CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 760 results for author: <span class="mathjax">Li, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Li%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18586">arXiv:2411.18586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18586">pdf</a>, <a href="https://arxiv.org/format/2411.18586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Modeling the Effect of Bariatric Surgery on Gastric Digestion in the Stomach: Insights from Multiphase Flow Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weixuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhar%2C+S">Sharun Kuhar</a>, <a href="/search/physics?searchtype=author&amp;query=Seo%2C+J">Jung-Hee Seo</a>, <a href="/search/physics?searchtype=author&amp;query=Mittal%2C+R">Rajat Mittal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18586v1-abstract-short" style="display: inline;"> The geometry and motility of the stomach play a critical role in the digestion of ingested liquid meals. Sleeve gastrectomy, a common type of bariatric surgery used to reduce the size of the stomach, significantly alters the stomach&#39;s anatomy and motility, which impacts gastric emptying and digestion. In this study, we use an imaging data-based computational model, StomachSim, to investigate the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18586v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18586v1-abstract-full" style="display: none;"> The geometry and motility of the stomach play a critical role in the digestion of ingested liquid meals. Sleeve gastrectomy, a common type of bariatric surgery used to reduce the size of the stomach, significantly alters the stomach&#39;s anatomy and motility, which impacts gastric emptying and digestion. In this study, we use an imaging data-based computational model, StomachSim, to investigate the consequences of sleeve gastrectomy. The pre-operative stomach anatomy was derived from imaging data and the post-sleeve gastrectomy shapes were generated for different resection volumes. We investigate the effect of sleeve sizes and motility patterns on gastric mixing and emptying. Simulations were conducted using an immersed-boundary flow solver, modeling a liquid meal to analyze changes in gastric content mixing and emptying rates. The results reveal that different degrees of volume reduction and impaired gastric motility have complex effects on stomach&#39;s mixing and emptying functions, which are important factors in gastric health of the patient. These findings provide insights into the biomechanical effects of sleeve gastrectomy on gastric digestion and emptying functions, highlighting the potential of computational models to inform surgical planning and post-operative management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18586v1-abstract-full').style.display = 'none'; document.getElementById('2411.18586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17578">arXiv:2411.17578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17578">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-IMPT: a biologically equivalent approach to proton ARC therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shinde%2C+N">Nimita Shinde</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yanan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wangyao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yuting Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+G+N">Gregory N Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Lominska%2C+C">Christopher Lominska</a>, <a href="/search/physics?searchtype=author&amp;query=Rotondo%2C+R">Ronny Rotondo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R+C">Ronald C Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+H">Hao Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17578v1-abstract-short" style="display: inline;"> Objective: Proton spot-scanning arc therapy (ARC) is an emerging modality that can improve the high-dose conformity to targets compared with standard intensity-modulated proton therapy (IMPT). However, the efficient treatment delivery of ARC is challenging due to the required frequent energy changes during the continuous gantry rotation. This work proposes a novel method that delivers a multiple I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17578v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17578v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17578v1-abstract-full" style="display: none;"> Objective: Proton spot-scanning arc therapy (ARC) is an emerging modality that can improve the high-dose conformity to targets compared with standard intensity-modulated proton therapy (IMPT). However, the efficient treatment delivery of ARC is challenging due to the required frequent energy changes during the continuous gantry rotation. This work proposes a novel method that delivers a multiple IMPT (multi-IMPT) plan that is equivalent to ARC in terms of biologically effective dose (BED). Approach: The proposed multi-IMPT method utilizes a different subset of limited number of beam angles in each fraction for dose delivery. Due to the different dose delivered to organs at risk (OAR) in each fraction, we optimize biologically effective dose (BED) for OAR and the physical dose delivered for target in each fraction. The BED-based multi-IMPT inverse optimization problem is solved via the iterative convex relaxation method and the alternating direction method of multipliers. The effectiveness of the proposed multi-IMPT method is evaluated in terms of dose objectives in comparison with ARC. Main results: Multi-IMPT provided similar plan quality with ARC. For example, multi-IMPT provided better OAR sparing and slightly better target dose coverage for the prostate case; similar dose distribution for the lung case; slightly worse dose coverage for the brain case; better dose coverage but slightly higher BED in OAR for the head-and-neck case. Significance: We have proposed a multi-IMPT approach to deliver ARC-equivalent plan quality. Keywords: biologically effective dose (BED), proton arc therapy <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17578v1-abstract-full').style.display = 'none'; document.getElementById('2411.17578v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10144">arXiv:2411.10144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10144">pdf</a>, <a href="https://arxiv.org/format/2411.10144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DaYu: Data-Driven Model for Geostationary Satellite Observed Cloud Images Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wei%2C+X">Xujun Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Feng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Renhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenwen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Cuiping Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bin Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jingwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+H">Haoyang Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10144v1-abstract-short" style="display: inline;"> In the past few years, Artificial Intelligence (AI)-based weather forecasting methods have widely demonstrated strong competitiveness among the weather forecasting systems. However, these methods are insufficient for high-spatial-resolution short-term nowcasting within 6 hours, which is crucial for warning short-duration, mesoscale and small-scale weather events. Geostationary satellite remote sen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10144v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10144v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10144v1-abstract-full" style="display: none;"> In the past few years, Artificial Intelligence (AI)-based weather forecasting methods have widely demonstrated strong competitiveness among the weather forecasting systems. However, these methods are insufficient for high-spatial-resolution short-term nowcasting within 6 hours, which is crucial for warning short-duration, mesoscale and small-scale weather events. Geostationary satellite remote sensing provides detailed, high spatio-temporal and all-day observations, which can address the above limitations of existing methods. Therefore, this paper proposed an advanced data-driven thermal infrared cloud images forecasting model, &#34;DaYu.&#34; Unlike existing data-driven weather forecasting models, DaYu is specifically designed for geostationary satellite observations, with a temporal resolution of 0.5 hours and a spatial resolution of ${0.05}^\circ$ $\times$ ${0.05}^\circ$. DaYu is based on a large-scale transformer architecture, which enables it to capture fine-grained cloud structures and learn fast-changing spatio-temporal evolution features effectively. Moreover, its attention mechanism design achieves a balance in computational complexity, making it practical for applications. DaYu not only achieves accurate forecasts up to 3 hours with a correlation coefficient higher than 0.9, 6 hours higher than 0.8, and 12 hours higher than 0.7, but also detects short-duration, mesoscale, and small-scale weather events with enhanced detail, effectively addressing the shortcomings of existing methods in providing detailed short-term nowcasting within 6 hours. Furthermore, DaYu has significant potential in short-term climate disaster prevention and mitigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10144v1-abstract-full').style.display = 'none'; document.getElementById('2411.10144v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09304">arXiv:2411.09304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09304">pdf</a>, <a href="https://arxiv.org/format/2411.09304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Design and Process Analysis of a Split-Gate Trench Power MOSFET with Bottom-Trench Hk-Pillar Superjunction for Enhanced Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yunteng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhentao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zonghao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Juncheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenjun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haimeng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Aynul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hongqiang Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09304v2-abstract-short" style="display: inline;"> In this paper, we propose a simulation-based novel Split-Gate Trench MOSFET structure with an optimized fabrication process to enhance power efficiency, switching speed, and thermal stability for high-performance semiconductor applications. Integrating high-k pillars with superjunction structures beneath the split gate enhancing breakdown performance by reducing critical field intensity by up to 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09304v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09304v2-abstract-full" style="display: none;"> In this paper, we propose a simulation-based novel Split-Gate Trench MOSFET structure with an optimized fabrication process to enhance power efficiency, switching speed, and thermal stability for high-performance semiconductor applications. Integrating high-k pillars with superjunction structures beneath the split gate enhancing breakdown performance by reducing critical field intensity by up to 35%, the device achieves a 15% improvement in Figures of Merit (FOMs) for BV2/Ron,sp. Dynamic testing reveals approximately a 25% reduction in both input and output capacitance, as well as gate-to-drain charge (QGD). This reduction, coupled with an approximately 40% improvement in Baliga&#39;s High-Frequency Figure of Merit (BHFFOM) and over 20% increase in the New High-Frequency Figure of Merit (NHFFOM), underscores the design&#39;s suitability for high-speed, high-efficiency power electronics. Simulations examining the effects of high-k pillar depth indicate that an optimal depth of 3.5 um achieves a balanced performance between BV and Ron,sp. The influence of high-k materials on BT-Hk-SJ MOSFET performance was investigated by comparing hafnium dioxide (HfO2), nitride, and oxynitride. Among these, HfO2 demonstrated optimal performance across static, dynamic, and diode characteristics due to its high dielectric constant, while material choice had minimal impact, with variations kept within 5%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09304v2-abstract-full').style.display = 'none'; document.getElementById('2411.09304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08122">arXiv:2411.08122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08122">pdf</a>, <a href="https://arxiv.org/format/2411.08122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Physics-Informed Neural Networks with Complementary Soft and Hard Constraints for Solving Complex Boundary Navier-Stokes Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">Chuyu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+C">Chenxi Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+R">Rongyu Du</a>, <a href="/search/physics?searchtype=author&amp;query=Xin%2C+G">Guoguo Xin</a>, <a href="/search/physics?searchtype=author&amp;query=Nan%2C+P">Pengyu Nan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hangzhou Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guoqing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08122v1-abstract-short" style="display: inline;"> Soft- and hard-constrained Physics Informed Neural Networks (PINNs) have achieved great success in solving partial differential equations (PDEs). However, these methods still face great challenges when solving the Navier-Stokes equations (NSEs) with complex boundary conditions. To address these challenges, this paper introduces a novel complementary scheme combining soft and hard constraint PINN m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08122v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08122v1-abstract-full" style="display: none;"> Soft- and hard-constrained Physics Informed Neural Networks (PINNs) have achieved great success in solving partial differential equations (PDEs). However, these methods still face great challenges when solving the Navier-Stokes equations (NSEs) with complex boundary conditions. To address these challenges, this paper introduces a novel complementary scheme combining soft and hard constraint PINN methods. The soft-constrained part is thus formulated to obtain the preliminary results with a lighter training burden, upon which refined results are then achieved using a more sophisticated hard-constrained mechanism with a primary network and a distance metric network. Specifically, the soft-constrained part focuses on boundary points, while the primary network emphasizes inner domain points, primarily through PDE loss. Additionally, the novel distance metric network is proposed to predict the power function of the distance from a point to the boundaries, which serves as the weighting factor for the first two components. This approach ensures accurate predictions for both boundary and inner domain areas. The effectiveness of the proposed method on the NSEs problem with complex boundary conditions is demonstrated by solving a 2D cylinder wake problem and a 2D blocked cavity flow with a segmented inlet problem, achieving significantly higher accuracy compared to traditional soft- and hard-constrained PINN approaches. Given PINN&#39;s inherent advantages in solving the inverse and the large-scale problems, which are challenging for traditional computational fluid dynamics (CFD) methods, this approach holds promise for the inverse design of required flow fields by specifically-designed boundary conditions and the reconstruction of large-scale flow fields by adding a limited number of training input points. The code for our approach will be made publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08122v1-abstract-full').style.display = 'none'; document.getElementById('2411.08122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03479">arXiv:2411.03479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03479">pdf</a>, <a