CINXE.COM

Search results for: higher excited states

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: higher excited states</title> <meta name="description" content="Search results for: higher excited states"> <meta name="keywords" content="higher excited states"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="higher excited states" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="higher excited states"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13858</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: higher excited states</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13858</span> Potential Energy Expectation Value for Lithium Excited State (1s2s3s)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20H.%20Al-Bayati">Khalil H. Al-Bayati</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nasma"> G. Nasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Ban%20H.%20Adel"> Hussein Ban H. Adel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work is to calculate the expectation value of potential energy <V> for different spin states (ααα ≡ βββ, αβα ≡ βαβ) and compare it with spin states (αββ, ααβ ) for lithium excited state (1s2s3s) and Li-like ions (Be+, B+2) using Hartree-Fock wave function by partitioning technique. The result of inter particle expectation value shows linear behaviour with atomic number and for each atom and ion the <V> shows the trend ααα < ααβ < αββ < αβα. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20excited%20state" title="lithium excited state">lithium excited state</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20energy" title=" potential energy"> potential energy</a>, <a href="https://publications.waset.org/abstracts/search?q=1s2s3s" title=" 1s2s3s"> 1s2s3s</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20physics" title=" mathematical physics "> mathematical physics </a> </p> <a href="https://publications.waset.org/abstracts/5085/potential-energy-expectation-value-for-lithium-excited-state-1s2s3s" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13857</span> Energy Calculation for Excited Lithium Atom in Position Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20H.%20Al-Bayati">Khalil H. Al-Bayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Omar%20Al-Baiti"> Khalid Omar Al-Baiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy expectation value <E> for Li-like ions systems (Li, Be+ and Be2+) hasbeen calculated and examined within the ground state (1s2sα)^2 S and the excited state (1s3sα)^2 S in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wavefnctions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20expectation%20value" title="energy expectation value">energy expectation value</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20systems" title=" atomic systems"> atomic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20and%20excited%20states" title=" ground and excited states"> ground and excited states</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartree-Fock%20approximation" title=" Hartree-Fock approximation"> Hartree-Fock approximation</a> </p> <a href="https://publications.waset.org/abstracts/11402/energy-calculation-for-excited-lithium-atom-in-position-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13856</span> Studies of Substituent and Solvent Effect on Spectroscopic Properties Of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 Coumarin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar">Sanjay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the solvent effects on the electronic absorption and fluorescence emission spectra of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 coumarin derivatives having -OH, -CH3 and -CF3 substituent at different positions in various solvents (Polar and Non-Polar). The first excited singlet state dipole moment and ground state dipole moment were calculated using Bakhshiev, Kawski-Chamma-Viallet and Reichardt-Dimroth equations and were compared for all the coumarin studied. In all cases the dipole moments were found to be higher in the excited singlet state than in the ground state indicating a substantial redistribution of Π-electron density in the excited state. The angle between the excited singlet state and ground state dipole moment is also calculated. The red shift of the absorption and fluorescence emission bands, observed for all the coumarin studied upon increasing the solvent polarity indicating that the electronic transitions were Π → Π* nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coumarin" title="coumarin">coumarin</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20effects" title=" solvent effects"> solvent effects</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20spectra" title=" absorption spectra"> absorption spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20spectra" title=" emission spectra"> emission spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=excited%20singlet%20state%20dipole%20moment" title=" excited singlet state dipole moment"> excited singlet state dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20state%20dipole%20moment" title=" ground state dipole moment"> ground state dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=solvatochromism" title=" solvatochromism"> solvatochromism</a> </p> <a href="https://publications.waset.org/abstracts/29723/studies-of-substituent-and-solvent-effect-on-spectroscopic-properties-of-6-oh-4-ch3-7-oh-4-ch3-and-7-oh-4-cf3-coumarin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">833</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13855</span> Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilay%20K.