeB-based systems. In addition, the analysis of the time delays of the terahertz pulses leads to relevant information on the velocity and propagation of orbit carriers. Our finding of light-induced orbit currents and our observation of their conversion into charge currents opens new avenues in orbitronics, including the development of orbitronic terahertz devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03490v1-abstract-full').style.display = 'none'; document.getElementById('2307.03490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19208">arXiv:2305.19208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19208">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Driving skyrmions in flow regime in synthetic ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mallick%2C+S">Sougata Mallick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sassi%2C+Y">Yanis Sassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prestes%2C+N+F">Nicholas Figueiredo Prestes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnia%2C+S">Sachin Krishnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallego%2C+F">Fernando Gallego</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denneulin%2C+T">Thibaud Denneulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">Sophie Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouzehouane%2C+K">Karim Bouzehouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiaville%2C+A">Andr茅 Thiaville</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunin-Borkowski%2C+R+E">Rafal E. Dunin-Borkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeudy%2C+V">Vincent Jeudy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19208v2-abstract-short" style="display: inline;"> Despite significant advances in the last decade regarding the room temperature stabilization of skyrmions or their current induced dynamics, the impact of local material inhomogeneities still remains an important issue that impedes to reach the regime of steady state motion of these spin textures. Here, we study the spin-torque driven motion of skyrmions in synthetic ferrimagnetic multilayers with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19208v2-abstract-full').style.display = 'inline'; document.getElementById('2305.19208v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19208v2-abstract-full" style="display: none;"> Despite significant advances in the last decade regarding the room temperature stabilization of skyrmions or their current induced dynamics, the impact of local material inhomogeneities still remains an important issue that impedes to reach the regime of steady state motion of these spin textures. Here, we study the spin-torque driven motion of skyrmions in synthetic ferrimagnetic multilayers with the aim of achieving high mobility and reduced skyrmion Hall effect. We consider Pt|Co|Tb multilayers of various thicknesses with antiferromagnetic coupling between the Co and Tb magnetization. The increase of Tb thickness in the multilayers allows to reduce the total magnetic moment and increases the spin-orbit torques allowing to reach velocities up to 400 m.s-1 for skyrmions with diameters of about 160 nm. We demonstrate that due to reduced skyrmion Hall effect, combined with the edge repulsion of the magnetic track making the skyrmions moving along the track without any transverse deflection. Further, by comparing the field-induced domain wall motion and current-induced skyrmion motion, we demonstrate that the skyrmions at the largest current densities present all the characteristics of a dynamical flow regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19208v2-abstract-full').style.display = 'none'; document.getElementById('2305.19208v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02163">arXiv:2305.02163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02163">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.92.081001">10.7566/JPSJ.92.081001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Early Theories of Dzyaloshinskii-Moriya Interactions in Metallic Systems to Today&#39;s Novel Roads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiaville%2C+A">Andr茅 Thiaville</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02163v1-abstract-short" style="display: inline;"> Since the early 1960&#39;s, the discovery of Dzyaloshinskii-Moriya interaction (DMI) helped to explain the physical mechanisms behind certain magnetic phenomena, such as net moment in antiferromagnets, or enhanced anisotropy field from heavy metals impurity in dilute Cu:Mn alloy. Since the researchers unveil the key role that DMI plays in stabilizing chiral Neel type magnetic domain wall and magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02163v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02163v1-abstract-full" style="display: none;"> Since the early 1960&#39;s, the discovery of Dzyaloshinskii-Moriya interaction (DMI) helped to explain the physical mechanisms behind certain magnetic phenomena, such as net moment in antiferromagnets, or enhanced anisotropy field from heavy metals impurity in dilute Cu:Mn alloy. Since the researchers unveil the key role that DMI plays in stabilizing chiral Neel type magnetic domain wall and magnetic skyrmions, the studies on DMI have received growing interest. Governed by spin-orbit coupling (SOC) and various types of inversion symmetry breaking (ISB) in magnetic systems, DMI drives the forming of distinct morphologies of magnetic skyrmions. Our aim is to briefly introduce the research history of DMI and its significance in the field of modern spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02163v1-abstract-full').style.display = 'none'; document.getElementById('2305.02163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in J. Phys. Soc. Jpn</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Soc. Jpn (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05741">arXiv:2212.05741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.05741">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c03973">10.1021/acs.nanolett.2c03973 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gradient-induced Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05741v1-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI) that arises in the magnetic systems with broken inversion symmetry plays an essential role in topological spintronics. Here, by means of atomistic spin calculations, we study an intriguing type of DMI (g-DMI) that emerges in the films with composition gradient. We show that both the strength and chirality of g-DMI can be controlled by the composition gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05741v1-abstract-full').style.display = 'inline'; document.getElementById('2212.05741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05741v1-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI) that arises in the magnetic systems with broken inversion symmetry plays an essential role in topological spintronics. Here, by means of atomistic spin calculations, we study an intriguing type of DMI (g-DMI) that emerges in the films with composition gradient. We show that both the strength and chirality of g-DMI can be controlled by the composition gradient even in the disordered system. The layer-resolved analysis of g-DMI unveils its additive nature inside the bulk layers and clarifies the linear thickness dependence of g-DMI observed in experiments. Furthermore, we demonstrate the g-DMI induced chiral magnetic structures, such as spin spirals and skyrmions, and the g-DMI driven field-free spin-orbit torque (SOT) switching, both of which are crucial towards practical device application. These results elucidate the underlying mechanisms of g-DMI and open up a new way to engineer the topological magnetic textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05741v1-abstract-full').style.display = 'none'; document.getElementById('2212.05741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in production in Nano Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01866">arXiv:2208.01866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.01866">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Inverse Orbital Hall Effect Discovered from Light-Induced Terahertz Emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yongshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Renyou Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuhao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+H">Houyi Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01866v2-abstract-short" style="display: inline;"> Recent progress in orbitronics reveals the possibility of using orbit current as an information carrier. The interconversion between orbit currents and charge currents is crucial for orbit information processing. Although orbit currents can be created from charge currents via the orbital Hall effect, the conversion from orbit currents into charge currents has been observed only in very few systems&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01866v2-abstract-full').style.display = 'inline'; document.getElementById('2208.01866v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01866v2-abstract-full" style="display: none;"> Recent progress in orbitronics reveals the possibility of using orbit current as an information carrier. The interconversion between orbit currents and charge currents is crucial for orbit information processing. Although orbit currents can be created from charge currents via the orbital Hall effect, the conversion from orbit currents into charge currents has been observed only in very few systems due to the lack of a reliable orbit current source and the disturbance of the omnipresent inverse spin Hall effect. In this study, we show that ultrafast pulses of orbit current can be generated in Ni layers by femtosecond laser pulses. We demonstrate that, by injecting such orbit current pulses into nonmagnetic metals, a transient charge current is induced and emits terahertz electromagnetic pulses. The nonmagnetic metal layer acts as a converter of the orbit current into the charge current. The discovery of the generation and conversion of light-induced orbit current opens a new route for developing future orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01866v2-abstract-full').style.display = 'none'; document.getElementById('2208.01866v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08486">arXiv:2205.08486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08486">pdf</a>, <a href="https://arxiv.org/format/2205.08486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Large interfacial Rashba interaction and giant spin-orbit torques in atomically thin metallic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krishnia%2C+S">S. Krishnia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sassi%2C+Y">Y. Sassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ajejas%2C+F">F. Ajejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">S. Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffres%2C+H">H. Jaffres</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08486v2-abstract-short" style="display: inline;"> The ability of spin-orbit interactions to convert charge current into spin current, most often in the bulk of heavy metal thin films, has been the hallmark of spintronics in the last decade. In this study, we demonstrate how the insertion of light metal element interface profoundly affects both the nature of spin-orbit torque and its efficiency in terms of damping-like ($H_{\text{DL}}$) and field-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08486v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08486v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08486v2-abstract-full" style="display: none;"> The ability of spin-orbit interactions to convert charge current into spin current, most often in the bulk of heavy metal thin films, has been the hallmark of spintronics in the last decade. In this study, we demonstrate how the insertion of light metal element interface profoundly affects both the nature of spin-orbit torque and its efficiency in terms of damping-like ($H_{\text{DL}}$) and field-like ($H_{\text{FL}}$) effective fields in ultrathin Co ferromagnet. Indeed, we measure unexpectedly large $H_{\text{FL}}$/$H_{\text{DL}}$ ratio ($\sim$2.5) upon inserting a 1.4 nm thin Al layer in Pt|Co|Al|Pt as compared to a similar stacking including Cu instead of Al. From our modelling, these results strongly evidence the presence of large Rashba interaction at Co|Al interface producing a giant $H_{\text{FL}}$, which was not expected from a metallic interface. The occurrence of such enhanced torques from an interfacial origin is further validated by demonstrating current-induced magnetization reversal showing a significant decrease of the critical current for switching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08486v2-abstract-full').style.display = 'none'; document.getElementById('2205.08486v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04118">arXiv:2205.04118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04118">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.174404">10.1103/PhysRevB.105.174404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiferroic materials based on transition-metal dichalcogenides: Potential platform for reversible control of Dzyaloshinskii-Moriya interaction and skyrmion via electric field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Z">Ziji Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">Tiejun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04118v1-abstract-short" style="display: inline;"> Exploring novel two-dimensional multiferroic materials that can realize electric-field control of two-dimensional magnetism has become an emerging topic in spintronics. Using