href="https://arxiv.org/format/2411.03479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Disorder-Induced Spectral Splitting versus Rabi Splitting under Strong Light-Matter Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei-Kuo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hsing-Ta Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03479v1-abstract-short" style="display: inline;"> The notion of strong light-matter coupling is typically associated with the observation of Rabi splitting, corresponding to the formation of the hybrid light-matter states known as polaritons. However, this relationship is derived based on the assumption that disorder can be ignored or acts as a perturbative effect. Contrary to conventional treatment of disorder effects, we investigate the impact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03479v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03479v1-abstract-full" style="display: none;"> The notion of strong light-matter coupling is typically associated with the observation of Rabi splitting, corresponding to the formation of the hybrid light-matter states known as polaritons. However, this relationship is derived based on the assumption that disorder can be ignored or acts as a perturbative effect. Contrary to conventional treatment of disorder effects, we investigate the impact of strong disorder on the absorption spectrum by developing a non-perturbative effective model combined with classical electrodynamics simulation. Intriguingly, we find that strong disorder leads to an enhanced spectral splitting that closely resembles Rabi splitting, yet originates from a fundamentally different mechanism as induced by the dark modes. Specifically, we examine a disordered molecular ensemble in proximity to a plasmonic nanodisk and demonstrate disorder-induced spectral splitting in the absorption spectrum. This conclusion raises a controversial issue, suggesting that both polaritons (dominate in the strong coupling regime) and dark modes (dominate in the strong disorder regime) can lead to spectral splitting, and one cannot distinguish them solely based on the steady-state absorption spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03479v1-abstract-full').style.display = 'none'; document.getElementById('2411.03479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&amp;query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&amp;query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24099">arXiv:2410.24099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.24099">pdf</a>, <a href="https://arxiv.org/format/2410.24099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Characterization of the optical model of the T2K 3D segmented plastic scintillator detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+T">T. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arihara%2C+T">T. Arihara</a>, <a href="/search/physics?searchtype=author&amp;query=Arimoto%2C+S">S. Arimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Babu%2C+N">N. Babu</a>, <a href="/search/physics?searchtype=author&amp;query=Baranov%2C+V">V. Baranov</a>, <a href="/search/physics?searchtype=author&amp;query=Bartoszek%2C+L">L. Bartoszek</a>, <a href="/search/physics?searchtype=author&amp;query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharjee%2C+S">S. Bhattacharjee</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Boikov%2C+A+V">A. V. Boikov</a>, <a href="/search/physics?searchtype=author&amp;query=Buizza-Avanzini%2C+M">M. Buizza-Avanzini</a>, <a href="/search/physics?searchtype=author&amp;query=Cap%C3%B3%2C+J">J. Cap贸</a>, <a href="/search/physics?searchtype=author&amp;query=Cayo%2C+J">J. Cayo</a>, <a href="/search/physics?searchtype=author&amp;query=Chakrani%2C+J">J. Chakrani</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+P+S">P. S. Chong</a>, <a href="/search/physics?searchtype=author&amp;query=Chvirova%2C+A">A. Chvirova</a>, <a href="/search/physics?searchtype=author&amp;query=Danilov%2C+M">M. Danilov</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+C">C. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Davydov%2C+Y+I">Yu. I. Davydov</a>, <a href="/search/physics?searchtype=author&amp;query=Dergacheva%2C+A">A. Dergacheva</a>, <a href="/search/physics?searchtype=author&amp;query=Dokania%2C+N">N. Dokania</a>, <a href="/search/physics?searchtype=author&amp;query=Douqa%2C+D">D. Douqa</a>, <a href="/search/physics?searchtype=author&amp;query=Doyle%2C+T+A">T. A. Doyle</a> , et al. (106 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24099v1-abstract-short" style="display: inline;"> The magnetised near detector (ND280) of the T2K long-baseline neutrino oscillation experiment has been recently upgraded aiming to satisfy the requirement of reducing the systematic uncertainty from measuring the neutrinonucleus interaction cross section, which is the largest systematic uncertainty in the search for leptonic charge-parity symmetry violation. A key component of the upgrade is Super&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24099v1-abstract-full').style.display = 'inline'; document.getElementById('2410.24099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24099v1-abstract-full" style="display: none;"> The magnetised near detector (ND280) of the T2K long-baseline neutrino oscillation experiment has been recently upgraded aiming to satisfy the requirement of reducing the systematic uncertainty from measuring the neutrinonucleus interaction cross section, which is the largest systematic uncertainty in the search for leptonic charge-parity symmetry violation. A key component of the upgrade is SuperFGD, a 3D segmented plastic scintillator detector made of approximately 2,000,000 optically-isolated 1 cm3 cubes. It will provide a 3D image of GeV neutrino interactions by combining tracking and stopping power measurements of final state particles with sub-nanosecond time resolution. The performance of SuperFGD is characterized by the precision of its response to charged particles as well as the systematic effects that might affect the physics measurements. Hence, a detailed Geant4 based optical simulation of the SuperFGD building block, i.e. a plastic scintillating cube read out by three wavelength shifting fibers, has been developed and validated with the different datasets collected in various beam tests. In this manuscript the description of the optical model as well as the comparison with data are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24099v1-abstract-full').style.display = 'none'; document.getElementById('2410.24099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15121">arXiv:2410.15121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15121">pdf</a>, <a href="https://arxiv.org/format/2410.15121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Simulating and investigating various dynamic aspects of $\rm{H}_2\rm{O}$-related hydrogen bond model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=You%2C+J">Jiangchuan You</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ran Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wanshun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+H">Hui-hui Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Ozhigov%2C+Y+I">Yuri Igorevich Ozhigov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15121v2-abstract-short" style="display: inline;"> A simple $\rm{H}_2\rm{O}$-related hydrogen bond model, modified from the Jaynes-Cummings model, is proposed and its various dynamic aspects are investigated theoretically. In this model, the formation and breaking processes of hydrogen bond are accompanied by the creation and annihilation of the thermal phonon of the medium. A number of simplifying assumptions about the dynamics of the molecules i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15121v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15121v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15121v2-abstract-full" style="display: none;"> A simple $\rm{H}_2\rm{O}$-related hydrogen bond model, modified from the Jaynes-Cummings model, is proposed and its various dynamic aspects are investigated theoretically. In this model, the formation and breaking processes of hydrogen bond are accompanied by the creation and annihilation of the thermal phonon of the medium. A number of simplifying assumptions about the dynamics of the molecules involved are used. Rotating wave approximation is applied under consideration of the strong-coupling condition. Dissipative dynamics under the Markovian approximation is obtained through solving the quantum master equation - Lindbladian. The probabilities of reaction channels involving hydrogen bond depending on the parameters of the external environment, are obtained. Differences between unitary and dissipative evolutions are discussed. Consideration is given to the effect of all kinds of potential interactions and dissipations on evolution. Consideration is also given to the reverse processes (inflows) of dissipations. The results show that the magnitude changes of the interactions and dissipations have a slight effect on the formation of hydrogen bond, but the variation of the inflows significantly affects the formation of hydrogen bond. According to the findings, the dynamics of $\rm{H}_2\rm{O}$-related hydrogen bond model can be controlled by selectively choosing system parameters. The results will be used as a basis to extend the research to more complex chemical and biological models in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15121v2-abstract-full').style.display = 'none'; document.getElementById('2410.15121v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13912">arXiv:2410.13912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13912">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> A spatiotemporal knowledge graph-based method for identifying individual activity locations from mobile phone data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jian Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+T">Tian Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weifeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yuhang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13912v1-abstract-short" style="display: inline;"> In recent years, mobile phone data has been widely used for human mobility analytics. Identifying individual activity locations is the fundamental step for mobile phone data processing. Current methods typically aggregate spatially adjacent location records over multiple days to identify activity locations. However, only considering spatial relationships while overlooking temporal ones may lead to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13912v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13912v1-abstract-full" style="display: none;"> In recent years, mobile phone data has been widely used for human mobility analytics. Identifying individual activity locations is the fundamental step for mobile phone data processing. Current methods typically aggregate spatially adjacent location records over multiple days to identify activity locations. However, only considering spatial relationships while overlooking temporal ones may lead to inaccurate activity location identification, and also affect activity pattern analysis. In this study, we propose a spatiotemporal knowledge graph-based (STKG) method for identifying activity locations from mobile phone data. An STKG is designed and constructed to describe individual mobility characteristics. The spatial and temporal relationships of individual stays are inferred and transformed into a spatiotemporal graph. The modularity-optimization community detection algorithm is applied to identify stays with dense spatiotemporal relationships, which are considering as activity locations. A case study in Shanghai was conducted to verify the performance of the proposed method. The results show that compared with two baseline methods, the STKG-based method can limit an additional 45% of activity locations with the longest daytime stay within a reasonable spatial range; In addition, the STKG-based method exhibit lower variance in the start and end times of activities across different days, performing approximately 10% to 20% better than the two baseline methods. Moreover, the STKG-based method effectively distinguishes between locations that are geographically close but exhibit different temporal patterns. These findings demonstrate the effectiveness of STKG-based method in enhancing both spatial precision and temporal consistency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13912v1-abstract-full').style.display = 'none'; document.getElementById('2410.13912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08554">arXiv:2410.08554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08554">pdf</a>, <a href="https://arxiv.org/format/2410.08554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrated adaptive coherent LiDAR for 4D bionic vision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ruixuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yichen Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Ke Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chuxin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yikun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wencan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+B">Bitao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhaoxi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hanke Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Zhangfeng Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+Z">Zihan Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+W">Weihan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+P">Pengfei Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+D">Dong Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+H">Haowen Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Linjie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xingjun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08554v1-abstract-short" style="display: inline;"> Light detection and ranging (LiDAR) is a ubiquitous tool to provide precise spatial awareness in various perception environments. A bionic LiDAR that can mimic human-like vision by adaptively gazing at selected regions of interest within a broad field of view is crucial to achieve high-resolution imaging in an energy-saving and cost-effective manner. However, current LiDARs based on stacking fixed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08554v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08554v1-abstract-full" style="display: none;"> Light detection and ranging (LiDAR) is a ubiquitous tool to provide precise spatial awareness in various perception environments. A bionic LiDAR that can mimic human-like vision by adaptively gazing at selected regions of interest within a broad field of view is crucial to achieve high-resolution imaging in an energy-saving and cost-effective manner. However, current LiDARs based on stacking fixed-wavelength laser arrays and inertial scanning have not been able to achieve the desired dynamic focusing patterns and agile scalability simultaneously. Moreover, the ability to synchronously acquire multi-dimensional physical parameters, including distance, direction, Doppler, and color, through seamless fusion between multiple sensors, still remains elusive in LiDAR. Here, we overcome these limitations and demonstrate a bio-inspired frequency-modulated continuous wave (FMCW) LiDAR system with dynamic and scalable gazing capability. Our chip-scale LiDAR system is built using hybrid integrated photonic solutions, where a frequency-chirped external cavity laser provides broad spectral tunability, while on-chip electro-optic combs with elastic channel spacing allow customizable imaging granularity. Using the dynamic zoom-in capability and the coherent FMCW scheme, we achieve a state-of-the-art resolution of 0.012 degrees, providing up to 15 times the resolution of conventional 3D LiDAR sensors, with 115 equivalent scanning lines and 4D parallel imaging. We further demonstrate cooperative sensing between our adaptive coherent LiDAR and a camera to enable