%20Doshi">Nilay K. Doshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title="electron density">electron density</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic" title=" electromagnetic"> electromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=TDDFT" title=" TDDFT"> TDDFT</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a> </p> <a href="https://publications.waset.org/abstracts/39255/time-dependent-density-functional-theory-of-an-oscillating-electron-density-around-a-nanoparticle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13854</span> Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Jagadeesh%20Kumar">P. S. Jagadeesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Meenakshi%20Sundaram"> S. Meenakshi Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenli%20Hu"> Wenli Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yung"> Yang Yung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algebraic%20code%20excited%20linear%20prediction" title="algebraic code excited linear prediction">algebraic code excited linear prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=speech-lip%20synchronization" title=" speech-lip synchronization"> speech-lip synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20games" title=" video games"> video games</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/78585/virtual-reality-based-3d-video-games-and-speech-lip-synchronization-superseding-algebraic-code-excited-linear-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13853</span> Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao-Su%20Liu">Hao-Su Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Qing%20Lei"> Jun-Qing Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time-domain%20expressions" title="time-domain expressions">time-domain expressions</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20self-excited%20aerodynamic%20forces" title=" bridge self-excited aerodynamic forces"> bridge self-excited aerodynamic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20particle%20swarm%20optimizer" title=" modified particle swarm optimizer"> modified particle swarm optimizer</a>, <a href="https://publications.waset.org/abstracts/search?q=long-span%20highway-railway%20truss%20bridge" title=" long-span highway-railway truss bridge"> long-span highway-railway truss bridge</a> </p> <a href="https://publications.waset.org/abstracts/69848/time-domain-expressions-for-bridge-self-excited-aerodynamic-forces-by-modified-particle-swarm-optimizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13852</span> Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20A.%20Mikhailova">Valentina A. Mikhailova</a>, <a href="https://publications.waset.org/abstracts/search?q=Serguei%20V.%20Feskov"> Serguei V. Feskov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20I.%20Ivanov"> Anatoly I. Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charge%20recombination" title="Charge recombination">Charge recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states" title=" higher excited states"> higher excited states</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20energy%20gap%20law" title=" free energy gap law"> free energy gap law</a>, <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium" title=" nonequilibrium"> nonequilibrium</a> </p> <a href="https://publications.waset.org/abstracts/51761/nonequilibrium-effects-in-photoinduced-ultrafast-charge-transfer-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13851</span> 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simran%20Baweja">Simran Baweja</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Kalal"> Bhavika Kalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Maity"> Surajit Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excited%20state%20hydrogen%20transfer" title="excited state hydrogen transfer">excited state hydrogen transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20expansion" title=" supersonic expansion"> supersonic expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20phase%20spectroscopy" title=" gas phase spectroscopy"> gas phase spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=IR-UV%20double%20resonance%20spectroscopy" title=" IR-UV double resonance spectroscopy"> IR-UV double resonance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20induced%20fluorescence" title=" laser induced fluorescence"> laser induced fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photoionization%20efficiency%20spectroscopy" title=" photoionization efficiency spectroscopy"> photoionization efficiency spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/171374/27-diazaindole-as-a-photophysical-probe-for-excited-state-hydrogenproton-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13850</span> Artificial Neural Network Speed Controller for Excited DC Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elabed%20Saud">Elabed Saud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network%20%28ANNs%29" title="Artificial Neural Network (ANNs)">Artificial Neural Network (ANNs)</a>, <a href="https://publications.waset.org/abstracts/search?q=excited%20DC%20motor" title=" excited DC motor"> excited DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=convenional%20controller" title=" convenional controller"> convenional controller</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20Controller" title=" speed Controller"> speed Controller</a> </p> <a href="https://publications.waset.org/abstracts/21941/artificial-neural-network-speed-controller-for-excited-dc-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">727</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13849</span> AI Predictive Modeling of Excited State Dynamics in OPV Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranav%20Gunhal.">Pranav Gunhal.</a>, <a href="https://publications.waset.org/abstracts/search?q=Krish%20Jhurani"> Krish Jhurani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transformer%20neural%20networks" title="transformer neural networks">transformer neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20photovoltaic%20materials" title=" organic photovoltaic materials"> organic photovoltaic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=excited%20state%20dynamics" title=" excited state dynamics"> excited state dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20density%20functional%20theory" title=" time-dependent density functional theory"> time-dependent density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20modeling" title=" predictive modeling"> predictive modeling</a> </p> <a href="https://publications.waset.org/abstracts/168030/ai-predictive-modeling-of-excited-state-dynamics-in-opv-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13848</span> 2,7-diazaindole as a Potential Photophysical Probe for Excited State