CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–16 of 16 results for author: <span class="mathjax">Hennrich, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Hennrich%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hennrich, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hennrich%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hennrich, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24047">arXiv:2410.24047</a> <span> [<a href="https://arxiv.org/pdf/2410.24047">pdf</a>, <a href="https://arxiv.org/format/2410.24047">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Impact of micromotion on the excitation of Rydberg states of ions in a Paul trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Martins%2C+W+S">Wilson S. Martins</a>, <a href="/search/physics?searchtype=author&query=Wilkinson%2C+J+W+P">Joseph W. P. Wilkinson</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a>, <a href="/search/physics?searchtype=author&query=Lesanovsky%2C+I">Igor Lesanovsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24047v2-abstract-short" style="display: inline;"> Trapped ions are among the most advanced platforms for quantum simulation and computation. Their capabilities can be further augmented by making use of electronically highly excited Rydberg states, which enable the realization of long-ranged electric dipolar interactions. Most experimental and theoretical studies so far focus on the excitation of ionic Rydberg states in linear Paul traps, which ge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24047v2-abstract-full').style.display = 'inline'; document.getElementById('2410.24047v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24047v2-abstract-full" style="display: none;"> Trapped ions are among the most advanced platforms for quantum simulation and computation. Their capabilities can be further augmented by making use of electronically highly excited Rydberg states, which enable the realization of long-ranged electric dipolar interactions. Most experimental and theoretical studies so far focus on the excitation of ionic Rydberg states in linear Paul traps, which generate confinement by a combination of static and oscillating electric fields. These two fields need to be carefully aligned to minimize so-called micromotion, caused by the time-dependent electric field. The purpose of this work is to systematically understand the qualitative impact of micromotion on the Rydberg excitation spectrum, when the symmetry axes of the two electric fields do not coincide. Considering this scenario is not only important in the case of possible field misalignment, but becomes inevitable for Rydberg excitations in 2D and 3D ion crystals. We develop a minimal model describing a single trapped Rydberg ion, which we solve numerically via Floquet theory and analytically using a perturbative approach. We calculate the excitation spectra and analyze in which parameter regimes addressable and energetically isolated Rydberg lines persist, which are an important requirement for conducting coherent manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24047v2-abstract-full').style.display = 'none'; document.getElementById('2410.24047v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures; minor necessary corrections made to equations throughout the text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01834">arXiv:2012.01834</a> <span> [<a href="https://arxiv.org/pdf/2012.01834">pdf</a>, <a href="https://arxiv.org/format/2012.01834">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.233404">10.1103/PhysRevLett.126.233404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring the many-body dynamics near a conical intersection with trapped Rydberg ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gambetta%2C+F+M">Filippo Maria Gambetta</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a>, <a href="/search/physics?searchtype=author&query=Lesanovsky%2C+I">Igor Lesanovsky</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Weibin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01834v2-abstract-short" style="display: inline;"> Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes in the excited states of large molecules. However, since the corresponding dynamics occurs on a femtosecond timescale, their investigation remains challenging and requires ultrafast spectroscopy techniques. We demonstrate that trapped Rydberg ions are a platform to engineer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01834v2-abstract-full').style.display = 'inline'; document.getElementById('2012.01834v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01834v2-abstract-full" style="display: none;"> Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes in the excited states of large molecules. However, since the corresponding dynamics occurs on a femtosecond timescale, their investigation remains challenging and requires ultrafast spectroscopy techniques. We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections and to simulate their ensuing dynamics on larger length and time scales of the order of nanometers and microseconds, respectively; all this in a highly controllable system. Here, the shape of the potential energy surfaces and the position of the conical intersection can be tuned thanks to the interplay between the high polarizability and the strong dipolar exchange interactions of Rydberg ions. We study how the presence of a conical intersection affects both the nuclear and electronic dynamics demonstrating, in particular, how it results in the inhibition of the nuclear motion. These effects can be monitored in