CINXE.COM
Search results for: Charge recombination
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Charge recombination</title> <meta name="description" content="Search results for: Charge recombination"> <meta name="keywords" content="Charge recombination"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Charge recombination" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Charge recombination"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1007</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Charge recombination</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Influence of Recombination of Free and Trapped Charge Carriers on the Efficiency of Conventional and Inverted Organic Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Mehdizadeh%20Rad">Hooman Mehdizadeh Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jai%20Singh"> Jai Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells (OSCs) have been actively investigated in the last two decades due to their several merits such as simple fabrication process, low-cost manufacturing, and lightweight. In this paper, using the optical transfer matrix method (OTMM) and solving the drift-diffusion equations processes of recombination are studied in inverted and conventional bulk heterojunction (BHJ) OSCs. Two types of recombination processes are investigated: 1) recombination of free charge carriers using the Langevin theory and 2) of trapped charge carriers in the tail states with exponential energy distribution. These recombination processes are incorporated in simulating the current- voltage characteristics of both conventional and inverted BHJ OSCs. The results of this simulation produces a higher power conversion efficiency in the inverted structure in comparison with conventional structure, which agrees well with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20organic%20solar%20cells" title="conventional organic solar cells">conventional organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20tail%20state%20recombination" title=" exponential tail state recombination"> exponential tail state recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20organic%20solar%20cells" title=" inverted organic solar cells"> inverted organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Langevin%20recombination" title=" Langevin recombination"> Langevin recombination</a> </p> <a href="https://publications.waset.org/abstracts/79569/influence-of-recombination-of-free-and-trapped-charge-carriers-on-the-efficiency-of-conventional-and-inverted-organic-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yawen%20Dai">Yawen Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Cheng"> Ping Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Ru%20Gong"> Jian Ru Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20storage%20capacity" title="charge storage capacity">charge storage capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20charge%20behavior" title=" interfacial charge behavior"> interfacial charge behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemistry" title=" photoelectrochemistry"> photoelectrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=water-splitting" title=" water-splitting"> water-splitting</a> </p> <a href="https://publications.waset.org/abstracts/117739/modulating-photoelectrochemical-water-splitting-activity-by-charge-storage-capacity-of-electrocatalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Electron-Ion Recombination of N^{2+} and O^{3+} Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20%20A.%20Abdel-Naby">Shahin A. Abdel-Naby</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20T.%20Hassan"> Asad T. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Stuart%20Loch"> Stuart Loch</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Fogle"> Michael Fogle</a>, <a href="https://publications.waset.org/abstracts/search?q=Negil%20R.%20%20Badnell"> Negil R. Badnell</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20S.%20Pindzola"> Michael S. Pindzola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate and reliable laboratory astrophysical data for electron-ion recombination are needed for plasma modeling. Dielectronic recombination (DR) rate coefficients are calculated for boron-like nitrogen and oxygen ions using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. The calculations are performed in intermediate coupling scheme associated with n = 0 (2 2) and n = 1 (2 3) core-excitations. Good agreements are found between the theoretically convoluted rate coefficients and the experimental measurements performed at CRYRING heavy-ion storage ring for both ions. Fitting coefficients for the rate coefficients are produced for these ions in the temperature range q2(102-107) K, where q is the ion charge before recombination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atomic%20data" title="Atomic data">Atomic data</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20processes" title=" atomic processes"> atomic processes</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-ion%20collision" title=" electron-ion collision"> electron-ion collision</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a> </p> <a href="https://publications.waset.org/abstracts/123894/electron-ion-recombination-of-n2-and-o3-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20A.%20Mikhailova">Valentina A. Mikhailova</a>, <a href="https://publications.waset.org/abstracts/search?q=Serguei%20V.%20Feskov"> Serguei V. Feskov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20I.%20Ivanov"> Anatoly I. Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charge%20recombination" title="Charge recombination">Charge recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states" title=" higher excited states"> higher excited states</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20energy%20gap%20law" title=" free energy gap law"> free energy gap law</a>, <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium" title=" nonequilibrium"> nonequilibrium</a> </p> <a href="https://publications.waset.org/abstracts/51761/nonequilibrium-effects-in-photoinduced-ultrafast-charge-transfer-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng%20H.%20Lean">Meng H. Lean</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ping%20L.%20Chu"> Wei-Ping L. Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20double%20layer" title=" electrical double layer"> electrical double layer</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20charge%20transport" title=" bipolar charge transport"> bipolar charge transport</a> </p> <a href="https://publications.waset.org/abstracts/31221/modeling-of-bipolar-charge-transport-through-nanocomposite-films-for-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Recombination Rate Coefficients for NIII and OIV Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20A.%20Abdel-Naby">Shahin A. Abdel-Naby</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20T.%20Hassan"> Asad T. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron-ion recombination data are needed for plasma modeling. The recombination processes include radiative recombination (RR), dielectronic recombination (DR), and trielectronic recombination (TR). When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by photon emission. Reliable laboratory astrophysics data (theory and experiment) for DR rate coefficients are needed to determine the charge state distribution in photoionized sources such as X-ray binaries and active galactic nuclei. DR rate coefficients for NIII and OIV ions are calculated using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated with Δn = 0 (2→2) and Δn = 1 (2 →3) core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are found between these rate coefficients and the experimental measurements performed at the CRYRING heavy-ion storage ring for both ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20data" title="atomic data">atomic data</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20process" title=" atomic process"> atomic process</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-ion%20collision" title=" electron-ion collision"> electron-ion collision</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmas" title=" plasmas"> plasmas</a> </p> <a href="https://publications.waset.org/abstracts/137671/recombination-rate-coefficients-for-niii-and-oiv-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Absorption and Carrier Transport Properties of Doped Hematite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebisi%20Moruf%20Ademola">Adebisi Moruf Ademola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deposition-annealing" title="deposition-annealing">deposition-annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=hematite" title=" hematite"> hematite</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ion%20doping" title=" metal ion doping"> metal ion doping</a>, <a href="https://publications.waset.org/abstracts/search?q=nanorod" title=" nanorod"> nanorod</a> </p> <a href="https://publications.waset.org/abstracts/94270/absorption-and-carrier-transport-properties-of-doped-hematite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Mechanism of Charge Transport in the Interface of CsSnI₃-FASnI₃ Perovskite Based Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Mozhgan%20Seyed-Talebi">Seyedeh Mozhgan Seyed-Talebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Weng-Kent%20Chan"> Weng-Kent Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yi%20Tiffany%20Chen"> Hsin-Yi Tiffany Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead-free perovskite photovoltaic (PV) technology employing non-toxic tin halide perovskite absorbers is pivotal for advancing perovskite solar cell (PSC) commercialization. Despite challenges posed by perovskite sensitivity to oxygen and humidity, our study utilizes DFT calculations using VASP and NanoDCAL software and SCAPS-1D simulations to elucidate the charge transport mechanism at the interface of CsSnI₃-FASnI₃ heterojunction. Results reveal how inherent electric fields facilitate efficient carrier transport, reducing recombination losses. We predict optimized power conversion efficiencies (PCEs) and highlight the potential of CsSnI3-FASnI3 heterojunctions for cost-effective and efficient charge transport layer-free (CTLF) photovoltaic devices. Our study provides insights into the future direction of recognizing more efficient, nontoxic heterojunction perovskite devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20transport%20layer%20free" title="charge transport layer free">charge transport layer free</a>, <a href="https://publications.waset.org/abstracts/search?q=CsSnI%E2%82%83-FASnI%E2%82%83%20heterojunction" title=" CsSnI₃-FASnI₃ heterojunction"> CsSnI₃-FASnI₃ heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-free%20perovskite%20solar%20cell" title=" lead-free perovskite solar cell"> lead-free perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tin%20halide%20perovskite." title=" tin halide perovskite."> tin halide perovskite.</a>, <a href="https://publications.waset.org/abstracts/search?q=Charge%20transport%20layer%20free" title=" Charge transport layer free"> Charge transport layer free</a> </p> <a href="https://publications.waset.org/abstracts/186055/mechanism-of-charge-transport-in-the-interface-of-cssni3-fasni3-perovskite-based-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Thermal Annealing Effects on Nonradiative Recombination Parameters of GaInAsSb/GaSb by Means of Photothermal Defection Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souha%20Bouagila">Souha Bouagila</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiene%20Ilahi"> Soufiene Ilahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have used Photothermal deflection spectroscopy PTD to investigate the impact of thermal annealing on electronics properties of GaInAsSb/GaSb.GaInAsSb used as an active layer for Vertical Cavity Surface Emitting laser (VCSEL). We have remarked that surface recombination velocity (SRV) from 7963 m / s (± 6.3%) to 1450 m / s (± 3.6) for as grown to sample annealed for 60 min. Accordingly, Force Microscopy images analyses agree well with the measure of surface recombination velocity. We have found that Root-Mean-Square Roughness (RMS) decreases as respect of annealing time. In addition, we have that the diffusion length and minority carrier mobility have been enhanced according to annealing time. However, due to annealing effects, the interface recombination velocity (IRV) is increased from 1196 m / s (± 5) to 6000 m/s (5%) for GaInAsSb in respect of annealed times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonradiative%20lifetime" title="nonradiative lifetime">nonradiative lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20of%20minority%20carrier" title=" mobility of minority carrier"> mobility