Deactivation Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simran%20Baweja">Simran Baweja</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Kalal"> Bhavika Kalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Maity"> Surajit Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoinduced tautomerization reactions have been the centre of attention among scientific community over past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered as a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phase. Derivatives of above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are a few studies in the solution phase which suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy i.e. fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1 whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red shifted transition in case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV, which is significantly higher that the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronic excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoinduced%20tautomerization%20reactions" title="photoinduced tautomerization reactions">photoinduced tautomerization reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20phse%20spectroscopy" title=" gas phse spectroscopy"> gas phse spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=%29" title=" )"> )</a>, <a href="https://publications.waset.org/abstracts/search?q=IR-UV%20double%20resonance%20spectroscopy" title=" IR-UV double resonance spectroscopy"> IR-UV double resonance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20two-photon%20ionization%20time%20of%20flight%20mass%20spectrometry%20%282C-R2PI%29" title=" resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)"> resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)</a> </p> <a href="https://publications.waset.org/abstracts/171887/27-diazaindole-as-a-potential-photophysical-probe-for-excited-state-deactivation-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13847</span> Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tukeaban%20Hasanova">Tukeaban Hasanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamila%20Imamalieva"> Jamila Imamalieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylinder" title="cylinder">cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wave" title=" wave"> wave</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20medium" title=" elastic medium"> elastic medium</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a> </p> <a href="https://publications.waset.org/abstracts/101749/nonstationary-waves-excited-by-the-rigid-cylinder-in-elastic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13846</span> Four-Electron Auger Process for Hollow Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20A.%20Abdel-Naby">Shahin A. Abdel-Naby</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20P.%20Colgan"> James P. Colgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20S.%20Pindzola"> Michael S. Pindzola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow%20atoms" title="hollow atoms">hollow atoms</a>, <a href="https://publications.waset.org/abstracts/search?q=autoionization" title=" autoionization"> autoionization</a>, <a href="https://publications.waset.org/abstracts/search?q=auger%20rates" title=" auger rates"> auger rates</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20close-coupling%20method" title=" time-dependent close-coupling method"> time-dependent close-coupling method</a> </p> <a href="https://publications.waset.org/abstracts/123947/four-electron-auger-process-for-hollow-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13845</span> An Approach to Wind Turbine Modeling for Increasing Its Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishikesh%20Dingari">Rishikesh Dingari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Kiran%20Dornala"> Sai Kiran Dornala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simple method of achieving maximum power by mechanical energy transmission device (METD) with integration to induction generator is proposed. METD functioning is explained and dynamic response of system to step input is plotted. Induction generator is being operated at self-excited mode with excitation capacitor at stator. Voltage and current are observed when linked to METD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20energy%20transmitting%20device%28METD%29" title="mechanical energy transmitting device(METD)">mechanical energy transmitting device(METD)</a>, <a href="https://publications.waset.org/abstracts/search?q=self-excited%20induction%20generator" title=" self-excited induction generator"> self-excited induction generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20actuators" title=" hydraulic actuators"> hydraulic actuators</a> </p> <a href="https://publications.waset.org/abstracts/44423/an-approach-to-wind-turbine-modeling-for-increasing-its-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13844</span> Ground States of Structure of Even ¹⁰⁴-¹⁰⁶ Ru Isotopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Hossain">I. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20H.%20Kassim"> Huda H. Kassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhil%20I.%20Sharrad"> Fadhil I. Sharrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20A.%20Mansour"> Said A. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this conference, we apply the interacting boson model-1 (IBM-1) formula for U(5) symmetry in order to calculate the energy levels and reduced transition probabilities for a few yrast transitions in Ru with neutron N=60, 62. The neutron rich even-even isotopes of Ru are very interesting to investigate using IBM-1, because even 104,106Ru isotopes are great consequence due to excited near the magic number 50. The calculation of ground state band and B(E2) values using IBM-1 for Z=44 are not calculated to describe the valuable information of nuclear structure by U(5) limit. The parameters in the formula are deduced based on the experimental energy level and value of B(E2, 2+->0+). The yrast states and transition strength B(E2) from 1st 4+ to 1st 2+, 1st 6+ to 1st 4+ and 1st 8+ to 1st 6+ states of Ru for even N= 60, 62 were calculated. The quadrupole moments, deformation parameters and U(5) limit were discussed for those nuclei. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%28E2%29" title="B(E2)">B(E2)</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20level" title=" energy level"> energy level</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B0%E2%81%B4Ru" title=" ¹⁰⁴Ru"> ¹⁰⁴Ru</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B0%E2%81%B6Ru" title=" ¹⁰⁶Ru"> ¹⁰⁶Ru</a> </p> <a href="https://publications.waset.org/abstracts/56470/ground-states-of-structure-of-even-14-16-ru-isotopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13843</span> Rock Thickness Measurement by Using Self-Excited Acoustical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Kwa%C5%9Bniewski">Janusz Kwaśniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Dominik"> Ireneusz Dominik</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Lalik"> Krzysztof Lalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-oscillator" title="auto-oscillator">auto-oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20thickness%20measurement" title=" rock thickness measurement"> rock thickness measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnic" title=" geotechnic"> geotechnic</a> </p> <a href="https://publications.waset.org/abstracts/2627/rock-thickness-measurement-by-using-self-excited-acoustical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13842</span> Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Yoneda">Masahiro Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simplified%20method" title="simplified method">simplified method</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20vertical%20force" title=" human walking vertical force"> human walking vertical force</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20component" title=" higher component"> higher component</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge%20vibration" title=" pedestrian bridge vibration"> pedestrian bridge vibration</a> </p> <a href="https://publications.waset.org/abstracts/28100/human-walking-vertical-force-and-vertical-vibration-of-pedestrian-bridge-induced-by-its-higher-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13841</span> Ground State Phases in Two-Mode Quantum Rabi Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suren%20Chilingaryan">Suren Chilingaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20optics" title="quantum optics">quantum optics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20phase%20transition" title=" quantum phase transition"> quantum phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20QED" title=" cavity QED"> cavity QED</a>, <a href="https://publications.waset.org/abstracts/search?q=circuit%20QED" title=" circuit QED"> circuit QED</a> </p> <a href="https://publications.waset.org/abstracts/53277/ground-state-phases-in-two-mode-quantum-rabi-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13840</span> Excited State Structural Dynamics of Retinal Isomerization Revealed by a Femtosecond X-Ray Laser </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Nogly">Przemyslaw Nogly</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Weinert"> Tobias Weinert</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20James"> Daniel James</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Carbajo"> Sergio Carbajo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Ozerov"> Dmitry Ozerov</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonia%20Furrer"> Antonia Furrer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dardan%20Gashi"> Dardan Gashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Veniamin%20Borin"> Veniamin Borin</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Skopintsev"> Petr Skopintsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathrin%20Jaeger"> Kathrin Jaeger</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Nass"> Karol Nass</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Bath"> Petra Bath</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Bosman"> Robert Bosman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Koglin"> Jason Koglin</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Seaberg"> Matthew Seaberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Lane"> Thomas Lane</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Kekilli"> Demet Kekilli</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffen%20Br%C3%BCnle"> Steffen Brünle</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoyuki%20Tanaka"> Tomoyuki Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenting%20Wu"> Wenting Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Milne"> Christopher Milne</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20A.%20White"> Thomas A. White</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Barty"> Anton Barty</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwe%20Weierstall"> Uwe Weierstall</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerie%20Panneels"> Valerie Panneels</a>, <a href="https://publications.waset.org/abstracts/search?q=Eriko%20Nango"> Eriko Nango</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Iwata"> So Iwata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Hunter"> Mark Hunter</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Schapiro"> Igor Schapiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebhard%20Schertler"> Gebhard Schertler</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Neutze"> Richard Neutze</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Standfuss"> Jörg Standfuss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrafast isomerization of retinal is the primary step in a range of photoresponsive biological functions including vision in humans and ion-transport across bacterial membranes. We studied the sub-picosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin using an X-ray laser. Twenty snapshots with near-atomic spatial and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket prior to passing through a highly-twisted geometry and emerging in the 13-cis conformation. The aspartic acid residues and functional water molecules in proximity of the retinal Schiff base respond collectively to formation and decay of the initial excited state and retinal isomerization. These observations