CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;49 of 49 results for author: <span class="mathjax">Cho, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Cho%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cho, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cho%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cho, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15784">arXiv:2409.15784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15784">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Deep-learning real-time phase retrieval of imperfect diffraction patterns from X-ray free-electron lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+Y">Sung Yun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D+H">Do Hyung Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+C">Chulho Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+D">Daeho Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nam%2C+D">Daewoong Nam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sangsoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Changyong Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15784v1-abstract-short" style="display: inline;"> Machine learning is attracting surging interest across nearly all scientific areas by enabling the analysis of large datasets and the extraction of scientific information from incomplete data. Data-driven science is rapidly growing, especially in X-ray methodologies, where advanced light sources and detection technologies accumulate vast amounts of data that exceed meticulous human inspection capa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15784v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15784v1-abstract-full" style="display: none;"> Machine learning is attracting surging interest across nearly all scientific areas by enabling the analysis of large datasets and the extraction of scientific information from incomplete data. Data-driven science is rapidly growing, especially in X-ray methodologies, where advanced light sources and detection technologies accumulate vast amounts of data that exceed meticulous human inspection capabilities. Despite the increasing demands, the full application of machine learning has been hindered by the need for data-specific optimizations. In this study, we introduce a new deep-learning-based phase retrieval method for imperfect diffraction data. This method provides robust phase retrieval for simulated data and performs well on weak-signal single-pulse diffraction data from X-ray free-electron lasers. Moreover, the method significantly reduces data processing time, facilitating real-time image reconstructions that are crucial for high-repetition-rate data acquisition. Thus, this approach offers a reliable solution to the phase problem and is expected to be widely adopted across various research areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15784v1-abstract-full').style.display = 'none'; document.getElementById('2409.15784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T07 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16598">arXiv:2408.16598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16598">pdf</a>, <a href="https://arxiv.org/format/2408.16598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Signatures of Amorphous Shiba State in FeTe$_{0.55}$Se$_{0.45}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jinwon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sanghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreisel%2C+A">Andreas Kreisel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paaske%2C+J">Jens Paaske</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16598v1-abstract-short" style="display: inline;"> The iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$ is a peculiar material: it hosts a surface state with a Dirac dispersion, is a putative topological superconductor hosting Majorana modes in vortices, and has an unusually low Fermi energy. The superconducting state is generally thought to be characterized by three gaps in different bands, with the usual homogenous, spatially extended Bogoliub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16598v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16598v1-abstract-full" style="display: none;"> The iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$ is a peculiar material: it hosts a surface state with a Dirac dispersion, is a putative topological superconductor hosting Majorana modes in vortices, and has an unusually low Fermi energy. The superconducting state is generally thought to be characterized by three gaps in different bands, with the usual homogenous, spatially extended Bogoliubov excitations -- in this work, we uncover evidence that it is instead of a very different nature. Our scanning tunneling spectroscopy data shows several peaks in the density of states above a full gap, and by analyzing the spatial and junction-resistance dependence of the peaks, we conclude that the peaks above the first one are not coherence peaks from different bands. Instead, comparisons with our simulations indicate that they originate from generalized Shiba states that are spatially overlapping. This can lead to an amorphous state of Bogoliubov quasiparticles, reminiscent of impurity bands in semiconductors. We discuss the origin and implications of this new state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16598v1-abstract-full').style.display = 'none'; document.getElementById('2408.16598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03231">arXiv:2407.03231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03231">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01536">10.1021/acs.nanolett.4c01536 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensionality Engineering of Magnetic Anisotropy from Anomalous Hall Effect in Synthetic SrRuO3 Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+S+W">Seong Won Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+Y">Jin Young Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+D+G">Do Gyeom Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+G">Gyeongtak Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+H+Y">Hu Young Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohamed%2C+A+Y">Ahmed Yousef Mohamed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+W">Woo-suk Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+S">Jong Seok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Suyoun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-Min Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03231v1-abstract-short" style="display: inline;"> Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here, we investigate the impact of dimensionality of epitaxially-grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03231v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03231v1-abstract-full" style="display: none;"> Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here, we investigate the impact of dimensionality of epitaxially-grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designing oxide superlattices with a correlated ferromagnetic SrRuO3 and nonmagnetic SrTiO3 layers, we observed modulated ferromagnetic behavior with the change of the SrRuO3 thickness. Especially, for three-unit-cell-thick layers, we observe a significant 1,500% improvement of coercive field in the anomalous Hall effect, which cannot be solely attributed to the dimensional crossover in ferromagnetism. The atomic-scale heterostructures further reveal the systematic modulation of anisotropy for the lattice structure and orbital hybridization, explaining the enhanced magnetic anisotropy. Our findings provide valuable insights into engineering the anisotropic hybridization of synthetic magnetic crystals, offering a tunable spin order for various applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03231v1-abstract-full').style.display = 'none'; document.getElementById('2407.03231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09460">arXiv:2406.09460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09460">pdf</a>, <a href="https://arxiv.org/format/2406.09460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202401348">10.1002/advs.202401348 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of Distinct Insulating Domains in the Layered Charge Density Wave Material 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hyungryul Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+B">Byeongin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bang%2C+J">Junho Bang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sunghun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wulferding%2C+D">Dirk Wulferding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sung-Hoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09460v1-abstract-short" style="display: inline;"> Vertical charge order shapes the electronic properties in layered charge density wave (CDW) materials. Various stacking orders inevitably create nanoscale domains with distinct electronic structures inaccessible to bulk probes. Here, the stacking characteristics of bulk 1$T$-TaS$2$ are analyzed using scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. It is obse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09460v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09460v1-abstract-full" style="display: none;"> Vertical charge order shapes the electronic properties in layered charge density wave (CDW) materials. Various stacking orders inevitably create nanoscale domains with distinct electronic structures inaccessible to bulk probes. Here, the stacking characteristics of bulk 1$T$-TaS$2$ are analyzed using scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. It is observed that Mott-insulating domains undergo a transition to band-insulating domains restoring vertical dimerization of the CDWs. Furthermore, STS measurements covering a wide terrace reveal two distinct band insulating domains differentiated by band edge broadening. These DFT calculations reveal that the Mott insulating layers preferably reside on the subsurface, forming broader band edges in the neighboring band insulating layers. Ultimately, buried Mott insulating layers believed to harbor the quantum spin liquid phase are identified. These results resolve persistent issues regarding vertical charge order in 1$T$-TaS$2$, providing a new perspective for investigating emergent quantum phenomena in layered CDW materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09460v1-abstract-full').style.display = 'none'; document.getElementById('2406.09460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages and 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07960">arXiv:2406.07960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07960">pdf</a>, <a href="https://arxiv.org/format/2406.07960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.195170">10.1103/PhysRevB.109.195170 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge ordered phases in the hole-doped triangular Mott insulator 4Hb-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bang%2C+J">Junho Bang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+B">Byeongin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hyungryul Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sunghun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wulferding%2C+D">Dirk Wulferding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07960v2-abstract-short" style="display: inline;"> 4Hb-TaS2 has been proposed to possess unconventional superconductivity with broken time reveral symmetry due to distinctive layered structure, featuring a heterojunction between a 2D triangular Mott insulator and a charge density wave metal. However, since a frustrated spin state in the correlated insulating layer is susceptible to charge ordering with carrier doping, it is required to investigate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07960v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07960v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07960v2-abstract-full" style="display: none;"> 4Hb-TaS2 has been proposed to possess unconventional superconductivity with broken time reveral symmetry due to distinctive layered structure, featuring a heterojunction between a 2D triangular Mott insulator and a charge density wave metal. However, since a frustrated spin state in the correlated insulating layer is susceptible to charge ordering with carrier doping, it is required to investigate the charge distribution driven by inter-layer charge transfer to understand its superconductivity. Here, we use scanning tunneling microscopy and spectroscopy (STM/S) to investigate the charge ordered phases of 1T-TaS2 layers within 4Hb-TaS2, explicitly focusing on the non-half-filled regime. Our STS results show an energy gap which exhibits an out-of-phase relation with the charge density. We ascribe the competition between on-site and nonlocal Coulomb repulsion as the driving force for the charge-ordered insulating phase of a doped triangular Mott insulator. In addition, we discuss the role of the insulating layer in the enhanced superconductivity of 4Hb-TaS2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07960v2-abstract-full').style.display = 'none'; document.getElementById('2406.07960v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 195170 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00265">arXiv:2401.00265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00265">pdf</a>, <a href="https://arxiv.org/ps/2401.00265">ps</a>, <a href="https://arxiv.org/format/2401.00265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c05398">10.1021/acsnano.4c05398 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An unconventional platform for two-dimensional Kagome flat bands on semiconductor surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+H">Jae Hyuck Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">GwanWoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+I">Inkyung Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yejin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yeonjae Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+S+J">Sung Jong Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhim%2C+J">Jun-Won Rhim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+J">Jongkeun Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gunn Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Changyoung Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00265v1-abstract-short" style="display: inline;"> In condensed matter physics, the Kagome lattice and its inherent flat bands have attracted considerable attention for their potential to host a variety of exotic physical phenomena. Despite extensive efforts to fabricate thin films of Kagome materials aimed at modulating the flat bands through electrostatic gating or strain manipulation, progress has been limited. Here, we report the observation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00265v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00265v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00265v1-abstract-full" style="display: none;"> In condensed matter physics, the Kagome lattice and its inherent flat bands have attracted considerable attention for their potential to host a variety of exotic physical phenomena. Despite extensive efforts to fabricate thin films of Kagome materials aimed at modulating the flat bands through electrostatic gating or strain manipulation, progress has been limited. Here, we report the observation of a novel $d$-orbital hybridized