first-principles calculations, we demonstrate that non-metallic bilayer transition metal dichalcogenides (TMDs) can be an ideal platform for building multiferroics by intercalated magnetic atoms. Moreover, we unveil that with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04118v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04118v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04118v1-abstract-full" style="display: none;"> Exploring novel two-dimensional multiferroic materials that can realize electric-field control of two-dimensional magnetism has become an emerging topic in spintronics. Using first-principles calculations, we demonstrate that non-metallic bilayer transition metal dichalcogenides (TMDs) can be an ideal platform for building multiferroics by intercalated magnetic atoms. Moreover, we unveil that with Co intercalated bilayer MoS2, Co(MoS2)2, two energetic degenerate states with opposite chirality of Dzyaloshinskii-Moriya interaction (DMI) are the ground states, indicating electric-field control of the chirality of topologic magnetism such as skyrmions can be realized in this type of materials by reversing the electric polarization. These findings pave the way for electric-field control of topological magnetism in two-dimensional multiferroics with intrinsic magnetoelectric coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04118v1-abstract-full').style.display = 'none'; document.getElementById('2205.04118v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01172">arXiv:2205.01172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01172">pdf</a>, <a href="https://arxiv.org/format/2205.01172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-34370-x">10.1038/s41467-022-34370-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional skyrmionic cocoons in magnetic multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grelier%2C+M">Matthieu Grelier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godel%2C+F">Florian Godel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vecchiola%2C+A">Aymeric Vecchiola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">Sophie Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouzehouane%2C+K">Karim Bouzehouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01172v1-abstract-short" style="display: inline;"> Three-dimensional (3D) topological spin textures emerge as promising quasi-particles for encoding information in future spintronic devices. The third dimension provides more malleability regarding their magnetic properties as well as more flexibility for potential applications. However, the stabilization and characterization of such quasi-particles in easily implementable systems remain a work in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01172v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01172v1-abstract-full" style="display: none;"> Three-dimensional (3D) topological spin textures emerge as promising quasi-particles for encoding information in future spintronic devices. The third dimension provides more malleability regarding their magnetic properties as well as more flexibility for potential applications. However, the stabilization and characterization of such quasi-particles in easily implementable systems remain a work in progress. Here we observe a new type of 3D magnetic textures that we called skyrmionic cocoons that sits in the interior of magnetic thin films multilayers and possesses a characteristic ellipsoidal shape. Interestingly, these cocoons can coexist with more standard `tubular&#39; skyrmions going through all the multilayer as evidenced by the existence of two very different contrasts in the MFM images recorded at room temperature. The presence of these novel skyrmionic textures as well as the understanding of their layer resolved chiral and topological properties have been investigated by micromagnetic simulations. In order to experimentally stabilize the combination of 3D skyrmion tubes and cocoons, we have elaborated metallic multilayers in which the magnetic properties, notably the anisotropy, of the magnetic films in the stacks is varied depending on their vertical position. Finally, in complement to the magnetic imaging, we also measure the magneto-resistive response of the multilayers as a function of the magnetic field, and succeed to fit its evolution using the 3D micromagnetic simulations as inputs for the magnetic configuration. The excellent agreement that is reached brings additional evidence of the presence of skyrmionic cocoons that hence can be electrically detected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01172v1-abstract-full').style.display = 'none'; document.getElementById('2205.01172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06182">arXiv:2201.06182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06182">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dongxing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06182v2-abstract-short" style="display: inline;"> Logic gates based on magnetic elements are promising candidates for the logic-in-memory applications with nonvolatile data retention, near-zero leakage and scalability. In such spin-based logic device, however, the multi-strip structure and fewer functions are obstacles to improving integration and reducing energy consumption. Here we propose a skyrmions-based single-nanotrack logic family includi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06182v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06182v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06182v2-abstract-full" style="display: none;"> Logic gates based on magnetic elements are promising candidates for the logic-in-memory applications with nonvolatile data retention, near-zero leakage and scalability. In such spin-based logic device, however, the multi-strip structure and fewer functions are obstacles to improving integration and reducing energy consumption. Here we propose a skyrmions-based single-nanotrack logic family including AND, OR, NOT, NAND, NOR, XOR, and XNOR which can be implemented and reconstructed by building and switching Dzyaloshinskii-Moriya interaction (DMI) chirality barrier on a racetrack memory. Besides the pinning effect of DMI chirality barrier on skyrmions, the annihilation, fusion and shunting of two skyrmions with opposite chirality are also achieved and demonstrated via local reversal of DMI, which are necessary for the design of engineer programmable logic nanotrack, transistor and complementary racetrack memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06182v2-abstract-full').style.display = 'none'; document.getElementById('2201.06182v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by National Science Review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15594">arXiv:2111.15594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.15594">pdf</a>, <a href="https://arxiv.org/format/2111.15594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c02585">10.1021/acs.nanolett.2c02585 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bilinear magnetoresistance in HgTe topological insulator: opposite signs at opposite interfaces demonstrated by gate control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Yu Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papin%2C+J">Jules Papin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noel%2C+P">Paul Noel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teresi%2C+S">Salvatore Teresi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cosset-Cheneau%2C+M">Maxen Cosset-Cheneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grezes%2C+C">Cecile Grezes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guillet%2C+T">Thomas Guillet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+C">Candice Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niquet%2C+Y">Yann-Michel Niquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballet%2C+P">Philippe Ballet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meunier%2C+T">Tristan Meunier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attane%2C+J">Jean-Philippe Attane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+L">Laurent Vila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15594v2-abstract-short" style="display: inline;"> Spin-orbit effects appearing in topological insulators (TI) and at Rashba interfaces are currently revolutionizing how we can manipulate spins and have led to several newly discovered effects, from spin-charge interconversion and spin-orbit torques to novel magnetoresistance phenomena. In particular, a puzzling magnetoresistance has been evidenced, bilinear in electric and magnetic fields. Here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15594v2-abstract-full').style.display = 'inline'; document.getElementById('2111.15594v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15594v2-abstract-full" style="display: none;"> Spin-orbit effects appearing in topological insulators (TI) and at Rashba interfaces are currently revolutionizing how we can manipulate spins and have led to several newly discovered effects, from spin-charge interconversion and spin-orbit torques to novel magnetoresistance phenomena. In particular, a puzzling magnetoresistance has been evidenced, bilinear in electric and magnetic fields. Here, we report the observation of bilinear magnetoresistance (BMR) in strained HgTe, a prototypical TI. We show that both the amplitude and sign of this BMR can be tuned by controlling, with an electric gate, the relative proportions of the opposite contributions of opposite surfaces. At magnetic fields of 1 T, the magnetoresistance is of the order of 1 \% and has a larger figure of merit than previously measured TIs. We propose a theoretical model giving a quantitative account of our experimental data. This phenomenon, unique to TI, offers novel opportunities to tune their electrical response for spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15594v2-abstract-full').style.display = 'none'; document.getElementById('2111.15594v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00761">arXiv:2109.00761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00761">pdf</a>, <a href="https://arxiv.org/format/2109.00761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.L071401">10.1103/PhysRevMaterials.6.L071401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Element-selective modulation of interfacial Dzyaloshinskii-Moriya interaction in Pt|Co|Metal based multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ajejas%2C+F">Fernando Ajejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sassi%2C+Y">Yanis Sassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">William Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">Sophie Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiaville%2C+A">Andr茅 Thiaville</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+J+P">Jose Pe帽a Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pizzini%2C+S">Stefania Pizzini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00761v1-abstract-short" style="display: inline;"> Despite a decade of research, the precise mechanisms occurring at interfaces underlying the Dzyaloshinskii-Moriya interaction (DMI), and thus the possibility of fine-tuning it, are not yet fully identified. In this study, we investigate the origin of the interfacial DMI, aiming at disentangling how independent are the interfaces around the ferromagnetic layer, and what are their relative contribut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00761v1-abstract-full').style.display = 'inline'; document.getElementById('2109.00761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00761v1-abstract-full" style="display: none;"> Despite a decade of research, the precise mechanisms occurring at interfaces underlying the Dzyaloshinskii-Moriya interaction (DMI), and thus the possibility of fine-tuning it, are not yet fully identified. In this study, we investigate the origin of the interfacial DMI, aiming at disentangling how independent are the interfaces around the ferromagnetic layer, and what are their relative contributions to the effective DMI amplitude. For this purpose, we have grown and investigated a large variety of systems with a common structure Pt$|$Co$|M$ with $M =$ Ni, Pd, Ru, Al, Al$|$Ta and MoSi. We explore the correlation between the effective interfacial DMI, and different intrinsic properties of metals, namely atomic number, electronegativity and work function difference at the Co$|M$ interfaces. We find a linear relationship between interfacial DMI and the work function difference between the two elements, hence relating the nature of this behavior to the interfacial potential gradient at the metallic interfaces. The understanding of the DMI mechanism is of utmost importance since it opens up the possibility of precisely engineering the magnetic and hence the spintronic properties for future devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00761v1-abstract-full').style.display = 'none'; document.getElementById('2109.00761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 Figures, 1 table. Letter</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 6, L071401 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09015">arXiv:2105.09015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09015">pdf</a>, <a href="https://arxiv.org/format/2105.09015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c01713">10.1021/acs.nanolett.1c01713 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rashba-type Dzyaloshinskii-Moriya interaction, perpendicular magnetic anisotropy and skyrmion states at 2D materials/Co interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hallal%2C+A">Ali Hallal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ibrahim%2C+F">Fatima