CINXE.COM

Alexander Gelbukh | Instituto Politécnico Nacional - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Alexander Gelbukh | Instituto Politécnico Nacional - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="3Pu41AHl6OTr_3-oXwrBMjoHykOkEcUAs4qECLJxO3rGRiR7-gLdfw6OSOsNQafFk7r4Qf1ys3DMaL1S7VfSRA" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="alexander gelbukh" /> <meta name="description" content="I am computer scientist working in natural language processing and computational linguistics. NOTE: I DON&#39;T MAINTAIN THIS PROFILE. PUBLICATIONS ADDED…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '075e914b9e16164113b5b9afd7238a56a7292942'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14035,"monthly_visitors":"102 million","monthly_visitor_count":102864795,"monthly_visitor_count_in_millions":102,"user_count":283271087,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740055930000); window.Aedu.timeDifference = new Date().getTime() - 1740055930000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-6145545f49b709c1199990a76c559bd4c35429284884cbcb3cf7f1916215e941.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5e022a2ab081599fcedc76886fa95a606f8073416cae1641695a9906c9a80b81.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ipn.academia.edu/AlexanderGelbukh" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-8e43dbfb783947b05fb193bb4a981fdefb46b9285b0cade100b20d38357a3356.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh","photo":"https://0.academia-photos.com/35873/11862/15727678/s65_alexander.gelbukh.png","has_photo":true,"department":{"id":24623,"name":"Centro de Investigación en Computación","url":"https://ipn.academia.edu/Departments/Centro_de_Investigaci%C3%B3n_en_Computaci%C3%B3n/Documents","university":{"id":2072,"name":"Instituto Politécnico Nacional","url":"https://ipn.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":90202,"name":"Rule based systems","url":"https://www.academia.edu/Documents/in/Rule_based_systems"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":859,"name":"Communication","url":"https://www.academia.edu/Documents/in/Communication"},{"id":2065,"name":"Research Methodology","url":"https://www.academia.edu/Documents/in/Research_Methodology"},{"id":1200,"name":"Languages and Linguistics","url":"https://www.academia.edu/Documents/in/Languages_and_Linguistics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":189933,"link":"http://www.Gelbukh.com","name":"Homepage","link_domain":"www.Gelbukh.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.Gelbukh.com"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ipn.academia.edu/AlexanderGelbukh&quot;,&quot;location&quot;:&quot;/AlexanderGelbukh&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ipn.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AlexanderGelbukh&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f00f2a19-8f3a-47dd-b8ba-b2ebc6fe5b17"></div> <div id="ProfileCheckPaperUpdate-react-component-f00f2a19-8f3a-47dd-b8ba-b2ebc6fe5b17"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Alexander Gelbukh" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/35873/11862/15727678/s200_alexander.gelbukh.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Alexander Gelbukh</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ipn.academia.edu/">Instituto Politécnico Nacional</a>, <a class="u-tcGrayDarker" href="https://ipn.academia.edu/Departments/Centro_de_Investigaci%C3%B3n_en_Computaci%C3%B3n/Documents">Centro de Investigación en Computación</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Alexander" data-follow-user-id="35873" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="35873"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">535</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">32</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">11</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/AlexanderGelbukh/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">I am computer scientist working in natural language processing and computational linguistics. NOTE: I DON&#39;T MAINTAIN THIS PROFILE. PUBLICATIONS ADDED AUTOMATICALLY. SEE WWW.GELBUKH.COM FOR REAL LIST.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://utexas.academia.edu/NaamaPatEl"><img class="profile-avatar u-positionAbsolute" alt="Na&#39;ama Pat-El" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/14496/4846/4740/s200_na_ama.pat-el.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://utexas.academia.edu/NaamaPatEl">Na&#39;ama Pat-El</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The University of Texas at Austin</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ukma.academia.edu/AndreasUmland"><img class="profile-avatar u-positionAbsolute" alt="Andreas Umland" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/25359/8207/35842203/s200_andreas.umland.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ukma.academia.edu/AndreasUmland">Andreas Umland</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">National University of &quot;Kyiv-Mohyla Academy&quot;</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://upf.academia.edu/JavierD%C3%ADazNoci"><img class="profile-avatar u-positionAbsolute" alt="Javier Díaz Noci" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/35664/11769/160437038/s200_javier.d_az_noci.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://upf.academia.edu/JavierD%C3%ADazNoci">Javier Díaz Noci</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Pompeu Fabra University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cria.academia.edu/ArmandoMarquesGuedes"><img class="profile-avatar u-positionAbsolute" alt="Armando Marques-Guedes" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/134181/3401094/148494125/s200_armando.marques-guedes.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cria.academia.edu/ArmandoMarquesGuedes">Armando Marques-Guedes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">UNL - New University of Lisbon</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unibo.academia.edu/EnricoCirelli"><img class="profile-avatar u-positionAbsolute" alt="Enrico Cirelli" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/148236/39181/34953084/s200_enrico.cirelli.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unibo.academia.edu/EnricoCirelli">Enrico Cirelli</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Università di Bologna</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://huji.academia.edu/EitanGrossman"><img class="profile-avatar u-positionAbsolute" alt="Eitan Grossman" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/165093/41884/64625709/s200_eitan.grossman.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://huji.academia.edu/EitanGrossman">Eitan Grossman</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The Hebrew University of Jerusalem</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://eva-mpg.academia.edu/MartinHaspelmath"><img class="profile-avatar u-positionAbsolute" alt="Martin Haspelmath" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/187373/89901/92584166/s200_martin.haspelmath.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://eva-mpg.academia.edu/MartinHaspelmath">Martin Haspelmath</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Max Planck Institute for Evolutionary Anthropology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://upf.academia.edu/CarlosAScolari"><img class="profile-avatar u-positionAbsolute" alt="Carlos A. Scolari" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/287027/58393/19335670/s200_carlos_a..scolari.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://upf.academia.edu/CarlosAScolari">Carlos A. Scolari</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Pompeu Fabra University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ncit.academia.edu/RoshanChitrakar"><img class="profile-avatar u-positionAbsolute" alt="Roshan Chitrakar" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/371695/9733675/15833098/s200_roshan.chitrakar.