Kagome-derived flat band in Ag/Si(111) $\sqrt{3}\times\sqrt{3}$ as revealed by angle-resolved photoemission spectroscopy. Our findings indicate that silver atoms on a silicon substrate form a Kagome-like structure, where a delicate balance in the hopping parameters of the in-plane $d$-orbitals leads to destructive interference, resulting in a flat band. These results not only introduce a new platform for Kagome physics but also illuminate the potential for integrating metal-semiconductor interfaces into Kagome-related research, thereby opening a new avenue for exploring ideal two-dimensional Kagome systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00265v1-abstract-full').style.display = 'none'; document.getElementById('2401.00265v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08986">arXiv:2312.08986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08986">pdf</a>, <a href="https://arxiv.org/format/2312.08986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c03721">10.1021/acs.nanolett.3c03721 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Melting of unidirectional charge density waves across twin domain boundaries in GdTe$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sanghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+E">Eunseo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bang%2C+J">Junho Bang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jongho Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Changyoung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wulferding%2C+D">Dirk Wulferding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08986v1-abstract-short" style="display: inline;"> Solids undergoing a transition from order to disorder experience the proliferation of topological defects. The melting process generates transient quantum states. However, their dynamical nature with femtosecond lifetime hinders exploration with atomic precision. Here, we suggest an alternative approach to the dynamical melting process by focusing on the interface created by competing degenerate q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08986v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08986v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08986v1-abstract-full" style="display: none;"> Solids undergoing a transition from order to disorder experience the proliferation of topological defects. The melting process generates transient quantum states. However, their dynamical nature with femtosecond lifetime hinders exploration with atomic precision. Here, we suggest an alternative approach to the dynamical melting process by focusing on the interface created by competing degenerate quantum states. We use a scanning tunneling microscope (STM) to visualize the unidirectional charge density wave (CDW) and its spatial progression (&#34;static melting&#34;) across a twin domain boundary (TDB) in the layered material GdTe$_{3}$. Combining STM with a spatial lock-in technique, we reveal that the order parameter amplitude attenuates with the formation of dislocations and thus two different unidirectional CDWs coexist near the TDB, reducing the CDW anisotropy. Notably, we discover a correlation between this anisotropy and the CDW gap. Our study provides valuable insight into the behavior of topological defects and transient quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08986v1-abstract-full').style.display = 'none'; document.getElementById('2312.08986v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 23, 11219 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09609">arXiv:2311.09609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09609">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adn8694">10.1126/sciadv.adn8694 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suppression of Antiferromagnetic Order by Strain in Honeycomb Cobaltate: Implication for Quantum Spin Liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gye-Hyeon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M">Miju Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+U">Uksam Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Baekjune Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+U">Uihyeon Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+G">GwangCheol Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+S">Seunghyeon Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+J">Jung-Woo Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ok%2C+J+M">Jong Mok Ok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09609v2-abstract-short" style="display: inline;"> Recently, layered honeycomb cobaltates have been predicted as a new promising system for realizing the Kitaev quantum spin liquid, a many-body quantum entangled ground state characterized by fractional excitations. However, these cobaltates, similar to other candidate materials, exhibit classical antiferromagnetic ordering at low temperatures, which impedes the formation of the expected quantum st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09609v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09609v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09609v2-abstract-full" style="display: none;"> Recently, layered honeycomb cobaltates have been predicted as a new promising system for realizing the Kitaev quantum spin liquid, a many-body quantum entangled ground state characterized by fractional excitations. However, these cobaltates, similar to other candidate materials, exhibit classical antiferromagnetic ordering at low temperatures, which impedes the formation of the expected quantum state. Here, we demonstrate that the control of the trigonal crystal field of Co ions is crucial to suppress classical antiferromagnetic ordering and to locate its ground state in closer vicinity to quantum spin liquid in layered honeycomb cobaltates. By utilizing heterostructure engineering on Cu3Co2SbO6 thin films, we adjust the trigonal distortion of CoO6 octahedra and the associated trigonal crystal field. The original N茅el temperature of 16 K in bulk Cu3Co2SbO6 decreases (increases) to 7.8 K (22.7 K) in strained Cu3Co2SbO6 films by decreasing (increasing) the magnitude of the trigonal crystal fields. Our experimental finding substantiates the potential of layered honeycomb cobaltate heterostructures and strain engineering to accomplish the extremely elusive quantum phase of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09609v2-abstract-full').style.display = 'none'; document.getElementById('2311.09609v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10379">arXiv:2303.10379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10379">pdf</a>, <a href="https://arxiv.org/format/2303.10379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41500-6">10.1038/s41467-023-41500-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge density wave surface reconstruction in a van der Waals layered material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sung-Hoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10379v2-abstract-short" style="display: inline;"> Surface reconstruction plays a vital role in determining the surface electronic structure and chemistry of semiconductors and metal oxides. However, it has been commonly believed that surface reconstruction does not occur in van der Waals layered materials, as they do not undergo significant bond breaking during surface formation. In this study, we present evidence that charge density wave (CDW) o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10379v2-abstract-full').style.display = 'inline'; document.getElementById('2303.10379v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10379v2-abstract-full" style="display: none;"> Surface reconstruction plays a vital role in determining the surface electronic structure and chemistry of semiconductors and metal oxides. However, it has been commonly believed that surface reconstruction does not occur in van der Waals layered materials, as they do not undergo significant bond breaking during surface formation. In this study, we present evidence that charge density wave (CDW) order in these materials can, in fact, cause CDW surface reconstruction through interlayer coupling. Using density functional theory calculations on the 1T-TaS2 surface, we reveal that CDW reconstruction, involving concerted small atomic displacements in the subsurface layer, results in a significant modification of the surface electronic structure, transforming it from a Mott insulator to a band insulator. This new form of surface reconstruction explains several previously unexplained observations on the 1T-TaS2 surface and has important implications for interpreting surface phenomena in CDW-ordered layered materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10379v2-abstract-full').style.display = 'none'; document.getElementById('2303.10379v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures (Supplementary Information: 5 Pages, 3 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 5735 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01406">arXiv:2301.01406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.01406">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s40042-022-00695-5">10.1007/s40042-022-00695-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic and Electronic Structures of Correlated SrRuO3/SrTiO3 Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohamed%2C+A+Y">Ahmed Yousef Mohamed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01406v1-abstract-short" style="display: inline;"> Atomic-scale precision epitaxy of perovskite oxide superlattices provides unique opportunities for controlling the correlated electronic structures, activating effective control knobs for intriguing functionalities including electromagnetic, thermoelectric, and electrocatalytic behaviors. In this study, we investigated the close interplay between the atomic and electronic structures of correlated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01406v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01406v1-abstract-full" style="display: none;"> Atomic-scale precision epitaxy of perovskite oxide superlattices provides unique opportunities for controlling the correlated electronic structures, activating effective control knobs for intriguing functionalities including electromagnetic, thermoelectric, and electrocatalytic behaviors. In this study, we investigated the close interplay between the atomic and electronic structures of correlated superlattices synthesized by atomic-scale precision epitaxy. In particular, we employ superlattices composed of correlated magnetic SrRuO3 (SRO) and quantum paraelectric SrTiO3 (STO) layers. In those superlattices, RuO6 octahedral distortion is systematically controlled from 167 to 175 degrees depending on the thickness of the STO layers, also affecting the TiO6 octahedral distortion within the STO layer. Customized octahedral distortion within SRO/STO superlattices in turn modifies the electronic structures of both the Ti and Ru compounds, observed by X-ray absorption spectroscopy. Our results identify the close correlation between atomic lattice and electronic structures enabled by the facile controllability of atomic-scale epitaxy, which would be useful for designing future correlated oxide devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01406v1-abstract-full').style.display = 'none'; document.getElementById('2301.01406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published in 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05376">arXiv:2211.05376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05376">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.075103">10.1103/PhysRevB.107.075103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Honeycomb oxide heterostructure: a new platform for Kitaev quantum spin liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Baekjune Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M">Miju Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+S">Seunghyun Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Daeseong Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+M">Minsik Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+C">Choongwon Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ko%2C+E+K">Eun Kyo Ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+G">Gangsan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+J">Jung-woo Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ok%2C+J+M">Jong Mok Ok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05376v3-abstract-short" style="display: inline;"> Kitaev quantum spin liquid, massively quantum entangled states, is so scarce in nature that searching for new candidate systems remains a great challenge. Honeycomb heterostructure could be a promising route to realize and utilize such an exotic quantum phase by providing additional controllability of Hamiltonian and device compatibility, respectively. Here, we provide epitaxial honeycomb oxide th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05376v3-abstract-full').style.display = 'inline'; document.getElementById('2211.05376v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05376v3-abstract-full" style="display: none;"> Kitaev quantum spin liquid, massively quantum entangled states, is so scarce in nature that searching for new candidate systems remains a great challenge. Honeycomb heterostructure could be a promising route to realize and utilize such an exotic quantum phase by providing additional controllability of Hamiltonian and device compatibility, respectively. Here, we provide epitaxial honeycomb oxide thin film Na3Co2SbO6, a candidate of Kitaev quantum spin liquid proposed recently. We found a spin glass and antiferromagnetic ground states depending on Na stoichiometry, signifying not only the importance of Na vacancy control but also strong frustration in Na3Co2SbO6. Despite its classical ground state, the field-dependent magnetic susceptibility shows remarkable scaling collapse with a single critical exponent, which can be interpreted as evidence of quantum criticality. Its electronic ground state and derived spin Hamiltonian from spectroscopies are consistent with the predicted Kitaev model. Our work provides a unique route to the realization and utilization of Kitaev quantum spin liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05376v3-abstract-full').style.display = 'none'; document.getElementById('2211.05376v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10346">arXiv:2205.10346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10346">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39109-w">10.1038/s41467-023-39109-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-electron charge transfer into putative Majorana and trivial modes in individual vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benschop%2C+T">Tjerk Benschop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10346v2-abstract-short" style="display: inline;"> Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions - they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10346v2-abstract-full').style.display = 'inline'; document.getElementById('2205.10346v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10346v2-abstract-full" style="display: none;"> Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions - they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling process into vortex bound states in the conventional superconductor NbSe2, and in the putative Majorana platform FeTe0.55Se0.45. We find that tunneling into vortex bound states in both cases exhibits charge