CINXE.COM

Search results for: Land cover/ use changes

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Land cover/ use changes</title> <meta name="description" content="Search results for: Land cover/ use changes"> <meta name="keywords" content="Land cover/ use changes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Land cover/ use changes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Land cover/ use changes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3129</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Land cover/ use changes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3129</span> Classify Land Use/Cover Change and Its Impact on Soil Erosion Using GIS from 2005 to 2015 in Nzhelele Valley Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blessing%20Mavhuru">Blessing Mavhuru</a>, <a href="https://publications.waset.org/abstracts/search?q=Nthaduleni%20Nethengwe"> Nthaduleni Nethengwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Chikoore"> Hector Chikoore</a>, <a href="https://publications.waset.org/abstracts/search?q=Onyango%20Beneah%20Daniel%20Odhiambo"> Onyango Beneah Daniel Odhiambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was to classify land use/cover and how it has changed in Nzhelele Valley Limpopo Province, South Africa. The study aimed to identify and analyse the types of land use/cover in the years 2005, 2010, and 2015 with a view to assess the impact on soil erosion over time. Using GIS, the changes within land use/cover were assessed through the classification of satellite images. The study area was classified into four major land cover/use classes, which are vegetation, gravel road, built up land and agricultural fields. Over the period 2005-2015 the resultant land use/cover demonstrated (i) a significant increase (12%) for vegetation cover, (ii) a significant decrease in agriculture (16%) land use/cover, (iii) increase in built-up land (1%), as well as (iv) an increase in gravel roads (3%). This study envisages assisting policy makers in decision making on land use management for Nzhelele Valley. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=change" title=" change"> change</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/110038/classify-land-usecover-change-and-its-impact-on-soil-erosion-using-gis-from-2005-to-2015-in-nzhelele-valley-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3128</span> Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moschos%20Vogiatzis">Moschos Vogiatzis</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Perakis"> K. Perakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/152892/land-useland-cover-mapping-using-landsat-8-and-sentinel-2-in-a-mediterranean-landscape" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3127</span> Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang">Lei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification%20system" title="classification system">classification system</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20storage" title=" carbon storage"> carbon storage</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20based" title=" object based"> object based</a> </p> <a href="https://publications.waset.org/abstracts/182404/land-cover-classification-system-for-the-estimation-of-carbon-storage-in-terrestrial-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3126</span> Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Noi%20Phan">Thanh Noi Phan</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kappas"> Martin Kappas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Degener"> Jan Degener</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classify%20algorithm" title="classify algorithm">classify algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=sentinel%202" title=" sentinel 2"> sentinel 2</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/71532/land-cover-classification-using-sentinel-2-image-data-and-random-forest-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3125</span> Assessing Land Cover Change Trajectories in Olomouc, Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Singh%20Boori">Mukesh Singh Boori</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%ADt%20Vo%C5%BEen%C3%ADlek"> Vít Voženílek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socio-economic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fcover" title=" land use/cover"> land use/cover</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20trajectories" title=" change trajectories"> change trajectories</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a> </p> <a href="https://publications.waset.org/abstracts/11452/assessing-land-cover-change-trajectories-in-olomouc-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3124</span> Study of Land Use Land Cover Change of Bhimbetka with Temporal Satellite Data and Information Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranita%20Shivankar">Pranita Shivankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Devashree%20Hardas"> Devashree Hardas</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabodhachandra%20Deshmukh"> Prabodhachandra Deshmukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Suryavanshi"> Arun Suryavanshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bhimbetka Rock Shelters is the UNESCO World Heritage Site located about 45 kilometers south of Bhopal in the state of Madhya Pradesh, India. Rapid changes in land use land cover (LULC) adversely affect the environment. In recent past, significant changes are found in the cultural landscape over a period of time. The objective of the paper was to study the changes in land use land cover (LULC) of Bhimbetka and its peripheral region. For this purpose, the supervised classification was carried out by using satellite images of