high-resolution color-enhanced machine vision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08554v1-abstract-full').style.display = 'none'; document.getElementById('2410.08554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03209">arXiv:2410.03209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03209">pdf</a>, <a href="https://arxiv.org/format/2410.03209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Signatures of valley drift in the diversified band dispersions of bright, gray, and dark excitons in MoS2 monolayers under uni-axial strains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shih%2C+C">Ching-Hung Shih</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+G">Guan-Hao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Lo%2C+P">Ping-Yuan Lo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei-Hua Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Mei-Ling Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chien%2C+C">Chao-Hsin Chien</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+S">Shun-Jen Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03209v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical investigation of the strain-modulated excitonic properties of uni-axially strained transition-metal dichalcogenide monolayers (TMD-MLs) by solving the Bethe-Salpeter equation (BSE) established on the basis of first principles. We show that imposing an uni-axial strain onto a MoS_$2$ monolayers leads to the diversified band dispersions of the bright exciton (B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03209v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03209v1-abstract-full" style="display: none;"> We present a comprehensive theoretical investigation of the strain-modulated excitonic properties of uni-axially strained transition-metal dichalcogenide monolayers (TMD-MLs) by solving the Bethe-Salpeter equation (BSE) established on the basis of first principles. We show that imposing an uni-axial strain onto a MoS_$2$ monolayers leads to the diversified band dispersions of the bright exciton (BX), gray exciton (GX), and dark exciton (DX) states, as a consequence of the competitive interplay between strain-induced valley drift (VD) and momentum-dependent electron-hole exchange interaction (EHEI). While the band dispersions of BX doublet in the light-accessible small reciprocal area remain almost unchanged against strain, the band dispersion of DX is reshaped by an increasing uni-axial strain from a parabola to a Mexican-hat-like profile, featured with unusual sign-reversal of the heavy effective mass and strain-activated brightness. In contrast, the effective mass of GX is drastically lightened by uni-axial strain and remains always positive. We show that the strain-diversified exciton band dispersions leads to the distinct exciton diffusivities and angle-resolved optical patterns of BX, GX, and DX in a strained TMD-ML, suggesting the feasibility of {\it spatially} resolving spinallowed and -forbidden excitons in exciton transport experiments and angle-resolved optical spectroscopies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03209v1-abstract-full').style.display = 'none'; document.getElementById('2410.03209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02161">arXiv:2410.02161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02161">pdf</a>, <a href="https://arxiv.org/format/2410.02161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad834b">10.3847/1538-4357/ad834b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The calibrations of DAMPE $纬$-ray effective area </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhao-Qiang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wen-Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+K">Kai-Kai Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zun-Lei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+C">Chuan Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02161v1-abstract-short" style="display: inline;"> The DArk Matter Particle Explorer (DAMPE) is a cosmic-ray detector as well as a pair-converting $纬$-ray telescope. The effective area, reflecting the geometrical cross-section area, the $纬$-ray conversion probability and the photon selection efficiency, is important in the $纬$-ray analyses. In the work, we find a significant time variation in the effective area, as large as $\sim -4\%/{\rm yr}$ at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02161v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02161v1-abstract-full" style="display: none;"> The DArk Matter Particle Explorer (DAMPE) is a cosmic-ray detector as well as a pair-converting $纬$-ray telescope. The effective area, reflecting the geometrical cross-section area, the $纬$-ray conversion probability and the photon selection efficiency, is important in the $纬$-ray analyses. In the work, we find a significant time variation in the effective area, as large as $\sim -4\%/{\rm yr}$ at 2 GeV for the high-energy trigger. We derive the data-based correction factors to the effective areas and apply corrections to both the effective areas and the exposure maps. The calibrated exposure can be $\sim 12\%$ smaller than the Monte Carlo one on average at 2 GeV. The calibration is further verified using the observation of the Vela pulsar, showing the spectral parameters with the correction are more consistent with those in the Fermi-LAT catalog than the ones without correction. All the corrections are now implemented in the latest version of the DAMPE $纬$-ray analysis toolkit DmpST. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02161v1-abstract-full').style.display = 'none'; document.getElementById('2410.02161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures and 1 table. Accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 976:53 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19870">arXiv:2409.19870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19870">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Frequency-shifted laser feedback interferometry in non-planar ring oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+R">Rong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+X">Xuezhen Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenxun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+G">Ghuobin Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+W">Weitong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Danqing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+C">Chunzhao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jie Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">Changlei Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Yeh%2C+H">Hsien-Chi Yeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19870v1-abstract-short" style="display: inline;"> Laser feedback interferometry (LFI) has a wide range of applications such as displacement, distance and velocity measurements. LFI has been realized in many types of lasers but has never been reported in non-planar ring oscillators (NPRO) to the best of our knowledge. In this letter, we present a new type of LFI based on an NPRO laser. The intrinsic resistance to optical feedback in NPROs is broke&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19870v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19870v1-abstract-full" style="display: none;"> Laser feedback interferometry (LFI) has a wide range of applications such as displacement, distance and velocity measurements. LFI has been realized in many types of lasers but has never been reported in non-planar ring oscillators (NPRO) to the best of our knowledge. In this letter, we present a new type of LFI based on an NPRO laser. The intrinsic resistance to optical feedback in NPROs is broken under weak-magnetic-intensity condition, where stable bidirectional lasing is initiated in the ring cavity. The interference signal, i.e., the beat of the bidirectional lasing is with frequency from a few hundred of kilohertz to a few megahertz which is mainly determined by the applied magnetic intensity in NPRO. Frequency-shifted LFI is thus constructed in NPRO without using acousto-optic modulators as mostly used in conventional LFI. A theoretical model is established to well describe the phenomenon. In the end, micro-vibrational measurements are demonstrated to prove the potential application, where vibration-detection amplitude limit below 30 pm, vibration-detection frequency range from a few kilohertz to a few hundred kilohertz is achieved. Benefiting from the characteristics of tiny footprint, ruggedized structure, long lifetime and ultralow-noise of NPRO lasers, NPRO-based LFI may find important applications in industry, scientific research, military and aerospace. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19870v1-abstract-full').style.display = 'none'; document.getElementById('2409.19870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19714">arXiv:2409.19714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19714">pdf</a>, <a href="https://arxiv.org/format/2409.19714">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> CEPC-on-Gaussino: an application of Gaussino simulation framework for CEPC experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+T">Tao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weidong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xingtao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Teng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Ziyan Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Chengdong Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+J">Jiaheng Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19714v1-abstract-short" style="display: inline;"> The Circular Electron Positron Collider (CEPC) is a future Higgs factory to measure the Higgs boson properties. Like the other future experiments, the simulation software plays a crucial role in CEPC for detector designs, algorithm optimization and physics studies. Due to similar requirements, the software stack from the Key4hep project has been adopted by CEPC. As the initial application of Key4h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19714v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19714v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19714v1-abstract-full" style="display: none;"> The Circular Electron Positron Collider (CEPC) is a future Higgs factory to measure the Higgs boson properties. Like the other future experiments, the simulation software plays a crucial role in CEPC for detector designs, algorithm optimization and physics studies. Due to similar requirements, the software stack from the Key4hep project has been adopted by CEPC. As the initial application of Key4hep, a simulation framework has been developed for CEPC based on DD4hep, EDM4hep and k4FWCore since 2020. However, the current simulation framework for CEPC lacks support for the parallel computing. To benefit from the multi-threading techniques, the Gaussino project from the LHCb experiment has been chosen as the next simulation framework in Key4hep. This contribution presents the application of Gaussino for CEPC. The development of the CEPC-on-Gaussino prototype will be shown and the simulation of a tracker detector will be demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19714v1-abstract-full').style.display = 'none'; document.getElementById('2409.19714v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICHEP2024 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18887">arXiv:2409.18887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18887">pdf</a>, <a href="https://arxiv.org/format/2409.18887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Enhanced Quantum Holography with Undetected Photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+W">Weiru Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+G">Gewei Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yutong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">Chen-Ran Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Ziyang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yakovlev%2C+V+V">Vladislav V. Yakovlev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18887v1-abstract-short" style="display: inline;"> Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution. D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18887v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18887v1-abstract-full" style="display: none;"> Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution. Deep learning, recognized for its ability in processing complex data, holds significant promise in addressing these challenges. In this report, we present an ample advancement in QHUP achieved by harnessing the power of deep learning to extract images from single-shot holograms, resulting in vastly reduced noise and distortion, alongside a notable enhancement in spatial resolution. The proposed and demonstrated deep learning QHUP (DL-QHUP) methodology offers a transformative solution by delivering high-speed imaging, improved spatial resolution, and superior noise resilience, making it suitable for diverse applications across an array of research fields stretching from biomedical imaging to remote sensing. DL-QHUP signifies a crucial leap forward in the realm of holography, demonstrating its immense potential to revolutionize imaging capabilities and pave the way for advancements in various scientific disciplines. The integration of DL-QHUP promises to unlock new possibilities in imaging applications, transcending existing limitations and offering unparalleled performance in challenging environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18887v1-abstract-full').style.display = 'none'; document.getElementById('2409.18887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v2-abstract-short" style="display: inline;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v2-abstract-full" style="display: none;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm&#39;s energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'none'; document.getElementById('2409.18288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17586">arXiv:2409.17586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17586">pdf</a>, <a href="https://arxiv.org/format/2409.17586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">Chenyazhi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenhui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jiadian He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xiaohui Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yanjiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+P">Peng Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yueshen Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17586v1-abstract-short" style="display: inline;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17586v1-abstract-full" style="display: none;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals (vdW) heterostructure. By injecting high-energy electrons into NbSe$_2$ under an electric field, a non-equilibrium state is induced, resulting in significant modulation of the superconducting properties. Owing to the intrinsic polarization of ferroelectric GaSe, a much steeper subthreshold slope and asymmetric modulation are achieved, which is beneficial to the device performance. Based on these results, a superconducting switch is realized that can reversibly and controllably switch between the superconducting and normal state under an electric field. Our findings highlight a significant high-energy injection effect from band engineering in 2D vdW heterostructures combining superconductors and ferroelectric semiconductors, and demonstrate the potential applications for superconducting integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'none'; document.getElementById('2409.17586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16485">arXiv:2409.16485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16485">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterization of Coulomb Interactions in Electron Transport through a Single Hetero-Helicene Molecular Junction Using Scanning