transfer of a single electron charge. Our data for the zero-energy bound states in FeTe0.55Se0.45 exclude the possibility of Yu-Shiba-Rusinov states and are consistent with both Majorana bound states and trivial vortex bound states. Our results open an avenue for investigating the exotic states in vortex cores and for future Majorana devices, although further theoretical investigations involving charge dynamics and superconducting tips are necessary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10346v2-abstract-full').style.display = 'none'; document.getElementById('2205.10346v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, and 16 pages for supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 3341 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14576">arXiv:2203.14576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14576">pdf</a>, <a href="https://arxiv.org/ps/2203.14576">ps</a>, <a href="https://arxiv.org/format/2203.14576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bulk-interface correspondence from quantum distance in flat band systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+C">Chang-geun Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S+Y">Se Young Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhim%2C+J">Jun-Won Rhim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14576v2-abstract-short" style="display: inline;"> The bulk-boundary correspondence is an integral feature of topological analysis and the existence of boundary or interface modes offers direct insight into the topological structure of the Bloch wave function. While only the topology of the wave function has been considered relevant to boundary modes, we demonstrate that another geometric quantity, the so-called quantum distance, can also host a b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14576v2-abstract-full').style.display = 'inline'; document.getElementById('2203.14576v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14576v2-abstract-full" style="display: none;"> The bulk-boundary correspondence is an integral feature of topological analysis and the existence of boundary or interface modes offers direct insight into the topological structure of the Bloch wave function. While only the topology of the wave function has been considered relevant to boundary modes, we demonstrate that another geometric quantity, the so-called quantum distance, can also host a bulk-interface correspondence. We consider a generic class of two-dimensional flat band systems, where the flat band has a parabolic band-crossing with another dispersive band. While such flat bands are known to be topologically trivial, we show that the nonzero maximum quantum distance between the eigenstates of the flat band around the touching point guarantees the existence of boundary modes at the interfaces between two domains with different chemical potentials or different maximum quantum distance. Moreover, the maximum quantum distance can predict even the explicit form of the dispersion relation and decay length of the interface modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14576v2-abstract-full').style.display = 'none'; document.getElementById('2203.14576v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13950">arXiv:2108.13950</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.13950">pdf</a>, <a href="https://arxiv.org/format/2108.13950">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Polarization at the Nanoscale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Ke Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zeyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=West%2C+D">Damien West</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengbai Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13950v1-abstract-short" style="display: inline;"> Modern polarization theory yields surface bound charge associated with spontaneous polarization of bulk. However, understanding polarization in nano systems also requires a proper treatment of charge transfer between surface dangling bonds. Here, we develop a real-space approach for total polarization and apply it to wurtzite semiconductors and BaTiO3 perovskite. First-principles calculations util&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13950v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13950v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13950v1-abstract-full" style="display: none;"> Modern polarization theory yields surface bound charge associated with spontaneous polarization of bulk. However, understanding polarization in nano systems also requires a proper treatment of charge transfer between surface dangling bonds. Here, we develop a real-space approach for total polarization and apply it to wurtzite semiconductors and BaTiO3 perovskite. First-principles calculations utilizing this approach not only yield spontaneous bulk polarization in agreement with Berry phase calculations, but also uncover phenomena specific to nano systems. As an example, we show surface passivation leads to a complete quenching of the piezoelectric effect, which reemerges only at larger length scale and/or spontaneous polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13950v1-abstract-full').style.display = 'none'; document.getElementById('2108.13950v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13079">arXiv:2104.13079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13079">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.0c17544">10.1021/acsami.0c17544 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct evidence of electronic interaction at the atomic-layer-deposited MoS2 monolayer/SiO2 interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minji Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yejin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohamed%2C+A+Y">Ahmed Yousef Mohamed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Han-Koo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ihm%2C+K">Kyuwook Ihm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+H">Dae Hyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+T+J">Tae Joo Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13079v1-abstract-short" style="display: inline;"> The electronic structure of an atomic-layer-deposited MoS2 monolayer on SiO2 was investigated using X-ray absorption spectroscopy (XAS) and synchrotron X-ray photoelectron spectroscopy (XPS). The angle-dependent evolution of the XAS spectra and the photon-energy-dependent evolution of the XPS spectra were analyzed in detail using an ab-initio electronic structure simulation. Although similar to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13079v1-abstract-full').style.display = 'inline'; document.getElementById('2104.13079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13079v1-abstract-full" style="display: none;"> The electronic structure of an atomic-layer-deposited MoS2 monolayer on SiO2 was investigated using X-ray absorption spectroscopy (XAS) and synchrotron X-ray photoelectron spectroscopy (XPS). The angle-dependent evolution of the XAS spectra and the photon-energy-dependent evolution of the XPS spectra were analyzed in detail using an ab-initio electronic structure simulation. Although similar to the theoretical spectra of an ideal free-standing MoS2 ML, the experimental spectra exhibit features that are distinct from those of an ideal ML, which can be interpreted as a consequence of S-O van der Waals (vdW) interactions. The strong consensus among the experimental and theoretical spectra suggests that the vdW interactions between MoS2 and adjacent SiO2 layers can influence the electronic structure of the system, manifesting a substantial electronic interaction at the MoS2-SiO2 interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13079v1-abstract-full').style.display = 'none'; document.getElementById('2104.13079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Applied Materials &amp; Interfaces, 12(48), 53852-53859 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08535">arXiv:2101.08535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08535">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abe3987">10.1126/science.abe3987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above $T_{C}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jian-Feng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tromp%2C+W+O">Willem O. Tromp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Ruitenbeek%2C+J+M">Jan M. van Ruitenbeek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Visser%2C+P+J">Pieter J. de Visser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thoen%2C+D+J">David J. Thoen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Driessen%2C+E+F+C">Eduard F. C. Driessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klapwijk%2C+T+M">Teunis M. Klapwijk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08535v1-abstract-short" style="display: inline;"> The idea that preformed Cooper pairs could exist in a superconductor above its zero-resistance state has been explored for unconventional, interface, and disordered superconductors, yet direct experimental evidence is lacking. Here, we use scanning tunneling noise spectroscopy to unambiguously show that preformed Cooper pairs exist up to temperatures much higher than the zero-resistance critical t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08535v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08535v1-abstract-full" style="display: none;"> The idea that preformed Cooper pairs could exist in a superconductor above its zero-resistance state has been explored for unconventional, interface, and disordered superconductors, yet direct experimental evidence is lacking. Here, we use scanning tunneling noise spectroscopy to unambiguously show that preformed Cooper pairs exist up to temperatures much higher than the zero-resistance critical temperature $T_{C}$ in the disordered superconductor titanium nitride, by observing a clear enhancement in the shot noise that is equivalent to a change of the effective charge from 1 to 2 electron charges. We further show that spectroscopic gap fills up rather than closes when increasing temperature. Our results thus demonstrate the existence of a novel state above $T_{C}$ that, much like an ordinary metal, has no (pseudo)gap, but carries charge via paired electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08535v1-abstract-full').style.display = 'none'; document.getElementById('2101.08535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 374, 608 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00754">arXiv:2101.00754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.00754">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L081101">10.1103/PhysRevB.103.L081101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced transition from Jeff=1/2 to S=1/2 states in CuAl2O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+H">Hwanbeom Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C+H">Choong H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yongmoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komatsu%2C+K">Kazuki Komatsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+B">Byeong-Gwan Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Taehun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Younghak Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koo%2C+T+Y">Tae Yeong Koo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noda%2C+Y">Yukio Noda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kagi%2C+H">Hiroyuki Kagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">Daniel I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seoung%2C+D">Donghoon Seoung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00754v1-abstract-short" style="display: inline;"> The spin-orbit entangled (SOE) Jeff-state has been a fertile ground to study novel quantum phenomena. Contrary to the conventional weakly correlated Jeff=1/2 state of 4d and 5d transition metal compounds, the ground state of CuAl2O4 hosts a Jeff=1/2 state with a strong correlation of Coulomb U. Here, we report that surprisingly Cu2+ ions of CuAl2O4 overcome the otherwise usually strong Jahn-Teller&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00754v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00754v1-abstract-full" style="display: none;"> The spin-orbit entangled (SOE) Jeff-state has been a fertile ground to study novel quantum phenomena. Contrary to the conventional weakly correlated Jeff=1/2 state of 4d and 5d transition metal compounds, the ground state of CuAl2O4 hosts a Jeff=1/2 state with a strong correlation of Coulomb U. Here, we report that surprisingly Cu2+ ions of CuAl2O4 overcome the otherwise usually strong Jahn-Teller distortion and instead stabilize the SOE state, although the cuprate has relatively small spin-orbit coupling. From the x-ray absorption spectroscopy and high-pressure x-ray diffraction studies, we obtained definite evidence of the Jeff=1/2 state with a cubic lattice at ambient pressure. We also found the pressure-induced structural transition to a compressed tetragonal lattice consisting of the spin-only S=1/2 state for pressure higher than Pc=8 GPa. This phase transition from the Mott insulating Jeff=1/2 to the S=1/2 states is a unique phenomenon and has not been reported before. Our study offers a rare example of the SOE Jeff-state under strong electron correlation and its pressure-induced transition to the S=1/2 state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00754v1-abstract-full').style.display = 'none'; document.getElementById('2101.00754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 081101 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.16028">arXiv:2010.16028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.16028">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.035151">10.1103/PhysRevB.103.035151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping effects on the valence bond solid of Li$_{2}$RuO$_{3}$ with Mn substitution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+S">Seokhwan Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+H">Ki Hoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Junghwan Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Gyu Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">D. I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.16028v2-abstract-short" style="display: inline;"> $Li_{2}RuO_{3}$ with a honeycomb structure undergoes a drastic transition from a regular honeycomb lattice with the $C2/m$ space group to a valence bond solid state of the $P2_{1}/m$ space group with an extremely strong dimerization at 550 K. We synthesized $Li_{2}Ru_{1-x}Mn_{x}O_{3}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16028v2-abstract-full').style.display = 'inline'; document.getElementById('2010.16028v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.16028v2-abstract-full" style="display: none;"> $Li_{2}RuO_{3}$ with a honeycomb structure undergoes a drastic transition from a regular honeycomb lattice with the $C2/m$ space group to a valence bond solid state of the $P2_{1}/m$ space group with an extremely strong dimerization at 550 K. We synthesized $Li_{2}Ru_{1-x}Mn_{x}O_{3}$ with a full solid solution and investigated doping effects on the valence bond solid state as a function of Mn content. The valence bond solid state is found to be stable up to $x = 0.2$, based on our extensive experiments: structural studies, resistivity, and magnetic susceptibility. On the other hand, the extended x-ray absorption fine structure