reveal how the protein scaffold guides this remarkably efficient photochemical reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriorhodopsin" title="bacteriorhodopsin">bacteriorhodopsin</a>, <a href="https://publications.waset.org/abstracts/search?q=free-electron%20laser" title=" free-electron laser"> free-electron laser</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20isomerization%20mechanism" title=" retinal isomerization mechanism"> retinal isomerization mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=time-resolved%20crystallography" title=" time-resolved crystallography"> time-resolved crystallography</a> </p> <a href="https://publications.waset.org/abstracts/90555/excited-state-structural-dynamics-of-retinal-isomerization-revealed-by-a-femtosecond-x-ray-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13839</span> Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneek%20Kuila">Aneek Kuila</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaron%20Paz"> Yaron Paz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20resolved%20FTIR" title="time resolved FTIR">time resolved FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20framework" title=" metal organic framework"> metal organic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=denticity" title=" denticity"> denticity</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacatalysis" title=" photoacatalysis"> photoacatalysis</a> </p> <a href="https://publications.waset.org/abstracts/182239/understanding-the-excited-state-dynamics-of-a-phase-transformable-photo-active-metal-organic-framework-mip-177-through-time-resolved-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13838</span> Microwave Single Photon Source Using Landau-Zener Transitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhi%20Khaire">Siddhi Khaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Hawaldar"> Samarth Hawaldar</a>, <a href="https://publications.waset.org/abstracts/search?q=Baladitya%20Suri"> Baladitya Suri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20communication" title=" quantum communication"> quantum communication</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20optics" title=" quantum optics"> quantum optics</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20qubits" title=" superconducting qubits"> superconducting qubits</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20qubit" title=" flux qubit"> flux qubit</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20qubit" title=" charge qubit"> charge qubit</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20single%20photon%20source" title=" microwave single photon source"> microwave single photon source</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information%20processing" title=" quantum information processing"> quantum information processing</a> </p> <a href="https://publications.waset.org/abstracts/160844/microwave-single-photon-source-using-landau-zener-transitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13837</span> Numerical Simulation and Optimal Control in Gas Dynamic Laser GDLs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laggoun%20Chouki">Laggoun Chouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the design and mechanisms of the physics process and discuss the performances of continuous gas laser dynamics, based on molecules N2(v=1)→C02(001)(v=3). The main objectives of work in this area are, obtaining the high laser energies in short time durations needed for the feasibility studies the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using gaseous media. The process generating the wave excited, on the basis of the excited level vibration, Theoretical predictions are compared with experimental results. The feasibility and effectiveness of the proposed method is demonstrated by computer simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=lasers" title=" lasers"> lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=gas" title=" gas"> gas</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a> </p> <a href="https://publications.waset.org/abstracts/166357/numerical-simulation-and-optimal-control-in-gas-dynamic-laser-gdls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13836</span> Rashba Spin Orbit Interaction Effect on Multiphoton Optical Transitions in a Quantum Dot for Bioimaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradip%20Kumar%20Jha">Pradip Kumar Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrate in this work the effect of Rashba spin orbit interaction on multiphoton optical transitions of a quantum dot in the presence of THz laser field and external static magnetic field. This combination is solved by accurate non-perturbative Floquet theory. Investigations are made for the optical response of intraband transition between the various states of the conduction band with spin flipping. Enhancement and power broadening observed for excited states probabilities with increase of external fields are directly linked to the emission spectra of QD and will be useful for making future bioimaging devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioimaging" title="bioimaging">bioimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphoton%20processes" title=" multiphoton processes"> multiphoton processes</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20orbit%20interaction" title=" spin orbit interaction"> spin orbit interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a> </p> <a href="https://publications.waset.org/abstracts/43836/rashba-spin-orbit-interaction-effect-on-multiphoton-optical-transitions-in-a-quantum-dot-for-bioimaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13835</span> Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Goswami">Tapas Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Goswami"> Debabrata Goswami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excited%20state" title="excited state">excited state</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20state%20recovery" title=" ground state recovery"> ground state recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=solvation" title=" solvation"> solvation</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20absorption" title=" transient