Tunneling Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yueqing Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+L">Liya Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+K">Kangkai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Ji-Kun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiao-Ye Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wan-Lu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shaowei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16485v1-abstract-short" style="display: inline;"> Characterization of the structural and electron transport properties of single chiral molecules provides critical insights into the interplay between their electronic structure and electrochemical environments, providing broader implications given the significance of molecular chirality in chiroptical applications and pharmaceutical sciences. Here, we examined the topographic and electronic featur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16485v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16485v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16485v1-abstract-full" style="display: none;"> Characterization of the structural and electron transport properties of single chiral molecules provides critical insights into the interplay between their electronic structure and electrochemical environments, providing broader implications given the significance of molecular chirality in chiroptical applications and pharmaceutical sciences. Here, we examined the topographic and electronic features of a recently developed chiral molecule, B,N-embedded double hetero[7]helicene, at the edge of Cu(100) supported NaCl thin film with scanning tunneling microscopy and spectroscopy. An electron transport energy gap of 3.2 eV is measured, which is significantly larger than the energy difference between the highest occupied and the lowest unoccupied molecular orbitals given by theoretical calculations or optical measurements. Through first principles calculations, we demonstrated that this energy discrepancy results from the Coulomb interaction between the tunneling electron and the molecule&#39;s electrons. This occurs in electron transport processes when the molecule is well decoupled from the electrodes by the insulating decoupling layers, leading to a temporary ionization of the molecule during electron tunneling. Beyond revealing properties concerning a specific molecule, our findings underscore the key role of Coulomb interactions in modulating electron transport in molecular junctions, providing insights into the interpretation of scanning tunneling spectroscopy features of molecules decoupled by insulating layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16485v1-abstract-full').style.display = 'none'; document.getElementById('2409.16485v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11715">arXiv:2409.11715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11715">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional topological valley photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q">Qiaolu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+N">Ning Han</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xinrui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Fujia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Junyao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yuang Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Y">Yudong Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+H">Haoran Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yihao Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11715v1-abstract-short" style="display: inline;"> Topological valley photonics, which exploits valley degree of freedom to manipulate electromagnetic waves, offers a practical and effective pathway for various classical and quantum photonic applications across the entire spectrum. Current valley photonics, however, has been limited to two dimensions, which typically suffer from out-of-plane losses and can only manipulate the flow of light in plan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11715v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11715v1-abstract-full" style="display: none;"> Topological valley photonics, which exploits valley degree of freedom to manipulate electromagnetic waves, offers a practical and effective pathway for various classical and quantum photonic applications across the entire spectrum. Current valley photonics, however, has been limited to two dimensions, which typically suffer from out-of-plane losses and can only manipulate the flow of light in planar geometries. Here, we have theoretically and experimentally developed a framework of three-dimensional (3D) topological valley photonics with a complete photonic bandgap and vectorial valley contrasting physics. Unlike the two-dimensional counterparts with a pair of valleys characterized by scalar valley Chern numbers, the 3D valley systems exhibit triple pairs of valleys characterized by valley Chern vectors, enabling the creation of vectorial bulk valley vortices and canalized chiral valley surface states. Notably, the valley Chern vectors and the circulating propagation direction of the valley surface states are intrinsically governed by the right-hand-thumb rule. Our findings reveal the vectorial nature of the 3D valley states and highlight their potential applications in 3D waveguiding, directional radiation, and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11715v1-abstract-full').style.display = 'none'; document.getElementById('2409.11715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08070">arXiv:2409.08070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08070">pdf</a>, <a href="https://arxiv.org/format/2409.08070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> All-optical Fourier neural network using partially coherent light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qin%2C+J">Jianwei Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yanbing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+F">Fangwei Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08070v2-abstract-short" style="display: inline;"> Optical neural networks present distinct advantages over traditional electrical counterparts, such as accelerated data processing and reduced energy consumption. While coherent light is conventionally employed in optical neural networks, our study proposes harnessing spatially incoherent light in all-optical Fourier neural networks. Contrary to numerical predictions of declining target recognition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08070v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08070v2-abstract-full" style="display: none;"> Optical neural networks present distinct advantages over traditional electrical counterparts, such as accelerated data processing and reduced energy consumption. While coherent light is conventionally employed in optical neural networks, our study proposes harnessing spatially incoherent light in all-optical Fourier neural networks. Contrary to numerical predictions of declining target recognition accuracy with increased incoherence, our experimental results demonstrate a surprising outcome: improved accuracy with incoherent light. We attribute this unexpected enhancement to spatially incoherent light&#39;s ability to alleviate experimental errors like diffraction rings, laser speckle, and edge effects. Our controlled experiments introduced spatial incoherence by passing monochromatic light through a spatial light modulator featuring a dynamically changing random phase array. These findings underscore partially coherent light&#39;s potential to optimize optical neural networks, delivering dependable and efficient solutions for applications demanding consistent accuracy and robustness across diverse conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08070v2-abstract-full').style.display = 'none'; document.getElementById('2409.08070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05895">arXiv:2409.05895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05895">pdf</a>, <a href="https://arxiv.org/format/2409.05895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Multiscale simulation of rarefied gas flows in Divertor Tokamak Test facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yanbing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+J">Jianan Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Lei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05895v1-abstract-short" style="display: inline;"> Simulating gas flow within the divertor, which is a crucial component in nuclear fusion reactors, is essential for assessing and enhancing its design and performance. Traditional methods, such as the direct simulation Monte Carlo and the discrete velocity method, often fall short in efficiency for these simulations. In this study, we utilize the general synthetic iterative scheme to simulate a sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05895v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05895v1-abstract-full" style="display: none;"> Simulating gas flow within the divertor, which is a crucial component in nuclear fusion reactors, is essential for assessing and enhancing its design and performance. Traditional methods, such as the direct simulation Monte Carlo and the discrete velocity method, often fall short in efficiency for these simulations. In this study, we utilize the general synthetic iterative scheme to simulate a simplified Tokamak divertor model, demonstrating its fast convergence and asymptotic-preserving properties in complex three-dimensional scenarios. A conservative estimate of speedup by three orders of magnitude is achieved by the general synthetic iterative scheme when compared to the direct simulation Monte Carlo method. We further investigate the relationship between pumping efficiency and factors like temperature, absorptivity, and the Knudsen number, providing valuable insights to guide the design and optimization of divertor structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05895v1-abstract-full').style.display = 'none'; document.getElementById('2409.05895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04591">arXiv:2409.04591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04591">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Operating a Multi-Level Molecular Dimer Switch through Precise Tip-Molecule Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yueqing Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Quan%2C+W">Weike Quan</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+L">Liya Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+K">Kangkai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhiyuan Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wan-Lu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shaowei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04591v3-abstract-short" style="display: inline;"> Controlling structural transitions between molecular configurations is crucial for advancing functional molecular electronics. While reversible switching of bistable two-state molecules has been achieved, creating molecular systems that can be controllably switched between multiple configurations often requires complex synthetic methods, presenting a much greater challenge. In this study, we showc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04591v3-abstract-full').style.display = 'inline'; document.getElementById('2409.04591v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04591v3-abstract-full" style="display: none;"> Controlling structural transitions between molecular configurations is crucial for advancing functional molecular electronics. While reversible switching of bistable two-state molecules has been achieved, creating molecular systems that can be controllably switched between multiple configurations often requires complex synthetic methods, presenting a much greater challenge. In this study, we showcase a straightforward yet effective strategy to create and control transitions between multiple molecular structural states by forming a surface-bound molecular dimer. Using low-temperature scanning tunneling microscopy, we induce and characterize the structural transitions of a pyrrolidine dimer on a Cu(100) surface. The intermolecular interactions open new energy transfer channels, enabling the excitation through pathways that were inaccessible in monomers. The occupation of different molecular states is highly sensitive to both the energy of the tunneling electrons and the interaction with the STM tip. By precisely adjusting the tip-molecule distance, we can select the most probable structural configuration based on sample bias, thereby achieving on-demand control of this molecular dimer switch. This work highlights an approach that leverages both intermolecular and molecule-environment interactions to create and control an artificially fabricated molecular device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04591v3-abstract-full').style.display = 'none'; document.getElementById('2409.04591v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03352">arXiv:2409.03352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03352">pdf</a>, <a href="https://arxiv.org/format/2409.03352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> On-orbit calibration and long-term performance of the DAMPE trigger system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wen-Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+C">Chuan Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yong-Qiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jian-Hua Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Q">Qiang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03352v1-abstract-short" style="display: inline;"> The DArk Matter Particle Explorer (DAMPE) is a satellite-borne particle detector for measurements of high-energy cosmic rays and 纬-rays. DAMPE has been operating smoothly in space for more than 8 years since launch on December 17, 2015. The trigger logic of DAMPE is designed according to the deposited energy information recorded by the calorimeter. The precise calibration of the trigger thresholds&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03352v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03352v1-abstract-full" style="display: none;"> The DArk Matter Particle Explorer (DAMPE) is a satellite-borne particle detector for measurements of high-energy cosmic rays and 纬-rays. DAMPE has been operating smoothly in space for more than 8 years since launch on December 17, 2015. The trigger logic of DAMPE is designed according to the deposited energy information recorded by the calorimeter. The precise calibration of the trigger thresholds and their long-term evolutions are very important for the scientific analysis of DAMPE. In this work, we develop a new method for the threshold calibration, considering the influence from the electronic noise, and obtain the long-term evolutions of the trigger thresholds. The average increase rate of the trigger thresholds for the first 4 layers of the calorimeter is found to be about 0.9% per year, resulting in variations of the high-energy trigger efficiency of cosmic ray electrons by about -5% per year at 2 GeV and less than about -0.05% above 30 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03352v1-abstract-full').style.display = 'none'; document.getElementById('2409.03352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03195">arXiv:2409.03195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03195">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Nano-Scale Manipulation of Single-Molecule Conformational Transition Through Vibrational Excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Quan%2C+W">Weike Quan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yueqing Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+K">Kangkai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+L">Liya Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhiyuan Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wanlu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shaowei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03195v3-abstract-short" style="display: inline;"> On-demand control of molecular actions is essential for realizing single-molecule functional devices. Such a control can be achieved by manipulating interactions between individual molecules and their nanoscale environment. In this study, we manipulate the conformational transition of a single pyrrolidine molecule on a Cu(100) surface by exciting its vibra-tions with tunneling electrons using scan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03195v3-abstract-full').style.display = 'inline'; document.getElementById('2409.03195v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03195v3-abstract-full" style="display: none;"> On-demand control of molecular actions is essential for realizing single-molecule functional devices. Such a control can be achieved by manipulating interactions between individual molecules and their nanoscale environment. In this study, we manipulate the conformational transition of a single pyrrolidine molecule on a Cu(100) surface by exciting its vibra-tions with tunneling electrons using scanning tunneling microscopy. Multiple transition pathways between two structural states are identified to be driven by distinct vibrational modes, whose corresponding nuclear motions are determined by density functional theory calculations. Tip-induced van der Waals forces and intermolecular interactions enable precise tuning of molecule-environment interactions, allowing modulation of vibrational energies, alteration of transition probabilities, and selection of the lowest energy transition pathway. This work reveals how external force fields in a tunable nanocavity can modulate molecular conformational transitions, offering an approach to deliberately engineer molecule-environment interactions for specific molecular functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03195v3-abstract-full').style.display = 'none'; document.getElementById('2409.03195v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00114">arXiv:2409.00114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00114">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Terahertz Channels in Atmospheric Conditions: Propagation Characteristics and Security Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jianjun Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yuheng Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Mingxia Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guohao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weiming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Federici%2C+J+F">John F. Federici</a>, <a href="/search/physics?searchtype=author&amp;query=Mittleman%2C+D+M">Daniel M. Mittleman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00114v2-abstract-short" style="display: inline;"> With the growing demand for higher wireless data rates, the interest in extending the carrier frequency of wireless links to the terahertz (THz) range has significantly increased. For long-distance outdoor wireless communications, THz channels may suffer substantial power loss and security issues due to atmospheric weather effects. It is crucial to assess the impact of weather on high-capacity dat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00114v2-abstract-full').style.display = 'inline'; document.getElementById('2409.00114v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00114v2-abstract-full" style="display: none;"> With the growing demand for higher wireless data rates, the interest in extending the carrier frequency of wireless links to the terahertz (THz) range has significantly increased. For long-distance outdoor wireless communications, THz channels may suffer substantial power loss and security issues due to atmospheric weather effects. It is crucial to assess the impact of weather on high-capacity data transmission to evaluate wireless system link budgets and performance accurately. In this article, we provide an insight into the propagation characteristics of THz channels under atmospheric conditions and the security aspects of THz communication systems in future applications. We conduct a comprehensive survey of our recent research and experimental findings on THz channel transmission and physical layer security, synthesizing and categorizing the state-of-the-art research in this domain. Our analysis encompasses various atmospheric phenomena, including molecular absorption, scattering effects, and turbulence, elucidating their intricate interactions with THz waves and the resultant implications for channel modeling and system design. Furthermore, we investigate the unique security challenges posed by THz communications, examining potential vulnerabilities and proposing novel countermeasures to enhance the resilience of these high-frequency systems against eavesdropping and other security threats. Finally, we discuss the challenges and limitations of such high-frequency wireless communications and provide insights into future research prospects for realizing the 6G vision, emphasizing the need for innovative solutions to overcome the atmospheric hurdles and security concerns in THz communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00114v2-abstract-full').style.display = 'none'; document.getElementById('2409.00114v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Fundamental Research</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14902">arXiv:2408.14902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14902">pdf</a>, <a href="https://arxiv.org/format/2408.14902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.063019">10.1103/PhysRevD.110.063019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-Lab High Resolution Mid-infrared Up-conversion Stellar Interferometer Based on Synthetic Long Base-Line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+Z">Zhao-Qi-Zhi Han</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Zheng Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+W">Wen-Tao Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Y">Yi-Fu Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiao-Hua Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wu-Zhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhi-Yuan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+B">Bao-Sen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14902v1-abstract-short" style="display: inline;"> Detecting mid-infrared (MIR) radiation has significant astronomical applications, although limited by unsatisfactory MIR detectors. Here we reported on the realization of a MIR up-conversion interferometer based on synthetic long base-line (SLBL) in the laboratory. The experimental system consisted of an interferometer and subsequent up-conversion detection part of mid-infrared signal, which strea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14902v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14902v1-abstract-full" style="display: none;"> Detecting mid-infrared (MIR) radiation has significant astronomical applications, although limited by unsatisfactory MIR detectors. Here we reported on the realization of a MIR up-conversion interferometer based on synthetic long base-line (SLBL) in the laboratory. The experimental system consisted of an interferometer and subsequent up-conversion detection part of mid-infrared signal, which streamlined the structure and enhanced the reliability of the system. By using a tungsten filament lamp as an imitated star, we not only achieved the single target angle resolution of 1.10 times 10^(-4) rad, but also obtained the field angle resolution of 3.0 times 10^(-4) rad of double star targets. The angular resolution is in inverse proportion to the length of baseline. The maximum length of simulated baseline in the laboratory is about 3cm. In a Keck Interferometer (KI) liked program, the base line can reach up to 85m leading to a corresponding angular resolution of 3.0 times 10^(-9) rad (about 1.8mas). The study will offer potential benefits in extending the usage of mid-infrared light in astronomical exploration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14902v1-abstract-full').style.display = 'none'; document.getElementById('2408.14902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures. Accepted by Physics Review D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14722">arXiv:2408.14722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14722">pdf</a>, <a href="https://arxiv.org/format/2408.14722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Pervasive impact of spatial dependence on predictability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+P">Peng Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yongze Song</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenwen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+L">Liqiu Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14722v2-abstract-short" style="display: inline;"> Understanding the complex nature of spatial information is crucial for problem solving in social and environmental sciences. This study investigates how the underlying patterns of spatial data can significantly influence the outcomes of spatial predictions. Recognizing unique characteristics of spatial data, such as spatial dependence and spatial heterogeneity, we delve into the fundamental differ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14722v2-abstract-full').style.display = 'inline'; document.getElementById('2408.14722v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14722v2-abstract-full" style="display: none;"> Understanding the complex nature of spatial information is crucial for problem solving in social and environmental sciences. This study investigates how the underlying patterns of spatial data can significantly influence the outcomes of spatial predictions. Recognizing unique characteristics of spatial data, such as spatial dependence and spatial heterogeneity, we delve into the fundamental differences and similarities between spatial and non-geospatial prediction models. Through the analysis of six different datasets of environment and socio-economic variables, comparing geospatial models with non-geospatial models, our research highlights the pervasive nature of spatial dependence beyond geographical boundaries. This innovative approach not only recognizes spatial dependence in geographic spaces defined by latitude and longitude but also identifies its presence in non-geographic, attribute-based dimensions. Our findings reveal the pervasive influence of spatial dependence on prediction outcomes across various domains, and spatial dependence significantly influences prediction performance across all spaces. Our findings suggest that the strongest spatial dependence is typically found in geographic space for environment variables, a trend that does not uniformly apply to socio-economic variables. This investigation not only advances the theoretical framework for spatial data analysis, but also proposes new methodologies for accurately capturing and expressing spatial dependence under complex conditions. Our research extends spatial analysis to non-geographic dimensions such as social networks and gene expression patterns, emphasizing the role of spatial dependence in improving prediction accuracy, thereby supporting interdisciplinary applications across fields such as geographic information science, environmental science, economics, sociology, and bioinformatics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14722v2-abstract-full').style.display = 'none'; document.getElementById('2408.14722v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14140">arXiv:2408.14140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14140">pdf</a>, <a href="https://arxiv.org/format/2408.14140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> An open-source, adaptive solver for particle-resolved simulations with both subcycling and non-subcycling methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xuzhu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaokai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenzhuo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+M">Mingze Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Y">Yadong Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Z">Zhengping Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14140v1-abstract-short" style="display: inline;"> We present the IAMReX, an adaptive and parallel solver for particle-resolved simulations on the multi-level grid. The fluid equations are solved using a finite-volume scheme on the block-structured semi-staggered grids with both subcycling and non-subcycling methods. The particle-fluid interaction is resolved using the multidirect forcing immersed boundary method. The associated Lagrangian markers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14140v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14140v1-abstract-full" style="display: none;"> We present the IAMReX, an adaptive and parallel solver for particle-resolved simulations on the multi-level grid. The fluid equations are solved using a finite-volume scheme on the block-structured semi-staggered grids with both subcycling and non-subcycling methods. The particle-fluid interaction is resolved using the multidirect forcing immersed boundary method. The associated Lagrangian markers used to resolve fluid-particle interface only exist on the finest-level grid, which greatly reduces memory usage. The volume integrals are numerically calculated to capture the free motion of particles accurately, and the repulsive potential model is also included to account for the particle-particle collision. We demonstrate the versatility, accuracy, and efficiency of the present multi-level framework by simulating fluid-particle interaction problems with various types of kinematic constraints. The cluster of monodisperse particles case is presented at the end to show the capability of the current solver in handing with multiple particles. The source code and testing cases used in this work can be accessed at https://github.com/ruohai0925/IAMR/tree/development. Input scripts and raw postprocessing data are also available for reproducing all results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14140v1-abstract-full').style.display = 'none'; document.getElementById('2408.14140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13789">arXiv:2408.13789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13789">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-watt long-wavelength infrared femtosecond lasers and resonant enamel ablation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xuemei Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dunxiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Weizhe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+K">Kan Tian</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Linzhen He</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jinmiao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+B">Bo Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Pu%2C+T">Tao Pu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenlong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Shiran Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+C">Chunmei Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Han Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+K">Kenkai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Y">Yujie Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Leng%2C+Y">Yuxin Leng</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Houkun Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13789v1-abstract-short" style="display: inline;"> High-power broadband tunable long-wavelength infrared (LWIR) femtosecond lasers operating at fingerprint wavelengths of 7-14 渭m hold significant promise across a range of applications, including molecular hyperspectral imaging, strong-field light-matter interaction, and resonant tissue ablation. Here we present 6-12 渭m broadband tunable parametric amplifier based on LiGaS2 or BaGa4S7, generating