Landsat and IRS LISS III for the year 2000 and 2013. Use of remote sensing in combination with geographic information system is one of the effective information technology tools to generate land use land cover (LULC) change information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IRS%20LISS%20III" title="IRS LISS III">IRS LISS III</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat" title=" Landsat"> Landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC" title=" LULC"> LULC</a>, <a href="https://publications.waset.org/abstracts/search?q=UNESCO" title=" UNESCO"> UNESCO</a>, <a href="https://publications.waset.org/abstracts/search?q=World%20Heritage%20Site" title=" World Heritage Site"> World Heritage Site</a> </p> <a href="https://publications.waset.org/abstracts/58616/study-of-land-use-land-cover-change-of-bhimbetka-with-temporal-satellite-data-and-information-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3123</span> Application of Remote Sensing and GIS in Assessing Land Cover Changes within Granite Quarries around Brits Area, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Refilwe%20Moeletsi">Refilwe Moeletsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dimension stone quarrying around Brits and Belfast areas started in the early 1930s and has been growing rapidly since then. Environmental impacts associated with these quarries have not been documented, and hence this study aims at detecting any change in the environment that might have been caused by these activities. Landsat images that were used to assess land use/land cover changes in Brits quarries from 1998 - 2015. A supervised classification using maximum likelihood classifier was applied to classify each image into different land use/land cover types. Classification accuracy was assessed using Google Earth™ as a source of reference data. Post-classification change detection method was used to determine changes. The results revealed significant increase in granite quarries and corresponding decrease in vegetation cover within the study region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title=" change detection"> change detection</a>, <a href="https://publications.waset.org/abstracts/search?q=granite%20quarries" title=" granite quarries"> granite quarries</a> </p> <a href="https://publications.waset.org/abstracts/56098/application-of-remote-sensing-and-gis-in-assessing-land-cover-changes-within-granite-quarries-around-brits-area-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3122</span> Effects of Urbanization on Land Use/Land Cover and Stream Flow of a Sub-Tropical River Basin of India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyavati%20Shukla">Satyavati Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhan%20V.%20Rathod"> Lakhan V. Rathod</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohan%20V.%20Khire"> Mohan V. Khire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization changes the land use/land cover pattern of a developing region. Due to these land surface changes, stream flow of the rivers also changes. It is important to investigate the factors affecting hydrological characteristics of the river basin for better river basin management planning. This study is aimed to understand the effect of Land Use/Land Cover (LU/LC) changes on stream flow of Upper Bhima River basin which is highly stressed in terms of water resources. In this study, Upper Bhima River basin is divided into two adjacent sub-watersheds: Mula-Mutha (urbanized) sub-watershed and Bhima (non-urbanized) sub-watershed. First of all, LU/LC changes were estimated over 1980, 2002, and 2009 for both Mula-Mutha and Bhima sub-watersheds. Further, stream flow simulations were done using Soil and Water Assessment Tool (SWAT) for the streams draining both watersheds. Results revealed that stream flow was relatively higher for urbanized sub-watershed. Through Sensitivity Analysis it was observed that out of all the parameters used, base flow was the most sensitive parameter towards LU/LC changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title="land use/land cover">land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/44757/effects-of-urbanization-on-land-useland-cover-and-stream-flow-of-a-sub-tropical-river-basin-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3121</span> Effects of Climate Change and Land Use, Land Cover Change on Atmospheric Mercury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiliang%20Wu">Shiliang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huanxin%20Zhang"> Huanxin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mercury has been well-known for its negative effects on wildlife, public health as well as the ecosystem. Once emitted into atmosphere, mercury can be transformed into different forms or enter the ecosystem through dry deposition or wet deposition. Some fraction of the mercury will be reemitted back into the atmosphere and be subject to the same cycle. In addition, the relatively long lifetime of elemental mercury in the atmosphere enables it to be transported long distances from source regions to receptor regions. Global change such as climate change and land use/land cover change impose significant challenges for mercury pollution control besides the efforts to regulate mercury anthropogenic emissions. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from changes in climate and land use/land cover on the global budget of mercury as well as its atmospheric transport, chemical transformation, and deposition. We carry out a suite of sensitivity model simulations to separate the impacts on atmospheric mercury associated with changes in climate and land use/land cover. Both climate change and land use/land cover change are found to have significant impacts on global mercury budget but through different pathways. Land use/land cover change primarily increase mercury dry deposition in northern mid-latitudes over continental regions and central Africa. Climate change enhances the mobilization of mercury from soil and ocean reservoir to the atmosphere. Also, dry deposition is enhanced over most continental areas while a change in future precipitation dominates the change in mercury wet deposition. We find that 2000-2050 climate change could increase the global atmospheric burden of mercury by 5% and mercury deposition by up to 40% in some regions. Changes in land use and land cover also increase mercury deposition over some continental regions, by up to 40%. The change in the lifetime of atmospheric mercury has important implications for long-range transport of mercury. Our case study shows that changes in climate and land use and cover could significantly affect the source-receptor relationships for mercury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury" title="mercury">mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20pollutant" title=" toxic pollutant"> toxic pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20transport" title=" atmospheric transport"> atmospheric transport</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/24245/effects-of-climate-change-and-land-use-land-cover-change-on-atmospheric-mercury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3120</span> Community Perception of Dynamics and Drivers of Land Cover Change around Pendjari Biosphere Reserve in Northern Benin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesugnon%20E.%20A.%20Kpodo">Jesugnon E. A. Kpodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurlus%20D.%20Ouindeyama"> Aurlus D. Ouindeyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20H.%20Sommer"> Jan H. Sommer</a>, <a href="https://publications.waset.org/abstracts/search?q=Fifanou%20G.%20Vodouhe"> Fifanou G. Vodouhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolo%20Yeo"> Kolo Yeo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local communities are recognized as key actors for sustainable land use and to some extent actors driving land use land cover (LULC) change around protected areas. Understanding drivers responsible for these changes are very crucial for better policy decisions making. This study analyzed perception of 425 local people in 28 villages towards land cover change around Pendjari Biosphere Reserve using semi-structured questionnaire. 72.9% of local communities perceive land cover as degrading while 24.5% as improving and only 2.6% as stable during the five last years. Women perceived more land cover degradation than men do (84.1 vs. 67.1%). Local communities identified cultivated land expansion, logging, firewood collection, charcoal production, population growth, and poverty as the key drivers of declined LULC in the study area. Education has emerged as a significant factor influencing respondents’ perceptions of these drivers of LULC changes. Appropriate management measures and government policies should be implemented around Pendjari Biosphere Reserve to control drivers of LULC change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20perceptions" title="local perceptions">local perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC%20drivers" title=" LULC drivers"> LULC drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC%20dynamics" title=" LULC dynamics"> LULC dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Pendjari%20Biosphere%20Reserve" title=" Pendjari Biosphere Reserve"> Pendjari Biosphere Reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20livelihoods" title=" rural livelihoods"> rural livelihoods</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20resource%20management" title=" sustainable resource management"> sustainable resource management</a> </p> <a href="https://publications.waset.org/abstracts/123858/community-perception-of-dynamics-and-drivers-of-land-cover-change-around-pendjari-biosphere-reserve-in-northern-benin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3119</span> Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Craig%20Mahlasi">Craig Mahlasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20change%20detection" title=" land cover change detection"> land cover change detection</a>, <a href="https://publications.waset.org/abstracts/search?q=subtropical%20thickets" title=" subtropical thickets"> subtropical thickets</a>, <a href="https://publications.waset.org/abstracts/search?q=near-real%20time" title=" near-real time"> near-real time</a> </p> <a href="https://publications.waset.org/abstracts/144799/continuous-land-cover-change-detection-in-subtropical-thicket-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3118</span> Multi-Temporal Urban Land Cover Mapping Using Spectral Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst%20Ilme%20Faridatul">Mst Ilme Faridatul</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wu"> Bo Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title="land cover">land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal" title=" multi-temporal"> multi-temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20indices" title=" spectral indices"> spectral indices</a> </p> <a href="https://publications.waset.org/abstracts/103491/multi-temporal-urban-land-cover-mapping-using-spectral-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3117</span> Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Ayesha%20Fathima">Shaik Ayesha Fathima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Noor%20Jahan"> Shaik Noor Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Duvvada%20Rajeswara%20Rao"> Duvvada Rajeswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20calculation" title="area calculation">area calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=atrous%20convolution" title=" atrous convolution"> atrous convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20globe%20land%20cover%20classification" title=" deep globe land cover classification"> deep globe land cover classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deepLabv3" title=" deepLabv3"> deepLabv3</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20classification" title=" land cover classification"> land cover classification</a>, <a href="https://publications.waset.org/abstracts/search?q=resnet%2050" title=" resnet 50"> resnet 50</a> </p> <a href="https://publications.waset.org/abstracts/147677/classification-of-land-cover-usage-from-satellite-images-using-deep-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3116</span> Land Use Changes in Two Mediterranean Coastal Regions: Do Urban Areas Matter?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Salvati">L. Salvati</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Smiraglia"> D. Smiraglia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bajocco"> S. Bajocco</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Munaf%C3%B2"> M. Munafò</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on Land Use and Land Cover Changes (LULCC) occurred in the urban coastal regions of the Mediterranean basin in the last thirty years. LULCC were assessed diachronically (1975-2006) in two urban areas, Rome (Italy) and Athens (Greece), by using CORINE land cover maps. In strictly coastal territories a persistent growth of built-up areas at the expenses of both agricultural and forest land uses was found. On the contrary, a different pattern was observed in the surrounding inland areas, where a high conversion rate of the agricultural land uses to both urban and forest land uses was recorded. The impact of city growth on the complex pattern of coastal LULCC is finally discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20changes" title="land use changes">land use changes</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20region" title=" coastal region"> coastal region</a>, <a href="https://publications.waset.org/abstracts/search?q=Rome%20prefecture" title=" Rome prefecture"> Rome prefecture</a>, <a href="https://publications.waset.org/abstracts/search?q=Attica" title=" Attica"> Attica</a>, <a href="https://publications.waset.org/abstracts/search?q=southern%20Europe" title=" southern Europe"> southern Europe</a> </p> <a href="https://publications.waset.org/abstracts/9253/land-use-changes-in-two-mediterranean-coastal-regions-do-urban-areas-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3115</span> Impacts on Atmospheric Mercury from Changes in Climate, Land Use, Land Cover, and Wildfires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiliang%20Wu">Shiliang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huanxin%20Zhang"> Huanxin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Kumar"> Aditya Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been increasing concerns on atmospheric mercury as a toxic and bioaccumulative pollutant in the global environment. Global change, including changes in climate change, land use, land cover and wildfires activities can all have significant impacts on atmospheric mercury. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from global change on atmospheric mercury. All of these factors in the context of global change are found to have significant impacts on the long-term evolution of atmospheric mercury and can substantially alter the global source-receptor relationships for mercury. We also estimate the global Hg emissions from wildfires for present-day and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Present global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions both globally (+28%) and regionally. Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=wildfires" title=" wildfires"> wildfires</a> </p> <a href="https://publications.waset.org/abstracts/81118/impacts-on-atmospheric-mercury-from-changes-in-climate-land-use-land-cover-and-wildfires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3114</span> Potential Effects of Green Infrastructures on the Land Surface Temperatures in Arid Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adila%20Shafqat">Adila Shafqat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and urbanization has changed the face of many cities in developing countries. Urbanization is linked with land use and land cover change, that is further intensify by the effects of changing climates. Green infrastructures provide numerous ecosystem services which effect the physical set up of the cities in the long run. Land surface temperatures is considered as defining parameter in the studies of the thermal impact on the land cover. Current study is conducted in the semi-arid urban areas of the Bahawalpur region. Accordingly, Land Surface Temperatures and land cover maps are derived from Landsat image through remote sensing techniques. The cooling impact of green infrastructure is determined by calculating land surface temperature of buffered zones around green infrastructures. A regression model is applied for results. It is seen that land surface temperature around green infrastructures in 1 to 3 degrees lower than the built up surroundings. The result indicates that the urban green infrastructures should be planned according to the local needs and characteristics of landuse so that they can effectively tackle land surface temperatures of urban areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20temperatures" title=" surface temperatures"> surface temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20spaces" title=" green spaces"> green spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/156697/potential-effects-of-green-infrastructures-on-the-land-surface-temperatures-in-arid-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3113</span> Spatio-Temporal Analysis of Land Use and Land Cover Change in the Cocoa Belt of Ondo State, southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Dada">Emmanuel Dada</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo-Victoria%20Tobi%20Dada"> Adebayo-Victoria Tobi Dada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study evaluates land use and land cover changes in the cocoa belt of Ondo state to quantify its effect on the expanse of land occupied by cocoa plantation as the most suitable region for cocoa raisin in Nigeria. Time series of satellite imagery from Landsat-7 ETM+ and Landsat-8 TIRS covering years 2000 and 2015 respectively were used. The study area was classified into six land use themes of cocoa plantation, settlement, water body, light forest and grassland, forest, and bar surface and rock outcrop. The analyses revealed that out of total land area of 997714 hectares of land of the study area, cocoa plantation land use increased by 10.3% in 2015 from 312260.6 ha in 2000. Forest land use also increased by 6.3% in 2015 from 152144.1 ha in the year 2000, water body reduced from 2954.5 ha in the year 2000 by 0.1% in 2015, settlement land use increased by 3% in 2015 from 15194.6 ha in 2000, light forest and grassland area reduced by 10.4% between 2000 and 2015 and 9.1% reduction in bar surface and rock outcrop land use between the year 2000 and 2015 respectively. The reasons for different ranges in the changes observed in the land use and land cover in the study area could be due to increase in the incentive to cocoa farmers from both government and non-governmental organizations, developed new cocoa breed that thrive better in the light forest, rapid increased in the population of cocoa farmers’ settlements, and government promulgation of forest reserve law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title="satellite imagery">satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20and%20land%20cover%20change" title=" land use and land cover change"> land use and land cover change</a>, <a href="https://publications.waset.org/abstracts/search?q=area%20of%20land" title=" area of land"> area of land</a> </p> <a href="https://publications.waset.org/abstracts/83710/spatio-temporal-analysis-of-land-use-and-land-cover-change-in-the-cocoa-belt-of-ondo-state-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3112</span> Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Saadatkhah">Nader Saadatkhah</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Rahnamarad"> Jafar Rahnamarad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shattri%20Mansor"> Shattri Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailani%20Khuzaimah"> Zailani Khuzaimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnis%20Asmat"> Arnis Asmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Aizam%20Adnan"> Nor Aizam Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Noradzah%20Adam"> Siti Noradzah Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=improved-TRIGRS%20model" title="improved-TRIGRS model">improved-TRIGRS model</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20changes" title=" land cover changes"> land cover changes</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelantan%20river%20basin" title=" Kelantan river basin"> Kelantan river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20event" title=" flood event"> flood event</a> </p> <a href="https://publications.waset.org/abstracts/64368/land-use-sensitivity-map-for-the-extreme-flood-events-in-the-kelantan-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3111</span> Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eliza.%20E.%20Camaso">Eliza. E. Camaso</a>, <a href="https://publications.waset.org/abstracts/search?q=Guiller.%20B.%20Damian"> Guiller. B. Damian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguelito.%20F.%20Isip"> Miguelito. F. Isip</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20T.%20Alberto"> Ronaldo T. Alberto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure&nbsp;&nbsp; accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20image" title="aerial image">aerial image</a>, <a href="https://publications.waset.org/abstracts/search?q=landcover" title=" landcover"> landcover</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR"> LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility%20degradation" title=" soil fertility degradation"> soil fertility degradation</a> </p> <a href="https://publications.waset.org/abstracts/71996/landcover-mapping-using-lidar-data-and-aerial-image-and-soil-fertility-degradation-assessment-for-rice-production-area-in-quezon-nueva-ecija-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3110</span> The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Gusti%20A.%20A.%20Rai%20Asmiwyati">I. Gusti A. A. Rai Asmiwyati</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20J.%20Corner"> Robert J. Corner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20M.%20Dewan"> Ashraf M. Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fcover" title="land use/cover">land use/cover</a>, <a href="https://publications.waset.org/abstracts/search?q=urban" title=" urban"> urban</a>, <a href="https://publications.waset.org/abstracts/search?q=Bali" title=" Bali"> Bali</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTER" title=" ASTER"> ASTER</a> </p> <a href="https://publications.waset.org/abstracts/20635/the-change-of-urban-land-usecover-using-object-based-approach-for-southern-bali" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3109</span> Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Naboureh">Amin Naboureh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainong%20Li"> Ainong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhu%20Bian"> Jinhu Bian</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangbin%20Lei"> Guangbin Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ebrahimy"> Hamid Ebrahimy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title="land cover">land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=google%20earth%20engine" title=" google earth engine"> google earth engine</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/112348/investigation-of-different-machine-learning-algorithms-in-large-scale-land-cover-mapping-within-the-google-earth-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3108</span> Analysis of Land Use, Land Cover Changes in Damaturu, Nigeria: Using Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Muhammad%20Zumo">Isa Muhammad Zumo</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Lawan"> Musa Lawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzes the land use/land cover changes in Damaturu metropolis from 1986 to 2005. LandSat TM Images of 1986, 1999, and 2005 were used. Built-up lands, agric lands, water body and other lands were created as themes within ILWIS 3.4 software. The images were displayed in False Colour Composite (FCC) for a better visualization and identification of the themes created. Training sample sets were collected based on the ground truth data during field the checks. Statistical data were then extracted from the classified sample set. Area in hectares for each theme was calculated for each year and the result for each land use/land cover types for each study year was compared. From the result, it was found out that built-up areas have a considerable increase from 37.71 hectares in 1986 to 1062.72 hectares in 2005. It has an annual increase rate of approximately 0.34%. The results also reveal that there is a decrease of 5829.66 hectares of other lands (vacant lands) from 1986 to 2005. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=changes" title=" changes"> changes</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a> </p> <a href="https://publications.waset.org/abstracts/29986/analysis-of-land-use-land-cover-changes-in-damaturu-nigeria-using-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3107</span> Hydrological Modelling of Geological Behaviours in Environmental Planning for Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheetal%20Sharma">Sheetal Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Runoff,decreasing water levels and recharge in urban areas have been a complex issue now a days pointing defective urban design and increasing demography as cause. Very less has been discussed or analysed for water sensitive Urban Master Plans or local area plans. Land use planning deals with land transformation from natural areas into developed ones, which lead to changes in natural environment. Elaborated knowledge of relationship between the existing patterns of land use-land cover and recharge with respect to prevailing soil below is less as compared to speed of development. The parameters of incompatibility between urban functions and the functions of the natural environment are becoming various. Changes in land patterns due to built up, pavements, roads and similar land cover affects surface water flow seriously. It also changes permeability and absorption characteristics of the soil. Urban planners need to know natural processes along with modern means and best technologies available,as there is a huge gap between basic knowledge of natural processes and its requirement for balanced development planning leading to minimum impact on water recharge. The present paper analyzes the variations in land use land cover and their impacts on surface flows and sub-surface recharge in study area. The methodology adopted was to analyse the changes in land use and land cover using GIS and Civil 3d auto cad. The variations were used in &nbsp;computer modeling using Storm-water Management Model to find out the runoff for various soil groups and resulting recharge observing water levels in POW data for last 40 years of the study area. Results were anlayzed again to find best correlations for sustainable recharge in urban areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geology" title="geology">geology</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use-land%20cover" title=" land use-land cover"> land use-land cover</a> </p> <a href="https://publications.waset.org/abstracts/68231/hydrological-modelling-of-geological-behaviours-in-environmental-planning-for-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3106</span> Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Mensah">Eric Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title="land surface temperature">land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanisation" title=" urbanisation"> urbanisation</a> </p> <a href="https://publications.waset.org/abstracts/73804/land-cover-land-surface-temperature-and-urban-heat-island-effects-in-tropical-sub-saharan-city-of-accra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3105</span> Population Dynamics and Land Use/Land Cover Change on the Chilalo-Galama Mountain Range, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Jundi%20Sado">Yusuf Jundi Sado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in land use are mostly credited to human actions that result in negative impacts on biodiversity and ecosystem functions. This study aims to analyze the dynamics of land use and land cover changes for sustainable natural resources planning and management. Chilalo-Galama Mountain Range, Ethiopia. This study used Thematic Mapper 05 (TM) for 1986, 2001 and Landsat 8 (OLI) data 2017. Additionally, data from the Central Statistics Agency on human population