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ncit.academia.edu/RoshanChitrakar">Roshan Chitrakar</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Nepal College of Information Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://gc-cuny.academia.edu/LevManovich"><img class="profile-avatar u-positionAbsolute" alt="Lev Manovich" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/412778/130321/66062342/s200_lev.manovich.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://gc-cuny.academia.edu/LevManovich">Lev Manovich</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Graduate Center of the City University of New York</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35873" href="https://www.academia.edu/Documents/in/Rule_based_systems"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ipn.academia.edu/AlexanderGelbukh&quot;,&quot;location&quot;:&quot;/AlexanderGelbukh&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ipn.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AlexanderGelbukh&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Rule based systems&quot;]}" data-trace="false" data-dom-id="Pill-react-component-71a78367-b74f-4337-b014-9603a6fc03e4"></div> <div id="Pill-react-component-71a78367-b74f-4337-b014-9603a6fc03e4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35873" href="https://www.academia.edu/Documents/in/Computer_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Computer Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-88bfd7c1-1c58-4455-ac10-cf30d290d05c"></div> <div id="Pill-react-component-88bfd7c1-1c58-4455-ac10-cf30d290d05c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35873" href="https://www.academia.edu/Documents/in/Communication"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Communication&quot;]}" data-trace="false" data-dom-id="Pill-react-component-05317892-63ed-430c-b45a-bb9d30d92f8d"></div> <div id="Pill-react-component-05317892-63ed-430c-b45a-bb9d30d92f8d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35873" href="https://www.academia.edu/Documents/in/Research_Methodology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Research Methodology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d5707c7b-8c68-4658-8f0a-e9989c718761"></div> <div id="Pill-react-component-d5707c7b-8c68-4658-8f0a-e9989c718761"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35873" href="https://www.academia.edu/Documents/in/Languages_and_Linguistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Languages and Linguistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9246638e-6756-4f14-afb7-c7452eb3f135"></div> <div id="Pill-react-component-9246638e-6756-4f14-afb7-c7452eb3f135"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Alexander Gelbukh</h3></div><div class="js-work-strip profile--work_container" data-work-id="30013603"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013603/Twelveth_Mexican_International_Conference_in_Artificial_Intelligence_Advances_on_Artificial_Intelligence_and_Applications"><img alt="Research paper thumbnail of Twelveth Mexican International Conference in Artificial Intelligence.Advances on Artificial Intelligence and Applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013603/Twelveth_Mexican_International_Conference_in_Artificial_Intelligence_Advances_on_Artificial_Intelligence_and_Applications">Twelveth Mexican International Conference in Artificial Intelligence.Advances on Artificial Intelligence and Applications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013603"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013603"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013603; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013603]").text(description); $(".js-view-count[data-work-id=30013603]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013603; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013603']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013603]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013603,"title":"Twelveth Mexican International Conference in Artificial Intelligence.Advances on Artificial Intelligence and Applications","internal_url":"https://www.academia.edu/30013603/Twelveth_Mexican_International_Conference_in_Artificial_Intelligence_Advances_on_Artificial_Intelligence_and_Applications","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013598/Computational_Linguistics_and_Intelligent_Text_Processing_5th_International_Conference_CICLing_2004_Seoul_Korea_February_15_21_2004_Proceedings"><img alt="Research paper thumbnail of Computational Linguistics and Intelligent Text Processing, 5th International Conference, CICLing 2004, Seoul, Korea, February 15-21, 2004, Proceedings" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013598/Computational_Linguistics_and_Intelligent_Text_Processing_5th_International_Conference_CICLing_2004_Seoul_Korea_February_15_21_2004_Proceedings">Computational Linguistics and Intelligent Text Processing, 5th International Conference, CICLing 2004, Seoul, Korea, February 15-21, 2004, Proceedings</a></div><div class="wp-workCard_item"><span>Cicling</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informatique et au traitement intelligent des textes, CICLing 2001(Mexico, 18-24 Février 2001). Les interventions en linguistique informatique ont porté sur les thèmes suivants: théories et formalismes, sémantique, anaphore et référence, désambiguïsation, traduction, génération de texte, dictionnaires et corpus, morphologie, techniques d&amp;amp;amp;#x27;analyse syntaxique automatique. Dans le domaine du traitement intelligent des textes, les communications se ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013598]").text(description); $(".js-view-count[data-work-id=30013598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013598,"title":"Computational Linguistics and Intelligent Text Processing, 5th International Conference, CICLing 2004, Seoul, Korea, February 15-21, 2004, Proceedings","internal_url":"https://www.academia.edu/30013598/Computational_Linguistics_and_Intelligent_Text_Processing_5th_International_Conference_CICLing_2004_Seoul_Korea_February_15_21_2004_Proceedings","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013594"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013594/Desambiguaci_n_de_sentidos_de_palabras_usando_sin_nimos"><img alt="Research paper thumbnail of Desambiguaci�n de sentidos de palabras usando sin�nimos" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013594/Desambiguaci_n_de_sentidos_de_palabras_usando_sin_nimos">Desambiguaci�n de sentidos de palabras usando sin�nimos</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013594"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013594"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013594; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013594]").text(description); $(".js-view-count[data-work-id=30013594]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013594; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013594']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013594]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013594,"title":"Desambiguaci�n de sentidos de palabras usando sin�nimos","internal_url":"https://www.academia.edu/30013594/Desambiguaci_n_de_sentidos_de_palabras_usando_sin_nimos","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013591/Computational_Linguistics_and_Intelligent_Text_Processing_14th_International_Conference_CICLing_2013_Samos_Greece_March_24_30_2013_Proceedings_Part_I"><img alt="Research paper thumbnail of Computational Linguistics and Intelligent Text Processing - 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013591/Computational_Linguistics_and_Intelligent_Text_Processing_14th_International_Conference_CICLing_2013_Samos_Greece_March_24_30_2013_Proceedings_Part_I">Computational Linguistics and Intelligent Text Processing - 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informatique et au traitement intelligent des textes, CICLing 2001(Mexico, 18-24 Février 2001). Les interventions en linguistique informatique ont porté sur les thèmes suivants: théories et formalismes, sémantique, anaphore et référence, désambiguïsation, traduction, génération de texte, dictionnaires et corpus, morphologie, techniques d&amp;amp;amp;#x27;analyse syntaxique automatique. Dans le domaine du traitement intelligent des textes, les communications se ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013591]").text(description); $(".js-view-count[data-work-id=30013591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013591,"title":"Computational Linguistics and Intelligent Text Processing - 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I","internal_url":"https://www.academia.edu/30013591/Computational_Linguistics_and_Intelligent_Text_Processing_14th_International_Conference_CICLing_2013_Samos_Greece_March_24_30_2013_Proceedings_Part_I","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013588/Computing_Transfer_Score_in_Example_Based_Machine_Translation"><img alt="Research paper thumbnail of Computing Transfer Score in Example-Based Machine Translation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013588/Computing_Transfer_Score_in_Example_Based_Machine_Translation">Computing Transfer Score in Example-Based Machine Translation</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Page 1. Computing Transfer Score in Example-Based Machine Translation Rafał Jaworski Adam Mickiew...