real-time via a direct spectroscopic measurement of the electronic populations in a state-of-the-art experimental setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01834v2-abstract-full').style.display = 'none'; document.getElementById('2012.01834v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 6 pages, 3 figures. Supplemental Material: 8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 233404 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12422">arXiv:2005.12422</a> <span> [<a href="https://arxiv.org/pdf/2005.12422">pdf</a>, <a href="https://arxiv.org/format/2005.12422">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Magic trapping of a Rydberg ion with a diminished static polarizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pokorny%2C+F">Fabian Pokorny</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Higgins%2C+G">Gerard Higgins</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12422v1-abstract-short" style="display: inline;"> Highly excited Rydberg states are usually extremely polarizable and exceedingly sensitive to electric fields. Because of this Rydberg ions confined in electric fields have state-dependent trapping potentials. We engineer a Rydberg state that is insensitive to electric fields by coupling two Rydberg states with static polarizabilities of opposite sign, in this way we achieve state-independent magic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12422v1-abstract-full').style.display = 'inline'; document.getElementById('2005.12422v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12422v1-abstract-full" style="display: none;"> Highly excited Rydberg states are usually extremely polarizable and exceedingly sensitive to electric fields. Because of this Rydberg ions confined in electric fields have state-dependent trapping potentials. We engineer a Rydberg state that is insensitive to electric fields by coupling two Rydberg states with static polarizabilities of opposite sign, in this way we achieve state-independent magic trapping. We show that the magically-trapped ion can be coherently excited to the Rydberg state without the need for control of the ion's motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12422v1-abstract-full').style.display = 'none'; document.getElementById('2005.12422v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages and 4 figures in main body, 6 pages and 5 figures in total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.05726">arXiv:2005.05726</a> <span> [<a href="https://arxiv.org/pdf/2005.05726">pdf</a>, <a href="https://arxiv.org/format/2005.05726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.133602">10.1103/PhysRevLett.125.133602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-range multi-body interactions and three-body anti-blockade in a trapped Rydberg ion chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gambetta%2C+F+M">Filippo Maria Gambetta</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a>, <a href="/search/physics?searchtype=author&query=Lesanovsky%2C+I">Igor Lesanovsky</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Weibin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.05726v3-abstract-short" style="display: inline;"> Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying Rydberg levels provides a system where strong and long-range interactions between pairs of excited ions can be engineered and tuned via external lase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05726v3-abstract-full').style.display = 'inline'; document.getElementById('2005.05726v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.05726v3-abstract-full" style="display: none;"> Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying Rydberg levels provides a system where strong and long-range interactions between pairs of excited ions can be engineered and tuned via external laser fields. We show that the coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-range multi-body interactions, consisting of two, three, and four-body terms. Their shape, strength, and range can be controlled via the ion trap parameters and strongly depends on both the equilibrium configuration and vibrational modes of the ion crystal. By focusing on an experimentally feasible quasi one-dimensional setup of $ {}^{88}\mathrm{Sr}^+ $ Rydberg ions, we demonstrate that multi-body interactions are enhanced by the emergence of a soft mode associated, e.g., with a structural phase transition. This has a striking impact on many-body electronic states and results, for example, in a three-body anti-blockade effect. Our study shows that trapped Rydberg ions offer new opportunities to study exotic many-body quantum dynamics driven by enhanced multi-body interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05726v3-abstract-full').style.display = 'none'; document.getElementById('2005.05726v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures; Supplemental Material: 4 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 133602 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.01957">arXiv:2005.01957</a> <span> [<a href="https://arxiv.org/pdf/2005.01957">pdf</a>, <a href="https://arxiv.org/format/2005.01957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.L032032">10.1103/PhysRevResearch.3.L032032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of effects due to an atom's electric quadrupole polarizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Higgins%2C+G">Gerard Higgins</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Pokorny%2C+F">Fabian Pokorny</a>, <a href="/search/physics?searchtype=author&query=Parke%2C+H">Harry