growth were analyzed. Semi-Automatic classification plugin (SCP) in QGIS 3.2.3 software was used for image classification. Global positioning system, field observations and focus group discussions were used for ground verification. Land Use Land Cover (LU/LC) change analysis was using maximum likelihood supervised classification and changes were calculated for the 1986–2001 and the 2001–2017 and 1986-2017 periods. The results show that agricultural land increased from 27.85% (1986) to 44.43% and 51.32% in 2001 and 2017, respectively with the overall accuracies of 92% (1986), 90.36% (2001), and 88% (2017). On the other hand, forests decreased from 8.51% (1986) to 7.64 (2001) and 4.46% (2017), and grassland decreased from 37.47% (1986) to 15.22%, and 15.01% in 2001 and 2017, respectively. It indicates for the years 1986–2017 the largest area cover gain of agricultural land was obtained from grassland. The matrix also shows that shrubland gained land from agricultural land, afro-alpine, and forest land. Population dynamics is found to be one of the major driving forces for the LU/LU changes in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landsat" title="Landsat">Landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=LU%2FLC%20change" title=" LU/LC change"> LU/LC change</a>, <a href="https://publications.waset.org/abstracts/search?q=Semi-Automatic%20classification%20plugin" title=" Semi-Automatic classification plugin"> Semi-Automatic classification plugin</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20dynamics" title=" population dynamics"> population dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/154607/population-dynamics-and-land-useland-cover-change-on-the-chilalo-galama-mountain-range-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3104</span> Stream Channel Changes in Balingara River, Sulawesi Tengah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhardiyan%20Erawan">Muhardiyan Erawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaenal%20Mutaqin"> Zaenal Mutaqin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Balingara River is one of the rivers with the type Gravel-Bed in Indonesia. Gravel-Bed Rivers easily deformed in a relatively short time due to several variables, that are climate (rainfall), river discharge, topography, rock types, and land cover. To determine stream channel changes in Balingara River used Landsat 7 and 8 and analyzed planimetric or two dimensions. Parameters to determine changes in the stream channel are sinuosity ratio, Brice Index, the extent of erosion and deposition. Changes in stream channel associated with changes in land cover then analyze with a descriptive analysis of spatial and temporal. The location of a stream channel has a low gradient in the upstream, and middle watershed with the type of rock in the form of gravel is more easily changed than other locations. Changes in the area of erosion and deposition influence the land cover changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brice%20Index" title="Brice Index">Brice Index</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel-bed" title=" gravel-bed"> gravel-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20change" title=" land cover change"> land cover change</a>, <a href="https://publications.waset.org/abstracts/search?q=sinuosity%20ratio" title=" sinuosity ratio"> sinuosity ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20channel%20change" title=" stream channel change"> stream channel change</a> </p> <a href="https://publications.waset.org/abstracts/70833/stream-channel-changes-in-balingara-river-sulawesi-tengah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3103</span> Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamyaa%20Gamal%20El-Deen%20Taha">Lamyaa Gamal El-Deen Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Sharawi"> Ashraf Sharawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planet%20image" title="planet image">planet image</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20mapping" title=" land cover mapping"> land cover mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=rectification" title=" rectification"> rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20classification" title=" neural network classification"> neural network classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20classifiers" title=" soft classifiers"> soft classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20classifiers" title=" hard classifiers"> hard classifiers</a> </p> <a href="https://publications.waset.org/abstracts/89202/assessment-of-planet-image-for-land-cover-mapping-using-soft-and-hard-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3102</span> Comparative Analysis of the Impact of Urbanization on Land Surface Temperature in the United Arab Emirates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Abulibdeh">A. O. Abulibdeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate and compare the changes in the Land Surface Temperature (LST) as a function of urbanization, particularly land use/land cover changes, in three cities in the UAE, mainly Abu Dhabi, Dubai, and Al Ain. The scale of this assessment will be at the macro- and micro-levels. At the macro-level, a comparative assessment will take place to compare between the four cities in the UAE. At the micro-level, the study will compare between the effects of different land use/land cover on the LST. This will provide a clear and quantitative city-specific information related to the relationship between urbanization and local spatial intra-urban LST variation in three cities in the UAE. The main objectives of this study are 1) to investigate the development of LST on the macro- and micro-level between and in three cities in the UAE over two decades time period, 2) to examine the