analyses show that the dimer local structure remains robust even above $x = 0.2$ with a minimal effect on the dimer bond length. This indicates that the locally-disordered dimer structure survives well into the Mn-rich phase even though the thermodynamically stable average structure has the $C2/m$ space group. Our results prove that the dimer formation in $Li_{2}RuO_{3}$ is predominantly a local phenomenon driven by the formation of orbitally-assisted metal-metal bonds and that these dimers are relatively robust against doping-induced disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16028v2-abstract-full').style.display = 'none'; document.getElementById('2010.16028v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 035151 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09784">arXiv:2008.09784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09784">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> High-throughput ensemble characterization of individual core-shell nanoparticles with quantitative 3D density from XFEL single-particle imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D+H">Do Hyung Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhou Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ihm%2C+Y">Yungok Ihm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wi%2C+D+H">Dae Han Wi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+C">Chulho Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nam%2C+D">Daewoong Nam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sangsoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+S">Kyung Sook Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+D">Daeho Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Heemin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+J">Jae-Yong Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+J">Junha Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sung-Yun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+Y">Su Yong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S+W">Sang Woo Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+D+Y">Do Young Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loh%2C+N+D">N. Duane Loh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Changyong Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09784v1-abstract-short" style="display: inline;"> The structures, as building-blocks for designing functional nanomaterials, have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progresses in analyzing structures of individual specimens with atomic scale accuracy have been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to repr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09784v1-abstract-full').style.display = 'inline'; document.getElementById('2008.09784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09784v1-abstract-full" style="display: none;"> The structures, as building-blocks for designing functional nanomaterials, have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progresses in analyzing structures of individual specimens with atomic scale accuracy have been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and new algorithm for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours, and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices and elastic strains. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at atomic level. This work establishes a new route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09784v1-abstract-full').style.display = 'none'; document.getElementById('2008.09784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14740">arXiv:2006.14740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.14740">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202001643">10.1002/advs.202001643 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+G">Gyeongtak Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+T">Taewon Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohamed%2C+A+Y">Ahmed Yousef Mohamed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jaekwang Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+H+Y">Hu Young Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-Min Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14740v1-abstract-short" style="display: inline;"> Bonding geometry engineering of metal-oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilting of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14740v1-abstract-full').style.display = 'inline'; document.getElementById('2006.14740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14740v1-abstract-full" style="display: none;"> Bonding geometry engineering of metal-oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilting of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin-film lattice parameters. In this study, we propose a method to selectively engineer the octahedral bonding geometries, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering has been developed using atomically designed SrRuO3/SrTiO3 superlattices. In particular, the propagation of RuO6 octahedral tilting within the SrRuO3 layers having identical thicknesses was systematically controlled by varying the thickness of adjacent SrTiO3 layers. This led to a substantial modification in the electromagnetic properties of the SrRuO3 layer, significantly enhancing the magnetic moment of Ru. Our approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14740v1-abstract-full').style.display = 'none'; document.getElementById('2006.14740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 4 figures, 6 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published in 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12840">arXiv:2006.12840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12840">pdf</a>, <a href="https://arxiv.org/format/2006.12840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-20529-x">10.1038/s41467-020-20529-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially dispersing Yu-Shiba-Rusinov states in the unconventional superconductor $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">Damianos Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steffensen%2C+G+O">Gorm O. Steffensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouwmeester%2C+D">Damian Bouwmeester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akbari%2C+A">Alireza Akbari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paaske%2C+J">Jens Paaske</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12840v1-abstract-short" style="display: inline;"> By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$, a material that exhibits signatures of topological superconductivity, and Majorana bound states at vortex cores or at impurity locations. We use a superconducting STM tip for enhanced energy resolution, which ena&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12840v1-abstract-full').style.display = 'inline'; document.getElementById('2006.12840v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12840v1-abstract-full" style="display: none;"> By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$, a material that exhibits signatures of topological superconductivity, and Majorana bound states at vortex cores or at impurity locations. We use a superconducting STM tip for enhanced energy resolution, which enables us to show that impurity states can be tuned through the Fermi level with varying tip-sample distance. We find that the impurity state is of the Yu-Shiba-Rusinov (YSR) type, and argue that the energy shift is caused by the low superfluid density in $\mathrm{FeTe}_{0.55}\mathrm{Se}_{0.45}$, which allows the electric field of the tip to slightly penetrate the sample. We model the newly introduced tip-gating scenario within the single-impurity Anderson model and find good agreement to the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12840v1-abstract-full').style.display = 'none'; document.getElementById('2006.12840v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV CMT 2021 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 298 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.08351">arXiv:1911.08351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.08351">pdf</a>, <a href="https://arxiv.org/format/1911.08351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient Green Emission from Edge States in Graphene Perforated by Nitrogen Plasma Treatment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kovaleva%2C+N+N">N N Kovaleva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chvostova%2C+D">D Chvostova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pot%C5%AF%C4%8Dek%2C+Z">Z Pot暖膷ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+H+D">H D Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xiao Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fekete%2C+L">L Fekete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pokorny%2C+J">J Pokorny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bryknar%2C+Z">Z Bryknar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kugel%2C+K+I">K I Kugel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dejneka%2C+A">A Dejneka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+T+W">T W Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panin%2C+G+N">Gennady N Panin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kusmartsev%2C+F+V">F V Kusmartsev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.08351v1-abstract-short" style="display: inline;"> Plasma functionalization of graphene is one of the facile ways to tune its doping level without the need for wet chemicals making graphene photoluminescent. Microscopic corrugations in the two-dimensional structure of bilayer CVD graphene having a quasi-free-suspended top layer, such as graphene ripples, nanodomes, and bubbles, may significantly enhance local reactivity leading to etching effects&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08351v1-abstract-full').style.display = 'inline'; document.getElementById('1911.08351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.08351v1-abstract-full" style="display: none;"> Plasma functionalization of graphene is one of the facile ways to tune its doping level without the need for wet chemicals making graphene photoluminescent. Microscopic corrugations in the two-dimensional structure of bilayer CVD graphene having a quasi-free-suspended top layer, such as graphene ripples, nanodomes, and bubbles, may significantly enhance local reactivity leading to etching effects on exposure to plasma. Here, we discovered that bilayer CVD graphene treated with nitrogen plasma exhibits efficient UV-green-red emission, where the excitation at 250 nm leads to photoluminescence with the peaks at 390, 470, and 620 nm, respectively. By using Raman scattering and spectroscopic ellipsometry, we investigated doping effects induced by oxygen or nitrogen plasma on the optical properties of single- and bilayer CVD graphene. The surface morphology of the samples was studied by atomic force microscopy. It is revealed that the top sheet of bilayer graphene becomes perforated after the treatment by nitrogen plasma. Our comprehensive study indicates that the dominant green emission is associated with the edge defect structure of perforated graphene filled with nitrogen. The discovered efficient emission appearing in nitrogen plasma treated perforated graphene may have a significant potential for the development of advanced optoelectronic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08351v1-abstract-full').style.display = 'none'; document.getElementById('1911.08351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages 5 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D Materials, 6(4), p.045021 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.05808">arXiv:1907.05808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.05808">pdf</a>, <a href="https://arxiv.org/format/1907.05808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.104506">10.1103/PhysRevB.100.104506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging doubled shot noise in a Josephson scanning tunneling microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">D. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">D. Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leeuwenhoek%2C+M">M. Leeuwenhoek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koks%2C+C">C. Koks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.05808v1-abstract-short" style="display: inline;"> We have imaged the current noise with atomic resolution in a Josephson scanning tunneling microscope with a Pb-Pb junction. By measuring the current noise as a function of applied bias, we reveal the change from single electron tunneling above the superconducting gap energy to double electron charge transfer below the gap energy when Andreev processes become dominant. Our spatially resolved noise&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05808v1-abstract-full').style.display = 'inline'; document.getElementById('1907.05808v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.05808v1-abstract-full" style="display: none;"> We have imaged the current noise with atomic resolution in a Josephson scanning tunneling microscope with a Pb-Pb junction. By measuring the current noise as a function of applied bias, we reveal the change from single electron tunneling above the superconducting gap energy to double electron charge transfer below the gap energy when Andreev processes become dominant. Our spatially resolved noise maps show that this doubling occurs homogeneously on the surface, also on impurity locations, demonstrating that indeed the charge pairing is not influenced by disruptions in the superconductor smaller than the superconducting coherence length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05808v1-abstract-full').style.display = 'none'; document.getElementById('1907.05808v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 104506 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.10162">arXiv:1906.10162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.10162">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.235202">10.1103/PhysRevB.103.235202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncovering vacuum level in infinite solid by real-space potential-unfolding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=West%2C+D">Damien West</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengbai Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.10162v3-abstract-short" style="display: inline;"> Although real materials are finite in size, electronic structure theory is built on the assumption of infinitely large solid, which led to a longstanding controversy: where is the vacuum level? Here, we introduce an analytic real-space potential-unfolding approach to uncover the vacuum level in infinitely large solid. First-principles calculations show that, in the absence of a physical surface, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10162v3-abstract-full').style.display = 'inline'; document.getElementById('1906.10162v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.10162v3-abstract-full" style="display: none;"> Although real materials are finite in size, electronic structure theory is built on the assumption of infinitely large solid, which led to a longstanding controversy: where is the vacuum level? Here, we introduce an analytic real-space potential-unfolding approach to uncover the vacuum level in infinitely large solid. First-principles calculations show that, in the absence of a physical surface, the bulk band structure, often measured with respect to an average bulk potential, is offset by a hereto unknown and orientation-dependent bulk quadrupole with respect to the vacuum level. By identifying intrinsic contributions of a bulk solid to its surface and interface properties, our theory eliminates the ambiguities surrounding the physical origin of the band alignment between matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10162v3-abstract-full').style.display = 'none'; document.getElementById('1906.10162v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 235202 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00149">arXiv:1901.00149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00149">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1408-8">10.1038/s41586-019-1408-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A strongly inhomogeneous superfluid in an iron-based superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">D. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">D. Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00149v1-abstract-short" style="display: inline;"> Among the mysteries surrounding unconventional, strongly correlated superconductors is the possibility of spatial variations in their superfluid density. We use atomic-resolution Josephson scanning tunneling microscopy to reveal a strongly inhomogeneous superfluid in the iron-based superconductor FeTe0.55Se0.45. By simultaneously measuring the topographic and electronic properties, we find that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00149v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00149v1-abstract-full" style="display: none;"> Among the mysteries surrounding unconventional, strongly correlated superconductors is the possibility of spatial variations in their superfluid density. We use atomic-resolution Josephson scanning tunneling microscopy to reveal a strongly inhomogeneous superfluid in the iron-based superconductor FeTe0.55Se0.45. By simultaneously measuring the topographic and electronic properties, we find that this inhomogeneity in the superfluid density is not caused by structural disorder or strong inter-pocket scattering, and does not correlate with variations in Cooper pair-breaking gap. Instead, we see a clear spatial correlation between superfluid density and quasiparticle strength, putting the iron-based superconductors on equal footing with the cuprates and demonstrating that locally, the quasiparticles are sharpest when the superconductivity is strongest. When repeated at different temperatures, our technique could further help elucidate what local and global mechanisms limit the critical temperature in unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00149v1-abstract-full').style.display = 'none'; document.getElementById('1901.00149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 571, 541 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09606">arXiv:1809.09606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.09606">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0300-z">10.1038/s41567-018-0300-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge trapping and super-Poissonian noise centers in a cuprate high-temperature superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">D. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benschop%2C+T">T. Benschop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Battisti%2C+I">I. Battisti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golden%2C+M+S">M. S. Golden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Q">Q. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Y. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09606v1-abstract-short" style="display: inline;"> The electronic properties of cuprate high temperature superconductors in their normal state are very two-dimensional: while transport in the ab plane is perfectly metallic, it is insulating along the c-axis, with ratios between the two exceeding 10^4. This anisotropy has been identified as one of the mysteries of the cuprates early on, and while widely different proposals exist for its microscopic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09606v1-abstract-full').style.display = 'inline'; document.getElementById('1809.09606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09606v1-abstract-full" style="display: none;"> The electronic properties of cuprate high temperature superconductors in their normal state are very two-dimensional: while transport in the ab plane is perfectly metallic, it is insulating along the c-axis, with ratios between the two exceeding 10^4. This anisotropy has been identified as one of the mysteries of the cuprates early on, and while widely different proposals exist for its microscopic origin, little is known empirically on the microscopic scale. Here, we elucidate the properties of the insulating layers with a newly developed scanning noise spectroscopy technique that can spatially map not only the current but also the current fluctuations in time. We discover atomic-scale noise centers that exhibit MHz current fluctuations 40 times the expectation from Poissonian noise, more than what has been observed in mesoscopic systems. Such behaviour can only happen in highly polarizable insulators and represents strong evidence for trapping of charge in the charge reservoir layers. Our measurements suggest a picture of metallic layers separated by polarizable insulators within a three-dimensional superconducting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09606v1-abstract-full').style.display = 'none'; document.getElementById('1809.09606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 14, 1183 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00374">arXiv:1806.00374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5043267">10.1063/1.5043267 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplifier for scanning tunneling microscopy at MHz frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">K. M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benschop%2C+T">T. Benschop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatzopoulos%2C+D">D. Chatzopoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D+H">D. H. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Q">Q. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Y. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">M. P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00374v1-abstract-short" style="display: inline;"> Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of circa 1kHz around DC. Here, we develop, build and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00374v1-abstract-full').style.display = 'inline'; document.getElementById('1806.00374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00374v1-abstract-full" style="display: none;"> Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of circa 1kHz around DC. Here, we develop, build and test a novel amplifier circuit capable of measuring the tunneling current in the MHz regime while simultaneously performing conventional STM measurements. This is achieved with an amplifier circuit including a LC tank with a quality factor exceeding 600 and a home-built, low-noise high electron mobility transistor (HEMT). The amplifier circuit functions while simultaneously scanning with atomic resolution in the tunneling regime, i.e. at junction resistances in the range of giga-ohms, and down towards point contact spectroscopy. To enable high signal-to-noise and meet all technical requirements for the inclusion in a commercial low temperature, ultra-high vacuum STM, we use superconducting cross-wound inductors and choose materials and circuit elements with low heat load. We demonstrate the high performance of the amplifier by spatially mapping the Poissonian noise of tunneling electrons on an atomically clean Au(111) surface. We also show differential conductance spectroscopy measurements at 3MHz, demonstrating superior performance over conventional spectroscopy techniques. Further, our technology could be used to perform impedance matched spin resonance and distinguish Majorana modes from more conventional edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00374v1-abstract-full').style.display = 'none'; document.getElementById('1806.00374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 89, 093709 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.03209">arXiv:1801.03209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.03209">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum oscillation in carrier transport in two-dimensional junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Weiyu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agiorgousis%2C+M+L">Michael L. Agiorgousis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meunier%2C+V">Vincent Meunier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaohong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengbai Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.03209v1-abstract-short" style="display: inline;"> Two-dimensional (2D) device structures have recently attracted considerable attention. Here, we show that most 2D device structures, regardless vertical or lateral, act as a lateral monolayer-bilayer-monolayer junction in their operation. In particular, a vertical structure cannot function as a vertical junction as having been widely believed in the literature. Moreover, due to a larger electrosta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03209v1-abstract-full').style.display = 'inline'; document.getElementById('1801.03209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.03209v1-abstract-full" style="display: none;"> Two-dimensional (2D) device structures have recently attracted considerable attention. Here, we show that most 2D device structures, regardless vertical or lateral, act as a lateral monolayer-bilayer-monolayer junction in their operation. In particular, a vertical structure cannot function as a vertical junction as having been widely believed in the literature. Moreover, due to a larger electrostatic screening, the bilayer region in the junction always has a smaller band gap than its monolayer counterpart. As a result, a potential well, aside from the usual potential barrier, will form universally in the bilayer region to affect the hole or electron quantum transport in the form of transmission or reflection. Taking black phosphorus as an example, we show that an oscillation in the transmission coefficient can be clearly resolved in a two-electrode prototypical device by non-equilibrium Green function combined with density functional theory calculations and the results can be qualitatively understood using a simple quantum well model. The presence of the quantum well is vital to 2D device design, including the effective tuning of quantum transmission by a vertical electric field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03209v1-abstract-full').style.display = 'none'; document.getElementById('1801.03209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.01675">arXiv:1801.01675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.01675">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Highly Efficient Carrier Multiplication in van der Waals layered Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Ji-Hee Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergren%2C+M+R">Matthew R. Bergren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+C">Jin Cheol Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adhikari%2C+S">Subash Adhikari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lorke%2C+M">Michael Lorke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fraunheim%2C+T">Thomas Fraunheim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Beom Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H">Hyunyong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregorkiewicz%2C+T">Tom Gregorkiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+H">Young Hee Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.01675v1-abstract-short" style="display: inline;"> Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted as heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01675v1-abstract-full').style.display = 'inline'; document.getElementById('1801.01675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.01675v1-abstract-full" style="display: none;"> Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted as heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to high energy loss and inherent difficulties with carrier extraction. Here, we report ultra-efficient CM in van der Waals (vdW) layered materials that commences at the energy conservation limit and proceeds with nearly 100% conversion efficiency. A small threshold energy, as low as twice the bandgap, was achieved, marking an onset of quantum yield with enhanced carrier generation. Strong Coulomb interactions between electrons confined within vdW layers allow rapid electron-electron scattering to prevail over electron-phonon scattering. Additionally, the presence of electron pockets spread over momentum space could also contribute to the high CM efficiency. Combining with high conductivity and optimal bandgap, these superior CM characteristics identify vdW materials for third-generation solar cell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01675v1-abstract-full').style.display = 'none'; document.getElementById('1801.01675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08620">arXiv:1712.08620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.08620">pdf</a>, <a href="https://arxiv.org/format/1712.08620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6528/ab1c7f">10.1088/1361-6528/ab1c7f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanofabricated tips for device-based scanning tunneling microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Leeuwenhoek%2C+M">Maarten Leeuwenhoek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Norte%2C+R+A">Richard A. Norte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastiaans%2C+K+M">Koen M. Bastiaans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Battisti%2C+I">Irene Battisti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanter%2C+Y+M">Yaroslav M. Blanter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%B6blacher%2C+S">Simon Gr枚blacher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allan%2C+M+P">Milan P. Allan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08620v2-abstract-short" style="display: inline;"> We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08620v2-abstract-full').style.display = 'inline'; document.getElementById('1712.08620v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08620v2-abstract-full" style="display: none;"> We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08620v2-abstract-full').style.display = 'none'; document.getElementById('1712.08620v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanotechnology 30, 335702 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.03346">arXiv:1707.03346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.03346">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-Assembling Oxide Catalyst for Electrochemical Water Splitting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bick%2C+D+S">Daniel S. Bick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kindsmueller%2C+A">Andreas Kindsmueller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohamed%2C+A+Y">Ahmed Yousef Mohamed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bredow%2C+T">Thomas Bredow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laufen%2C+H">Hendrik