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Page 1. Computing Transfer Score in Example-Based Machine Translation Rafał Jaworski Adam Mickiewicz University Poznań, Poland <a href="mailto:rjawor@amu.edu.pl" rel="nofollow">rjawor@amu.edu.pl</a> Abstract. This paper presents an idea in Example-Based Machine ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013588]").text(description); $(".js-view-count[data-work-id=30013588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013588,"title":"Computing Transfer Score in Example-Based Machine Translation","internal_url":"https://www.academia.edu/30013588/Computing_Transfer_Score_in_Example_Based_Machine_Translation","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013448"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013448/Information_Retrieval_with_Word_Sense_Disambiguation_for_Spanish"><img alt="Research paper thumbnail of Information Retrieval with Word Sense Disambiguation for Spanish" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013448/Information_Retrieval_with_Word_Sense_Disambiguation_for_Spanish">Information Retrieval with Word Sense Disambiguation for Spanish</a></div><div class="wp-workCard_item"><span>Computacion Y Sistemas</span><span>, Mar 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Descripción: ONE OF THE PROBLEMS OF INFORMATION RETRIEVAL IN INTERNET AND DIGITAL LIBRARIES IS LO...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Descripción: ONE OF THE PROBLEMS OF INFORMATION RETRIEVAL IN INTERNET AND DIGITAL LIBRARIES IS LOW PRECISION: A HIGH NUMBER OF RETRIEVED DOCUMENTS OF LOW RELEVANCE. FOR EXAMPLE, A PERSON LOOKS FOR INFORMATION ABOUT JAGUARS (THE ANIMAL) AND THE DOCUMENTS RETRIEVED ARE ABOUT THE MODEL OF A CAR. THIS PROBLEM ARISES DUE TO AMBIGUITY OF DIFFERENT SENSES OF WORDS. THE TASK OF DETERMINING THE CORRECT INTERPRETATION OF A WORD ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013448"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013448"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013448; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013448]").text(description); $(".js-view-count[data-work-id=30013448]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013448; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013448']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013448]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013448,"title":"Information Retrieval with Word Sense Disambiguation for Spanish","internal_url":"https://www.academia.edu/30013448/Information_Retrieval_with_Word_Sense_Disambiguation_for_Spanish","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013443/An_lisis_morfol_gico_autom_tico_del_espa_ol_a_trav_s_de_generaci_n"><img alt="Research paper thumbnail of An�lisis morfol�gico autom�tico del espa�ol a trav�s de generaci�n" class="work-thumbnail" src="https://attachments.academia-assets.com/50471033/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013443/An_lisis_morfol_gico_autom_tico_del_espa_ol_a_trav_s_de_generaci_n">An�lisis morfol�gico autom�tico del espa�ol a trav�s de generaci�n</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">La mayoría de los sistemas de análisis morfológico están basados en el modelo conocido como la mo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">La mayoría de los sistemas de análisis morfológico están basados en el modelo conocido como la morfología de dos niveles. Sin embargo, este modelo no es muy adecuado para lenguajes con alternaciones irregulares de raíz (por ejemplo, el español o el ruso). En este trabajo describimos un sistema computacional de análisis morfológico para el lenguaje español basado en otro modelo, cuya idea principal es el análisis a través de generación. El modelo consiste en un conjunto de reglas para obtener todas las raíces de una forma de palabra para cada lexema, su almacenamiento en el diccionario, la producción de todas las hipótesis posibles durante el análisis y su comprobación a través de la generación morfológica. Se usó un diccionario de 40,000 lemas, a través del cual se pueden analizar más de 2,500,000 formas gramaticales posibles. Para el tratamiento de palabras desconocidas se está desarrollando un algoritmo basado en heurísticas. El sistema desarrollado está disponible sin costo para el uso académico.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1958ad086d5c3b405c859a15506c07a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471033,&quot;asset_id&quot;:30013443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471033/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013443]").text(description); $(".js-view-count[data-work-id=30013443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1958ad086d5c3b405c859a15506c07a1" } } $('.js-work-strip[data-work-id=30013443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013443,"title":"An�lisis morfol�gico autom�tico del espa�ol a trav�s de generaci�n","internal_url":"https://www.academia.edu/30013443/An_lisis_morfol_gico_autom_tico_del_espa_ol_a_trav_s_de_generaci_n","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471033,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471033/thumbnails/1.jpg","file_name":"escritos-morph.pdf","download_url":"https://www.academia.edu/attachments/50471033/download_file","bulk_download_file_name":"An_lisis_morfol_gico_autom_tico_del_espa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471033/escritos-morph-libre.pdf?1479799192=\u0026response-content-disposition=attachment%3B+filename%3DAn_lisis_morfol_gico_autom_tico_del_espa.pdf\u0026Expires=1740059530\u0026Signature=Oi~70SPC8LOPo5-uL~0sUaqFUILbXaaEySi8jzn5QWquZ2DdX2lCgk0VjZJbY69Hg-NbtgEayYVbFzS6RtIz8LV2i2O7cBpVSEi2eSAPjHAASUkyP2PXZJkYwY8ihXBDu27mftXhVIcx8k7P-qkKJbNjeDma0Ovdt53v53kjmH~~UDljnbMo6Bk44bOG2d28IXp0gbCmhysFHTccmf0P0T4uv197H1OR6P8ukVXaD1mpEA-6X7HrgNbrf50FhBG9hRmaKT9oPlgqRFw109Q7GlvAleR6FOfuzxssVuTLBHQicPSw67COWXDetJsbFEL-fJxlNiMo5SOVTYOVFhealw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013438"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013438/SC_spectra_A_linear_time_soft_cardinality_approximation_for_text_comparison"><img alt="Research paper thumbnail of SC spectra: A linear-time soft cardinality approximation for text comparison" class="work-thumbnail" src="https://attachments.academia-assets.com/50470957/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013438/SC_spectra_A_linear_time_soft_cardinality_approximation_for_text_comparison">SC spectra: A linear-time soft cardinality approximation for text comparison</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Soft cardinality (SC) is a softened version of the classical cardinality of set theory. However, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Soft cardinality (SC) is a softened version of the classical cardinality of set theory. However, given its prohibitive cost of computing (exponential order), an approximation that is quadratic in the number of terms in the text has been proposed in the past. SC Spectra is a new method of approximation in linear time for text strings, which divides text strings into consecutive substrings (i.e., q-grams) of different sizes. Thus, SC in combination with resemblance coefficients