Ibrahim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09015v1-abstract-short" style="display: inline;"> We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interfaces, it is found that the DMI in latter increases as a function of Co thickness and beyond three monolayers stabilizes with one order of magnitude la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09015v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09015v1-abstract-full" style="display: none;"> We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interfaces, it is found that the DMI in latter increases as a function of Co thickness and beyond three monolayers stabilizes with one order of magnitude larger values compared to those at graphene/Co, where the DMI shows opposite decreasing behavior. At the same time, the PMA for both systems shows similar trends with larger values for graphene/Co and no significant variations for all thickness ranges of Co. Furthermore, using micromagnetic simulations we demonstrate that such significant DMI and PMA values remaining stable over large range of Co thickness give rise to formation of skyrmions with small applied external fields in the range of 200-250 mT up to 100 K temperatures. These findings open up further possibilities towards integrating two-dimensional (2D) materials in spin-orbitronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09015v1-abstract-full').style.display = 'none'; document.getElementById('2105.09015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 21, 7138 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08518">arXiv:2101.08518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08518">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-24854-7">10.1038/s41467-021-24854-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with vertical composition gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z">Zhenyi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lopez-Dominguez%2C+V">Victor Lopez-Dominguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Tejerina%2C+L">Luis S谩nchez-Tejerina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jiacheng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xueqiang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zilu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhizhong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+B">Bin Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Youguang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carpentieri%2C+M">Mario Carpentieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amiri%2C+P+K">Pedram Khalili Amiri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08518v1-abstract-short" style="display: inline;"> Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08518v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08518v1-abstract-full" style="display: none;"> Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we reported bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii-Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08518v1-abstract-full').style.display = 'none'; document.getElementById('2101.08518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 12, 4555 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.06900">arXiv:2012.06900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.06900">pdf</a>, <a href="https://arxiv.org/format/2012.06900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0022369">10.1063/5.0022369 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast spin-currents and charge conversion at 3d-5d interfaces probed by time-domain terahertz spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+T+H">T. H. Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawecker%2C+J">J. Hawecker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rongione%2C+E">E. Rongione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flores%2C+G+B">G. Baez Flores</a>, <a href="/search/cond-mat?searchtype=author&amp;query=To%2C+D+Q">D. Q. To</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rojas-Sanchez%2C+J+C">J. C. Rojas-Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nong%2C+H">H. Nong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangeney%2C+J">J. Mangeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tignon%2C+J">J. Tignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godel%2C+F">F. Godel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">S. Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seneor%2C+P">P. Seneor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bibes%2C+M">M. Bibes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anane%2C+M">M. Anane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+L">L. Vila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cosset-Cheneau%2C+M">M. Cosset-Cheneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dolfi%2C+D">D. Dolfi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lebrun%2C+R">R. Lebrun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortolotti%2C+P">P. Bortolotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belashchenko%2C+K">K. Belashchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhillon%2C+S">S. Dhillon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">H. Jaffr猫s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.06900v1-abstract-short" style="display: inline;"> Spintronic structures are extensively investigated for their spin orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-transition metal interfaces due to their inv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06900v1-abstract-full').style.display = 'inline'; document.getElementById('2012.06900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.06900v1-abstract-full" style="display: none;"> Spintronic structures are extensively investigated for their spin orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-transition metal interfaces due to their inverse spin-Hall effect properties. In particular the intrinsic inverse spin Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques -- ultrafast THz time domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping measurements in the GHz regime in the steady state -- to determine the role played by the material properties, resistivities, spin transmission at metallic interfaces and spin-flip rates. These measurements show the correspondence between the THz time domain spectroscopy and ferromagnetic spin-pumping for the different set of samples in term of the spin mixing conductance. The latter quantity is a critical parameter, determining the strength of the THz emission from spintronic interfaces. This is further supported by ab-initio calculations, simulations and analysis of the spin-diffusion and spin relaxation of carriers within the multilayers in the time domain, permitting to determine the main trends and the role of spin transmission at interfaces. This work illustrates that time domain spectroscopy for spin-based THz emission is a powerful technique to probe spin-dynamics at active spintronic interfaces and to extract key material properties for spin-charge conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06900v1-abstract-full').style.display = 'none'; document.getElementById('2012.06900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Reviews 7, 041409 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00351">arXiv:2011.00351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.00351">pdf</a>, <a href="https://arxiv.org/format/2011.00351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.064411">10.1103/PhysRevB.103.064411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Rashba unidirectional magnetoresistance in the Fe/Ge(111) interface states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guillet%2C+T">T. Guillet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zucchetti%2C+C">C. Zucchetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marty%2C+A">A. Marty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isella%2C+G">G. Isella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergnaud%2C+C">C. Vergnaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbedienne%2C+Q">Q. Barbedienne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">H. Jaffr猫s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jamet%2C+M">M. Jamet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00351v1-abstract-short" style="display: inline;"> The structure inversion asymmetry at surfaces and interfaces give rise to the Rashba spin-orbit interaction (SOI), that breaks the spin degeneracy of surface or interface states. Hence, when an electric current runs through a surface or interface, this Rashba effect generates an effective magnetic field acting on the electron spin. This provides an additional tool to manipulate the spin state in m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00351v1-abstract-full').style.display = 'inline'; document.getElementById('2011.00351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00351v1-abstract-full" style="display: none;"> The structure inversion asymmetry at surfaces and interfaces give rise to the Rashba spin-orbit interaction (SOI), that breaks the spin degeneracy of surface or interface states. Hence, when an electric current runs through a surface or interface, this Rashba effect generates an effective magnetic field acting on the electron spin. This provides an additional tool to manipulate the spin state in materials such as Si and Ge that, in their bulk form, possess inversion symmetry (or lack structural inersion asymmetry). The existence of Rashba states could be demonstrated by photoemission spectroscopy at the interface between different metals and Ge(111) and by spin-charge conversion experiments at the Fe/Ge(111) interface even though made of two light elements. In this work, we identify the fingerprint of the Rashba states at the Fe/Ge(111) interface by magnetotransport measurements in the form of a large unidirectional magnetoresistance of up to 0.1 \%. From its temperature dependence, we find that the Rashba energy splitting is larger than in pure Ge(111) subsurface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00351v1-abstract-full').style.display = 'none'; document.getElementById('2011.00351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 064411 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.09137">arXiv:2010.09137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.09137">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202007047">10.1002/adma.202007047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current-induced spin torques on single GdFeCo magnetic layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=C%C3%A9spedes-Berrocal%2C+D">David C茅spedes-Berrocal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damas%2C+H">Helo茂se Damas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petit-Watelot%2C+S">S茅bastien Petit-Watelot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">David Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+P">Ping Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arriola-C%C3%B3rdova%2C+A">Aldo Arriola-C贸rdova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vallobra%2C+P">Pierre Vallobra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bello%2C+J">Jean-Lo茂s Bello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+E">Elodie Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Migot%2C+S">Sylvie Migot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghanbaja%2C+J">Jaafar Ghanbaja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panagopoulos%2C+C">Christos Panagopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rojas-S%C3%A1nchez%2C+J">Juan-Carlos Rojas-S谩nchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.09137v1-abstract-short" style="display: inline;"> Spintronics exploits spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba, and Dzyaloshinskii-Moriya interactions (DMI). The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.09137v1-abstract-full').style.display = 'inline'; document.getElementById('2010.09137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.09137v1-abstract-full" style="display: none;"> Spintronics exploits spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba, and Dzyaloshinskii-Moriya interactions (DMI). The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents by Spin Hall Effect (SHE) and, in turn, exert spin torques on the magnetic layers. Here, we introduce a new class of material architectures, excluding nonmagnetic 5d HMs, for high-performance spintronics operations. We demonstrate very strong current-induced torques exerted on single GdFeCo layers due to the combination of large SOC of the Gd 5d states, and inversion symmetry breaking mainly engineered by interfaces. These &#34;self-torques&#34; are enhanced around the magnetization compensation temperature (close to room temperature) and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, we determine the very large emission of spin current from GdFeCo. This material platform opens new perspectives to exert &#34;self-torques&#34; on single magnetic layers as well as to generate spin currents from a magnetic layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.09137v1-abstract-full').style.display = 'none'; document.getElementById('2010.09137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 figures plus 5 pages of sup. information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03354">arXiv:2007.03354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03354">pdf</a>, <a href="https://arxiv.org/format/2007.03354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.071001">10.1103/PhysRevMaterials.4.071001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determining the Rashba parameter from the bilinear magnetoresistance response in a two-dimensional electron gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+D+C">D. C. Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trier%2C+F">F. Trier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dyrda%C5%82%2C+A">A. Dyrda艂</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johansson%2C+A">A. Johansson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">K. Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barth%C3%A9l%C3%A9my%2C+A">A. Barth茅l茅my</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertig%2C+I">I. Mertig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barna%C5%9B%2C+J">J. Barna艣</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bibes%2C+M">M. Bibes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03354v1-abstract-short" style="display: inline;"> Two-dimensional (2D) Rashba systems have been intensively studied in the last decade due to their unconventional physics, tunability capabilities, and potential for spin-charge interconversion when compared to conventional heavy metals. With the advent of a new generation of spin-based logic and memory devices, the search for Rashba systems with more robust and larger conversion efficiencies is ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03354v1-abstract-full').style.display = 'inline'; document.getElementById('2007.03354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03354v1-abstract-full" style="display: none;"> Two-dimensional (2D) Rashba systems have been intensively studied in the last decade due to their unconventional physics, tunability capabilities, and potential for spin-charge interconversion when compared to conventional heavy metals. With the advent of a new generation of spin-based logic and memory devices, the search for Rashba systems with more robust and larger conversion efficiencies is expanding. Conventionally, demanding techniques such as angle- and spin-resolved photoemission spectroscopy are required to determine the Rashba parameter $伪_{R}$ that characterizes these systems. Here, we introduce a simple method that allows a quantitative extraction of $伪_{R}$, through the analysis of the bilinear response of angle-dependent magnetotransport experiments. This method is based on the modulation of the Rashba-split bands under a rotating in-plane magnetic field. We show that our method is able to correctly yield the value of $伪_{R}$ for a wide range of Fermi energies in the 2D electron gas at the LaAlO$_{3}$/SrTiO$_{3}$ interface. By applying a gate voltage, we observe a maximum $伪_{R}$ in the region of the band structure where interband effects maximize the Rashba effect, consistently with theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03354v1-abstract-full').style.display = 'none'; document.getElementById('2007.03354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published on July 2, 2020 as Phys. Rev. Materials 4, 071001(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01357">arXiv:2004.01357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.01357">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Modulation of field-like spin orbit torque in heavy metal / ferromagnet heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zilu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+H">Houyi Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+K">Kewen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+J">Junfeng Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Daoqian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+W">Wenlong Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xueying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eimer%2C+S">Sylvain Eimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Dapeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01357v1-abstract-short" style="display: inline;"> Recent studies rediscovered the crucial role of field-like spin orbit torque (SOT) in nanosecond-timescale SOT dynamics. However, there is not yet an effective way to control its relative amplitude. Here, we experimentally modulate the field-like SOT in W/CoFeB/MgO trilayers through tuning the interfacial spin accumulation. By performing spin Hall magnetoresistance measurement, we find that the Co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01357v1-abstract-full').style.display = 'inline'; document.getElementById('2004.01357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01357v1-abstract-full" style="display: none;"> Recent studies rediscovered the crucial role of field-like spin orbit torque (SOT) in nanosecond-timescale SOT dynamics. However, there is not yet an effective way to control its relative amplitude. Here, we experimentally modulate the field-like SOT in W/CoFeB/MgO trilayers through tuning the interfacial spin accumulation. By performing spin Hall magnetoresistance measurement, we find that the CoFeB with enhanced spin dephasing, either generated from larger layer thickness or from proper annealing, can distinctly boost the spin absorption and enhance the interfacial spin mixing conductance G_r. While the damping-like torque efficiency increases with G_r, the field-like torque efficiency turns out to decrease with it. The results suggest that the interfacial spin accumulation, which largely contributes to a field-like torque, is reduced by higher interfacial spin transparency. Our work shows a new path to further improve the performance of SOT-based magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01357v1-abstract-full').style.display = 'none'; document.getElementById('2004.01357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00026">arXiv:2001.00026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00026">pdf</a>, <a href="https://arxiv.org/format/2001.00026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/ab8418">10.1088/1361-6463/ab8418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 2020 Skyrmionics Roadmap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Back%2C+C">C. Back</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ebert%2C+H">H. Ebert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Everschor-Sitte%2C+K">K. Everschor-Sitte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garst%2C+M">M. Garst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+T">Tianping Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankovsky%2C+S">S. Mankovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monchesky%2C+T+L">T. L. Monchesky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mostovoy%2C+M">M. Mostovoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagaosa%2C+N">N. Nagaosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">S. S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfleiderer%2C+C">C. Pfleiderer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosch%2C+A">A. Rosch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taguchi%2C+Y">Y. Taguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Bergmann%2C+K">K. von Bergmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+J">Jiadong Zang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00026v3-abstract-short" style="display: inline;"> The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00026v3-abstract-full').style.display = 'inline'; document.getElementById('2001.00026v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00026v3-abstract-full" style="display: none;"> The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an interdisciplinary exchange of ideas between areas in magnetism which traditionally have been pursued rather independently. The skyrmionics roadmap provides a review of the present state of the art and the wide range of research directions and strategies currently under way. These are, for instance, motivated by the identification of the fundamental structural properties of skyrmions and related textures, processes of nucleation and annihilation in the presence of non-trivial topological winding, an exceptionally efficient coupling to spin currents generating spin transfer torques at tiny current densities, as well as the capability to purpose-design broad-band spin dynamic and logic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00026v3-abstract-full').style.display = 'none'; document.getElementById('2001.00026v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">J. Phys. D, accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.13118">arXiv:1911.13118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.13118">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.crhy.2019.05.020">10.1016/j.crhy.2019.05.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Dau%2C+F+N">Fr茅d茅ric Nguyen van Dau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.13118v1-abstract-short" style="display: inline;"> This article aims at giving a general presentation of spintronics, an important field of research developing today along many new directions in physics of condensed matter. We tried to present simply the physical phenomena involved in spintronics -- no equations but many schematics. We also described the applications of spintronics, those of today and those expected to have an important impact on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13118v1-abstract-full').style.display = 'inline'; document.getElementById('1911.13118v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.13118v1-abstract-full" style="display: none;"> This article aims at giving a general presentation of spintronics, an important field of research developing today along many new directions in physics of condensed matter. We tried to present simply the physical phenomena involved in spintronics -- no equations but many schematics. We also described the applications of spintronics, those of today and those expected to have an important impact on the next developments of the information and communication technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13118v1-abstract-full').style.display = 'none'; document.getElementById('1911.13118v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comptes Rendus Physique, Elsevier Masson, 2019, 20 (7-8), pp.817-831 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.08575">arXiv:1908.08575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.08575">pdf</a>, <a href="https://arxiv.org/ps/1908.08575">ps</a>, <a href="https://arxiv.org/format/1908.08575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.046802">10.1103/PhysRevLett.124.046802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of bi-linear magnetoresistance within the minimal model for surface states in topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dyrda%C5%82%2C+A">A. Dyrda艂</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barna%C5%9B%2C+J">J. Barna艣</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.08575v1-abstract-short" style="display: inline;"> A new mechanism of bi-linear magnetoresistance (BMR) is studied theoretically within the minimal model describing surface electronic states in topological insulators (TIs). The BMR appears as a consequence of the second-order response to electric field, and depends linearly on both electric field (current) and magnetic field. The mechanism is based on the interplay of current-induced spin polariza&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08575v1-abstract-full').style.display = 'inline'; document.getElementById('1908.08575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.08575v1-abstract-full" style="display: none;"> A new mechanism of bi-linear magnetoresistance (BMR) is studied theoretically within the minimal model describing surface electronic states in topological insulators (TIs). The BMR appears as a consequence of the second-order response to electric field, and depends linearly on both electric field (current) and magnetic field. The mechanism is based on the interplay of current-induced spin polarization and scattering processes due to peculiar spin-orbit defects. The proposed mechanism is compared to that based on a Fermi surface warping, and is shown to be dominant at lower Fermi energies. We provide a consistent theoretical approach based on the Green function formalism and show that the magnetic field dependent relaxation processes in the presence of non-equilibrium current-induced spin polarization give rise to the BMR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08575v1-abstract-full').style.display = 'none'; document.getElementById('1908.08575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 046802 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01425">arXiv:1907.01425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.01425">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.104410">10.1103/PhysRevB.103.104410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> N茅el-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+T">Tae-Eon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+L">Licong Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallal%2C+A">Ali Hallal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yasin%2C+F+S">Fehmi Sami Yasin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xichao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S+J">Sung Jong Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+K+M">Kyung Mee Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kwangsu Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weigand%2C+M">Markus Weigand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuetz%2C+G">Gisela Schuetz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finizio%2C+S">Simone Finizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">Joerg Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">Karin Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ezawa%2C+M">Motohiko Ezawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Joonyeon Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koo%2C+H+C">Hyun