absorption"> transient absorption</a> </p> <a href="https://publications.waset.org/abstracts/63240/ultrafast-ground-state-recovery-dynamics-of-a-cyanine-dye-molecule-in-heterogeneous-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13834</span> Angular Correlation and Independent Particle Model in Two-Electron Atomic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokuei%20Sako">Tokuei Sako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ground and low-lying singly-excited states of He and He-like atomic ions have been studied by the Full Configuration Interaction (FCI) method focusing on the angular correlation between two electrons in the studied systems. The two-electron angle density distribution obtained by integrating the square-modulus of the FCI wave function over the coordinates other than the interelectronic angle shows a distinct trend between the singlet-triplet pair of states for different values of the nuclear charge Zn. Further, both of these singlet and triplet distributions tend to show an increasingly stronger dependence on the interelectronic angle as Zn increases, in contrast to the well-known fact that the correlation energy approaches towards zero for increasing Zn. This controversial observation has been rationalized on the basis of the recently introduced concept of so-called conjugate Fermi holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=He-like%20systems" title="He-like systems">He-like systems</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20correlation" title=" angular correlation"> angular correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration%20interaction%20wave%20function" title=" configuration interaction wave function"> configuration interaction wave function</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20Fermi%20hole" title=" conjugate Fermi hole"> conjugate Fermi hole</a> </p> <a href="https://publications.waset.org/abstracts/3750/angular-correlation-and-independent-particle-model-in-two-electron-atomic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13833</span> Assessing the Material Determinants of Cavity Polariton Relaxation using Angle-Resolved Photoluminescence Excitation Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20O.%20Odewale">Elizabeth O. Odewale</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachithra%20T.%20%20Wanasinghe"> Sachithra T. Wanasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20S.%20Rury"> Aaron S. Rury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavity polaritons form when molecular excitons strongly couple to photons in carefully constructed optical cavities. These polaritons, which are hybrid light-matter states possessing a unique combination of photonic and excitonic properties, present the opportunity to manipulate the properties of various semiconductor materials. The systematic manipulation of materials through polariton formation could potentially improve the functionalities of many optoelectronic devices such as lasers, light-emitting diodes, photon-based quantum computers, and solar cells. However, the prospects of leveraging polariton formation for novel devices and device operation depend on more complete connections between the properties of molecular chromophores, and the hybrid light-matter states they form, which remains an outstanding scientific goal. Specifically, for most optoelectronic applications, it is paramount to understand how polariton formation affects the spectra of light absorbed by molecules coupled strongly to cavity photons. An essential feature of a polariton state is its dispersive energy, which occurs due to the enhanced spatial delocalization of the polaritons relative to bare molecules. To leverage the spatial delocalization of cavity polaritons, angle-resolved photoluminescence excitation spectroscopy was employed in characterizing light emission from the polaritonic states. Using lasers of appropriate energies, the polariton branches were resonantly excited to understand how molecular light absorption changes under different strong light-matter coupling conditions. Since an excited state has a finite lifetime, the photon absorbed by the polariton decays non-radiatively into lower-lying molecular states, from which radiative relaxation to the ground state occurs. The resulting fluorescence is collected across several angles of excitation incidence. By modeling the behavior of the light emission observed from the lower-lying molecular state and combining this result with the output of angle-resolved transmission measurements, inferences are drawn about how the behavior of molecules changes when they form polaritons. These results show how the intrinsic properties of molecules, such as the excitonic lifetime, affect the rate at which the polaritonic states relax. While it is true that the lifetime of the photon mediates the rate of relaxation in a cavity, the results from this study provide evidence that the lifetime of the molecular exciton also limits the rate of polariton relaxation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flourescece" title="flourescece">flourescece</a>, <a href="https://publications.waset.org/abstracts/search?q=molecules%20in%20cavityies" title=" molecules in cavityies"> molecules in cavityies</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20cavity" title=" optical cavity"> optical cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20excitation" title=" photoluminescence excitation"> photoluminescence excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20coupling" title=" strong coupling"> strong coupling</a> </p> <a href="https://publications.waset.org/abstracts/183180/assessing-the-material-determinants-of-cavity-polariton-relaxation-using-angle-resolved-photoluminescence-excitation-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13832</span> Femtochemistry of Iron(III) Carboxylates in Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20P.%20Pozdnyakov">Ivan P. Pozdnyakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20A.%20Melnikov"> Alexey A. Melnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20V.