of minority carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20length" title=" diffusion length"> diffusion length</a>, <a href="https://publications.waset.org/abstracts/search?q=Surface%20and%20interface%20recombination%20velocity" title=" Surface and interface recombination velocity"> Surface and interface recombination velocity</a> </p> <a href="https://publications.waset.org/abstracts/165142/thermal-annealing-effects-on-nonradiative-recombination-parameters-of-gainassbgasb-by-means-of-photothermal-defection-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Combined Influence of Charge Carrier Density and Temperature on Open-Circuit Voltage in Bulk Heterojunction Organic Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Yeboah">Douglas Yeboah</a>, <a href="https://publications.waset.org/abstracts/search?q=Monishka%20Narayan"> Monishka Narayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jai%20Singh"> Jai Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key parameters in determining the power conversion efficiency (PCE) of organic solar cells (OSCs) is the open-circuit voltage, however, it is still not well understood. In order to examine the performance of OSCs, it is necessary to understand the losses associated with the open-circuit voltage and how best it can be improved. Here, an analytical expression for the open-circuit voltage of bulk heterojunction (BHJ) OSCs is derived from the charge carrier densities without considering the drift-diffusion current. The open-circuit voltage thus obtained is dependent on the donor-acceptor band gap, the energy difference between the highest occupied molecular orbital (HOMO) and the hole quasi-Fermi level of the donor material, temperature, the carrier density (electrons), the generation rate of free charge carriers and the bimolecular recombination coefficient. It is found that open-circuit voltage increases when the carrier density increases and when the temperature decreases. The calculated results are discussed in view of experimental results and agree with them reasonably well. Overall, this work proposes an alternative pathway for improving the open-circuit voltage in BHJ OSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20carrier%20density" title="charge carrier density">charge carrier density</a>, <a href="https://publications.waset.org/abstracts/search?q=open-circuit%20voltage" title=" open-circuit voltage"> open-circuit voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title=" organic solar cells"> organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/68927/combined-influence-of-charge-carrier-density-and-temperature-on-open-circuit-voltage-in-bulk-heterojunction-organic-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Investigation of Doping Effects on Nonradiative Recombination Parameters in Bulk GaAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soufiene%20Ilahi">Soufiene Ilahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have used Photothermal deflection spectroscopy PTD to investigate the impact of doping on electronics properties of bulk. Then, the extraction of these parameters is performed by fitting the theoretical curves to the experimental PTD ones. We have remarked that electron mobility in p type C-doped GaAs is about 300 cm2/V·s. Accordinagly, the diffusion length of minority carrier lifetime is equal to 5 (± 7%), 5 (± 4,4%) and 1.42 µm (± 7,2 %) for the Cr, C and Si doped GaAs respectively. Surface recombination velocity varies randomly that can be found around of 7942 m/s, 100 m/s and 153 m/s GaAs doped Si, Cr, C, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonradiative%20lifetime" title="nonradiative lifetime">nonradiative lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20of%20minority%20carrier" title=" mobility of minority carrier"> mobility of minority carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20length" title=" diffusion length"> diffusion length</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20and%20interface%20recombination%20in%20GaAs" title=" surface and interface recombination in GaAs"> surface and interface recombination in GaAs</a> </p> <a href="https://publications.waset.org/abstracts/166602/investigation-of-doping-effects-on-nonradiative-recombination-parameters-in-bulk-gaas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Thermal Annealing Effects on Minority Carrier Lifetime in GaInAsSb/GaSb by Means of Photothermal Defletion Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souha%20Bouagila">Souha Bouagila</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiene%20Ilahi"> Soufiene Ilahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photothermal deflection technique PTD have been employed to study the impact of thermal annealing on minority carrier in GaInAsSb grown on GaSb substarte, which used as an active layer for Vertical Cavity Surface Emitting laser (VCSEL). Photothermal defelction technique is nondescructive and accurate technique for electronics parameters determination. The measure of non-radiative recombination, electronic diffusivity, surface and interface recombination are effectuated by fitting the theoretical PTD signal to the experimental ones. As a results, we have found that Non-radiative lifetime increases from 3.8 µs (± 3, 9 %) for not annealed GaInAsSb to the 7.1 µs (± 5, 7%). In fact, electronic diffusivity D increased from 60.1 (± 3.9 %) to 89.6 cm2 / s (± 2.7%) for the as grown to that annealed for 60 min respectively. We have remarked that surface recombination velocity (SRV) decreases from 7963 m / s (± 6.3%) to 1450 m / s (± 3.6). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonradiative%20lifetime" title="nonradiative lifetime">nonradiative lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20of%20minority%20carrier" title=" mobility of minority carrier"> mobility of minority carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20length" title=" diffusion length"> diffusion length</a>, <a href="https://publications.waset.org/abstracts/search?q=Surface%20and%20interface%20recombination%20velocity.GaInAsSb%20active%20layer" title=" Surface and interface recombination velocity.GaInAsSb active layer"> Surface and interface recombination velocity.GaInAsSb active layer</a> </p> <a href="https://publications.waset.org/abstracts/169083/thermal-annealing-effects-on-minority-carrier-lifetime-in-gainassbgasb-by-means-of-photothermal-defletion-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Facile Synthesis of Sulfur Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20V.