impact of different types of land use/land cover on the spatial distribution of LST. Because these three cities are facing harsh arid climate, it is hypothesized that (1) urbanization is affecting and connected to the spatial changes in LST; (2) different land use/land cover have different impact on the LST; and (3) changes in spatial configuration of land use and vegetation concentration over time would control urban microclimate on a city scale and control macroclimate on the country scale. This study will be carried out over a 20-year period (1996-2016) and throughout the whole year. The study will compare between two distinct periods with different thermal characteristics which are the cool/cold period from November to March and warm/hot period between April and October. The best practice research method for this topic is to use remote sensing data to target different aspects of natural and anthropogenic systems impacts. The project will follow classical remote sensing and mapping techniques to investigate the impact of urbanization, mainly changes in land use/land cover, on LST. The investigation in this study will be performed in two stages. Stage one remote sensing data will be used to investigate the impact of urbanization on LST on a macroclimate level where the LST and Urban Heat Island (UHI) will be compared in the three cities using data from the past two decades. Stage two will investigate the impact on microclimate scale by investigating the LST and UHI using a particular land use/land cover type. In both stages, an LST and urban land cover maps will be generated over the study area. The outcome of this study should represent an important contribution to recent urban climate studies, particularly in the UAE. Based on the aim and objectives of this study, the expected outcomes are as follow: i) to determine the increase or decrease of LST as a result of urbanization in these four cities, ii) to determine the effect of different land uses/land covers on increasing or decreasing the LST. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title="land use/land cover">land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/91689/comparative-analysis-of-the-impact-of-urbanization-on-land-surface-temperature-in-the-united-arab-emirates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3101</span> Assessment of Land Use and Land Cover Change in Lake Ol Bolossat Catchment, Nyandarua County, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Wangui">John Wangui</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Gachene"> Charles Gachene</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Mureithi"> Stephen Mureithi</a>, <a href="https://publications.waset.org/abstracts/search?q=Boniface%20Kiteme"> Boniface Kiteme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land use changes caused by demographic, natural variability, economic, technological and policy factors affect the goods and services derived from an ecosystem. In the past few decades, Lake Ol Bolossat catchment in Nyandarua County Kenya has been facing challenges of land cover changes threatening its capacity to perform ecosystems functions and adversely affecting communities and ecosystems downstream. This study assessed land cover changes in the catchment for a period of twenty eight years (from 1986 to 2014). Analysis of three Landsat images i.e. L5 TM 1986, L5 TM 1995 and L8 OLI/TIRS 2014 was done using ERDAS 9.2 software. The results show that dense forest, cropland and area under water increased by 27%, 29% and 3% respectively. On the other hand, open forest, dense grassland, open grassland, bushland and shrubland decreased by 3%, 3%, 11%, 26% and 1% respectively during the period under assessment. The lake was noted to have increased due to siltation caused by soil erosion causing a reduction in Lake’s depth and consequently causing temporary flooding of the wetland. The study concludes that the catchment is under high demographic pressure which would lead to resource use conflicts and therefore formulation of mitigation measures is highly recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title="land cover">land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title=" land use change"> land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title=" land degradation"> land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyandarua" title=" Nyandarua"> Nyandarua</a>, <a href="https://publications.waset.org/abstracts/search?q=Remote%20sensing" title=" Remote sensing"> Remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/67259/assessment-of-land-use-and-land-cover-change-in-lake-ol-bolossat-catchment-nyandarua-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3100</span> Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tausif%20A.%20Ishtiaque">Tausif A. Ishtiaque</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarrin%20T.%20Tasin"> Zarrin T. Tasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazi%20S.%20Akter"> Kazi S. Akter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20change" title="land cover change">land cover change</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20difference%20vegetation%20index" title=" normalized difference vegetation index"> normalized difference vegetation index</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title=" urban heat island"> urban heat island</a> </p> <a href="https://publications.waset.org/abstracts/60627/urban-heat-island-intensity-assessment-through-comparative-study-on-land-surface-temperature-and-normalized-difference-vegetation-index-a-case-study-of-chittagong-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=104">104</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Land%20cover%2F%20use%20changes&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10