Parke</a>, <a href="/search/physics?searchtype=author&query=Jansson%2C+E">Erik Jansson</a>, <a href="/search/physics?searchtype=author&query=Salim%2C+S">Shalina Salim</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.01957v1-abstract-short" style="display: inline;"> The response of matter to fields underlies the physical sciences, from particle physics to astrophysics, and from chemistry to biophysics. We observe an atom's response to an electric quadrupole field to second- and higher orders; this arises from the atom's electric quadrupole polarizability and hyperpolarizabilities. We probe a single atomic ion which is excited to Rydberg states and confined in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01957v1-abstract-full').style.display = 'inline'; document.getElementById('2005.01957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.01957v1-abstract-full" style="display: none;"> The response of matter to fields underlies the physical sciences, from particle physics to astrophysics, and from chemistry to biophysics. We observe an atom's response to an electric quadrupole field to second- and higher orders; this arises from the atom's electric quadrupole polarizability and hyperpolarizabilities. We probe a single atomic ion which is excited to Rydberg states and confined in the electric fields of a Paul trap. The quadrupolar trapping fields cause atomic energy level shifts and give rise to spectral sidebands. The observed effects are described well by theory calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01957v1-abstract-full').style.display = 'none'; document.getElementById('2005.01957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text 4 pages and 3 figures, supplemental material 9 pages and 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 032032 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08891">arXiv:2003.08891</a> <span> [<a href="https://arxiv.org/pdf/2003.08891">pdf</a>, <a href="https://arxiv.org/format/2003.08891">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/bs.aamop.2020.04.004">10.1016/bs.aamop.2020.04.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapped Rydberg ions: a new platform for quantum information processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mokhberi%2C+A">Arezoo Mokhberi</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a>, <a href="/search/physics?searchtype=author&query=Schmidt-Kaler%2C+F">Ferdinand Schmidt-Kaler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08891v3-abstract-short" style="display: inline;"> In this chapter, we present an overview of experiments with trapped Rydberg ions and outline the advantages and challenges of developing applications of this new platform for quantum computing, sensing and simulation. Trapped Rydberg ions feature several important properties, unique in their combination: they are tightly bound in a harmonic potential of a Paul trap, in which their internal and ext… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08891v3-abstract-full').style.display = 'inline'; document.getElementById('2003.08891v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08891v3-abstract-full" style="display: none;"> In this chapter, we present an overview of experiments with trapped Rydberg ions and outline the advantages and challenges of developing applications of this new platform for quantum computing, sensing and simulation. Trapped Rydberg ions feature several important properties, unique in their combination: they are tightly bound in a harmonic potential of a Paul trap, in which their internal and external degrees of freedom can be controlled in a precise fashion. High fidelity state preparation of both internal and motional states of the ions has been demonstrated, and the internal states have been employed to store and manipulate qubit information. Furthermore, strong dipolar interactions can be realised between ions in Rydberg states and be explored for investigating correlated many-body systems. By laser coupling to Rydberg states, the polarisability of the ions can be both enhanced and tuned. This can be used to control the interactions with the trapping fields in a Paul trap as well as dipolar interactions between the ions. Thus, trapped Rydberg ions present an attractive alternative for fast entangling operations as compared to those mediated by normal modes of trapped ions, which are advantageous for a future quantum computer or a quantum simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08891v3-abstract-full').style.display = 'none'; document.getElementById('2003.08891v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances In Atomic, Molecular, and Optical Physics, Academic Press, Ch. 4, 69 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.11284">arXiv:1908.11284</a> <span> [<a href="https://arxiv.org/pdf/1908.11284">pdf</a>, <a href="https://arxiv.org/format/1908.11284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2152-9">10.1038/s41586-020-2152-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-microsecond entangling gate between trapped ions via Rydberg interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Pokorny%2C+F">Fabian Pokorny</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Weibin Li</a>, <a href="/search/physics?searchtype=author&query=Higgins%2C+G">Gerard Higgins</a>, <a href="/search/physics?searchtype=author&query=P%C3%B6schl%2C+A">Andreas P枚schl</a>, <a href="/search/physics?searchtype=author&query=Lesanovsky%2C+I">Igor Lesanovsky</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.11284v1-abstract-short" style="display: inline;"> Generating quantum entanglement