allowed the construction of a family of similarity functions for text comparison. These similarity measures have been used in the past to address a problem of entity resolution (name matching) outperforming SoftTFIDF measure. SC spectra method improves the previous results using less time and obtaining better performance. This allows the new method to be used with relatively large documents such as those included in classic information retrieval collections. SC spectra method exceeded SoftTFIDF and cosine tf-idf baselines with an approach that requires no term weighing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="668baaf4885012a992e92c83e7267762" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50470957,&quot;asset_id&quot;:30013438,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50470957/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013438"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013438"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013438; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013438]").text(description); $(".js-view-count[data-work-id=30013438]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013438; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013438']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "668baaf4885012a992e92c83e7267762" } } $('.js-work-strip[data-work-id=30013438]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013438,"title":"SC spectra: A linear-time soft cardinality approximation for text comparison","internal_url":"https://www.academia.edu/30013438/SC_spectra_A_linear_time_soft_cardinality_approximation_for_text_comparison","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50470957,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50470957/thumbnails/1.jpg","file_name":"sc_spectra_-_soft_cardinality_for_text_comparison.pdf","download_url":"https://www.academia.edu/attachments/50470957/download_file","bulk_download_file_name":"SC_spectra_A_linear_time_soft_cardinalit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50470957/sc_spectra_-_soft_cardinality_for_text_comparison-libre.pdf?1479799251=\u0026response-content-disposition=attachment%3B+filename%3DSC_spectra_A_linear_time_soft_cardinalit.pdf\u0026Expires=1740059530\u0026Signature=Cfr2yeNUFCz680euWaErJU55nJFtC7w5MT4o4WqBFb3U0WUWm2MCg7p9cOHb9xto~F1rCyFDSWiodV8P1S6WsvHb89HOn~Kj~-krlXjjntbnnwJBkWggg0blNYQ0GX9qEicivxim7rlwWL9ZLriJnA9GhdQRMNkEvZZ-PQnwf2jC3Zvv47Z9jC3IjiHTmBUzG8r6JuKtFk1gexVTgyQ1vTkYoOj6Hns5atD0LEhD3TZ1S8gTtqCqtJZi25GEqBuUVkEnF3hWt0QwdG06bvMbqQzgUCQt5S9Wb2dOq2yxgcUZJJratXS1XavmHwtT7SB341HlU7lyLSrf2~7pDR9MVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013433"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013433/MICAI_2006_Advances_in_Artificial_Intelligence"><img alt="Research paper thumbnail of MICAI 2006: Advances in Artificial Intelligence" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013433/MICAI_2006_Advances_in_Artificial_Intelligence">MICAI 2006: Advances in Artificial Intelligence</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This book constitutes the refereed proceedings of the 5th Mexican International Conference on Art...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This book constitutes the refereed proceedings of the 5th Mexican International Conference on Artificial Intelligence, MICAI 2006, held in Apizaco, Mexico in November 2006. It contains over 120 papers that address such topics as knowledge representation and reasoning, machine learning and feature selection, knowledge discovery, computer vision, image processing and image retrieval, robotics, as well as bioinformatics and medical applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013433"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013433"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013433; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013433]").text(description); $(".js-view-count[data-work-id=30013433]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013433; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013433']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013433]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013433,"title":"MICAI 2006: Advances in Artificial Intelligence","internal_url":"https://www.academia.edu/30013433/MICAI_2006_Advances_in_Artificial_Intelligence","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013429"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013429/Entailment_based_Fully_Automatic_Technique_for_Evaluation_of_Summaries"><img alt="Research paper thumbnail of Entailment-based Fully Automatic Technique for Evaluation of Summaries" class="work-thumbnail" src="https://attachments.academia-assets.com/50471026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013429/Entailment_based_Fully_Automatic_Technique_for_Evaluation_of_Summaries">Entailment-based Fully Automatic Technique for Evaluation of Summaries</a></div><div class="wp-workCard_item"><span>Research in Computing Science</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a fully automatic technique for evaluating text summaries without the need to prepare ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a fully automatic technique for evaluating text summaries without the need to prepare the gold standard summaries manually. A standard and popular summary evaluation techniques or tools are not fully automatic; they all need some manual process or manual reference summary. Using recognizing textual entailment (TE), automatically generated summaries can be evaluated completely automatically without any manual preparation process. We use a TE system based on a combination of lexical entailment module, lexical distance module, Chunk module, Named Entity module and syntactic text entailment (TE) module. The documents are used as text (T) and summary of these documents are taken as hypothesis (H). Therefore, the more information of the document is entailed by its summary the better the summary. Comparing with the ROUGE 1.5.5 evaluation scores over TAC 2008 (formerly DUC, conducted by NIST) dataset, the proposed evaluation technique predicts the ROUGE scores with a accuracy of 98.25% with respect to ROUGE-2 and 95.65% with respect to ROUGE-SU4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="73b686bc65acd516d8bce627506cf513" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471026,&quot;asset_id&quot;:30013429,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471026/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013429"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013429"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013429; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013429]").text(description); $(".js-view-count[data-work-id=30013429]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013429; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013429']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "73b686bc65acd516d8bce627506cf513" } } $('.js-work-strip[data-work-id=30013429]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013429,"title":"Entailment-based Fully Automatic Technique for Evaluation of Summaries","internal_url":"https://www.academia.edu/30013429/Entailment_based_Fully_Automatic_Technique_for_Evaluation_of_Summaries","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471026/thumbnails/1.jpg","file_name":"Entailment-based_Fully_Automatic_Techniq20161121-7106-2it3l8.pdf","download_url":"https://www.academia.edu/attachments/50471026/download_file","bulk_download_file_name":"Entailment_based_Fully_Automatic_Techniq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471026/Entailment-based_Fully_Automatic_Techniq20161121-7106-2it3l8-libre.pdf?1479799198=\u0026response-content-disposition=attachment%3B+filename%3DEntailment_based_Fully_Automatic_Techniq.pdf\u0026Expires=1740059530\u0026Signature=Y3MnuVnEWM3bMZNEYVIBbo1ur0mRcACXc8GtbyKwWSN3GC-GUee6uNXpsCoQuGFqH0kNNd98Fj2eEeHojyTkByaNE3Ky3eUkZExog1EhBb~2PbDA-deH8PpRm0lYYqbtrmhRa73UkkZMtb9gNybYxqRZJ4b-MLLj6LAYRzAgN9YXtGoEsXD-ogKnqmZXjOLZ3EQkZFMzcYZKpSjDy7GjiG2ZKfTh0qTb-AQIpHxA2YrCyuOTXydRR0MD-GIw~lKDAT6OsKz3xdYDR3e5bvR4b050PESQ2Pgb7U78U8Z03QBA8tftOt7-W~jE38KXmV1JLSGFI0dChNzo7D9xXyU2~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013425/Aligned_Word_Networks_as_a_Resource_for_Extraction_of_Lexical_Translation_Equivalents_and_their_Application_to_the_Text_Alignment_Task"><img