%20Pillai">Vishnu V. Pillai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20P.%20Lonkar"> Sunil P. Lonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhil%20M.%20Abraham"> Akhil M. Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Alhassan"> Saeed M. Alhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effectual technology for wastewater treatment is a great demand now in order to encounter the water pollution caused by organic pollutants. Photocatalytic oxidation technology is widely used in removal of such unsafe contaminants. Among the semi-conducting metal oxides, robust and thermally stable TiO2 has emerged as a fascinating material for photocatalysis. Enhanced catalytic activity was observed for nanostructured TiO2 due to its higher surface, chemical stability and higher oxidation ability. However, higher charge carrier recombination and wide band gap of TiO2 limits its use as a photocatalyst in the UV region. It is desirable to develop a photocatalyst that can efficiently absorb the visible light, which occupies the main part of the solar spectrum. Hence, in order to extend its photocatalytic efficiency under visible light, TiO2 nanoparticles are often doped with metallic or non-metallic elements. Non-metallic doping of TiO2 has attracted much attention due to the low thermal stability and enhanced recombination of charge carriers endowed by metallic doping of TiO2. Amongst, sulfur doped TiO2 is most widely used photocatalyst in environmental purification. However, the most of S-TiO2 synthesis technique uses toxic chemicals and complex procedures. Hence, a facile, scalable and environmentally benign preparation process for S-TiO2 is highly desirable. In present work, we have demonstrated new and facile solid-state reaction method for S-TiO2 synthesis that uses abundant elemental sulfur as S source and moderate temperatures. The resulting nano-sized S-TiO2 has been successfully employed as visible light photocatalyst in methylene blue dye removal from aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecofriendly" title="ecofriendly">ecofriendly</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a> </p> <a href="https://publications.waset.org/abstracts/62648/facile-synthesis-of-sulfur-doped-tio2-nanoparticles-with-enhanced-photocatalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wided%20Zerguine">Wided Zerguine</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Habelhames"> Farid Habelhames </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocurrent%20density" title="photocurrent density">photocurrent density</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20nanostructures" title=" organic nanostructures"> organic nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20coating" title=" hybrid coating"> hybrid coating</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/35376/elaboration-and-characterization-of-meh-ppvpcbm-composite-film-doped-with-tio2-nanoparticles-for-photovoltaic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Behaviour of an RC Circuit near Extreme Point</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tribhuvan%20N.%20Soorya">Tribhuvan N. Soorya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging" title="charging">charging</a>, <a href="https://publications.waset.org/abstracts/search?q=discharging" title=" discharging"> discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20Circuit" title=" RC Circuit"> RC Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a> </p> <a href="https://publications.waset.org/abstracts/28590/behaviour-of-an-rc-circuit-near-extreme-point" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Recombination Center Levels in Gold and Platinum Doped N-Type Silicon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nam%20Chol%20Yu">Nam Chol Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Il%20Chu"> Kyong Il Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using DLTS measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25eV(A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54eV(B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recombination%20center%20level" title="recombination center level">recombination center level</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20lifetime%20control" title=" carrier lifetime control"> carrier lifetime control</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a> </p> <a href="https://publications.waset.org/abstracts/151514/recombination-center-levels-in-gold-and-platinum-doped-n-type-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20K.%20De">Dilip K. De</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20C.%20Olawole"> Olukunle C. Olawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20S.%20Joel"> Emmanuel S. Joel</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Emetere"> Moses Emetere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20carrier%20density" title="charge carrier density">charge carrier density</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20materials" title=" nano materials"> nano materials</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technique" title=" new technique"> new technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20emission" title=" thermionic emission"> thermionic emission</a> </p> <a href="https://publications.waset.org/abstracts/42562/new-technique-of-estimation-of-charge-carrier-density-of-nanomaterials-from-thermionic-emission-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Recombination Center Levels in Gold and Platinum Doped N-type Silicon for High-Speed Thyristor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nam%20Chol%20Yu">Nam Chol Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=GyongIl%20Chu"> GyongIl Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJong%20Ri"> HoJong Ri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using DLTS (Deep-level transient spectroscopy) measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25 eV (A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54 eV (B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recombination%20center%20level" title="recombination center level">recombination center level</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20lifetime%20control" title=" carrier lifetime control"> carrier lifetime control</a>, <a