in large systems on time scales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems with low-error entanglement gates operated via the vibrational motion of a few-ion crystal within tens of microseconds. To exceed the level of complexity tr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11284v1-abstract-full').style.display = 'inline'; document.getElementById('1908.11284v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.11284v1-abstract-full" style="display: none;"> Generating quantum entanglement in large systems on time scales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems with low-error entanglement gates operated via the vibrational motion of a few-ion crystal within tens of microseconds. To exceed the level of complexity tractable by classical computers the main challenge is to realise fast entanglement operations in large ion crystals. The strong dipole-dipole interactions in polar molecule and Rydberg atom systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems. Here, we combine the benefits of these approaches: we report a $700\,\mathrm{ns}$ two-ion entangling gate which utilises the strong dipolar interaction between trapped Rydberg ions and produce a Bell state with $78\%$ fidelity. The sources of gate error are identified and a total error below $0.2\%$ is predicted for experimentally-achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes $\sim 10^{-4}$ gate error in a large ion crystal of 100 ions. This provides a new avenue to significantly speed up and scale up trapped ion quantum computers and simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11284v1-abstract-full').style.display = 'none'; document.getElementById('1908.11284v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 580, 345-349 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08099">arXiv:1904.08099</a> <span> [<a href="https://arxiv.org/pdf/1904.08099">pdf</a>, <a href="https://arxiv.org/format/1904.08099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.153602">10.1103/PhysRevLett.123.153602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly-polarizable ion in a Paul trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Higgins%2C+G">Gerard Higgins</a>, <a href="/search/physics?searchtype=author&query=Pokorny%2C+F">Fabian Pokorny</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08099v1-abstract-short" style="display: inline;"> Usually the influence of the quadratic Stark effect on an ion's trapping potential is minuscule and only needs to be considered in atomic clock experiments. In this work we excite a trapped ion to a Rydberg state with polarizability $\sim$~eight orders of magnitude higher than a low-lying electronic state; we find that the highly-polarizable ion experiences a vastly different trapping potential ow… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08099v1-abstract-full').style.display = 'inline'; document.getElementById('1904.08099v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08099v1-abstract-full" style="display: none;"> Usually the influence of the quadratic Stark effect on an ion's trapping potential is minuscule and only needs to be considered in atomic clock experiments. In this work we excite a trapped ion to a Rydberg state with polarizability $\sim$~eight orders of magnitude higher than a low-lying electronic state; we find that the highly-polarizable ion experiences a vastly different trapping potential owing to the Stark effect. We observe changes in trap stiffness, equilibrium position and minimum potential, which can be tuned using the trapping electric fields. These effects lie at the heart of proposals to shape motional mode spectra, simulate quantum magnetism and coherently drive structural phase transitions; in addition we propose using these effects to simulate cosmological particle creation, study quantum fluctuations of work and minimize ion micromotion. Mitigation of Stark effects is important for coherent control of Rydberg ions; we illustrate this by carrying out the first Rabi oscillations between a low-lying electronic state and a Rydberg state of an ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08099v1-abstract-full').style.display = 'none'; document.getElementById('1904.08099v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 7 pages supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 153602 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.06387">arXiv:1708.06387</a> <span> [<a href="https://arxiv.org/pdf/1708.06387">pdf</a>, <a href="https://arxiv.org/format/1708.06387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.220501">10.1103/PhysRevLett.119.220501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent control of a single trapped Rydberg ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Higgins%2C+G">Gerard Higgins</a>, <a href="/search/physics?searchtype=author&query=Pokorny%2C+F">Fabian Pokorny</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Bodart%2C+Q">Quentin Bodart</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.06387v1-abstract-short" style="display: inline;"> Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06387v1-abstract-full').style.display = 'inline'; document.getElementById('1708.06387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.06387v1-abstract-full" style="display: none;"> Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06387v1-abstract-full').style.display = 'none'; document.getElementById('1708.06387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages and 4 figures in the main body, 6 pages and 5 figures in total</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 220501 