Laufen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gunkel%2C+F">Felix Gunkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mueller%2C+D+N">David N. Mueller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneller%2C+T">Theodor Schneller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waser%2C+R">Rainer Waser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valov%2C+I">Ilia Valov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.03346v1-abstract-short" style="display: inline;"> Renewable energy conversion and storage, and greenhouse gas emission-free technologies are within the primary tasks and challenges for the society. Hydrogen fuel, produced by alkaline water electrolysis is fulfilling all these demands, however the technology is economically feeble, limited by the slow rate of oxygen evolution reaction. Complex metal oxides were suggested to overcome this problem b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03346v1-abstract-full').style.display = 'inline'; document.getElementById('1707.03346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.03346v1-abstract-full" style="display: none;"> Renewable energy conversion and storage, and greenhouse gas emission-free technologies are within the primary tasks and challenges for the society. Hydrogen fuel, produced by alkaline water electrolysis is fulfilling all these demands, however the technology is economically feeble, limited by the slow rate of oxygen evolution reaction. Complex metal oxides were suggested to overcome this problem being low-cost efficient catalysts. However, the insufficient long-term stability, degradation of structure and electrocatalytic activity are restricting their utilization. Here we report on a new perovskite-based self-assembling material BaCo0.98Ti0.02O3-$未$:Co3O4 with superior performance, showing outstanding properties compared to current state-of-the-art materials without degeneration of its properties even at 353 K. By chemical and structural analysis the degradation mechanism was identified and modified by selective doping. Short-range order and chemical composition rather than long-range order are factors determining the outstanding performance. The derived general design rules can be used for further development of oxide-based electrocatalytic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.03346v1-abstract-full').style.display = 'none'; document.getElementById('1707.03346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 3 Figures and 5 Extended Data Figures, 1 Table, including Suplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.08607">arXiv:1706.08607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.08607">pdf</a>, <a href="https://arxiv.org/format/1706.08607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-00438-2">10.1038/s41467-017-00438-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gye%2C+G">Gyeongcheol Gye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jinwon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sung-Hoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lihai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+H+W">Han Woong Yeom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.08607v1-abstract-short" style="display: inline;"> Domain walls in interacting electronic systems can have distinct localized states, which often govern physical properties and may lead to unprecedented functionalities and novel devices. However, electronic states within domain walls themselves have not been clearly identified and understood for strongly correlated electron systems. Here, we resolve the electronic states localized on domain walls&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08607v1-abstract-full').style.display = 'inline'; document.getElementById('1706.08607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.08607v1-abstract-full" style="display: none;"> Domain walls in interacting electronic systems can have distinct localized states, which often govern physical properties and may lead to unprecedented functionalities and novel devices. However, electronic states within domain walls themselves have not been clearly identified and understood for strongly correlated electron systems. Here, we resolve the electronic states localized on domain walls in a Mott-charge-density-wave(CDW) insulator 1T-TaS2 using scanning tunneling spectroscopy. We establish that the domain wall state decomposes into two nonconducting states located at the center of domain walls and edges of domains. Theoretical calculations reveal their atomistic origin as the local reconstruction of domain walls under the strong influence of electron correlation. Our results introduce a concept for the domain wall electronic property, the wall&#39;s own internal degrees of freedom, which is potentially related to the controllability of domain wall electronic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08607v1-abstract-full').style.display = 'none'; document.getElementById('1706.08607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.04432">arXiv:1705.04432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.04432">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.196802">10.1103/PhysRevLett.121.196802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Built-in potential and band alignment of matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=West%2C+D">Damien West</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengbai Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.04432v2-abstract-short" style="display: inline;"> The built-in potential is the interfacial potential difference due to electric dipole at the interface of two dissimilar materials. It is of central importance to the understanding of many phenomena in electrochemistry, electrical engineering, and materials science because it determines the band alignment at the interfaces. Despite its importance, its exact sign and magnitude have generally been r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04432v2-abstract-full').style.display = 'inline'; document.getElementById('1705.04432v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.04432v2-abstract-full" style="display: none;"> The built-in potential is the interfacial potential difference due to electric dipole at the interface of two dissimilar materials. It is of central importance to the understanding of many phenomena in electrochemistry, electrical engineering, and materials science because it determines the band alignment at the interfaces. Despite its importance, its exact sign and magnitude have generally been recognized as an ill-defined quantity for more than half a century. Here, we provide a universal definition of the built-in potential. Furthermore, the built-in potential is explicitly determined by the bulk (i.e., innate) properties of the constituent materials when the system is in electronic equilibrium, while the interface plays a role only in the absence of equilibrium. Our quantitative theory enables a unified description of a variety of important properties in all types of interfaces, ranging from work functions and Schottky barriers in electronic devices to open circuit voltages and electrode potentials in electrochemical cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04432v2-abstract-full').style.display = 'none'; document.getElementById('1705.04432v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 196802 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00121">arXiv:1611.00121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.086101">10.1103/PhysRevLett.120.086101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal stability of two-dimensional traditional semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lucking%2C+M+C">Michael C. Lucking</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Weiyu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=West%2C+D">Damien West</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Toh-Ming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+B">S. B. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00121v1-abstract-short" style="display: inline;"> Interest in two dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac Fermion in graphene, but also as a new paradigm in which stacking layers of distinct two dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two dimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00121v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00121v1-abstract-full" style="display: none;"> Interest in two dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac Fermion in graphene, but also as a new paradigm in which stacking layers of distinct two dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultra-thin limit all of the traditional binary semi-conductors studied (a series of 26 semiconductors) stabilize in a two dimensional double layer honeycomb (DLHC) structure, as opposed to the wurtzite or zinc-blende structures associated with three dimensional bulk. Not only does this greatly increase the landscape of two-dimensional materials, but it is shown that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00121v1-abstract-full').style.display = 'none'; document.getElementById('1611.00121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 086101 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.04019">arXiv:1604.04019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.04019">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep25238">10.1038/srep25238 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust singlet dimers with fragile ordering in two-dimensional honeycomb lattice of Li$_2$RuO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Junghwan Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+T">Teck-Yee Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daoud-Aladine%2C+A">A. Daoud-Aladine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Seongil Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sang-Hyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jiyeon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sim%2C+H">Hasung Sim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morioka%2C+T">T. Morioka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nojiri%2C+H">H. Nojiri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnamurthy%2C+V+V">V. V. Krishnamurthy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Streltsov%2C+S+V">S. V. Streltsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">D. I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.04019v1-abstract-short" style="display: inline;"> When an electronic system has strong correlations and a large spin-orbit interaction, it often exhibits a plethora of mutually competing quantum phases. How a particular quantum ground state is selected out of several possibilities is a very interesting question. However, equally fascinating is how such a quantum entangled state breaks up due to perturbation. This important question has relevance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.04019v1-abstract-full').style.display = 'inline'; document.getElementById('1604.04019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.04019v1-abstract-full" style="display: none;"> When an electronic system has strong correlations and a large spin-orbit interaction, it often exhibits a plethora of mutually competing quantum phases. How a particular quantum ground state is selected out of several possibilities is a very interesting question. However, equally fascinating is how such a quantum entangled state breaks up due to perturbation. This important question has relevance in very diverse fields of science from strongly correlated electron physics to quantum information. Here we report that a quantum entangled dimerized state or valence bond crystal (VBC) phase of Li2RuO3 shows nontrivial doping dependence as we perturb the Ru honeycomb lattice by replacing Ru with Li. Through extensive experimental studies, we demonstrate that the VBC phase melts into a valence bond liquid phase of the RVB (resonating valence bond) type. This system offers an interesting playground where one can test and refine our current understanding of the quantum competing phases in a single compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.04019v1-abstract-full').style.display = 'none'; document.getElementById('1604.04019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Scientific Reports (in press)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 6, 25238 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01157">arXiv:1603.01157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.01157">pdf</a>, <a href="https://arxiv.org/format/1603.01157">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep22548">10.1038/srep22548 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional superconductivity and interaction induced Fermi surface reconstruction in the two-dimensional Edwards model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Dai-Ning Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fehske%2C+H">Holger Fehske</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+K+W">Klaus W. Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sykora%2C+S">Steffen Sykora</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01157v1-abstract-short" style="display: inline;"> We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01157v1-abstract-full').style.display = 'inline'; document.getElementById('1603.01157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01157v1-abstract-full" style="display: none;"> We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01157v1-abstract-full').style.display = 'none'; document.getElementById('1603.01157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 6, 22548 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.09040">arXiv:1511.09040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.09040">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.125109">10.1103/PhysRevB.93.125109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding topological phase transition in transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+D">Duk-Hyun Choe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+H">Ha-Jun Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K+J">Kee Joo Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.09040v1-abstract-short" style="display: inline;"> Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as MX2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the non-trivial topology of electron bands in TMDs is caused by the band inversion between metal d and chalcogen p orbital bands&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.09040v1-abstract-full').style.display = 'inline'; document.getElementById('1511.09040v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.09040v1-abstract-full" style="display: none;"> Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as MX2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the non-trivial topology of electron bands in TMDs is caused by the band inversion between metal d and chalcogen p orbital bands, where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, MS2 and MSe2 exhibits the opposite behavior of TPT, such that the chalcogen p orbital band moves down below the metal d orbital band. More interestingly, in MTe2, the band inversion occurs between the metal d orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.09040v1-abstract-full').style.display = 'none'; document.getElementById('1511.09040v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 125109 