alt="Research paper thumbnail of Aligned Word Networks as a Resource for Extraction of Lexical Translation Equivalents, and their Application to the Text Alignment Task" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013425/Aligned_Word_Networks_as_a_Resource_for_Extraction_of_Lexical_Translation_Equivalents_and_their_Application_to_the_Text_Alignment_Task">Aligned Word Networks as a Resource for Extraction of Lexical Translation Equivalents, and their Application to the Text Alignment Task</a></div><div class="wp-workCard_item"><span>Polibits</span><span>, Dec 1, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013425]").text(description); $(".js-view-count[data-work-id=30013425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013425,"title":"Aligned Word Networks as a Resource for Extraction of Lexical Translation Equivalents, and their Application to the Text Alignment Task","internal_url":"https://www.academia.edu/30013425/Aligned_Word_Networks_as_a_Resource_for_Extraction_of_Lexical_Translation_Equivalents_and_their_Application_to_the_Text_Alignment_Task","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013422/Complex_named_entities_in_Spanish_texts_Structures_and_properties"><img alt="Research paper thumbnail of Complex named entities in Spanish texts: Structures and properties" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013422/Complex_named_entities_in_Spanish_texts_Structures_and_properties">Complex named entities in Spanish texts: Structures and properties</a></div><div class="wp-workCard_item"><span>Lingvisticae Investigationes</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: We present a linguistic analysis of Named Entities in Spanish texts. Our work is focuse...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: We present a linguistic analysis of Named Entities in Spanish texts. Our work is focused on the determination of the structure of complex proper names: names with coordinated constituents, names with prepositional phrases and names formed by several content words initialized by a capital letter. We present the analysis of circa 49,000 examples obtained from Mexican newspapers. We detailed their structure and give some notions about the context surrounding them. Since named entities belong to open class of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013422]").text(description); $(".js-view-count[data-work-id=30013422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013422,"title":"Complex named entities in Spanish texts: Structures and properties","internal_url":"https://www.academia.edu/30013422/Complex_named_entities_in_Spanish_texts_Structures_and_properties","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013421"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013421/Modelling_Public_Sentiment_in_Twitter_Using_Linguistic_Patterns_to_Enhance_Supervised_Learning"><img alt="Research paper thumbnail of Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning" class="work-thumbnail" src="https://attachments.academia-assets.com/50471017/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013421/Modelling_Public_Sentiment_in_Twitter_Using_Linguistic_Patterns_to_Enhance_Supervised_Learning">Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper describes a Twitter sentiment analysis system that classifies a tweet as positive or n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper describes a Twitter sentiment analysis system that classifies a tweet as positive or negative based on its overall tweet-level polarity. Supervised learning classifiers often misclassify tweets containing conjunctions like &quot;but&quot; and conditionals like &quot;if&quot;, due to their special linguistic characteristics. These classifiers also assign a decision score very close to the decision boundary for a large number tweets, which suggests that they are simply unsure instead of being completely wrong about these tweets. To counter these two challenges, this paper proposes a system that enhances supervised learning for polarity classification by leveraging on linguistic rules and sentic computing resources. The proposed method is evaluated on two publicly available Twitter corpora to illustrate its effectiveness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="64e69b2e33b6bbf6ac24b9f714979542" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471017,&quot;asset_id&quot;:30013421,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471017/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013421"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013421"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013421; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013421]").text(description); $(".js-view-count[data-work-id=30013421]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013421; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013421']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "64e69b2e33b6bbf6ac24b9f714979542" } } $('.js-work-strip[data-work-id=30013421]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013421,"title":"Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning","internal_url":"https://www.academia.edu/30013421/Modelling_Public_Sentiment_in_Twitter_Using_Linguistic_Patterns_to_Enhance_Supervised_Learning","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471017,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471017/thumbnails/1.jpg","file_name":"Modelling_Public_Sentiment_in_Twitter_Us20161121-7102-rux75z.pdf","download_url":"https://www.academia.edu/attachments/50471017/download_file","bulk_download_file_name":"Modelling_Public_Sentiment_in_Twitter_Us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471017/Modelling_Public_Sentiment_in_Twitter_Us20161121-7102-rux75z-libre.pdf?1479799208=\u0026response-content-disposition=attachment%3B+filename%3DModelling_Public_Sentiment_in_Twitter_Us.pdf\u0026Expires=1740059530\u0026Signature=OefoYYiOdS1Tjv7YK8Cb1hV3Mt~DS-mjXNV-zBL-Yk4cbknM3n8Rw6OvAmsexUGcISe4~patAIw3E~t60oDrl0~873dNhShGHPtprIRKx86r-PBrBCm1CP11XssfDV9DfmuOdmLbeCroKiRL2bBqjGX6-XusP8YWWbMLV7qrdTz2Z9IwhT0n6S--84U-byxZGth1NzOlNdCrfhOSQeeNOPSPrc33zTbFqqJY4XLYcF86iFGPF9OqDOCWx5eqLu-0HOdAW4o8AtrN6wS05msrdLAtYHQ9tzmcVu3RnviPHS1Yd5NYcao4shgZPnApsEF6k8Uvs3JzBuElpzplNPKLRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013420"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013420/On_Fast_Path_Finding_Algorithms_in_AND_OR_Graphs"><img alt="Research paper thumbnail of On Fast Path-Finding Algorithms in AND-OR Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/50471041/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013420/On_Fast_Path_Finding_Algorithms_in_AND_OR_Graphs">On Fast Path-Finding Algorithms in AND-OR Graphs</a></div><div class="wp-workCard_item"><span>Math Probl Eng</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bad974148cec424a9f2de61bc07b5ab4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471041,&quot;asset_id&quot;:30013420,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471041/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013420"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013420"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013420; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013420]").text(description); $(".js-view-count[data-work-id=30013420]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013420; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013420']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bad974148cec424a9f2de61bc07b5ab4" } } $('.js-work-strip[data-work-id=30013420]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013420,"title":"On Fast Path-Finding Algorithms in AND-OR Graphs","internal_url":"https://www.academia.edu/30013420/On_Fast_Path_Finding_Algorithms_in_AND_OR_Graphs","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471041,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471041/thumbnails/1.jpg","file_name":"On_fast_path-finding_algorithms_in_AND-O20161121-7106-1ycm92x.pdf","download_url":"https://www.academia.edu/attachments/50471041/download_file","bulk_download_file_name":"On_Fast_Path_Finding_Algorithms_in_AND_O.