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.02184">arXiv:1611.02184</a> <span> [<a href="https://arxiv.org/pdf/1611.02184">pdf</a>, <a href="https://arxiv.org/format/1611.02184">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.021038">10.1103/PhysRevX.7.021038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A single strontium Rydberg ion confined in a Paul trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Higgins%2C+G">Gerard Higgins</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Weibin Li</a>, <a href="/search/physics?searchtype=author&query=Pokorny%2C+F">Fabian Pokorny</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Kress%2C+F">Florian Kress</a>, <a href="/search/physics?searchtype=author&query=Maier%2C+C">Christine Maier</a>, <a href="/search/physics?searchtype=author&query=Haag%2C+J">Johannes Haag</a>, <a href="/search/physics?searchtype=author&query=Bodart%2C+Q">Quentin Bodart</a>, <a href="/search/physics?searchtype=author&query=Lesanovsky%2C+I">Igor Lesanovsky</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.02184v1-abstract-short" style="display: inline;"> Trapped Rydberg ions are a promising new system for quantum information processing. They have the potential to join the precise quantum operations of trapped ions and the strong, long-range interactions between Rydberg atoms. Technically, the ion trap will need to stay active while exciting the ions into the Rydberg state, else the strong Coulomb repulsion will quickly push the ions apart. Thus, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02184v1-abstract-full').style.display = 'inline'; document.getElementById('1611.02184v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.02184v1-abstract-full" style="display: none;"> Trapped Rydberg ions are a promising new system for quantum information processing. They have the potential to join the precise quantum operations of trapped ions and the strong, long-range interactions between Rydberg atoms. Technically, the ion trap will need to stay active while exciting the ions into the Rydberg state, else the strong Coulomb repulsion will quickly push the ions apart. Thus, a thorough understanding of the trap effects on Rydberg ions is essential for future applications. Here we report the observation of two fundamental trap effects. First, we investigate the interaction of the Rydberg electron with the quadrupolar electric trapping field. This effect leads to Floquet sidebands in the spectroscopy of Rydberg D-states whereas Rydberg S-states are unaffected due to their symmetry. Second, we report on the modified trapping potential in the Rydberg state compared to the ground state which results from the strong polarizability of the Rydberg ion. We observe the resultant energy shifts as a line broadening which can be suppressed by cooling the ion to the motional ground state in the directions orthogonal to the excitation laser. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02184v1-abstract-full').style.display = 'none'; document.getElementById('1611.02184v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 021038 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.0942">arXiv:1211.0942</a> <span> [<a href="https://arxiv.org/pdf/1211.0942">pdf</a>, <a href="https://arxiv.org/format/1211.0942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/1/013007">10.1088/1367-2630/18/1/013007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Can different quantum state vectors correspond to the same physical state? An experimental test </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nigg%2C+D">Daniel Nigg</a>, <a href="/search/physics?searchtype=author&query=Monz%2C+T">Thomas Monz</a>, <a href="/search/physics?searchtype=author&query=Schindler%2C+P">Philipp Schindler</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+E+A">Esteban A. Martinez</a>, <a href="/search/physics?searchtype=author&query=Chwalla%2C+M">Michael Chwalla</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">Rainer Blatt</a>, <a href="/search/physics?searchtype=author&query=Pusey%2C+M+F">Matthew F. Pusey</a>, <a href="/search/physics?searchtype=author&query=Rudolph%2C+T">Terry Rudolph</a>, <a href="/search/physics?searchtype=author&query=Barrett%2C+J">Jonathan Barrett</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.0942v1-abstract-short" style="display: inline;"> A century on from the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular wave function, does this represent directly a physical wave of some kind, or is the wave function merely a summary of knowledge, or information, about the system? A recent no-go theorem shows that models in which the wave f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.0942v1-abstract-full').style.display = 'inline'; document.getElementById('1211.0942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.0942v1-abstract-full" style="display: none;"> A century on from the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular wave function, does this represent directly a physical wave of some kind, or is the wave function merely a summary of knowledge, or information, about the system? A recent no-go theorem shows that models in which the wave function is not physical, but corresponds only to an experimenter's information about a hypothetical real state of the system, must make different predictions from quantum theory when a certain test is carried out. Here we report on an experimental implementation using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of theories are ruled out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.0942v1-abstract-full').style.display = 'none'; document.getElementById('1211.0942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 18, 013007 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.4559">arXiv:1202.4559</a> <span> [<a href="https://arxiv.org/pdf/1202.4559">pdf</a>, <a href="https://arxiv.org/format/1202.4559">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.85.043401">10.1103/PhysRevA.85.043401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interferometric thermometry of a single sub-Doppler cooled atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Slodi%C4%8Dka%2C+L">L. Slodi膷ka</a>, <a href="/search/physics?searchtype=author&query=H%C3%A9tet%2C+G">G. H茅tet</a>, <a href="/search/physics?searchtype=author&query=R%C3%B6ck%2C+N">N. R枚ck</a>, <a href="/search/physics?searchtype=author&query=Gerber%2C+S">S. Gerber</a>, <a href="/search/physics?searchtype=author&query=Schindler%2C+P">P. Schindler</a>, <a href="/search/physics?searchtype=author&query=Kumph%2C+M">M. Kumph</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">M. Hennrich</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">R. Blatt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.4559v2-abstract-short" style="display: inline;"> Efficient self-interference of single-photons emitted by a sideband-cooled Barium ion is demonstrated. First, the technical tools for performing efficient coupling to the quadrupolar transition of a single $^{138}$Ba$^{+}$ ion are presented. We show efficient Rabi oscillations of the internal state of the ion using a highly stabilized 1.76 $渭m$ fiber laser resonant with the S$_{1/2}$-D$_{5/2}$ tra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.4559v2-abstract-full').style.display = 'inline'; document.getElementById('1202.4559v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.4559v2-abstract-full" style="display: none;"> Efficient self-interference of single-photons emitted by a sideband-cooled Barium ion is demonstrated. First, the technical tools for performing efficient coupling to the quadrupolar transition of a single $^{138}$Ba$^{+}$ ion are presented. We show efficient Rabi oscillations of the internal state of the ion using a highly stabilized 1.76 $渭m$ fiber laser resonant with the S$_{1/2}$-D$_{5/2}$ transition. We then show sideband cooling of the ion's motional modes and use it as a means to enhance the interference contrast of the ion with its mirror-image to up to 90%. Last, we measure the dependence of the self-interference contrast on the mean phonon number, thereby demonstrating the potential of the set-up for single-atom thermometry close to the motional ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.4559v2-abstract-full').style.display = 'none'; document.getElementById('1202.4559v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 85, 043401 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.3867">arXiv:0911.3867</a> <span> [<a href="https://arxiv.org/pdf/0911.3867">pdf</a>, <a href="https://arxiv.org/ps/0911.3867">ps</a>, <a href="https://arxiv.org/format/0911.3867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00340-010-4086-7">10.1007/s00340-010-4086-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-color photoionization of calcium using SHG and LED light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schuck%2C+C">C. Schuck</a>, <a href="/search/physics?searchtype=author&query=Rohde%2C+F">F. Rohde</a>, <a href="/search/physics?searchtype=author&query=Almendros%2C+M">M. Almendros</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">M. Hennrich</a>, <a href="/search/physics?searchtype=author&query=Eschner%2C+J">J. Eschner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.3867v1-abstract-short" style="display: inline;"> We present a photoionization method to load single 40Ca ions in a linear Paul trap from an atomic beam. Neutral Ca I atoms are resonantly excited from the ground state to the intermediate 4s4p 1P_1-level using coherent 423nm radiation produced by single-pass second harmonic generation in a periodically poled KTiOPO_4 crystal pumped with an 120mW extended cavity diode laser. Ionization is then at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3867v1-abstract-full').style.display = 'inline'; document.getElementById('0911.3867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.3867v1-abstract-full" style="display: none;"> We present a photoionization method to load single 40Ca ions in a linear Paul trap from an atomic beam. Neutral Ca I atoms are resonantly excited from the ground state to the intermediate 4s4p 1P_1-level using coherent 423nm radiation produced by single-pass second harmonic generation in a periodically poled KTiOPO_4 crystal pumped with an 120mW extended cavity diode laser. Ionization is then attained with a high-power light emitting diode imaged to the trap center, using an appropriately designed optical system composed of standard achromatic doublet lenses. The setup simplifies previous implementations at similar efficiency, and it hardly requires any maintenance at all. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3867v1-abstract-full').style.display = 'none'; document.getElementById('0911.3867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.1052">arXiv:0910.1052</a> <span> [<a href="https://arxiv.org/pdf/0910.1052">pdf</a>, <a href="https://arxiv.org/ps/0910.1052">ps</a>, <a href="https://arxiv.org/format/0910.1052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/43/11/115401">10.1088/0953-4075/43/11/115401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A diode laser stabilization scheme for 40Ca+ single ion spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rohde%2C+F">F. Rohde</a>, <a href="/search/physics?searchtype=author&query=Almendros%2C+M">M. Almendros</a>, <a href="/search/physics?searchtype=author&query=Schuck%2C+C">C. Schuck</a>, <a href="/search/physics?searchtype=author&query=Huwer%2C+J">J. Huwer</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">M. Hennrich</a>, <a href="/search/physics?searchtype=author&query=Eschner%2C+J">J. Eschner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.1052v1-abstract-short" style="display: inline;"> We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.1052v1-abstract-full').style.display = 'inline'; document.getElementById('0910.1052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.1052v1-abstract-full" style="display: none;"> We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to be 123 kHz with respect to an independent atomic reference, the Rb D1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation model. The measured Allan variance of 10^(-22) at 10 s demonstrates a high degree of stability for time scales up to 100 s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.1052v1-abstract-full').style.display = 'none'; document.getElementById('0910.1052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0805.0655">arXiv:0805.0655</a> <span> [<a href="https://arxiv.org/pdf/0805.0655">pdf</a>, <a href="https://arxiv.org/ps/0805.0655">ps</a>, <a href="https://arxiv.org/format/0805.0655">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.78.013808">10.1103/PhysRevA.78.013808 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon-Mediated Interaction between Two Distant Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rist%2C+S">Stefan Rist</a>, <a href="/search/physics?searchtype=author&query=Eschner%2C+J">J眉rgen Eschner</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a>, <a href="/search/physics?searchtype=author&query=Morigi%2C+G">Giovanna Morigi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0805.0655v1-abstract-short" style="display: inline;"> We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between the radiative lifetime of the atomic excited state and the propagation time of a photon between the two atoms. In the two regimes, well below satura… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.0655v1-abstract-full').style.display = 'inline'; document.getElementById('0805.0655v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0805.0655v1-abstract-full" style="display: none;"> We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between the radiative lifetime of the atomic excited state and the propagation time of a photon between the two atoms. In the two regimes, well below saturation the dynamics exhibit either typical features of a bad resonator, where the atoms act as the mirrors, or typical characteristics of dipole-dipole interaction. We study the coherence properties of the emitted light and show that it carries signatures of the multiple scattering processes between the atoms. The model predictions are compared with the experimental results in J. Eschner {\it et al.}, Nature {\bf 413}, 495 (2001). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.0655v1-abstract-full').style.display = 'none'; document.getElementById('0805.0655v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 78, 013808 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0512006">arXiv:quant-ph/0512006</a> <span> [<a href="https://arxiv.org/pdf/quant-ph/0512006">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0512006">ps</a>, <a href="https://arxiv.org/format/quant-ph/0512006">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2006.02.057">10.1016/j.optcom.2006.02.057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-resolved and state-selective detection of single freely falling atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bondo%2C+T">Torsten Bondo</a>, <a href="/search/physics?searchtype=author&query=Hennrich%2C+M">Markus Hennrich</a>, <a href="/search/physics?searchtype=author&query=Legero%2C+T">Thomas Legero</a>, <a href="/search/physics?searchtype=author&query=Rempe%2C+G">Gerhard Rempe</a>, <a href="/search/physics?searchtype=author&query=Kuhn%2C+A">Axel Kuhn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0512006v2-abstract-short" style="display: inline;"> We report on the detection of single, slowly moving Rubidium atoms using laser-induced fluorescence. The atoms move at 3 m/s while they are detected with a time resolution of 60 microseconds. The detection scheme employs a near-resonant laser beam that drives a cycling atomic transition, and a highly efficient mirror setup to focus a large fraction of the fluorescence photons to a photomultiplie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0512006v2-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0512006v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0512006v2-abstract-full" style="display: none;"> We report on the detection of single, slowly moving Rubidium atoms using laser-induced fluorescence. The atoms move at 3 m/s while they are detected with a time resolution of 60 microseconds. The detection scheme employs a near-resonant laser beam that drives a cycling atomic transition, and a highly efficient mirror setup to focus a large fraction of the fluorescence photons to a photomultiplier tube. It counts on average 20 photons per atom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0512006v2-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0512006v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Communications 264 (2006) 271-277 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>