n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13789v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13789v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13789v1-abstract-full" style="display: none;"> High-power broadband tunable long-wavelength infrared (LWIR) femtosecond lasers operating at fingerprint wavelengths of 7-14 渭m hold significant promise across a range of applications, including molecular hyperspectral imaging, strong-field light-matter interaction, and resonant tissue ablation. Here we present 6-12 渭m broadband tunable parametric amplifier based on LiGaS2 or BaGa4S7, generating new record output power of 2.4 W at 7.5 渭m, and 1.5 W at 9.5 渭m, pumped by a simple and effective thin-square-rod Yb:YAG amplifier producing 110 W 274 fs output pulses. As a proof of concept, we showcase efficient resonant ablation and microstructure fabrication on enamel at the hydroxyapatite resonant wavelength of 9.5 渭m, with a laser intensity two orders-of-magnitude lower than that required by non-resonant femtosecond lasers, which could foster more precision surgical applications with superior biosafety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13789v1-abstract-full').style.display = 'none'; document.getElementById('2408.13789v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a &#34;Module of Opportunity&#34;, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&amp;D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE&#39;s Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12268">arXiv:2408.12268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12268">pdf</a>, <a href="https://arxiv.org/format/2408.12268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.539719">10.1364/OE.539719 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of electric field induced superradiance slowdown in ultracold Rydberg atomic gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yunhui He</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+J">Jingxu Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+Y">Yuechun Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weibin Li</a>, <a href="/search/physics?searchtype=author&amp;query=zhao%2C+J">Jianming zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12268v2-abstract-short" style="display: inline;"> Atoms excited to electronically high-lying Rydberg states decay to low-energy states through spontaneous emission processes. We investigate the impact of a static electric field on the superradiant emission process between Rydberg $|60D_{5/2}\rangle$ and $|61P_{3/2}\rangle$ states in an ultracold Cesium Rydberg atom ensemble. We report experimental observations of a significant slowdown in superra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12268v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12268v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12268v2-abstract-full" style="display: none;"> Atoms excited to electronically high-lying Rydberg states decay to low-energy states through spontaneous emission processes. We investigate the impact of a static electric field on the superradiant emission process between Rydberg $|60D_{5/2}\rangle$ and $|61P_{3/2}\rangle$ states in an ultracold Cesium Rydberg atom ensemble. We report experimental observations of a significant slowdown in superradiance upon applying an electric field. To understand the slowing down dynamics, we employ a discrete truncated Wigner approximation (DTWA) method to solve the corresponding master equation numerically. Our numerical simulations demonstrate that superradiance decoherence is caused by the Stark shifts of the Rydberg level. Our theoretical simulations qualitatively match the experimental observations. Our work provides new insights into controlling quantum critical behaviors, with implications for quantum many-body dynamics, and the study of quantum phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12268v2-abstract-full').style.display = 'none'; document.getElementById('2408.12268v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 32, 43543-43552 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10854">arXiv:2408.10854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10854">pdf</a>, <a href="https://arxiv.org/format/2408.10854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zili Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+L">Lei Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+W">Wanli Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+Z">Zhengxia Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhenwei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10854v1-abstract-short" style="display: inline;"> In an era of frequent extreme weather and global warming, obtaining precise, fine-grained near-surface weather forecasts is increasingly essential for human activities. Downscaling (DS), a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions from global-scale forecast results. Previous downscaling methods, inspired by CN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10854v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10854v1-abstract-full" style="display: none;"> In an era of frequent extreme weather and global warming, obtaining precise, fine-grained near-surface weather forecasts is increasingly essential for human activities. Downscaling (DS), a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions from global-scale forecast results. Previous downscaling methods, inspired by CNN and Transformer-based super-resolution models, lacked tailored designs for meteorology and encountered structural limitations. Notably, they failed to efficiently integrate topography, a crucial prior in the downscaling process. In this paper, we address these limitations by pioneering the selective state space model into the meteorological field downscaling and propose a novel model called MambaDS. This model enhances the utilization of multivariable correlations and topography information, unique challenges in the downscaling process while retaining the advantages of Mamba in long-range dependency modeling and linear computational complexity. Through extensive experiments in both China mainland and the continental United States (CONUS), we validated that our proposed MambaDS achieves state-of-the-art results in three different types of meteorological field downscaling settings. We will release the code subsequently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10854v1-abstract-full').style.display = 'none'; document.getElementById('2408.10854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10806">arXiv:2408.10806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10806">pdf</a>, <a href="https://arxiv.org/format/2408.10806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Sub-optical-cycle manipulation of valley-polarized currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenqing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xiaosong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+W">Wanzhu He</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+J">Jie Long</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+P">Pengfei Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+P">Peixiang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10806v1-abstract-short" style="display: inline;"> Manipulating valley-polarized currents at optical frequencies is the key to petahertz valleytronics, yet it remains intractable. To tackle this challenge, we propose an all-optical scheme using non-resonant bichromatic optical fields, which allow for the control of sub-cycle electron dynamics. The combined effect of the helical and asymmetric waveforms of the optical fields leads to the valley-pol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10806v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10806v1-abstract-full" style="display: none;"> Manipulating valley-polarized currents at optical frequencies is the key to petahertz valleytronics, yet it remains intractable. To tackle this challenge, we propose an all-optical scheme using non-resonant bichromatic optical fields, which allow for the control of sub-cycle electron dynamics. The combined effect of the helical and asymmetric waveforms of the optical fields leads to the valley-polarization and displacement of the excited electrons concurrently, thereby inducing the valleypolarized currents, on the sub-optical-cycle timescale. This scheme inherently possesses remarkable resilience to decoherence, making it particularly suitable for materials with short decoherence times. Moreover, the direction of the currents can be precisely controlled by adjusting the relative phase of the bichromatic components. Our scheme offers a promising avenue for generating and modulating valley-polarized currents at the femtosecond timescale, opening the door to the realm of petahertz valleytronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10806v1-abstract-full').style.display = 'none'; document.getElementById('2408.10806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07374">arXiv:2408.07374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Coupling Between Local and Global Oscillations in Palladium-Catalysed Methane Oxidation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuxiong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jianyu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+M">Mengzhao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+A">Aowen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+S">Shucheng Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+P+J">P. J. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Wu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Willinger%2C+M">Marc-Georg Willinger</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+D">Dan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei-Xue Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhu-Jun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07374v1-abstract-short" style="display: inline;"> The interplay between order and disorder is crucial across various fields, especially in understanding oscillatory phenomena. Periodic oscillations are frequently observed in heterogeneous catalysis, yet their underlying mechanisms need deeper exploration. Here, we investigate how periodic oscillations arise during methane oxidation catalysed by palladium nanoparticles (Pd NPs), utilizing a suite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07374v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07374v1-abstract-full" style="display: none;"> The interplay between order and disorder is crucial across various fields, especially in understanding oscillatory phenomena. Periodic oscillations are frequently observed in heterogeneous catalysis, yet their underlying mechanisms need deeper exploration. Here, we investigate how periodic oscillations arise during methane oxidation catalysed by palladium nanoparticles (Pd NPs), utilizing a suite of complementary operando techniques across various spatial scales. We found that reaction intensity and collective dynamic modes can be tuned by the reactant gas-flow rate. At lower gas-flow rates, we observed periodic facet reconstruction of Pd NPs correlated with repeated bubbling behaviour at the Pd/PdO interface, without evident global oscillatory responses. Conversely, at higher gas-flow rates, Pd NPs undergo chaotic transformations between metallic and oxidized states, resulting in overall oscillation. Integrating our observations at different gas-flow rates, we attributed the emergence of global oscillation to thermal coupling regulated by gas flow and connected local and global dynamics through a weak synchronization mechanism. This work demonstrates the correlations between open surfaces and interfaces, chaos and regularity, and dissipative processes and coupling behaviour. Our findings offer critical insights into the complexity behind catalytic oscillations and provide guidance for modulating oscillatory behaviours in catalytic processes, with significant implications for both science and industry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07374v1-abstract-full').style.display = 'none'; document.getElementById('2408.07374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19111">arXiv:2407.19111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19111">pdf</a>, <a href="https://arxiv.org/format/2407.19111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A camera system for real-time optical calibration of water-based neutrino telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+W">Wei Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhi%2C+W">Wei Zhi</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+Q">Qiao Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenlian Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Z">Zhenyu Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+F">Fan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Q">Qichao Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">MingXin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Z">Zhengyang Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaohui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Z">Ziping Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+P">Peng Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+X">Xinliang Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jianglai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+D">Donglian Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19111v1-abstract-short" style="display: inline;"> Calibrating the optical properties within the detection medium of a neutrino telescope is crucial for determining its angular resolution and energy scale. For the next generation of neutrino telescopes planned to be constructed in deep water, such as the TRopIcal DEep-sea Neutrino Telescope (TRIDENT), there are additional challenges due to the dynamic nature and potential non-uniformity of the wat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19111v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19111v1-abstract-full" style="display: none;"> Calibrating the optical properties within the detection medium of a neutrino telescope is crucial for determining its angular resolution and energy scale. For the next generation of neutrino telescopes planned to be constructed in deep water, such as the TRopIcal DEep-sea Neutrino Telescope (TRIDENT), there are additional challenges due to the dynamic nature and potential non-uniformity of the water medium. This necessitates a real-time optical calibration system distributed throughout the large detector array. This study introduces a custom-designed CMOS camera system equipped with rapid image processing algorithms, providing a real-time optical calibration method for TRIDENT and other similar projects worldwide. In September 2021, the TRIDENT Pathfinder experiment (TRIDENT Explorer, T-REX for short) successfully deployed this camera system in the West Pacific Ocean at a depth of 3420 meters. Within 30 minutes, about 3000 images of the T-REX light source were captured, allowing for the in-situ measurement of seawater attenuation and absorption lengths under three wavelengths. This deep-sea experiment for the first time showcased a technical demonstration of a functioning camera calibration system in a dynamic neutrino telescope site, solidifying a substantial part of the calibration strategies for the future TRIDENT project. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19111v1-abstract-full').style.display = 'none'; document.getElementById('2407.19111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17917">arXiv:2407.17917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17917">pdf</a>, <a href="https://arxiv.org/format/2407.17917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Lightwave-driven electrons in a Floquet topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weitz%2C+T">Tobias Weitz</a>, <a href="/search/physics?searchtype=author&amp;query=Lesko%2C+D+M+B">Daniel M. B. Lesko</a>, <a href="/search/physics?searchtype=author&amp;query=Wittigschlager%2C+S">Simon Wittigschlager</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weizhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Heide%2C+C">Christian Heide</a>, <a href="/search/physics?searchtype=author&amp;query=Neufeld%2C+O">Ofer Neufeld</a>, <a href="/search/physics?searchtype=author&amp;query=Hommelhoff%2C+P">Peter Hommelhoff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17917v1-abstract-short" style="display: inline;"> Topological insulators offer unique opportunities for novel electronics and quantum phenomena. However, intrinsic material limitations often restrict their applications and practical implementation. Over a decade ago it was predicted that a time-periodic perturbation can generate out-of-equilibrium states known as Floquet topological insulators (FTIs), hosting topologically protected transport and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17917v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17917v1-abstract-full" style="display: none;"> Topological insulators offer unique opportunities for novel electronics and quantum phenomena. However, intrinsic material limitations often restrict their applications and practical implementation. Over a decade ago it was predicted that a time-periodic perturbation can generate out-of-equilibrium states known as Floquet topological insulators (FTIs), hosting topologically protected transport and anomalous Hall physics, and opening routes to optically tunable bandstructures and devices compatible with petahertz electronics. Although such states have not yet been directly observed, indirect signatures such as the light-induced anomalous Hall effect were recently measured. Thus far, much remained experimentally unclear and fundamentally unknown about solid-state FTI and whether they can be employed for electronics. Here we demonstrate coherent control of photocurrents in light-dressed graphene. Circularly-polarized laser pulses dress the graphene band structure to obtain an FTI, and phase-locked second harmonic pulses drive electrons in the FTI. This approach allows us to measure resulting all-optical anomalous Hall photocurrents, FTI-valley-polarized currents, and photocurrent circular dichroism, all phenomena that put FTIs on equal footing with equilibrium topological insulators. We further present an intuitive description for the sub-optical-cycle light-matter interaction, revealing dynamical symmetry selection rules for photocurrents. All measurements are supported by strong agreement with ab-initio and analytic theory. Remarkably, the photocurrents show a strong sub-cycle phase-sensitivity that can be employed for ultrafast control in topotronics and spectroscopy. Our work connects Floquet and topological physics with attoscience and valleytronics, and goes beyond band structure engineering by initiating lightwave-driven dynamics in FTI states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17917v1-abstract-full').style.display = 'none'; document.getElementById('2407.17917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15534">arXiv:2407.15534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15534">pdf</a>, <a href="https://arxiv.org/format/2407.15534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> One-dimensional quantum dot array integrated with charge sensors in an InAs nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yi Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Fei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi-Hai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weijie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+S">Shili Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+H">Han Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haitian Su</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+D">Dong Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianhua Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Ji-Yin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H+Q">H. Q. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15534v1-abstract-short" style="display: inline;"> We report an experimental study of a one-dimensional quintuple-quantum-dot array integrated with two quantum dot charge sensors in an InAs nanowire. The device is studied by measuring double quantum dots formed consecutively in the array and corresponding charge stability diagrams are revealed with both direct current measurements and charge sensor signals. The one-dimensional quintuple-quantum-do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15534v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15534v1-abstract-full" style="display: none;"> We report an experimental study of a one-dimensional quintuple-quantum-dot array integrated with two quantum dot charge sensors in an InAs nanowire. The device is studied by measuring double quantum dots formed consecutively in the array and corresponding charge stability diagrams are revealed with both direct current measurements and charge sensor signals. The one-dimensional quintuple-quantum-dot array are then tuned up and its charge configurations are fully mapped out with the two charge sensors. The energy level of each dot in the array can be controlled individually by using a compensated gate architecture (i.e., &#34;virtual gate&#34;). After that, four dots in the array are selected to form two double quantum dots and ultra strong inter-double-dot interaction is obtained. A theoretical simulation based on a 4-dimensional Hamiltonian confirms the strong coupling strength between the two double quantum dots. The highly controllable one-dimensional quantum dot array achieved in this work is expected to be valuable for employing InAs nanowires to construct advanced quantum hardware in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15534v1-abstract-full').style.display = 'none'; document.getElementById('2407.15534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14817">arXiv:2407.14817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14817">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac849">10.1093/mnras/stac849 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accretion regions of meteorite parent bodies inferred from a two-endmember isotopic mixing model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shuai%2C+K">Kang Shuai</a>, <a href="/search/physics?searchtype=author&amp;query=Hui%2C+H">Hejiu Hui</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li-Yong Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weiqiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14817v1-abstract-short" style="display: inline;"> The diverse isotopic anomalies of meteorites demonstrate that the protoplanetary disk was composed of components from different stellar sources, which mixed in the disk and formed the planetary bodies. However, the origin of the accretion materials of different planetary bodies and the cosmochemical relationship between these bodies remain ambiguous. The noncarbonaceous (NC) planetary bodies origi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14817v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14817v1-abstract-full" style="display: none;"> The diverse isotopic anomalies of meteorites demonstrate that the protoplanetary disk was composed of components from different stellar sources, which mixed in the disk and formed the planetary bodies. However, the origin of the accretion materials of different planetary bodies and the cosmochemical relationship between these bodies remain ambiguous. The noncarbonaceous (NC) planetary bodies originate from the inner solar system and have isotopic compositions distinct from those of the carbonaceous (CC) bodies. We combined Ca, Ti, Cr, Fe, Ni, Mo, and Ru isotopic anomalies to develop a quantitative two-endmember mixing model of the NC bodies. Correlations of the isotopic anomalies of different elements with different cosmochemical behaviors originate from the mixing of two common endmembers. Using this mixing model, we calculated the isotopic anomalies of NC bodies for all the considered isotopes, including the isotopic anomalies that are difficult to measure or have been altered by spallation processes. The mixing proportion between the two endmembers in each NC body has been calculated as a cosmochemical parameter, which represents the compositional relationship of the accretion materials between the NC bodies. Using the calculated mixing proportions, the feeding zones of the NC bodies could be estimated. The estimated feeding zones of NC bodies indicate a large population of interlopers in the main asteroid belt and an indigenous origin of Vesta. The feeding zones estimated in different planet formation scenarios indicate that the orbits of Jupiter and Saturn during formation of terrestrial planets were likely to be more circular than their current ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14817v1-abstract-full').style.display = 'none'; document.getElementById('2407.14817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 513, 363-373 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13098">arXiv:2407.13098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13098">pdf</a>, <a href="https://arxiv.org/format/2407.13098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0218773">10.1063/5.0218773 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weitang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+J">Jiajun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hengrui Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haobin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shuai%2C+Z">Zhigang Shuai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13098v2-abstract-short" style="display: inline;"> Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13098v2-abstract-full').style.display = 'inline'; document.getElementById('2407.13098v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13098v2-abstract-full" style="display: none;"> Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13098v2-abstract-full').style.display = 'none'; document.getElementById('2407.13098v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12450">arXiv:2407.12450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12450">pdf</a>, <a href="https://arxiv.org/format/2407.12450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Interim report for the International Muon Collider Collaboration (IMCC) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">C. Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adrian%2C+S">S. Adrian</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">R. Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">C. Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A9%2C+C">C. Aim茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aksoy%2C+A">A. Aksoy</a>, <a href="/search/physics?searchtype=author&amp;query=Alberghi%2C+G+L">G. L. Alberghi</a>, <a href="/search/physics?searchtype=author&amp;query=Alden%2C+S">S. Alden</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">N. Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">D. Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">P. Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">F. Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">R. Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">A. Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">P. Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">M. Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">J. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">A. Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+K+J">K. J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">L. Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Balli%2C+F">F. Balli</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">L. Bandiera</a>, <a href="/search/physics?searchtype=author&amp;query=Barbagallo%2C+C">C. Barbagallo</a> , et al. (362 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12450v1-abstract-short" style="display: inline;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&amp;D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12450v1-abstract-full" style="display: none;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&amp;D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accelerator complex, detectors and physics for a future muon collider. In 2023, European Commission support was obtained for a design study of a muon collider (MuCol) [3]. This project started on 1st March 2023, with work-packages aligned with the overall muon collider studies. In preparation of and during the 2021-22 U.S. Snowmass process, the muon collider project parameters, technical studies and physics performance studies were performed and presented in great detail. Recently, the P5 panel [4] in the U.S. recommended a muon collider R&amp;D, proposed to join the IMCC and envisages that the U.S. should prepare to host a muon collider, calling this their &#34;muon shot&#34;. In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been instrumental in studies of concepts and technologies for a muon collider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'none'; document.getElementById('2407.12450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document summarises the International Muon Collider Collaboration (IMCC) progress and status of the Muon Collider R&amp;D programme</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12447">arXiv:2407.12447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12447">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ke%2C+P">Piyu Ke</a>, <a href="/search/physics?searchtype=author&amp;query=Ciais%2C+P">Philippe Ciais</a>, <a href="/search/physics?searchtype=author&amp;query=Sitch%2C+S">Stephen Sitch</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bastos%2C+A">Ana Bastos</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yidi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Gui%2C+X">Xiaofan Gui</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+J">Jiang Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Goll%2C+D+S">Daniel S Goll</a>, <a href="/search/physics?searchtype=author&amp;query=Xi%2C+Y">Yi Xi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wanjing Li</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Sullivan%2C+M">Michael O&#39;Sullivan</a>, <a href="/search/physics?searchtype=author&amp;query=de+Souza%2C+J+G">Jeffeson Goncalves de Souza</a>, <a href="/search/physics?searchtype=author&amp;query=Friedlingstein%2C+P">Pierre Friedlingstein</a>, <a href="/search/physics?searchtype=author&amp;query=Chevallier%2C+F">Frederic Chevallier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12447v1-abstract-short" style="display: inline;"> In 2023, the CO2 growth rate was 3.37 +/- 0.11 ppm at Mauna Loa, 86% above the previous year, and hitting a record high since observations began in 1958, while global fossil fuel CO2 emissions only increased by 0.6 +/- 0.5%. This implies an unprecedented weakening of land and ocean sinks, and raises the question of where and why this reduction happened. Here we show a global net land CO2 sink of 0&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12447v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12447v1-abstract-full" style="display: none;"> In 2023, the CO2 growth rate was 3.37 +/- 0.11 ppm at Mauna Loa, 86% above the previous year, and hitting a record high since observations began in 1958, while global fossil fuel CO2 emissions only increased by 0.6 +/- 0.5%. This implies an unprecedented weakening of land and ocean sinks, and raises the question of where and why this reduction happened. Here we show a global net land CO2 sink of 0.44 +/- 0.21 GtC yr-1, the weakest since 2003. We used dynamic global vegetation models, satellites fire emissions, an atmospheric inversion based on OCO-2 measurements, and emulators of ocean biogeochemical and data driven models to deliver a fast-track carbon budget in 2023. Those models ensured consistency with previous carbon budgets. Regional flux anomalies from 2015-2022 are consistent between top-down and bottom-up approaches, with the largest abnormal carbon loss in the Amazon during the drought in the second half of 2023 (0.31 +/- 0.19 GtC yr-1), extreme fire emissions of 0.58 +/- 0.10 GtC yr-1 in Canada and a loss in South-East Asia (0.13 +/- 0.12 GtC yr-1). Since 2015, land CO2 uptake north of 20 degree N declined by half to 1.13 +/- 0.24 GtC yr-1 in 2023. Meanwhile, the tropics recovered from the 2015-16 El Nino carbon loss, gained carbon during the La Nina years (2020-2023), then switched to a carbon loss during the 2023 El Nino (0.56 +/- 0.23 GtC yr-1). The ocean sink was stronger than normal in the equatorial eastern Pacific due to reduced upwelling from La Nina&#39;s retreat in early 2023 and the development of El Nino later. Land regions exposed to extreme heat in 2023 contributed a gross carbon loss of 1.73 GtC yr-1, indicating that record warming in 2023 had a strong negative impact on the capacity of terrestrial ecosystems to mitigate climate change. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12447v1-abstract-full').style.display = 'none'; document.getElementById('2407.12447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping&#39;&#39;, as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE&#39;s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07954">arXiv:2407.07954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07954">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> 3D E-textile for Exercise Physiology and Clinical Maternal Health Monitoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Junyi Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chansoo Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weilun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+Z">Zichao Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhili Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chakrabartty%2C+S">Shantanu Chakrabartty</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chuan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07954v1-abstract-short" style="display: inline;"> Electronic textiles (E-textiles) offer great wearing comfort and unobtrusiveness, thus holding potential for next-generation health monitoring wearables. However, the practical implementation is hampered by challenges associated with poor signal quality, substantial motion artifacts, durability for long-term usage, and non-ideal user experience. Here, we report a cost-effective E-textile system th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07954v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07954v1-abstract-full" style="display: none;"> Electronic textiles (E-textiles) offer great wearing comfort and unobtrusiveness, thus holding potential for next-generation health monitoring wearables. However, the practical implementation is hampered by challenges associated with poor signal quality, substantial motion artifacts, durability for long-term usage, and non-ideal user experience. Here, we report a cost-effective E-textile system that features 3D microfiber-based electrodes for greatly increasing the surface area. The soft and fluffy conductive microfibers disperse freely and securely adhere to the skin, achieving a low impedance at the electrode-skin interface even in the absence of gel. A superhydrophobic fluorinated self-assembled monolayer was deposited on the E-textile surface to render it waterproof while retaining the electrical conductivity. Equipped with a custom-designed motion-artifact canceling wireless data recording circuit, the E-textile system could be integrated into a variety of smart garments for exercise physiology and health monitoring applications. Real-time multimodal electrophysiological signal monitoring, including electrocardiogram (ECG) and electromyography (EMG), was successfully carried out during strenuous cycling and even underwater swimming activities. Furthermore, a multi-channel E-textile was developed and implemented in clinical patient studies for simultaneous real-time monitoring of maternal ECG and uterine EMG signals, incorporating spatial-temporal potential mapping capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07954v1-abstract-full').style.display = 'none'; document.getElementById('2407.07954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01035">arXiv:2407.01035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01035">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.watres.2024.122541">10.1016/j.watres.2024.122541 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Off-site production of plasma-activated water for efficient sterilization: the crucial role of high-valence NOx and new chemical pathways </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zifeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiangyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shenghang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+R">Renwu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Mingyan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wanchun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zizhu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Luge Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jinkun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jishen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+L">Li Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Pei%2C+D">Dandan Pei</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dingxin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+M">Mingzhe Rong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01035v1-abstract-short" style="display: inline;"> Efficient sterilization of pathogens with cleaner methods is a critical concern for environmental disinfection and clinical anti-infective treatment. Plasma-activated water (PAW) is a promising alternative to chemical disinfectants and antibiotics for its strong sterilization ability and not inducing any acute toxicity, and only water and air are consumed during production. For more efficient wate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01035v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01035v1-abstract-full" style="display: none;"> Efficient sterilization of pathogens with cleaner methods is a critical concern for environmental disinfection and clinical anti-infective treatment. Plasma-activated water (PAW) is a promising alternative to chemical disinfectants and antibiotics for its strong sterilization ability and not inducing any acute toxicity, and only water and air are consumed during production. For more efficient water activation, plasma sources are commonly placed near or fully in contact with water as possible, but the risks of electrode corrosion and metal contamination of water threaten the safety and stability of PAW production. Herein, plasma-activated gas rich in high-valence NOx is generated by a hybrid plasma configuration and introduced into water for off-site PAW production. Plasma-generated O3 is found to dominate the gas-phase reactions for the formation of high-valence NOx. With the time-evolution of O3 concentration, gaseous NO3 radicals are produced behind N2O5 formation, but will be decomposed before N2O5 quenching. By decoupling the roles of gaseous NO3, N2O5, and O3 in the water activation, results show that short-lived aqueous species induced by gaseous NO3 radicals play the most crucial role in PAW sterilization, and the acidic environment induced by N2O5 is also essential. Moreover, SEM photographs and biomacromolecule leakage assays demonstrate that PAW disrupts the cell membranes of bacteria to achieve inactivation. In real-life applications, an integrated device for off-site PAW production with a yield of 2 L/h and a bactericidal efficiency of &gt;99.9% is developed. The PAW of 50mL produced in 3 minutes using this device is more effective in disinfection than 0.5% NaClO and 3% H2O2 with the same bacterial contact time. This work provides new avenues for efficient PAW production and deepens insights into the fundamental processes that govern the reactive chemistry in PAW sterilization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01035v1-abstract-full').style.display = 'none'; document.getElementById('2407.01035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00254">arXiv:2407.00254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00254">pdf</a>, <a href="https://arxiv.org/format/2407.00254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> An Exhaustive Study of Two-Node McCulloch-Pitts Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wentian Li</a>, <a href="/search/physics?searchtype=author&amp;query=Provata%2C+A">Astero Provata</a>, <a href="/search/physics?searchtype=author&amp;query=MacCarthy%2C+T">Thomas MacCarthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00254v1-abstract-short" style="display: inline;"> Boolean networks are widely used in computational biology, evolutionary studies, and social sciences. However, the set of all Boolean-function-defined networks are harder to study as a whole. On the other hand, McCulloch-Pitts gates are sparsely parameterized using only a few number of link strengths, making it possible to study and compare different networks models. We treat two-node McCulloch-Pi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00254v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00254v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00254v1-abstract-full" style="display: none;"> Boolean networks are widely used in computational biology, evolutionary studies, and social sciences. However, the set of all Boolean-function-defined networks are harder to study as a whole. On the other hand, McCulloch-Pitts gates are sparsely parameterized using only a few number of link strengths, making it possible to study and compare different networks models. We treat two-node McCulloch-Pitts systems as a minimal complex system. When the link strengths are discretized, $3^4=81$ network models or rules are organized in the rule space The limiting dynamics of each rule may depend on the choice of binary state value ([-1,1] or [0,1]), and on the treatment at the threshold point, leading to at least six variants. One variant with [-1,1] as the binary state value (V1 model) tends to have a more diverse dynamical behaviors with a mixture of multiple cycles and fixed points at the limiting state, whereas other variants tend to fall only to fixed-point limiting dynamics. We use V1 models to study the organization of rules with different dynamics in the rule space and robustness of limiting dynamics with respect to a mutation in the rule table, as well as the related phenomena of phase transition and edge-of-chaos. We use another variant (V4 models) with only the fixed-point limiting dynamics to study the robustness of limiting state with respect to perturbation of initial states. The two types of robustness do not seem to be associated with each other. Other aspects of fully discretized two-node MaCulloch-Pitts networks are also studied, including: the proposal of a seventh variant based on a difference equation; relation to Rene Thomas&#39; two types of feedback loops; spectrum properties of state space transition matrix; and asynchronous updating. Our works also expand the concept of network motifs by allowing more finer details. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00254v1-abstract-full').style.display = 'none'; document.getElementById('2407.00254v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17996">arXiv:2406.17996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17996">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Theoretical insights into charge transfer plasmon lifetime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Koya%2C+A+N">Alemayehu Nana Koya</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Longnan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17996v1-abstract-short" style="display: inline;"> Understanding the spectral and temporal dynamics of charge transfer plasmon resonances that emerge in conductively connected plasmonic nanoparticles is crucial for exploiting their potentials for enhanced infrared spectroscopy and optical computing. In this article, we present a theoretical study based on classical electromagnetism to describe the spectral signature and dephasing time of charge tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17996v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17996v1-abstract-full" style="display: none;"> Understanding the spectral and temporal dynamics of charge transfer plasmon resonances that emerge in conductively connected plasmonic nanoparticles is crucial for exploiting their potentials for enhanced infrared spectroscopy and optical computing. In this article, we present a theoretical study based on classical electromagnetism to describe the spectral signature and dephasing time of charge transfer plasmons. By fitting the scattering curves and near-field amplitude oscillations, we determine the spectral linewidth and lifetime of charge transfer plasmons in conductively connected gold nanodisk dimers. We find that, compared with the well-known particle plasmons and dimer plasmons, charge transfer plasmons have a longer lifetime, which can be further extended by manipulating the geometric parameters of nanojunction and nanoparticles. Moreover, quantitative analyses of the optical near-field amplitude reveal that charge transfer plasmon modes oscillate completely out of phase with particle plasmon and dimer plasmon modes. The dephasing time and charge transfer rate are found to be on a few femtosecond timescale, implying that conductively connected plasmonic nanoparticles hold great promise as channels for coherent transfer of energy and information in future all-optical computing devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17996v1-abstract-full').style.display = 'none'; document.getElementById('2406.17996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15407">arXiv:2406.15407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Preliminary Design of a General Electronics Platform for Accelerator Facilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jinfu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+H">Hongli Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haokui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ran%2C+Q">Qiaoye Ran</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+X">Xiwen Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+J">Jiawei Han</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+W">Weixin Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Weiqing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15407v1-abstract-short" style="display: inline;"> Many accelerators require considerable electronic systems for tests, verification, and operation. In Shenzhen Superconducting Soft X-ray Free Electron Laser (S3FEL), to meet the early tests and verification of various systems, save development expenses, and improve the reusability of hardware, firmware, and software systems, we have considered the needs of each system and preliminarily designed a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15407v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15407v1-abstract-full" style="display: none;"> Many accelerators require considerable electronic systems for tests, verification, and operation. In Shenzhen Superconducting Soft X-ray Free Electron Laser (S3FEL), to meet the early tests and verification of various systems, save development expenses, and improve the reusability of hardware, firmware, and software systems, we have considered the needs of each system and preliminarily designed a general electronics platform based on MicroTCA.4. The Advanced Mezzanine Card (AMC) will place an FPGA Mezzanine Card (FMC) that supports 500 MSPS to 2 GSPS ADC/DAC. We will design two FMC cards on the Rear Transition Module (RTM), which can be used for analog signal conditioning and waveform digitization by 10 MSPS to 250 MSPS ADC/DAC or motor control. The commercial MCH, CPU, power module, and MTCA crate are deployed. This platform can also be applied to other accelerator facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15407v1-abstract-full').style.display = 'none'; document.getElementById('2406.15407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures, 2024 IEEE Real-Time Conference</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10