CINXE.COM
Search results for: multi-temporal
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multi-temporal</title> <meta name="description" content="Search results for: multi-temporal"> <meta name="keywords" content="multi-temporal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multi-temporal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multi-temporal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multi-temporal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Datta">U. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-registration" title="co-registration">co-registration</a>, <a href="https://publications.waset.org/abstracts/search?q=GLRT" title=" GLRT"> GLRT</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20growth" title=" infrastructure growth"> infrastructure growth</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=multitemporal" title=" multitemporal"> multitemporal</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel-based%20change%20detection" title=" pixel-based change detection"> pixel-based change detection</a> </p> <a href="https://publications.waset.org/abstracts/117430/infrastructure-change-monitoring-using-multitemporal-multispectral-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valdir%20Moura">Valdir Moura</a>, <a href="https://publications.waset.org/abstracts/search?q=Raniele%20dos%20Anjos%20de%20Souza"> Raniele dos Anjos de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Gomes%20de%20Souza"> Fernando Gomes de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Vagner%20da%20Silva"> Jose Vagner da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerry%20Adriani%20Johann"> Jerry Adriani Johann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20intended%20for%20summer%20culture" title="area intended for summer culture">area intended for summer culture</a>, <a href="https://publications.waset.org/abstracts/search?q=estimated%20area%20planted" title=" estimated area planted"> estimated area planted</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat" title=" Landsat"> Landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=planting%20schedule" title=" planting schedule"> planting schedule</a> </p> <a href="https://publications.waset.org/abstracts/107898/landsat-data-from-pre-crop-season-to-estimate-the-area-to-be-planted-with-summer-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Aldosari">Ali A. Aldosari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title="spatial analysis">spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20information%20system" title=" geographical information system"> geographical information system</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title=" change detection"> change detection</a> </p> <a href="https://publications.waset.org/abstracts/23940/multitemporal-satellite-images-for-agriculture-change-detection-in-al-jouf-region-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lan%20Du">Lan Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Dai"> Hui Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title="change detection">change detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20Aperture%20Radar%20%28SAR%29" title=" Synthetic Aperture Radar (SAR)"> Synthetic Aperture Radar (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Scale-Invariant%20Feature%20Transformation%20%28SIFT%29" title=" Scale-Invariant Feature Transformation (SIFT)"> Scale-Invariant Feature Transformation (SIFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/66992/change-detection-method-based-on-scale-invariant-feature-transformation-keypoints-and-segmentation-for-synthetic-aperture-radar-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Jagadeesh%20Kumar">P. S. Jagadeesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Lin%20Huan"> Tracy Lin Huan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20K.%20Rossi"> Rebecca K. Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanmin%20Yuan"> Yanmin Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianpei%20Li"> Xianpei Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20fusion" title="color fusion">color fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=geomorphology" title=" geomorphology"> geomorphology</a>, <a href="https://publications.waset.org/abstracts/search?q=fluvial%20processes" title=" fluvial processes"> fluvial processes</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral%20images" title=" multispectral images"> multispectral images</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/87961/color-fusion-of-remote-sensing-images-for-imparting-fluvial-geomorphological-features-of-river-yamuna-and-ganga-over-doon-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogendra%20K.%20Karna">Yogendra K. Karna</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%20T.%20Bennett"> Lauren T. Bennett </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canopy%20gaps" title="canopy gaps">canopy gaps</a>, <a href="https://publications.waset.org/abstracts/search?q=canopy%20structure" title=" canopy structure"> canopy structure</a>, <a href="https://publications.waset.org/abstracts/search?q=crown%20architecture" title=" crown architecture"> crown architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=crown%20projective%20cover" title=" crown projective cover"> crown projective cover</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal%20lidar" title=" multi-temporal lidar"> multi-temporal lidar</a>, <a href="https://publications.waset.org/abstracts/search?q=wildfire%20severity" title=" wildfire severity"> wildfire severity</a> </p> <a href="https://publications.waset.org/abstracts/94022/assessing-the-legacy-effects-of-wildfire-on-eucalypt-canopy-structure-of-south-eastern-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Geomatic Techniques to Filter Vegetation from Point Clouds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Amparo%20N%C3%BA%C3%B1ez-Andr%C3%A9s">M. Amparo Núñez-Andrés</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Buill"> Felipe Buill</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Prades"> Albert Prades</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RGB%20index" title="RGB index">RGB index</a>, <a href="https://publications.waset.org/abstracts/search?q=TLS" title=" TLS"> TLS</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral%20camera" title=" multispectral camera"> multispectral camera</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a> </p> <a href="https://publications.waset.org/abstracts/162506/geomatic-techniques-to-filter-vegetation-from-point-clouds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>