Cheol Koo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+D">Young Duck Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiuzhen Yu</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01425v4-abstract-short" style="display: inline;"> Since the discovery of ferromagnetic two-dimensional (2D) van der Waals (vdW) crystals, significant interest on such 2D magnets has emerged, inspired by their appealing properties and integration with other 2D family for unique heterostructures. In known 2D magnets, spin-orbit coupling (SOC) stabilizes perpendicular magnetic anisotropy (PMA). Such a strong SOC could also lift the chiral degeneracy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01425v4-abstract-full').style.display = 'inline'; document.getElementById('1907.01425v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01425v4-abstract-full" style="display: none;"> Since the discovery of ferromagnetic two-dimensional (2D) van der Waals (vdW) crystals, significant interest on such 2D magnets has emerged, inspired by their appealing properties and integration with other 2D family for unique heterostructures. In known 2D magnets, spin-orbit coupling (SOC) stabilizes perpendicular magnetic anisotropy (PMA). Such a strong SOC could also lift the chiral degeneracy, leading to the formation of topological magnetic textures such as skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here, we report the experimental observation of N茅el-type chiral magnetic skyrmions and their lattice (SkX) formation in a vdW ferromagnet Fe3GeTe2 (FGT). We demonstrate the ability to drive individual skyrmion by short current pulses along a vdW heterostructure, FGT/h-BN, as highly required for any skyrmion-based spintronic device. Using first principle calculations supported by experiments, we unveil the origin of DMI being the interfaces with oxides, which then allows us to engineer vdW heterostructures for desired chiral states. Our finding opens the door to topological spin textures in the 2D vdW magnet and their potential device application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01425v4-abstract-full').style.display = 'none'; document.getElementById('1907.01425v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 104410 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04457">arXiv:1906.04457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04457">pdf</a>, <a href="https://arxiv.org/format/1906.04457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.027201">10.1103/PhysRevLett.124.027201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Large Unidirectional Rashba Magnetoresistance in Ge(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guillet%2C+T">T. Guillet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zucchetti%2C+C">C. Zucchetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbedienne%2C+Q">Q. Barbedienne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marty%2C+A">A. Marty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isella%2C+G">G. Isella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cagnon%2C+L">L. Cagnon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergnaud%2C+C">C. Vergnaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jamet%2C+M">M. Jamet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04457v1-abstract-short" style="display: inline;"> Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) grown epitaxially on semi-insulating Si(111) under the application of an external magnetic field. We find a magnetoresistance term which is linear in current density j and magnetic field B, henc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04457v1-abstract-full').style.display = 'inline'; document.getElementById('1906.04457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04457v1-abstract-full" style="display: none;"> Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) grown epitaxially on semi-insulating Si(111) under the application of an external magnetic field. We find a magnetoresistance term which is linear in current density j and magnetic field B, hence odd in j and B, corresponding to a unidirectional magnetoresistance. At 15 K, for I = 10 $渭$A (or j = 0.33 A/m) and B = 1 T, it represents 0.5 % of the zero field resistance, a much higher value compared to previous reports on unidirectional magnetoresistance. We ascribe the origin of this magnetoresistance to the interplay between the externally applied magnetic field and the current-induced pseudo-magnetic field in the spin-splitted subsurface states of Ge(111). This unidirectional magnetoresistance is independent of the current direction with respect to the Ge crystal axes. It progressively vanishes, either using a negative gate voltage due to carrier activation into the bulk (without spin-splitted bands), or by increasing the temperature due to the Rashba energy splitting of the subsurface states lower than $\sim$58 k$_B$. The highly developed technologies on semiconductor platforms would allow the rapid optimization of devices based on this phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04457v1-abstract-full').style.display = 'none'; document.getElementById('1906.04457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 027201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00648">arXiv:1906.00648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.00648">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.184401">10.1103/PhysRevB.101.184401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinghua Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Haifeng Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallal%2C+A">Ali Hallal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">Karin Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00648v3-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI), which only exists in noncentrosymmetric systems, is responsible for the formation of exotic chiral magnetic states. The absence of DMI in most two-dimensional (2D) magnetic materials is due to their intrinsic inversion symmetry. Here, using first-principles calculations, we demonstrate that significant DMI can be obtained in a series of Janus monolayers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00648v3-abstract-full').style.display = 'inline'; document.getElementById('1906.00648v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00648v3-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI), which only exists in noncentrosymmetric systems, is responsible for the formation of exotic chiral magnetic states. The absence of DMI in most two-dimensional (2D) magnetic materials is due to their intrinsic inversion symmetry. Here, using first-principles calculations, we demonstrate that significant DMI can be obtained in a series of Janus monolayers of manganese dichalcogenides MnXY in which the difference between X and Y on the opposites sides of Mn breaks the inversion symmetry. In particular, the DMI amplitudes of MnSeTe and MnSTe are comparable to those of state-of-the-art ferromagnet/heavy metal (FM/HM) heterostructures. In addition, by performing Monte Carlo simulations, we find that at low temperatures the ground states of the MnSeTe and MnSTe monolayers can transform from ferromagnetic states with worm-like magnetic domains into the skyrmion states by applying external magnetic field. At increasing temperature, the skyrmion states starts fluctuating above 50 K before an evolution to a completely disordered structure at higher temperature. The present results pave the way for new device concepts utilizing chiral magnetic structures in specially designed 2D ferromagnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00648v3-abstract-full').style.display = 'none'; document.getElementById('1906.00648v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 184401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.04680">arXiv:1808.04680</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.04680">pdf</a>, <a href="https://arxiv.org/format/1808.04680">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5049876">10.1063/1.5049876 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dzyaloshinskii-Moriya interaction at disordered interfaces from ab initio theory: robustness against intermixing and tunability through dusting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+B">Bernd Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">William Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">Davide Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.04680v2-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI), which is essential for the stabilization of topologically non-trivial chiral magnetic textures such as skyrmions, is particularly strong in heterostructures of ultra-thin magnetic materials and heavy elements. We explore by density-functional theory calculations the possibility to modify the magnetic properties at Co/Pt interfaces with chemical disorder&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04680v2-abstract-full').style.display = 'inline'; document.getElementById('1808.04680v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.04680v2-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI), which is essential for the stabilization of topologically non-trivial chiral magnetic textures such as skyrmions, is particularly strong in heterostructures of ultra-thin magnetic materials and heavy elements. We explore by density-functional theory calculations the possibility to modify the magnetic properties at Co/Pt interfaces with chemical disorder. In these systems, we find a particular robustness of the DMI against intermixing. Upon dusting the interface with a third element (all $4d$ transition metals and B, Cu, Au and Bi), a strong reduction of the DMI is predicted. This opens up possibilities to tune the DMI through the degrees of intermixing and dusting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04680v2-abstract-full').style.display = 'none'; document.getElementById('1808.04680v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 113, 232403 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.11377">arXiv:1807.11377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.11377">pdf</a>, <a href="https://arxiv.org/format/1807.11377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.195445">10.1103/PhysRevB.98.195445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ARPES and transport studies of the elemental topological insulator $伪$-Sn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barbedienne%2C+Q">Quentin Barbedienne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varignon%2C+J">Julien Varignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marty%2C+A">Alain Marty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergnaud%2C+C">Celine Vergnaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jamet%2C+M">Matthieu Jamet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomez-Carbonell%2C+C">Carmen Gomez-Carbonell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lema%C3%AEtre%2C+A">Aristide Lema卯tre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A8vre%2C+P+L">Patrick Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">Fran莽ois Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taleb-Ibrahimi%2C+A">Amina Taleb-Ibrahimi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">Henri Jaffr猫s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J">Jean-Marie George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.11377v2-abstract-short" style="display: inline;"> Gray tin, also known as $伪$-Sn, can be turned into a three-dimensional topological insulator (3D-TI) by strain and finite size effects. Such room temperature 3D-TI is peculiarly interesting for spintronics due to the spin-momentum locking along the Dirac cone (linear dispersion) of the surface states. Angle resolved photoemission spectroscopy (ARPES) has been used to investigate the dispersion clo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11377v2-abstract-full').style.display = 'inline'; document.getElementById('1807.11377v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.11377v2-abstract-full" style="display: none;"> Gray tin, also known as $伪$-Sn, can be turned into a three-dimensional topological insulator (3D-TI) by strain and finite size effects. Such room temperature 3D-TI is peculiarly interesting for spintronics due to the spin-momentum locking along the Dirac cone (linear dispersion) of the surface states. Angle resolved photoemission spectroscopy (ARPES) has been used to investigate the dispersion close to the Fermi level in thin (0\,0\,1)-oriented epitaxially strained films of $伪$-Sn, for different film thicknesses as well as for different capping layers (Al, AlO$_x$ and MgO). Indeed a proper capping layer is necessary to be able to use $伪$-Sn surface states for spintronics applications. In contrast with free surfaces or surfaces coated with Ag, coating the $伪$-Sn surface with Al or AlO$_x$ leads to a drop of the Fermi level below the Dirac point, an important consequence for transport is the presence of bulk states at the Fermi level. $伪$-Sn films coated by AlO$_x$ are studied by electrical magnetotransport: despite clear evidence of surface states revealed by Shubnikov-de Haas oscillations, an important part of the magneto-transport properties is governed by &#34;bulk&#34; electronic states attributed to the $螕8$ band, as suggested by {\it ab-initio} calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11377v2-abstract-full').style.display = 'none'; document.getElementById('1807.11377v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 195445 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.04935">arXiv:1807.04935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.04935">pdf</a>, <a