href="https://publications.waset.org/abstracts/search?q=Gold" title=" Gold"> Gold</a>, <a href="https://publications.waset.org/abstracts/search?q=Platinum" title=" Platinum"> Platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=Silicon" title=" Silicon"> Silicon</a> </p> <a href="https://publications.waset.org/abstracts/176412/recombination-center-levels-in-gold-and-platinum-doped-n-type-silicon-for-high-speed-thyristor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Analysis of Replication Protein A (RPA): The Role of Homolog Interaction and Recombination during Meiosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Hwan%20Joo">Jeong Hwan Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun%20Pil%20Kim"> Keun Pil Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During meiosis, meiotic recombination is initiated by Spo11-mediated DSB formation and exonuclease-mediated DSB resection occurs to expose single stranded DNA formation. RPA is further required to inhibit secondary structure formation of ssDNA that can be formed Watson-Crick pairing. Rad51-Dmc1, RecA homologs in eukaryote and their accessory factors involve in searching homolog templates to mediate strand exchange. In this study, we investigate the recombinational roles of replication protein A (RPA), which is heterotrimeric protein that is composed of RPA1, RPA2, and RPA3. Here, we investigated meiotic recombination using DNA physical analysis at the HIS4LEU2 hot spot. In rfa1-119 (K45E, N316S) cells, crossover (CO) and non-crossover (NCO) products reduced than WT. rfa1-119 delayed in single end invasion-to-double holiday junction (SEI-to-dHJ) transition and exhibits a defect in second-end capture that is also modulated by Rad52. In the further experiment, we observed that in rfa1-119 mutant, RPA could not be released in timely manner. Furthermore, rfa1-119 exhibits failure in the second end capture, implying reduction of COs and NCOs. In this talk, we will discuss more detail how RPA involves in chromatin axis association via formation of axis-bridge and why RPA is required for Rad52-mediated second-end capture progression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homolog%20interaction" title="homolog interaction">homolog interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=meiotic%20recombination" title=" meiotic recombination"> meiotic recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=replication%20protein%20A" title=" replication protein A"> replication protein A</a>, <a href="https://publications.waset.org/abstracts/search?q=RPA1" title=" RPA1"> RPA1</a> </p> <a href="https://publications.waset.org/abstracts/80585/analysis-of-replication-protein-a-rpa-the-role-of-homolog-interaction-and-recombination-during-meiosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Unequal Contributions of Parental Isolates in Somatic Recombination of the Stripe Rust Fungus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianming%20Chen">Xianming Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Lei"> Yu Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Meinan%20Wang"> Meinan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dikaryotic basidiomycete fungus, Puccinia striiformis, causes stripe rust, one of the most important diseases of wheat and barley worldwide. The pathogen is largely reproduced asexually, and asexual recombination has been hypothesized to be one of the mechanisms for the pathogen variations. To test the hypothesis and understand the genetic process of asexual recombination, somatic recombinant isolates were obtained under controlled conditions by inoculating susceptible host plants with a mixture of equal quantity of urediniospores of isolates with different virulence patterns and selecting through a series of inoculation on host plants with different genes for resistance to one of the parental isolates. The potential recombinant isolates were phenotypically characterized by virulence testing on the set of 18 wheat lines used to differentiate races of the wheat stripe rust pathogen, P. striiformis f. sp. tritici (Pst), for the combinations of Pst isolates; or on both sets of the wheat differentials and 12 barley differentials for identifying races of the barley stripe rust pathogen, P. striiformis f. sp. hordei (Psh) for combinations of a Pst isolate and a Psh isolate. The progeny and parental isolates were also genotypically characterized with 51 simple sequence repeat and 90 single-nucleotide polymorphism markers. From nine combinations of parental isolates, 68 potential recombinant isolates were obtained, of which 33 (48.5%) had similar virulence patterns to one of the parental isolates, and 35 (51.5%) had virulence patterns distinct from either of the parental isolates. Of the 35 isolates of distinct virulence patterns, 11 were identified as races that had been previously detected from natural collections and 24 were identified as new races. The molecular marker data confirmed 66 of the 68 isolates as recombinants. The percentages of parental marker alleles ranged from 0.9% to 98.9% and were significantly different from equal proportions in the recombinant isolates. Except for a couple of combinations, the greater or less contribution was not specific to any particular parental isolates as the same parental isolates contributed more to some of the progeny isolates but less to the other progeny isolates in the same combination. The unequal contributions by parental isolates appear to be a general role in somatic recombination for the stripe rust fungus, which may be used to distinguish asexual recombination from sexual recombination in studying the evolutionary mechanisms of the highly variable fungal pathogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20markers" title="molecular markers">molecular markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Puccinia%20striiformis" title=" Puccinia striiformis"> Puccinia striiformis</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20recombination" title=" somatic recombination"> somatic recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=stripe%20rust" title=" stripe rust "> stripe rust </a> </p> <a href="https://publications.waset.org/abstracts/62774/unequal-contributions-of-parental-isolates-in-somatic-recombination-of-the-stripe-rust-fungus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Effect of Electropolymerization Method in the Charge Transfer Properties and Photoactivity of Polyaniline Photoelectrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Enrique%20Molina%20Lozano">Alberto Enrique Molina Lozano</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Teresa%20Cort%C3%A9s%20Monta%C3%B1ez"> María Teresa Cortés Montañez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyaniline (PANI) photoelectrodes were electrochemically synthesized through electrodeposition employing three techniques: chronoamperometry (CA), cyclic voltammetry (CV), and potential pulse (PP) methods. The substrate used for electrodeposition was a fluorine-doped tin oxide (FTO) glass with dimensions of 2.5 cm x 1.3 cm. Subsequently, structural and optical characterization was conducted utilizing Fourier-transform infrared (FTIR) spectroscopy and UV-visible (UV-vis) spectroscopy, respectively. The FTIR analysis revealed variations in the molar ratio of benzenoid to quinonoid rings within the PANI polymer matrix, indicative of differing oxidation states arising from the distinct electropolymerization methodologies employed. In the optical characterization, differences in the energy band gap (Eg) values and positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were observed, attributable to variations in doping levels and structural irregularities introduced during the electropolymerization procedures. To assess the charge transfer properties of the PANI photoelectrodes, electrochemical impedance spectroscopy (EIS) experiments were carried out within a 0.1 M sodium sulfate (Na₂SO₄) electrolyte. The results displayed a substantial decrease in charge transfer resistance with the PANI coatings compared to uncoated substrates, with PANI obtained through cyclic voltammetry (CV) presenting the lowest charge transfer resistance, contrasting PANI obtained via chronoamperometry (CA) and potential pulses (PP). Subsequently, the photoactive response of the PANI photoelectrodes was measured through linear sweep voltammetry (LSV) and chronoamperometry. The photoelectrochemical measurements revealed a discernible photoactivity in all PANI-coated electrodes. However, PANI electropolymerized through CV displayed the highest photocurrent. Interestingly, PANI derived from chronoamperometry (CA) exhibited the highest degree of stable photocurrent over an extended temporal interval. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PANI" title="PANI">PANI</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrent" title=" photocurrent"> photocurrent</a>, <a href="https://publications.waset.org/abstracts/search?q=photoresponse" title=" photoresponse"> photoresponse</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20separation" title=" charge separation"> charge separation</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination" title=" recombination"> recombination</a> </p> <a href="https://publications.waset.org/abstracts/182015/effect-of-electropolymerization-method-in-the-charge-transfer-properties-and-photoactivity-of-polyaniline-photoelectrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Doping Density Effects on Minority Carrier Lifetime in Bulk GaAs by Means of Photothermal Deflection Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soufiene%20Ilahi">Soufiene Ilahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photothermal effect occurs when absorbed light energy that generate a thermal wave that propagate into the sample and surrounding media. Subsequently, the propagation of the vibration of phonons or electrons causes heat transfer. In fact, heat energy is provided by non-radiative recombination process that occurs in semiconductors sample. Three heats sources are identified: surface recombination, bulk recombination and carrier thermalisation. In the last few years, Photothermal Deflection Technique PTD is a nondestructive and accurate technique that prove t ability for electronics properties investigation. In this paper, we have studied the influence of doping on minority carrier lifetime, i.e, nonradiative lifetime, surface and diffusion coefficient. In fact, we have measured the photothermal signal of two sample of GaAs doped with C et Cr.In other hand , we have developed a theoretical model that takes into account of thermal and electronics diffusion equations .In order to extract electronics parameters of GaAs samples, we have fitted the theoretical signal of PTD to the experimental ones. As a results, we have found that nonradiative lifetime is around of 4,3 x 10-8 (±11,24%) and 5 x 10-8 (±14,32%) respectively for GaAs : Si doped and Cr doped. Accordingly, the diffusion coefficient is equal 4,6 *10-4 (± 3,2%) and 5* 10-4 (± 0,14%) foe the Cr, C and Si doped GaAs respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonradiative%20lifetime" title="nonradiative lifetime">nonradiative lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20of%20minority%20carrier" title=" mobility of minority carrier"> mobility of minority carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20length" title=" diffusion length"> diffusion length</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20and%20interface%20recombination%20in%20GaAs" title=" surface and interface recombination in GaAs"> surface and interface recombination in GaAs</a> </p> <a href="https://publications.waset.org/abstracts/169011/doping-density-effects-on-minority-carrier-lifetime-in-bulk-gaas-by-means-of-photothermal-deflection-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Numerical Model for Investigation of Recombination Mechanisms in Graphene-Bonded Perovskite Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sharifi%20Miavaghi">Amir Sharifi Miavaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is believed recombination mechnisms in graphene-bonded perovskite solar cells based on numerical model in which doped-graphene structures are employed as anode/cathode bonding semiconductor. Moreover, the dark-light current density-voltage density-voltage curves are investigated by regression analysis. Loss mechanisms such as back contact barrier, deep surface defect in the adsorbent layer is determined by adapting the simulated cell performance to the measurements using the differential evolution of the global optimization algorithm. The performance of the cell in the connection process includes J-V curves that are examined at different temperatures and open circuit voltage (V) under different light intensities as a function of temperature. Based on the proposed numerical model and the