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471041/On_fast_path-finding_algorithms_in_AND-O20161121-7106-1ycm92x-libre.pdf?1479799186=\u0026response-content-disposition=attachment%3B+filename%3DOn_Fast_Path_Finding_Algorithms_in_AND_O.pdf\u0026Expires=1740046033\u0026Signature=VProMDmsuElYGN-PGipMKooHyGdQlUuaTmT3qz7gINfQrO7sFfxSYk41lZiexIrT34L9nDvoc5ASO9cU9JJZRKsz7CD-eJU8h6wGrEjxuhylcC3t-zv9Dpa-ITBfwrg~BwD3S1GCkwL-VSov9XWStLW1lUXqO9T57yF6gzQaa8U2PDVyDFKHeXNbPl6WRz9QM09mfIpsiwBj4d4acktvcJKDavHIOFJh-xWgSsgZPXBWBbrWh4SCeVsBIhzFpYuzQetqfOgfiw~CvEauVMLM-Lm-fZzAqT0FNhz9z~LWfvoFq8jy8kKymroW~Lwwqr8huPKITC6SMrCwc2otP2eNhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013419/Extracting_WordNet_like_Top_Concepts_from_Explanatory_Dictionaries"><img alt="Research paper thumbnail of Extracting WordNet-like Top Concepts from Explanatory Dictionaries" class="work-thumbnail" src="https://attachments.academia-assets.com/50470947/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013419/Extracting_WordNet_like_Top_Concepts_from_Explanatory_Dictionaries">Extracting WordNet-like Top Concepts from Explanatory Dictionaries</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Correct interpretation of the text frequently requires knowledge of semantic categories of nouns,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Correct interpretation of the text frequently requires knowledge of semantic categories of nouns, especially in languages with free word order. For example, in Spanish the phrases pintó un cuadro un pintor (lit. painted a picture a painter) and pintó un pintor un cuadro (lit. painted a painter a picture) mean the same: &#39;a painter painted a picture&#39;; with the only way to tell the subject from the object being by knowing that pintor &#39;painter&#39; is causal agent cuadro is a thing. We present a method for extracting semantic information of this kind from existing machine-readable human-oriented explanatory dictionaries. First, we extract from the dictionary an is-a hierarchy and manually mark the categories of a few top-level concepts. Then, for a given word, we follow the hierarchy upward until finding a concept whose semantic category is known. Application of this procedure to two different human-oriented Spanish dictionaries gives additional information as compared with using solely Spanish EuroWordNet. In addition, we show the results of an experiment conducted to evaluate the similarity of word classification with this method.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a5fb826ed6171e397568e1e3005cb08" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50470947,&quot;asset_id&quot;:30013419,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50470947/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013419]").text(description); $(".js-view-count[data-work-id=30013419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a5fb826ed6171e397568e1e3005cb08" } } $('.js-work-strip[data-work-id=30013419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013419,"title":"Extracting WordNet-like Top Concepts from Explanatory Dictionaries","internal_url":"https://www.academia.edu/30013419/Extracting_WordNet_like_Top_Concepts_from_Explanatory_Dictionaries","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50470947,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50470947/thumbnails/1.jpg","file_name":"extracting_wordnet-like_top_concepts_from_explanatory_dictionaries.pdf","download_url":"https://www.academia.edu/attachments/50470947/download_file","bulk_download_file_name":"Extracting_WordNet_like_Top_Concepts_fro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50470947/extracting_wordnet-like_top_concepts_from_explanatory_dictionaries-libre.pdf?1479799249=\u0026response-content-disposition=attachment%3B+filename%3DExtracting_WordNet_like_Top_Concepts_fro.pdf\u0026Expires=1740059530\u0026Signature=da15778by8nsAQJqzo7JwnUFB5i8mk2LH3V~C5zVv~UoX7R7QFTXWaBXCWmH1L9TYVaYTl3fmPrs6XM4Hdfk6cx6Td-jHfocLPu3shKBLsB6u9HzpC~vaee1YRfyrBvjImPKIQO4QPbNpHE6o5jeEXkjECYzoSd~zSlNSZKiFB0UmSD3tKxpBEszAmZ-pI2CVwNjeohWbBnu~KNT38ZWTip88sRXgzjwt82xGURtYyM3K1m-kJ2uqaK4J7C6mhU1vvAEQKbxu27g6QAb6uzfnWQcnCyJG4SxHwTo6hqmepxQEljnDqSbDONTVXkkHLk9USTzRIodw0LusnOesMmEKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013418/Computational_Linguistics_and_Intelligent_Text_Processing_10th_International_Conference_CICLing_2009_Mexico_City_Mexico_March_1_7_2009_Proceedings"><img alt="Research paper thumbnail of Computational Linguistics and Intelligent Text Processing, 10th International Conference, CICLing 2009, Mexico City, Mexico, March 1-7, 2009. Proceedings" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013418/Computational_Linguistics_and_Intelligent_Text_Processing_10th_International_Conference_CICLing_2009_Mexico_City_Mexico_March_1_7_2009_Proceedings">Computational Linguistics and Intelligent Text Processing, 10th International Conference, CICLing 2009, Mexico City, Mexico, March 1-7, 2009. Proceedings</a></div><div class="wp-workCard_item"><span>Cicling</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This book constitutes the proceedings of the 11th International Conference on Computational Lingu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This book constitutes the proceedings of the 11th International Conference on Computational Linguistics and Intelligent Text Processing, held in Iaşi, Romania, in March 2010. The 60 paper included in the volume were carefully reviewed and selected from numerous submissions. The book also includes 3 invited papers. The topics covered are: lexical resources, syntax and parsing, word sense disambiguation and named entity recognition, semantics and dialog, humor and emotions, machine translation and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013418]").text(description); $(".js-view-count[data-work-id=30013418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013418,"title":"Computational Linguistics and Intelligent Text Processing, 10th International Conference, CICLing 2009, Mexico City, Mexico, March 1-7, 2009. Proceedings","internal_url":"https://www.academia.edu/30013418/Computational_Linguistics_and_Intelligent_Text_Processing_10th_International_Conference_CICLing_2009_Mexico_City_Mexico_March_1_7_2009_Proceedings","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013417"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013417/A_Hybrid_Question_Answering_System_for_Multiple_Choice_Question_MCQ_"><img alt="Research paper thumbnail of A Hybrid Question Answering System for Multiple Choice Question (MCQ)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013417/A_Hybrid_Question_Answering_System_for_Multiple_Choice_Question_MCQ_">A Hybrid Question Answering System for Multiple Choice Question (MCQ)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The article presents the experiments carried out as part of the participation in the mai...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The article presents the experiments carried out as part of the participation in the main task (English dataset) of QA4MRE@CLEF 2013. In the developed system, we first combine the question Q and each candidate answer option A to form (Q , A) pair. Each pair has been considered a Hypothesis (H). We have used Morphological Expansion to rebuild the H. Then, each H has been verified by assigning a matching score. Stop words and interrogative words are removed from each H and query words are identified to retrieve the most relevant sentences from the associated document using Lucene. Relevant sentences are retrieved from the associated document based on the TF-IDF of the matching query words along with n-gram overlap of the sentence with the H. Each retrieved sentence defines the Text T. Each T-H pair is assigned a ranking score that works on textual entailment principle. The inference weight i.e., matching score has automatically been assigned to each answer options based on their inference matching. Each sentence in the associated document has contributed an inference score to each H. The candidate answer option that receives the highest inference score has been identified as the most relevant option and selected as the answer to the given question.