%20Tkachenko"> Nikolai V. Tkachenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photochemical reactions with participation of iron (III) carboxylates are important for environmental photochemistry and have a great potential of application in water purification (Advanced Oxidation Processes, photo-Fenton and Fenton-like processes). In spite of this information about excited states and primary intermediates in photochemistry of Fe(III) complexes with carboxylic acids is scarce. This talk presents and discusses the results of several recent authors' publications in a field of ultra fast spectroscopy of natural Fe(III) carboxylates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxylates" title="carboxylates">carboxylates</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20complexes" title=" iron complexes"> iron complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemistry" title=" photochemistry"> photochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20complexes" title=" radical complexes"> radical complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast%20processes" title=" ultrafast processes"> ultrafast processes</a> </p> <a href="https://publications.waset.org/abstracts/26936/femtochemistry-of-ironiii-carboxylates-in-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13831</span> Spectroscopic Constant Calculation of the BeF Molecule </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayla%20El-Kork">Nayla El-Kork</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Korjieh"> Farah Korjieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bentiba"> Ahmed Bentiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Korek"> Mahmoud Korek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ab-initio calculations have been performed to investigate the spectroscopic constants for the diatomic compound BeF. Values of the internuclear distance Re, the harmonic frequency ωe, the rotational constants Be, the electronic transition energy with respect to the ground state Te, the eignvalues Ev, the abscissas of the turning points Rmin, Rmax, the rotational constants Bv and the centrifugal distortion constants Dv have been calculated for the molecule’s ground and excited electronic states. Results are in agreement with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectroscopic%20constant" title="spectroscopic constant">spectroscopic constant</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20energy%20curve" title=" potential energy curve"> potential energy curve</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomic%20molecule" title=" diatomic molecule"> diatomic molecule</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a> </p> <a href="https://publications.waset.org/abstracts/28671/spectroscopic-constant-calculation-of-the-bef-molecule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13830</span> Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Ulhaq">Azhar Ulhaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubair%20Yameen"> Zubair Yameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Almas%20Anjum"> Almas Anjum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=island" title=" island"> island</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=STATCOM" title=" STATCOM"> STATCOM</a>, <a href="https://publications.waset.org/abstracts/search?q=self-excited%20induction%20generator" title=" self-excited induction generator"> self-excited induction generator</a>, <a href="https://publications.waset.org/abstracts/search?q=SEIG" title=" SEIG"> SEIG</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a> </p> <a href="https://publications.waset.org/abstracts/114339/frequency-control-of-self-excited-induction-generator-based-microgrid-during-transition-from-grid-connected-to-island-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13829</span> Objective vs. Perceived Quality in the Cereal Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Albena%20Ivanova">Albena Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jill%20Kurp"> Jill Kurp</a>, <a href="https://publications.waset.org/abstracts/search?q=Austin%20Hampe"> Austin Hampe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cereal products in the US contain rich information on the front of the package (FOP) as well as point-of-purchase (POP) summaries provided by the store. These summaries frequently are confusing and misleading to the consumer. This study explores the relationship between perceived quality, objective quality, price, and value in the cold cereal industry. A total of 270 cold cereal products were analyzed and the price, quality and value for different summaries were compared using ANOVA tests. The results provide evidence that the United States Department of Agriculture Organic FOP/POP are related to higher objective quality, higher price, but not to a higher value. Whole grain FOP/POP related to a higher objective quality, lower or similar price, and higher value. Heart-healthy POP related to higher objective quality, similar price, and higher value. Gluten-free FOP/POP related to lower objective quality, higher price, and lower value. Kid's cereals were of lower objective quality, same price, and lower value compared to family and adult markets. The findings point to a disturbing tendency of companies to continue to produce lower quality products for the kids’ market, pricing them the same as high-quality products. The paper outlines strategies that marketers and policymakers can utilize to contribute to the increased objective quality and value of breakfast cereal products in the United States. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cereals" title="cereals">cereals</a>, <a href="https://publications.waset.org/abstracts/search?q=certifications" title=" certifications"> certifications</a>, <a href="https://publications.waset.org/abstracts/search?q=front-of-package%20claims" title=" front-of-package claims"> front-of-package claims</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20health." title=" consumer health. "> consumer health. </a> </p> <a href="https://publications.waset.org/abstracts/126705/objective-vs-perceived-quality-in-the-cereal-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=461">461</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=462">462</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=higher%20excited%20states&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10