acquired loss mechanisms, our approach can be used to improve the efficiency of the solar cell further. Due to the high demand for alternative energy sources, solar cells are good alternatives for energy storage using the photovoltaic phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title="numerical model">numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination%20mechanism" title=" recombination mechanism"> recombination mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=graphen" title=" graphen"> graphen</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solarcell" title=" perovskite solarcell"> perovskite solarcell</a> </p> <a href="https://publications.waset.org/abstracts/179232/numerical-model-for-investigation-of-recombination-mechanisms-in-graphene-bonded-perovskite-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suraka%20Bhattacharjee">Suraka Bhattacharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Chaudhury"> Ranjan Chaudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20charge%20stiffness%20constant" title="generalized charge stiffness constant">generalized charge stiffness constant</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20coupling" title=" charge coupling"> charge coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20Coulomb%20interaction" title=" effective Coulomb interaction"> effective Coulomb interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=t-J-like%20models" title=" t-J-like models"> t-J-like models</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-space%20pairing" title=" momentum-space pairing"> momentum-space pairing</a> </p> <a href="https://publications.waset.org/abstracts/111537/effective-charge-coupling-in-low-dimensional-doped-quantum-antiferromagnets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonina%20Semakova">Antonina Semakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Mynbaev"> Karim Mynbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20Bazhenov"> Nikolai Bazhenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Chernyaev"> Anton Chernyaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Kizhaev"> Sergei Kizhaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20Stoyanov"> Nikolai Stoyanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electroluminescence" title="Electroluminescence">Electroluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=InAsSb" title=" InAsSb"> InAsSb</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diode" title=" light emitting diode"> light emitting diode</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20wells" title=" quantum wells"> quantum wells</a> </p> <a href="https://publications.waset.org/abstracts/122314/temperature-dependence-of-the-optoelectronic-properties-of-inassb-based-led-heterostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Thermoluminescence Investigations of Tl2Ga2Se3S Layered Single Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Delice">Serdar Delice</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Isik"> Mehmet Isik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizami%20Hasanli"> Nizami Hasanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Goksen"> Kadir Goksen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers have donated great interest to ternary and quaternary semiconductor compounds especially with the improvement of the optoelectronic technology. The quaternary compound Tl2Ga2Se3S which was grown by Bridgman method carries the properties of ternary thallium chalcogenides group of semiconductors with layered structure. This compound can be formed from TlGaSe2 crystals replacing the one quarter of selenium atom by sulfur atom. Although Tl2Ga2Se3S crystals are not intentionally doped, some unintended defect types such as point defects, dislocations and stacking faults can occur during growth processes of crystals. These defects can cause undesirable problems in semiconductor materials especially produced for optoelectronic technology. Defects of various types in the semiconductor devices like LEDs and field effect transistor may act as a non-radiative or scattering center in electron transport. Also, quick recombination of holes with electrons without any energy transfer between charge carriers can occur due to the existence of defects. Therefore, the characterization of defects may help the researchers working in this field to produce high quality devices. Thermoluminescence (TL) is an effective experimental method to determine the kinetic parameters of trap centers due to defects in crystals. In this method, the sample is illuminated at low temperature by a light whose energy is bigger than the band gap of studied sample. Thus, charge carriers in the valence band are excited to delocalized band. Then, the charge carriers excited into conduction band are trapped. The trapped charge carriers are released by heating the sample gradually and these carriers then recombine with the opposite carriers at the recombination center. By this way, some luminescence is emitted from the samples. The emitted luminescence is converted to pulses by using an experimental setup controlled by computer program and TL spectrum is obtained. Defect characterization of Tl2Ga2Se3S single crystals has been performed by TL measurements at low temperatures between 10 and 300 K with various heating rate ranging from 0.6 to 1.0 K/s. The TL signal due to the luminescence from trap centers revealed one glow peak having maximum temperature of 36 K. Curve fitting and various heating rate methods were used for the analysis of the glow curve. The activation energy of 13 meV was found by the application of curve fitting method. This practical method established also that the trap center exhibits the characteristics of mixed (general) kinetic order. In addition, various heating rate analysis gave a compatible result (13 meV) with curve fitting as the temperature lag effect was taken into consideration. Since the studied crystals were not intentionally doped, these centers are thought to originate from stacking faults, which are quite possible in Tl2Ga2Se3S due to the weakness of the van der Waals forces between the layers. Distribution of traps was also investigated using an experimental method. A quasi-continuous distribution was attributed to the determined trap centers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcogenides" title="chalcogenides">chalcogenides</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=trap%20centers" title=" trap