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013417"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013417"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013417; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013417]").text(description); $(".js-view-count[data-work-id=30013417]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013417; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013417']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013417]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013417,"title":"A Hybrid Question Answering System for Multiple Choice Question (MCQ)","internal_url":"https://www.academia.edu/30013417/A_Hybrid_Question_Answering_System_for_Multiple_Choice_Question_MCQ_","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013416"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013416/Multiple_Choice_Question_MCQ_Answering_System_for_Entrance_Examination"><img alt="Research paper thumbnail of Multiple Choice Question (MCQ) Answering System for Entrance Examination" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013416/Multiple_Choice_Question_MCQ_Answering_System_for_Entrance_Examination">Multiple Choice Question (MCQ) Answering System for Entrance Examination</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The article presents the experiments carried out as part of the participation in the pil...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The article presents the experiments carried out as part of the participation in the pilot task of QA4MRE@CLEF 2013. In the developed system, we have first generated answer pattern by combining the question and each answer option to form the Hypothesis (H). Stop words and interrogative word are removed from each H and query words are identified to retrieve the most relevant sentences from the associated document using Lucene. Relevant sentences are retrieved from the associated document based on the TF-IDF of the matching query words along with n-gram overlap of the sentence with the H. Each retrieved sentence defines the Text T. Each T-H pair is assigned a ranking score that works on textual entailment principle. A matching score is automatically assigned to each answer options based on the matching. A parallel procedure also generates the possible answer patterns from given questions and answer options. Each sentence in the associated document is assigned an inference score with respect to each answer pattern. Evaluated inference score for each answer option is added with the matching score. The answer option that receives the highest selection score is identified as the most relevant option and selected as the answer to the given question.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013416"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013416"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013416; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013416]").text(description); $(".js-view-count[data-work-id=30013416]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013416; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013416']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013416]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013416,"title":"Multiple Choice Question (MCQ) Answering System for Entrance Examination","internal_url":"https://www.academia.edu/30013416/Multiple_Choice_Question_MCQ_Answering_System_for_Entrance_Examination","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013415/Foundations_of_Computational_Linguistics_Man_Machine_Communication_in_Natural_Language_Roland_Hausser_Friedrich_Alexander_Universitat_Erlangen_Nurnberg_Berlin_Springer_1999_xii_534_pp_hardbound_ISBN_3_540_66015_1_54_00"><img alt="Research paper thumbnail of Foundations of Computational Linguistics: Man-Machine Communication in Natural Language Roland Hausser (Friedrich-Alexander-Universitat Erlangen-Nurnberg) Berlin : Springer , 1999 , xii+534 pp; hardbound, ISBN 3-540-66015-1 , $54.00" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013415/Foundations_of_Computational_Linguistics_Man_Machine_Communication_in_Natural_Language_Roland_Hausser_Friedrich_Alexander_Universitat_Erlangen_Nurnberg_Berlin_Springer_1999_xii_534_pp_hardbound_ISBN_3_540_66015_1_54_00">Foundations of Computational Linguistics: Man-Machine Communication in Natural Language Roland Hausser (Friedrich-Alexander-Universitat Erlangen-Nurnberg) Berlin : Springer , 1999 , xii+534 pp; hardbound, ISBN 3-540-66015-1 , $54.00</a></div><div class="wp-workCard_item"><span>Coli</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013415]").text(description); $(".js-view-count[data-work-id=30013415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013415,"title":"Foundations of Computational Linguistics: Man-Machine Communication in Natural Language Roland Hausser (Friedrich-Alexander-Universitat Erlangen-Nurnberg) Berlin : Springer , 1999 , xii+534 pp; hardbound, ISBN 3-540-66015-1 , $54.00","internal_url":"https://www.academia.edu/30013415/Foundations_of_Computational_Linguistics_Man_Machine_Communication_in_Natural_Language_Roland_Hausser_Friedrich_Alexander_Universitat_Erlangen_Nurnberg_Berlin_Springer_1999_xii_534_pp_hardbound_ISBN_3_540_66015_1_54_00","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013414/An_Automatic_System_for_Modality_and_Negation_Detection"><img alt="Research paper thumbnail of An Automatic System for Modality and Negation Detection" class="work-thumbnail" src="https://attachments.academia-assets.com/50471016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013414/An_Automatic_System_for_Modality_and_Negation_Detection">An Automatic System for Modality and Negation Detection</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The article presents the experiments carried out as part of the participation in the pilot task (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The article presents the experiments carried out as part of the participation in the pilot task (Modality and Negation) 1 of QA4MRE@CLEF 2012. Modality and Negation are two main grammatical devices that allow to express extra-propositional aspects of meaning. Modality is a grammatical category that allows to express aspects related to the attitude of the speaker towards statements. Negation is a grammatical category that allows to change the truth value of a proposition. The input for the systems is a text where all events expressed by verbs are identified and numbered the output should be a label per event. The possible values are: mod, neg, neg-mod, none. In the developed system, we first build a database for modal verbs of two categories: epistemic and deontic. Also, we used a negative verb list of 1877 verbs. This negative verb list has been used to identify negative modality. We extract the each tagged events from each sentences. Then our system check modal verbs by that database from each sentences. If any modal verbs is found before that an event then that event should be modal verb and tagged as mod. If modal verb is there and also negeted words is found before that evet then that event should negeted mod and tagged as neg-mod. If no modal verb is found before that an event but negeted word are found before that event then that event should be negeted and tagged as neg. Otherwise the event should tagged as none. We trained our system by traing data (sample data) that was provided by QA4MRE organizer. Then we are tested our system on test dataset. In test data set there are eight documents, two per each of the four topics such as Alzheimer, music and society, AIDs and climate change. Our system overall accuracy is 0.6262 (779 out of 1244).