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.00697">arXiv:1505.00697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.00697">pdf</a>, <a href="https://arxiv.org/format/1505.00697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.085132">10.1103/PhysRevB.92.085132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay of electron-electron and electron-phonon interactions in the low temperature phase of 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+Y">Yong-Heum Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Ki-Seok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+H+W">Han Woong Yeom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.00697v1-abstract-short" style="display: inline;"> We investigate the interplay of the electron-electron and electron-phonon interactions in the electronic structure of an exotic insulating state in the layered dichalcogenide 1T-TaS2, where the charge-density-wave (CDW) order coexists with a Mott correlation gap. Scanning tunneling microscopy and spectroscopy measurements with high spatial and energy resolution determine unambiguously the CDW and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00697v1-abstract-full').style.display = 'inline'; document.getElementById('1505.00697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.00697v1-abstract-full" style="display: none;"> We investigate the interplay of the electron-electron and electron-phonon interactions in the electronic structure of an exotic insulating state in the layered dichalcogenide 1T-TaS2, where the charge-density-wave (CDW) order coexists with a Mott correlation gap. Scanning tunneling microscopy and spectroscopy measurements with high spatial and energy resolution determine unambiguously the CDW and the Mott gap as 0.20-0.24 eV and 0.32 eV, respectively, through the real space electron phases measured across the multiply formed energy gaps. An unusual local reduction of the Mott gap is observed on the defect site, which indicates the renormalization of the on-site Coulomb interaction by the electron-phonon coupling as predicted by the Hubbard-Holstein model. The Mott-gap renormalization provides new insight into the disorder-induced quasi-metallic phases of 1T-TaS2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00697v1-abstract-full').style.display = 'none'; document.getElementById('1505.00697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 085132 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.00690">arXiv:1505.00690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.00690">pdf</a>, <a href="https://arxiv.org/format/1505.00690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms10453">10.1038/ncomms10453 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Doohee Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheon%2C+S">Sangmo Cheon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Ki-Seok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sung-Hoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+Y">Yong-Heum Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+H+W">Han Woong Yeom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.00690v2-abstract-short" style="display: inline;"> Quantum states of strongly correlated electrons are of prime importance to understand exotic properties of condensed matter systems and the controllability over those states promises unique electronic devices such as a Mott memory. As a recent example, a ultrafast switching device was demonstrated using the transition between the correlated Mott insulating state and a hidden-order metallic state o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00690v2-abstract-full').style.display = 'inline'; document.getElementById('1505.00690v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.00690v2-abstract-full" style="display: none;"> Quantum states of strongly correlated electrons are of prime importance to understand exotic properties of condensed matter systems and the controllability over those states promises unique electronic devices such as a Mott memory. As a recent example, a ultrafast switching device was demonstrated using the transition between the correlated Mott insulating state and a hidden-order metallic state of a layered transition metal dichalcogenides 1T-TaS2. However, the origin of the hidden metallic state was not clear and only the macroscopic switching by laser pulse and carrier injection was reported. Here, we demonstrate the nanoscale manipulation of the Mott insulating state of 1T-TaS2. The electron pulse from a scanning tunneling microscope switches the insulating phase locally into a metallic phase which is textured with irregular domain walls in the charge density wave (CDW) order inherent to this Mott state. The metallic state is a novel correlated phase near the Mott criticality with a coherent feature at the Fermi energy, which is induced by the moderate reduction of electron correlation due to the decoherence in CDW. This work paves the avenue toward novel nanoscale electronic devices based on correlated electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00690v2-abstract-full').style.display = 'none'; document.getElementById('1505.00690v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature communications 7, 10453 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.7139">arXiv:1412.7139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.7139">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep06124">10.1038/srep06124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensionality Control of d-orbital Occupation in Oxide Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+D+W">Da Woon Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+S">Satoshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jae-Young Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+W">Kyung Wan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+S+J">Soon Jae Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+N">Ho Nyung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+T+W">Tae Won Noh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.7139v1-abstract-short" style="display: inline;"> Manipulating the orbital state in a strongly correlated electron system is of fundamental and technological importance for exploring and developing novel electronic phases. Here, we report an unambiguous demonstration of orbital occupancy control between t2g and eg multiplets in quasi-twodimensional transition metal oxide superlattices (SLs) composed of a Mott insulator LaCoO3 and a band insulator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7139v1-abstract-full').style.display = 'inline'; document.getElementById('1412.7139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.7139v1-abstract-full" style="display: none;"> Manipulating the orbital state in a strongly correlated electron system is of fundamental and technological importance for exploring and developing novel electronic phases. Here, we report an unambiguous demonstration of orbital occupancy control between t2g and eg multiplets in quasi-twodimensional transition metal oxide superlattices (SLs) composed of a Mott insulator LaCoO3 and a band insulator LaAlO3. As the LaCoO3 sublayer thickness approaches its fundamental limit (i.e. one unit-cell-thick), the electronic state of the SLs changed from a Mott insulator, in which both t2g and eg orbitals are partially filled, to a band insulator by completely filling (emptying) the t2g (eg) orbitals. We found the reduction of dimensionality has a profound effect on the electronic structure evolution, which is, whereas, insensitive to the epitaxial strain. The remarkable orbital controllability shown here offers a promising pathway for novel applications such as catalysis and photovoltaics, where the energy of d level is an essential parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7139v1-abstract-full').style.display = 'none'; document.getElementById('1412.7139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 4, 6124 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0339">arXiv:1412.0339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.0339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nn504956h">10.1021/nn504956h <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Designed Three-Dimensional Freestanding Single-Crystal Carbon Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Ji-Hoon Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Dae-Hyun Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+Y">Youngkwon Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H">Ha-Chul Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+S">Sung-Joon Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwak%2C+S+K">Sang Kyu Kwak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H">Hyeon-Jin Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Changgu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+J+R">Joung Real Ahn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0339v1-abstract-short" style="display: inline;"> Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have since followed and continue to provide further impetus to this field. In this study, we fabricated designed three-dimensional (3D) single-crystal carbo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0339v1-abstract-full').style.display = 'inline'; document.getElementById('1412.0339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0339v1-abstract-full" style="display: none;"> Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have since followed and continue to provide further impetus to this field. In this study, we fabricated designed three-dimensional (3D) single-crystal carbon architectures by using silicon carbide templates. For this method, a designed 3D SiC structure was transformed into a 3D freestanding single-crystal carbon structure that retained the original SiC structure by performing a simple single-step thermal process. The SiC structure inside the 3D carbon structure is self-etched, which results in a 3D freestanding carbon structure. The 3D carbon structure is a single crystal with the same hexagonal close-packed structure as graphene. The size of the carbon structures can be controlled from the nanoscale to the microscale, and arrays of these structures can be scaled up to the wafer scale. The 3D freestanding carbon structures were found to be mechanically stable even after repeated loading. The relationship between the reversible mechanical deformation of a carbon structure and its electrical conductance was also investigated. Our method of fabricating designed 3D freestanding single-crystal graphene architectures opens up prospects in the field of single-crystal carbon nanomaterials, and paves the way for the development of 3D single-crystal carbon devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0339v1-abstract-full').style.display = 'none'; document.getElementById('1412.0339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano, 2014, 8, 11657 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.1325">arXiv:1401.1325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.1325">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.155115">10.1103/PhysRevB.89.155115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon-assisted optical excitation in the narrow bandgap Mott insulator Sr3Ir2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H+J">H. J. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C+H">C. H. Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+D+W">D. W. Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">G. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+S+J">S. J. Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+H">Hosub Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+T+W">T. W. Noh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.1325v2-abstract-short" style="display: inline;"> We examined the temperature (T) evolution of the optical conductivity spectra of Sr$_3$Ir$_2$O$_7$ over a wide range of 10-400 K. The system was barely insulating, exhibiting a small indirect bandgap of $\sim$0.1 eV. The low-energy features of the optical d-d excitation (${\hbar}蠅$ $&lt;$ 0.3 eV) evolved drastically, whereas such evolution was not observed for the O K-edge X-ray absorption spectra. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1325v2-abstract-full').style.display = 'inline'; document.getElementById('1401.1325v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.1325v2-abstract-full" style="display: none;"> We examined the temperature (T) evolution of the optical conductivity spectra of Sr$_3$Ir$_2$O$_7$ over a wide range of 10-400 K. The system was barely insulating, exhibiting a small indirect bandgap of $\sim$0.1 eV. The low-energy features of the optical d-d excitation (${\hbar}蠅$ $&lt;$ 0.3 eV) evolved drastically, whereas such evolution was not observed for the O K-edge X-ray absorption spectra. This suggests that the T evolution in optical spectra is not caused by a change in the bare (undressed) electronic structure, but instead, presumably originates from an abundance of phonon-assisted indirect excitations. Our results showed that the low-energy excitations were dominated by phonon-absorption processes which involve, in particular, the optical phonons. This implies that phonon-assisted processes significantly facilitate the charge dynamics in barely insulating Sr$_3$Ir$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1325v2-abstract-full').style.display = 'none'; document.getElementById('1401.1325v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.1686">arXiv:1310.1686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.1686">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/25/46/465601">10.1088/0953-8984/25/46/465601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large in-plane deformation of RuO6 octahedron and ferromagnetism of bulk SrRuO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sanghyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+R">J. R. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torii%2C+S">S. Torii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Seongil Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamiyama%2C+T">T. Kamiyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jaejun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEwen%2C+K+A">K. A. McEwen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.1686v2-abstract-short" style="display: inline;"> SrRuO3 is a ferromagnetic metal with several unusual physical properties such as zero thermal expansion below Tc, so-called Invar behavior. Another anomalous feature is that the a-axis lattice constant is larger than the b-axis lattice constant, a clear deviation from the predictions of the Glazer structural description with rigid RuO6 octahedron motion. Using high resolution neutron diffraction t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1686v2-abstract-full').style.display = 'inline'; document.getElementById('1310.1686v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.1686v2-abstract-full" style="display: none;"> SrRuO3 is a ferromagnetic metal with several unusual physical properties such as zero thermal expansion below Tc, so-called Invar behavior. Another anomalous feature is that the a-axis lattice constant is larger than the b-axis lattice constant, a clear deviation from the predictions of the Glazer structural description with rigid RuO6 octahedron motion. Using high resolution neutron diffraction techniques, we show how these two structural anomalies arise from the irregular in-plane deformation, i.e. plastic behavior of the RuO6 octahedron, a weak band Jahn-Teller distortion. We further demonstrate that the ferromagnetic instability of SrRuO3 is related to the temperature-induced localization of Ru 4d bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1686v2-abstract-full').style.display = 'none'; document.getElementById('1310.1686v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 1 table. J. Phys.: Condens. Matter (in press) &amp; IOP Select</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.0925">arXiv:1309.0925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.0925">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.247202">10.1103/PhysRevLett.110.247202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature Evolution of Itinerant Ferromagnetism in SrRuO3 Probed by Optical Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+D+W">D. W. Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H+C">Hong Chul Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C+H">Choong H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S+H">Seo Hyoung Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C+H">C. H. Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H+J">H. J. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+T+D">T. D. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baek%2C+S+H">S. H. Baek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C+B">C. B. Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shim%2C+J+H">J. H. Shim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">J. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+S+J">S. J. Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+T+W">T. W. Noh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.0925v1-abstract-short" style="display: inline;"> The temperature ($T$) dependence of the optical conductivity spectra $蟽(蠅)$ of a single crystal SrRuO$_3$ thin film is studied over a $T$ range from 5 to 450 K. We observed significant $T$ dependence of the spectral weights of the charge transfer and interband $d$-$d$ transitions across the ferromagnetic Curie temperature ($T_c$ ~ 150 K). Such $T$ dependence was attributed to the increase in the R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.0925v1-abstract-full').style.display = 'inline'; document.getElementById('1309.0925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.0925v1-abstract-full" style="display: none;"> The temperature ($T$) dependence of the optical conductivity spectra $蟽(蠅)$ of a single crystal SrRuO$_3$ thin film is studied over a $T$ range from 5 to 450 K. We observed significant $T$ dependence of the spectral weights of the charge transfer and interband $d$-$d$ transitions across the ferromagnetic Curie temperature ($T_c$ ~ 150 K). Such $T$ dependence was attributed to the increase in the Ru spin moment, which is consistent with the results of density functional theory calculations. $T$ scans of $蟽(惟, T)$ at fixed frequencies $惟$ reveal a clear $T^2$ dependence below $T_c$, demonstrating that the Stoner mechanism is involved in the evolution of the electronic structure. In addition, $蟽(惟, T)$ continues to evolve at temperatures above $T_c$, indicating that the local spin moment persists in the paramagnetic state. This suggests that SrRuO$_3$ is an intriguing oxide system with itinerant ferromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.0925v1-abstract-full').style.display = 'none'; document.getElementById('1309.0925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, 110, 247202 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.1124">arXiv:1206.1124</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.1124">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl302656d">10.1021/nl302656d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical Control of Plasmon Resonance with Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jonghwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+H">Hyungmok Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D+J">David J. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+B">Baisong Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regan%2C+W">Will Regan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Sufei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kwanpyo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zettl%2C+A">Alex Zettl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yuen-Ron Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.1124v1-abstract-short" style="display: inline;"> Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical propert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1124v1-abstract-full').style.display = 'inline'; document.getElementById('1206.1124v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.1124v1-abstract-full" style="display: none;"> Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical properties, provides an ideal material to integrate with nanometallic structures for realizing such control. Here we demonstrate effective modulation of the plasmon resonance in a model system composed of hybrid graphene-gold nanorod structure. Upon electrical gating the strong optical transitions in graphene can be switched on and off, which leads to significant modulation of both the resonance frequency and quality factor of plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as exemplified by this combination of graphene and gold nanorod, provide a general and powerful way for electrical control of plasmon resonances. It holds promise for novel active optical devices and plasmonic circuits at the deep subwavelength scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1124v1-abstract-full').style.display = 'none'; document.getElementById('1206.1124v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0708.2318">arXiv:0708.2318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0708.2318">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.77.045137">10.1103/PhysRevB.77.045137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structures of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">W. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+G">D. G. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+S+S+A">S. S. A. Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+S+J">S. J. Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">D. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+H">J. H. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D+-">D. -Y. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Y. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murugavel%2C+P">P. Murugavel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jaejun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+T+W">T. W. Noh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0708.2318v1-abstract-short" style="display: inline;"> We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.2318v1-abstract-full').style.display = 'inline'; document.getElementById('0708.2318v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0708.2318v1-abstract-full" style="display: none;"> We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.2318v1-abstract-full').style.display = 'none'; document.getElementById('0708.2318v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 77, 045137 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0707.2127">arXiv:0707.2127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0707.2127">pdf</a>, <a href="https://arxiv.org/ps/0707.2127">ps</a>, <a href="https://arxiv.org/format/0707.2127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.76.165411">10.1103/PhysRevB.76.165411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of oxygen vacancy on the electronic structure of HfO$_2$ film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">Deok-Yong Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jae-Min Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+S+-">S. -J. Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+-">J. -Y. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+-">J. -H. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0707.2127v1-abstract-short" style="display: inline;"> We investigated the unoccupied part of the electronic structure of the oxygen-deficient hafnium oxide (HfO$_{\sim1.8}$) using soft x-ray absorption spectroscopy at O $K$ and Hf $N_3$ edges. Band-tail states beneath the unoccupied Hf 5$d$ band are observed in the O $K$-edge spectra; combined with ultraviolet photoemission spectrum, this indicates the non-negligible occupation of Hf 5$d$ state. Ho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2127v1-abstract-full').style.display = 'inline'; document.getElementById('0707.2127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0707.2127v1-abstract-full" style="display: none;"> We investigated the unoccupied part of the electronic structure of the oxygen-deficient hafnium oxide (HfO$_{\sim1.8}$) using soft x-ray absorption spectroscopy at O $K$ and Hf $N_3$ edges. Band-tail states beneath the unoccupied Hf 5$d$ band are observed in the O $K$-edge spectra; combined with ultraviolet photoemission spectrum, this indicates the non-negligible occupation of Hf 5$d$ state. However, Hf $N_3$-edge magnetic circular dichroism spectrum reveals the absence of a long-range ferromagnetic spin order in the oxide. Thus the small amount of $d$ electron gained by the vacancy formation does not show inter-site correlation, contrary to a recent report [M. Venkatesan {\it et al.}, Nature {\bf 430}, 630 (2004)]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2127v1-abstract-full').style.display = 'none'; document.getElementById('0707.2127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, submitted to Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0206063">arXiv:cond-mat/0206063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0206063">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0206063">ps</a>, <a href="https://arxiv.org/format/cond-mat/0206063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/35/14/307">10.1088/0953-4075/35/14/307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Bose-Einstein condensate in an optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Denschlag%2C+J+H">J Hecker Denschlag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simsarian%2C+J+E">J E Simsarian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haeffner%2C+H">H Haeffner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McKenzie%2C+C">C McKenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browaeys%2C+A">A Browaeys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">D Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Helmerson%2C+K">K Helmerson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolston%2C+S+L">S L Rolston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+W+D">W D Phillips</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0206063v1-abstract-short" style="display: inline;"> We have performed a number of experiments with a Bose-Einstein condensate (BEC) in a one dimensional optical lattice. Making use of the small momentum spread of a BEC and standard atom optics techniques a high level of coherent control over an artificial solid state system is demonstrated. We are able to load the BEC into the lattice ground state with a very high efficiency by adiabatically turn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0206063v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0206063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0206063v1-abstract-full" style="display: none;"> We have performed a number of experiments with a Bose-Einstein condensate (BEC) in a one dimensional optical lattice. Making use of the small momentum spread of a BEC and standard atom optics techniques a high level of coherent control over an artificial solid state system is demonstrated. We are able to load the BEC into the lattice ground state with a very high efficiency by adiabatically turning on the optical lattice. We coherently transfer population between lattice states and observe their evolution. Methods are developed and used to perform band spectroscopy. We use these techniques to build a BEC accelerator and a novel, coherent, large-momentum-transfer beamsplitter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0206063v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0206063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 15 figures. Accepted for J. Phys. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0111501">arXiv:cond-mat/0111501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0111501">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0111501">ps</a>, <a href="https://arxiv.org/format/cond-mat/0111501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.88.120403">10.1103/PhysRevLett.88.120403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoassociation of sodium in a Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McKenzie%2C+C">C. McKenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denschlag%2C+J+H">J. Hecker Denschlag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haeffner%2C+H">H. Haeffner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browaeys%2C+A">A. Browaeys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Araujo%2C+L+E+E">Luis E. E. de Araujo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fatemi%2C+F+K">F. K. Fatemi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+K+M">K. M. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simsarian%2C+J+E">J. E. Simsarian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+D">D. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simoni%2C+A">A. Simoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiesinga%2C+E">E. Tiesinga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julienne%2C+P+S">P. S. Julienne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Helmerson%2C+K">K. Helmerson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lett%2C+P+D">P. D. Lett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolston%2C+S+L">S. L. Rolston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+W+D">W. D. Phillips</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0111501v2-abstract-short" style="display: inline;"> We report on the formation of ultra-cold Na$_2$ molecules using single-photon photoassociation of a Bose-Einstein condensate. The photoassociation rate, linewidth and light shift of the J=1, $v=135$ vibrational level of the \mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the photoassociation rate constant increases linearly with intensity, even where it is predicted tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0111501v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0111501v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0111501v2-abstract-full" style="display: none;"> We report on the formation of ultra-cold Na$_2$ molecules using single-photon photoassociation of a Bose-Einstein condensate. The photoassociation rate, linewidth and light shift of the J=1, $v=135$ vibrational level of the \mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the photoassociation rate constant increases linearly with intensity, even where it is predicted that many-body effects might limit the rate. Our observations are everywhere in good agreement with a two-body theory having no free parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0111501v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0111501v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2001; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Fixes to the figures and references. Just the normal human stupidity type stuff, nothing Earth-shattering</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10