centers"> trap centers</a> </p> <a href="https://publications.waset.org/abstracts/36725/thermoluminescence-investigations-of-tl2ga2se3s-layered-single-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> X-Ray and DFT Electrostatics Parameters Determination of a Coumarin Derivative Compound C17H13NO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Megrous">Y. Megrous</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crystal structure of 4-Methyl-7-(salicylideneamino)coumarin C17H13NO3has been determined using X-ray diffraction to establish the configuration and stereochemistry of the molecule. This crystal is characterized by its nolinear activity. The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment in-crystal have been determined in order to understand the nature of inter-and intramolecular charge transfer. The study present the thermal motion and the structural analysis obtained from the least-square refinement on F2,this study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20charge%20density" title="electron charge density">electron charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20atomic%20charge" title=" net atomic charge"> net atomic charge</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dipole%20moment" title=" molecular dipole moment"> molecular dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/24669/x-ray-and-dft-electrostatics-parameters-determination-of-a-coumarin-derivative-compound-c17h13no3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Hinrichs">O. Hinrichs</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Franz"> H. Franz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Reiter"> G. Reiter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20dynamic%20simulation" title="beam dynamic simulation">beam dynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge%20compensation" title=" space charge compensation"> space charge compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20electron%20source" title=" thermionic electron source"> thermionic electron source</a>, <a href="https://publications.waset.org/abstracts/search?q=EB%20melting" title=" EB melting"> EB melting</a>, <a href="https://publications.waset.org/abstracts/search?q=EB%20thermal%20processing" title=" EB thermal processing "> EB thermal processing </a> </p> <a href="https://publications.waset.org/abstracts/106185/simulations-of-high-intensity-thermionic-electron-guns-for-electron-beam-thermal-processing-including-effects-of-space-charge-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Prediction of Positive Cloud-to-Ground Lightning Striking Zones for Charged Thundercloud Based on Line Charge Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Das%20Barman">Surajit Das Barman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakibuzzaman%20Shah"> Rakibuzzaman Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurv%20Kumar"> Apurv Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bushfire is known as one of the ascendant factors to create pyrocumulus thundercloud that causes the ignition of new fires by pyrocumulonimbus (pyroCb) lightning strikes and creates major losses of lives and property worldwide. A conceptual model-based risk planning would be beneficial to predict the lightning striking zones on the surface of the earth underneath the pyroCb thundercloud. PyroCb thundercloud can generate both positive cloud-to-ground (+CG) and negative cloud-to-ground (-CG) lightning in which +CG tends to ignite more bushfires and cause massive damage to nature and infrastructure. In this paper, a simple line charge structured thundercloud model is constructed in 2-D coordinates using the method of image charge to predict the probable +CG lightning striking zones on the earth’s surface for two conceptual thundercloud charge configurations: titled dipole and conventional tripole structure with excessive lower positive charge regions that lead to producing +CG lightning. The electric potential and surface charge density along the earth’s surface for both structures via continuously adjusting the position and the charge density of their charge regions is investigated. Simulation results for tilted dipole structure confirm the down-shear extension of the upper positive charge region in the direction of the cloud’s forward flank by 4 to 8 km, resulting in negative surface density, and would expect +CG lightning to strike within 7.8 km to 20 km around the earth periphery in the direction of the cloud’s forward flank. On the other hand, the conceptual tripole charge structure with enhanced lower positive charge region develops negative surface charge density on the earth’s surface in the range |x| < 6.5 km beneath the thundercloud and highly favors producing +CG lightning strikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrocumulonimbus" title="pyrocumulonimbus">pyrocumulonimbus</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud-to-ground%20lightning" title=" cloud-to-ground lightning"> cloud-to-ground lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20structure" title=" charge structure"> charge structure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge%20density" title=" surface charge density"> surface charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20flank" title=" forward flank"> forward flank</a> </p> <a href="https://publications.waset.org/abstracts/148259/prediction-of-positive-cloud-to-ground-lightning-striking-zones-for-charged-thundercloud-based-on-line-charge-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> Kerr Electric-Optic Measurement of Electric Field and Space Charge Distribution in High Voltage Pulsed Transformer Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongda%20Guo">Hongda Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxia%20Sima"> Wenxia Sima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerr" title=" Kerr"> Kerr</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge" title=" space charge"> space charge</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20oil" title=" transformer oil"> transformer oil</a> </p> <a href="https://publications.waset.org/abstracts/48379/kerr-electric-optic-measurement-of-electric-field-and-space-charge-distribution-in-high-voltage-pulsed-transformer-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Charge%20recombination&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>