href="https://arxiv.org/format/1807.04935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.10.064042">10.1103/PhysRevApplied.10.064042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling the shape of axisymmetric skyrmions in magnetic multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">William Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronceray%2C+N">Nathan Ronceray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">Davide Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.04935v1-abstract-short" style="display: inline;"> We present a comprehensive micromagnetic model of isolated axisymmetric skyrmions in magnetic multilayers with perpendicular anisotropy. Most notably, the essential role of the internal dipolar field is extensively considered with a minimum amount of assumptions on the magnetization profiles. The tri-dimensional structure of the multilayered skyrmions is modeled by their radial profiles in each la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04935v1-abstract-full').style.display = 'inline'; document.getElementById('1807.04935v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.04935v1-abstract-full" style="display: none;"> We present a comprehensive micromagnetic model of isolated axisymmetric skyrmions in magnetic multilayers with perpendicular anisotropy. Most notably, the essential role of the internal dipolar field is extensively considered with a minimum amount of assumptions on the magnetization profiles. The tri-dimensional structure of the multilayered skyrmions is modeled by their radial profiles in each layer. We first compare the results of the model against a full micromagnetic description in Cartesian coordinates. Our model combines information on both layer-dependent size and chirality of the skyrmions. We also provide a convenient criterion in order to characterize the stability of skyrmions against anisotropic elongations that would break their cylindrical symmetry, which allows to confirm the stability of the determined solutions. Because this model is able to treat magnetization configurations twisted through the thickness of multilayered skyrmions, it can provide predictions on any potential hybrid chirality in skyrmions due to the interplay of Dzyaloshinskii-Moriya and dipolar interactions in multilayers. We finally apply the results of our model to the description of the current-driven dynamics of hybrid chiral skyrmions. Using the Thiele formalism, we show that we can predict the forces exerted on the multilayered skyrmions by vertical spin-polarized currents, which provides a method to conform hybrid skyrmion chiralities and spin-current injection geometries in order to optimize skyrmion motion in multilayers, to the aim of maximizing the current-induced velocity, or canceling the skyrmion Hall angle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04935v1-abstract-full').style.display = 'none'; document.getElementById('1807.04935v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 10, 064042 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.07236">arXiv:1712.07236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.07236">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/natrevmats.2017.31">10.1038/natrevmats.2017.31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advances in the Physics of Magnetic Skyrmions and Perspective for Technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.07236v1-abstract-short" style="display: inline;"> Magnetic skyrmions are small swirling topological defects in the magnetization texture stabilized by the protection due to their topology. In most cases they are induced by chiral interactions between atomic spins existing in non-centrosymmetric magnetic compounds or in thin films in which inversion symmetry is broken by the presence of an interface. The skyrmions can be extremely small with diame&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07236v1-abstract-full').style.display = 'inline'; document.getElementById('1712.07236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.07236v1-abstract-full" style="display: none;"> Magnetic skyrmions are small swirling topological defects in the magnetization texture stabilized by the protection due to their topology. In most cases they are induced by chiral interactions between atomic spins existing in non-centrosymmetric magnetic compounds or in thin films in which inversion symmetry is broken by the presence of an interface. The skyrmions can be extremely small with diameters in the nanometer range and, importantly, they behave as particles that can be moved, created or annihilated, making them suitable for abacus-type applications in information storage, logic or neuro-inspired technologies. Up to the last years skyrmions were observed only at low temperature (and in most cases under large applied fields) but important efforts of research has been recently devoted to find thin film and multilayered structures in which skyrmions are stabilized above room temperature and manipulated by current. This article focuses on these recent advances on the route to devices prototypes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07236v1-abstract-full').style.display = 'none'; document.getElementById('1712.07236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published online 13 June 2017 : 17 pages, 8 figures and 2 boxes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Reviews Materials 2, 17031 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.05978">arXiv:1712.05978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.05978">pdf</a>, <a href="https://arxiv.org/format/1712.05978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aat0415">10.1126/sciadv.aat0415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid chiral domain walls and skyrmions in magnetic multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">William Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauleau%2C+J">Jean-Yves Chauleau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">Davide Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">Sophie Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouzehouane%2C+K">Karim Bouzehouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">Nicolas Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.05978v2-abstract-short" style="display: inline;"> Noncollinear spin textures in ferromagnetic ultrathin films are currently the subject of renewed interest since the discovery of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange interaction selects a given chirality for the spin textures and allows stabilising configurations with nontrivial topology. Moreover, it has many crucial consequences on the dynamical pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05978v2-abstract-full').style.display = 'inline'; document.getElementById('1712.05978v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.05978v2-abstract-full" style="display: none;"> Noncollinear spin textures in ferromagnetic ultrathin films are currently the subject of renewed interest since the discovery of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange interaction selects a given chirality for the spin textures and allows stabilising configurations with nontrivial topology. Moreover, it has many crucial consequences on the dynamical properties of these topological structures, including chiral domain walls (DWs) and magnetic skyrmions. In the recent years the study of noncollinear spin textures has been extended from single ultrathin layers to magnetic multilayers with broken inversion symmetry. This extension of the structures in the vertical dimension allows very efficient current-induced motion and room-temperature stability for both N茅el DWs and skyrmions. Here we show how in such multilayered systems the interlayer interactions can actually lead to more complex, hybrid chiral magnetisation arrangements. The described thickness-dependent reorientation of DWs is experimentally confirmed by studying demagnetised multilayers through circular dichroism in x-ray resonant magnetic scattering. We also demonstrate a simple yet reliable method for determining the magnitude of the DMI from static domains measurements even in the presence of these hybrid chiral structures, by taking into account the actual profile of the DWs. The advent of these novel hybrid chiral textures has far-reaching implications on how to stabilise and manipulate DWs as well as skymionic structures in magnetic multilayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05978v2-abstract-full').style.display = 'none'; document.getElementById('1712.05978v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05552">arXiv:1711.05552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.05552">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-23799-0">10.1038/s41598-018-23799-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A transmission electron microscope study of N茅el skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McVitie%2C+S">S. McVitie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hughes%2C+S">S. Hughes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fallon%2C+K">K. Fallon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFadzean%2C+S">S. McFadzean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGrouther%2C+D">D. McGrouther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krajnak%2C+M">M. Krajnak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">W. Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">D. Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">S. Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">K. Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeissler%2C+K">K. Zeissler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05552v1-abstract-short" style="display: inline;"> Skyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer systems produced by conventional sputtering methods have recently generated huge interest due to their applications in the field of spintronics. The sandwich structure with two correctly-chosen heavy metal layers provides an additive interfacial exchange interaction which promotes domain wall or skyrmion spin textures that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05552v1-abstract-full').style.display = 'inline'; document.getElementById('1711.05552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05552v1-abstract-full" style="display: none;"> Skyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer systems produced by conventional sputtering methods have recently generated huge interest due to their applications in the field of spintronics. The sandwich structure with two correctly-chosen heavy metal layers provides an additive interfacial exchange interaction which promotes domain wall or skyrmion spin textures that are N茅el in character and with a fixed chirality. Lorentz transmission electron microscopy (TEM) is a high resolution method ideally suited to quantitatively image such chiral magnetic configurations. When allied with physical and chemical TEM analysis of both planar and cross-sectional samples, key length scales such as grain size and the chiral variation of the magnetisation variation have been identified and measured. We present data showing the importance of the grain size (mostly &lt; 10nm) measured from direct imaging and its potential role in describing observed behaviour of isolated skyrmions (diameter &lt; 100nm). In the latter the region in which the magnetization rotates is measured to be around 30 nm. Such quantitative information on the multiscale magnetisation variations in the system is key to understanding and exploiting the behaviour of skyrmions for future device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05552v1-abstract-full').style.display = 'none'; document.getElementById('1711.05552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages , 6 figures, journal article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 8, 5703 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.08352">arXiv:1709.08352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.08352">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.037202">10.1103/PhysRevLett.120.037202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chirality in magnetic multilayers probed by the symmetry and the amplitude of dichroism in X-ray resonant magnetic scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chauleau%2C+J+-">J. -Y. Chauleau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">W. Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">D. Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">S. Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+H">H. Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouzehouane%2C+K">K. Bouzehouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">V. Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.08352v1-abstract-short" style="display: inline;"> Chirality in condensed matter is now a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physicals mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters are therefore essential. Here we report X-ray resonant magnetic scattering (XRMS) as a straightforward to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08352v1-abstract-full').style.display = 'inline'; document.getElementById('1709.08352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.08352v1-abstract-full" style="display: none;"> Chirality in condensed matter is now a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physicals mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters are therefore essential. Here we report X-ray resonant magnetic scattering (XRMS) as a straightforward tool to identify directly the properties of chiral magnetic systems. We show that it can straight-forwardly and unambiguously determine the main characteristics of chiral magnetic distributions: i.e. its chiral nature, the quantitative winding sense (clockwise or counter-clockwise) and its type (N茅el/cycloidal or Bloch/helical). This method is model-independent, does not require a-priori knowledge of magnetic parameters and can be applied to any system with magnetic domains ranging from few nanometers (wavelength limited) to several microns. By using prototypical multilayers with tailored magnetic chiralities based on the Co|Pt interface we illustrate the strength of this method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08352v1-abstract-full').style.display = 'none'; document.getElementById('1709.08352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 037202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.09214">arXiv:1708.09214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.09214">pdf</a>, <a href="https://arxiv.org/format/1708.09214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.140405">10.1103/PhysRevB.96.140405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large enhancement of the spin Hall effect in Au by scattering with side-jump on Ta impurities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Laczkowski%2C+P">P. Laczkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Y. Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">H. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rojas-S%C3%A1nchez%2C+J+-">J. -C. Rojas-S谩nchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noel%2C+P">P. Noel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pham%2C+V+T">V. T. Pham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zahnd%2C+G">G. Zahnd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deranlot%2C+C">C. Deranlot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">S. Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouard%2C+C">C. Bouard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Warin%2C+P">P. Warin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maurel%2C+V">V. Maurel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">M. Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marty%2C+A">A. Marty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attan%C3%A9%2C+J+-">J. -P. Attan茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">H. Jaffr猫s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+L">L. Vila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.09214v1-abstract-short" style="display: inline;"> We present measurements of the Spin Hall Effect (SHE) in AuW and AuTa alloys for a large range of W or Ta concentrations by combining experiments on lateral spin valves and Ferromagnetic-Resonance/spin pumping technique. The main result is the identification of a large enhancement of the Spin Hall Angle (SHA) by the side-jump mechanism on Ta impurities, with a SHA as high as + 0.5 (i.e $50\%$) for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.09214v1-abstract-full').style.display = 'inline'; document.getElementById('1708.09214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.09214v1-abstract-full" style="display: none;"> We present measurements of the Spin Hall Effect (SHE) in AuW and AuTa alloys for a large range of W or Ta concentrations by combining experiments on lateral spin valves and Ferromagnetic-Resonance/spin pumping technique. The main result is the identification of a large enhancement of the Spin Hall Angle (SHA) by the side-jump mechanism on Ta impurities, with a SHA as high as + 0.5 (i.e $50\%$) for about 10\% of Ta. In contrast the SHA in AuW does not exceed + 0.15 and can be explained by intrinsic SHE of the alloy without significant extrinsic contribution from skew or side-jump scattering by W impurities. The AuTa alloys, as they combine a very large SHA with a moderate resistivity (smaller than $85\,渭惟.cm$), are promising for spintronic devices exploiting the SHE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.09214v1-abstract-full').style.display = 'none'; document.getElementById('1708.09214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 140405 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05809">arXiv:1706.05809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.05809">pdf</a>, <a href="https://arxiv.org/format/1706.05809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-017-0044-4">10.1038/s41565-017-0044-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical signature of individual magnetic skyrmions in multilayered systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">Davide Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">William Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">Karin Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouzehouane%2C+K">Karim Bouzehouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">Sophie Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05809v1-abstract-short" style="display: inline;"> Magnetic skyrmions are topologically protected whirling spin textures that can be stabilized in magnetic materials in which a chiral interaction is present. Their limited size together with their robustness against the external perturbations promote them as the ultimate magnetic storage bit in a novel generation of memory and logic devices. Despite many examples of the signature of magnetic skyrmi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05809v1-abstract-full').style.display = 'inline'; document.getElementById('1706.05809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05809v1-abstract-full" style="display: none;"> Magnetic skyrmions are topologically protected whirling spin textures that can be stabilized in magnetic materials in which a chiral interaction is present. Their limited size together with their robustness against the external perturbations promote them as the ultimate magnetic storage bit in a novel generation of memory and logic devices. Despite many examples of the signature of magnetic skyrmions in the electrical signal, only low temperature measurements, mainly in magnetic materials with B20 crystal structure, have demonstrated the skyrmions contribution to the electrical transport properties. Using the combination of Magnetic Force Microscopy (MFM) and Hall resistivity measurements, we demonstrate the electrical detection of sub-100 nm skyrmions in multilayered thin film at room temperature (RT). We furthermore analyse the room temperature Hall signal of a single skyrmion which contribution is mainly dominated by anomalous Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05809v1-abstract-full').style.display = 'none'; document.getElementById('1706.05809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 13, 233 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.09023">arXiv:1704.09023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.09023">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-018-0079-4">10.1038/s41563-018-0079-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Significant Dzyaloshinskii-Moriya Interaction at Graphene-Ferromagnet Interfaces due to Rashba-effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Gong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cotta%2C+A+A+C">Alexandre A. C. Cotta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=N%27Diaye%2C+A+T">Alpha T. N&#39;Diaye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nikolaev%2C+S+A">Sergey A. Nikolaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soares%2C+E+A">Edmar A. Soares</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macedo%2C+W+A+A">Waldemar A. A. Macedo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmid%2C+A+K">Andreas K. Schmid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.09023v1-abstract-short" style="display: inline;"> The possibility of utilizing the rich spin-dependent properties of graphene has attracted great attention in pursuit of spintronics advances. The promise of high-speed and low-energy consumption devices motivates a search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. Here we demonstrate that chiral spin textures are induced at graphene/ferrom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.09023v1-abstract-full').style.display = 'inline'; document.getElementById('1704.09023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.09023v1-abstract-full" style="display: none;"> The possibility of utilizing the rich spin-dependent properties of graphene has attracted great attention in pursuit of spintronics advances. The promise of high-speed and low-energy consumption devices motivates a search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. Here we demonstrate that chiral spin textures are induced at graphene/ferromagnetic metal interfaces. This is unexpected because graphene is a weak spin-orbit coupling material and is generally not expected to induce sufficient Dzyaloshinskii-Moriya interaction to affect magnetic chirality. We demonstrate that graphene induces a new type of Dzyaloshinskii-Moriya interaction due to a Rashba effect. First-principles calculations and experiments using spin-polarized electron microscopy show that this graphene-induced Dzyaloshinskii-Moriya interaction can have similar magnitude as at interfaces with heavy metals. This work paves a new path towards two-dimensional material based spin orbitronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.09023v1-abstract-full').style.display = 'none'; document.getElementById('1704.09023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 17, 605 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04616">arXiv:1702.04616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04616">pdf</a>, <a href="https://arxiv.org/format/1702.04616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b00649">10.1021/acs.nanolett.7b00649 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature current-induced generation and motion of sub-100nm skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Legrand%2C+W">William Legrand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccariello%2C+D">Davide Maccariello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">Karin Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moutafis%2C+C">Christoforos Moutafis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moreau-Luchaire%2C+C">Constance Moreau-Luchaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collin%2C+S">Sophie Collin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouzehouane%2C+K">Karim Bouzehouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04616v1-abstract-short" style="display: inline;"> Magnetic skyrmions are nanoscale windings of the spin configuration that hold great promise for technology due to their topology-related properties and extremely reduced sizes. After the recent observation at room temperature of sub-100 nm skyrmions stabilized by interfacial chiral interaction in magnetic multilayers, several pending questions remain to be solved, notably about the means to nuclea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04616v1-abstract-full').style.display = 'inline'; document.getElementById('1702.04616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04616v1-abstract-full" style="display: none;"> Magnetic skyrmions are nanoscale windings of the spin configuration that hold great promise for technology due to their topology-related properties and extremely reduced sizes. After the recent observation at room temperature of sub-100 nm skyrmions stabilized by interfacial chiral interaction in magnetic multilayers, several pending questions remain to be solved, notably about the means to nucleate individual compact skyrmions or the exact nature of their motion. In this study, a method leading to the formation of magnetic skyrmions in a micrometer-sized nanotrack using homogeneous current injection is evidenced. Spin-transfer-induced motion of these small electricalcurrent-generated skyrmions is then demonstrated and the role of the out-of-plane magnetic field in the stabilization of the moving skyrmions is also analysed. The results of these experimental observations of spin torque induced motion are compared to micromagnetic simulations reproducing a granular type, non-uniform magnetic multilayer, in order to address the particularly important role of the magnetic inhomogeneities on the current-induced motion of sub-100 nm skyrmions, for which the material grains size is comparable to the skyrmion diameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04616v1-abstract-full').style.display = 'none'; document.getElementById('1702.04616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett., 17 (4), 2703 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.09521">arXiv:1611.09521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.09521">pdf</a>, <a href="https://arxiv.org/format/1611.09521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature19820">10.1038/nature19820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent Phenomena Induced by Spin-Orbit Coupling at Surfaces and Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soumyanarayanan%2C+A">Anjan Soumyanarayanan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panagopoulos%2C+C">Christos Panagopoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.09521v1-abstract-short" style="display: inline;"> Spin-orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emerged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09521v1-abstract-full').style.display = 'inline'; document.getElementById('1611.09521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.09521v1-abstract-full" style="display: none;"> Spin-orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emerged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dimensional SOC-based realizations are typically robust and can be exploited at room temperature. Here we discuss SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures. We put into context the technological promise of these material classes for developing spin-based device applications at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09521v1-abstract-full').style.display = 'none'; document.getElementById('1611.09521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 539, 509-517 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.06464">arXiv:1609.06464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.06464">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4726">10.1038/nmat4726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly efficient and tuneable spin-to-charge conversion through Rashba coupling at oxide interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lesne%2C+E">E. Lesne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Y. Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oyarzun%2C+S">S. Oyarzun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rojas-Sanchez%2C+J+C">J. C. Rojas-Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+D+C">D. C. Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naganuma%2C+H">H. Naganuma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sicoli%2C+G">G. Sicoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Attane%2C+J+-">J. -P. Attane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jamet%2C+M">M. Jamet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacquet%2C+E">E. Jacquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J+-">J. -M. George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barthelemy%2C+A">A. Barthelemy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffres%2C+H">H. Jaffres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">A. Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bibes%2C+M">M. Bibes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+L">L. Vila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.06464v1-abstract-short" style="display: inline;"> The spin-orbit interaction couples the electrons&#39; motion to their spin. Accordingly, passing a current in a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice-versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronics functionalities and devices,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06464v1-abstract-full').style.display = 'inline'; document.getElementById('1609.06464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.06464v1-abstract-full" style="display: none;"> The spin-orbit interaction couples the electrons&#39; motion to their spin. Accordingly, passing a current in a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice-versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronics functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronics hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism - the Rashba effect - in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin-pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06464v1-abstract-full').style.display = 'none'; document.getElementById('1609.06464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version just published in Nature Materials. Contact author for a reprint</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials (2016); doi:10.1038/nmat4726 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05132">arXiv:1608.05132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.05132">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.8.034006">10.1103/PhysRevApplied.8.034006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A gate-variable spin current demultiplexer based on graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+L">Li Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiaoyang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Youguang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bournel%2C+A">Arnaud Bournel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+J">Jacques-Olivier Klein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05132v1-abstract-short" style="display: inline;"> Spintronics, which utilizes spin as information carrier, is a promising solution for nonvolatile memory and low-power computing in the post-Moore era. An important challenge is to realize long distance spin transport, together with efficient manipulation of spin current for novel logic-processing applications. Here, we describe a gate-variable spin current demultiplexer (GSDM) based on graphene, s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05132v1-abstract-full').style.display = 'inline'; document.getElementById('1608.05132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05132v1-abstract-full" style="display: none;"> Spintronics, which utilizes spin as information carrier, is a promising solution for nonvolatile memory and low-power computing in the post-Moore era. An important challenge is to realize long distance spin transport, together with efficient manipulation of spin current for novel logic-processing applications. Here, we describe a gate-variable spin current demultiplexer (GSDM) based on graphene, serving as a fundamental building block of reconfigurable spin current logic circuits. The concept relies on electrical gating of carrier density dependent conductivity and spin diffusion length in graphene. As a demo, GSDM is realized for both single-layer and bilayer graphene. The distribution and propagation of spin current in the two branches of GSDM depend on spin relaxation characteristics of graphene. Compared with Elliot-Yafet spin relaxation mechanism, D&#39;yakonov-Perel mechanism results in more appreciable gate-tuning performance. These unique features of GSDM would give rise to abundant spin logic applications, such as on-chip spin current modulators and reconfigurable spin logic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05132v1-abstract-full').style.display = 'none'; document.getElementById('1608.05132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages,3 figures,1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 8, 034006 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02958">arXiv:1607.02958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.02958">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nnano.2015.313">10.1038/nnano.2015.313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmion at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moreau-Luchaire%2C+C">Constance Moreau-Luchaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moutafis%2C+C">Christoforos Moutafis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sampaio%2C+J+J">Jos茅 J. Sampaio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouzehouane%2C+K">Karim Bouzehouane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deranlot%2C+C">Cyrile Deranlot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Warnicke%2C+P">P. Warnicke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+C+A+F">C. A. F. Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Horne%2C+N">N. Van Horne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">Karin Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlh%C3%BCter%2C+P">P. Wohlh眉ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=George%2C+J">Jean-Marie George</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weigand%2C+M">M. Weigand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">J枚rg Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02958v1-abstract-short" style="display: inline;"> Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02958v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02958v1-abstract-full" style="display: none;"> Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach a value close to 2 mJ m-2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged small magnetic domains at very low field in these multilayers. The study of their behavior in perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large Dzyaloshinskii-Moriya interaction. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02958v1-abstract-full').style.display = 'none'; document.getElementById('1607.02958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology, Nature Publishing Group, 2016, Graphene bilayers made easy, 11 (5) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01847">arXiv:1603.01847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.01847">pdf</a>, <a href="https://arxiv.org/format/1603.01847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-30063-y">10.1038/s41598-018-30063-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Layer Stacking, Insulator Capping and Electric Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulle%2C+O">Olivier Boulle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">Mairbek Chshiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01847v2-abstract-short" style="display: inline;"> Using first-principle calculations, we demonstrate several approaches to manipulate Dzyaloshinskii-Moriya Interaction (DMI) in ultrathin magnetic films. First, we find that DMI is significantly enhanced when the ferromagnetic (FM) layer is sandwiched between nonmagnetic (NM) layers inducing additive DMI in NM/FM/NM structures. For instance, as Pt and Ir below Co induce DMI of opposite chirality, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01847v2-abstract-full').style.display = 'inline'; document.getElementById('1603.01847v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01847v2-abstract-full" style="display: none;"> Using first-principle calculations, we demonstrate several approaches to manipulate Dzyaloshinskii-Moriya Interaction (DMI) in ultrathin magnetic films. First, we find that DMI is significantly enhanced when the ferromagnetic (FM) layer is sandwiched between nonmagnetic (NM) layers inducing additive DMI in NM/FM/NM structures. For instance, as Pt and Ir below Co induce DMI of opposite chirality, inserting Co between Pt (below) and Ir (above) in Ir/Co/Pt trilayers enhances the DMI of Co/Pt bilayers by 15\%. Furthermore, in case of Pb/Co/Pt trilayers (Ir/Fe/Co/Pt multilayers), DMI can be enhanced by 50\% (almost doubled) compared to Co/Pt bilayers reaching a very large DMI amplitude of 2.7 (3.2) meV/atom. Our second approach for enhancing DMI is to use oxide capping layer. We show that DMI is enhanced by 60\% in Oxide/Co/Pt structures compared to Co/Pt bilayers. Moreover, we unveiled the DMI mechanism at Oxide/Co inerface due to interfacial electric field effect, which is different to Fert-Levy DMI at FM/NM interfaces. Finally, we demonstrate that DMI amplitude can be modulated using an electric field with efficiency factor comparable to that of the electric field control of perpendicular magnetic anisotropy in transition metal/oxide interfaces. These approaches of DMI controlling pave the way for skyrmions and domain wall motion-based spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01847v2-abstract-full').style.display = 'none'; document.getElementById('1603.01847v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 8, 12356 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.03451">arXiv:1510.03451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.03451">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin to charge conversion in MoS$_{2}$ monolayer with spin pumping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+C">Cheng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collet%2C+M">Martin Collet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez%2C+J+R">Juan-Carlos Rojas S谩nchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanovskaya%2C+V">Viktoria Ivanovskaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dlubak%2C+B">Bruno Dlubak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seneor%2C+P">Pierre Seneor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+G+H">Gang Hee Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+H">Young Hee Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Heejun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anane%2C+A">Abdelmadjid Anane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.03451v2-abstract-short" style="display: inline;"> Layered transition-metal dichalcogenides (TMDs) family are gaining increasing importance due to their unique electronic band structures, promising interplay among light, valley (pseudospin), charge and spin degrees of freedom. They possess large intrinsic spin-orbit interaction which make them most relevant for the emerging field of spin-orbitronics. Here we report on the conversion of spin curren&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03451v2-abstract-full').style.display = 'inline'; document.getElementById('1510.03451v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.03451v2-abstract-full" style="display: none;"> Layered transition-metal dichalcogenides (TMDs) family are gaining increasing importance due to their unique electronic band structures, promising interplay among light, valley (pseudospin), charge and spin degrees of freedom. They possess large intrinsic spin-orbit interaction which make them most relevant for the emerging field of spin-orbitronics. Here we report on the conversion of spin current to charge current in MoS2 monolayer. Using spin pumping from a ferromagnetic layer (10 nm of cobalt) we find that the spin to charge conversion is highly efficient. Analysis in the frame of the inverse Rashba-Edelstein (RE) effect yields a RE length in excess of 4 nm at room temperature. Furthermore, owing to the semiconducting nature of MoS$_{2}$, it is found that back-gating allows electrical field control of the spin-relaxation rate of the MoS$_{2}$-metallic stack. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03451v2-abstract-full').style.display = 'none'; document.getElementById('1510.03451v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fert%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10