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7472279421e14846405b9d13cdb6ae8e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471016,&quot;asset_id&quot;:30013414,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471016/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013414]").text(description); $(".js-view-count[data-work-id=30013414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7472279421e14846405b9d13cdb6ae8e" } } $('.js-work-strip[data-work-id=30013414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013414,"title":"An Automatic System for Modality and Negation Detection","internal_url":"https://www.academia.edu/30013414/An_Automatic_System_for_Modality_and_Negation_Detection","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471016/thumbnails/1.jpg","file_name":"An_Automatic_System_for_Modality_and_Neg20161121-7106-1y9k1ad.pdf","download_url":"https://www.academia.edu/attachments/50471016/download_file","bulk_download_file_name":"An_Automatic_System_for_Modality_and_Neg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471016/An_Automatic_System_for_Modality_and_Neg20161121-7106-1y9k1ad-libre.pdf?1479799199=\u0026response-content-disposition=attachment%3B+filename%3DAn_Automatic_System_for_Modality_and_Neg.pdf\u0026Expires=1740059530\u0026Signature=I2hbBb9ZarJx60b~QIU1a-M7-oYgK8onj1GnDzTh6bNzcT3Grpna2IthJuvO4aNxXACJm~9JqncskW-wwQIIPx~Brgh6INGU9ifRcSPuyzKfOXg5C2mHdKHanbyjnvvFyna3gPznPPE4kQeu8Kq68WEXcBawQSQ9E-e4~EQw9hc~JDT70O4t625mrap4WZ1IaYTsH1P2J9E9uehhUvJzOcr5TOrCazBNkbJIeL-nPphNauz5qi2SfZ~EWmvLrip5Mr90OMJNHS10LAEQUdfBzfx-wAzUgq7K~dNL~WC5nrlxXhoUHPEVxlXT0cw~4lWVO6hsVuw-NJq4yXcFNsUxCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="84635" id="papers"><div class="js-work-strip profile--work_container" data-work-id="30013603"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013603/Twelveth_Mexican_International_Conference_in_Artificial_Intelligence_Advances_on_Artificial_Intelligence_and_Applications"><img alt="Research paper thumbnail of Twelveth Mexican International Conference in Artificial Intelligence.Advances on Artificial Intelligence and Applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013603/Twelveth_Mexican_International_Conference_in_Artificial_Intelligence_Advances_on_Artificial_Intelligence_and_Applications">Twelveth Mexican International Conference in Artificial Intelligence.Advances on Artificial Intelligence and Applications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013603"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013603"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013603; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013603]").text(description); $(".js-view-count[data-work-id=30013603]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013603; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013603']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013603]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013603,"title":"Twelveth Mexican International Conference in Artificial Intelligence.Advances on Artificial Intelligence and Applications","internal_url":"https://www.academia.edu/30013603/Twelveth_Mexican_International_Conference_in_Artificial_Intelligence_Advances_on_Artificial_Intelligence_and_Applications","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013598/Computational_Linguistics_and_Intelligent_Text_Processing_5th_International_Conference_CICLing_2004_Seoul_Korea_February_15_21_2004_Proceedings"><img alt="Research paper thumbnail of Computational Linguistics and Intelligent Text Processing, 5th International Conference, CICLing 2004, Seoul, Korea, February 15-21, 2004, Proceedings" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013598/Computational_Linguistics_and_Intelligent_Text_Processing_5th_International_Conference_CICLing_2004_Seoul_Korea_February_15_21_2004_Proceedings">Computational Linguistics and Intelligent Text Processing, 5th International Conference, CICLing 2004, Seoul, Korea, February 15-21, 2004, Proceedings</a></div><div class="wp-workCard_item"><span>Cicling</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informatique et au traitement intelligent des textes, CICLing 2001(Mexico, 18-24 Février 2001). Les interventions en linguistique informatique ont porté sur les thèmes suivants: théories et formalismes, sémantique, anaphore et référence, désambiguïsation, traduction, génération de texte, dictionnaires et corpus, morphologie, techniques d&amp;amp;amp;#x27;analyse syntaxique automatique. Dans le domaine du traitement intelligent des textes, les communications se ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013598]").text(description); $(".js-view-count[data-work-id=30013598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013598,"title":"Computational Linguistics and Intelligent Text Processing, 5th International Conference, CICLing 2004, Seoul, Korea, February 15-21, 2004, Proceedings","internal_url":"https://www.academia.edu/30013598/Computational_Linguistics_and_Intelligent_Text_Processing_5th_International_Conference_CICLing_2004_Seoul_Korea_February_15_21_2004_Proceedings","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013594"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013594/Desambiguaci_n_de_sentidos_de_palabras_usando_sin_nimos"><img alt="Research paper thumbnail of Desambiguaci�n de sentidos de palabras usando sin�nimos" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013594/Desambiguaci_n_de_sentidos_de_palabras_usando_sin_nimos">Desambiguaci�n de sentidos de palabras usando sin�nimos</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013594"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013594"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013594; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013594]").text(description); $(".js-view-count[data-work-id=30013594]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013594; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013594']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013594]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013594,"title":"Desambiguaci�n de sentidos de palabras usando sin�nimos","internal_url":"https://www.academia.edu/30013594/Desambiguaci_n_de_sentidos_de_palabras_usando_sin_nimos","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013591/Computational_Linguistics_and_Intelligent_Text_Processing_14th_International_Conference_CICLing_2013_Samos_Greece_March_24_30_2013_Proceedings_Part_I"><img alt="Research paper thumbnail of Computational Linguistics and Intelligent Text Processing - 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013591/Computational_Linguistics_and_Intelligent_Text_Processing_14th_International_Conference_CICLing_2013_Samos_Greece_March_24_30_2013_Proceedings_Part_I">Computational Linguistics and Intelligent Text Processing - 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ce numéro publie les actes de la seconde conférence annuelle consacrée à la linguistique informatique et au traitement intelligent des textes, CICLing 2001(Mexico, 18-24 Février 2001). Les interventions en linguistique informatique ont porté sur les thèmes suivants: théories et formalismes, sémantique, anaphore et référence, désambiguïsation, traduction, génération de texte, dictionnaires et corpus, morphologie, techniques d&amp;amp;amp;#x27;analyse syntaxique automatique. Dans le domaine du traitement intelligent des textes, les communications se ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013591]").text(description); $(".js-view-count[data-work-id=30013591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013591,"title":"Computational Linguistics and Intelligent Text Processing - 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I","internal_url":"https://www.academia.edu/30013591/Computational_Linguistics_and_Intelligent_Text_Processing_14th_International_Conference_CICLing_2013_Samos_Greece_March_24_30_2013_Proceedings_Part_I","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013588/Computing_Transfer_Score_in_Example_Based_Machine_Translation"><img alt="Research paper thumbnail of Computing Transfer Score in Example-Based Machine Translation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013588/Computing_Transfer_Score_in_Example_Based_Machine_Translation">Computing Transfer Score in Example-Based Machine Translation</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Page 1. Computing Transfer Score in Example-Based Machine Translation Rafał Jaworski Adam Mickiew...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Page 1. Computing Transfer Score in Example-Based Machine Translation Rafał Jaworski Adam Mickiewicz University Poznań, Poland <a href="mailto:rjawor@amu.edu.pl" rel="nofollow">rjawor@amu.edu.pl</a> Abstract. This paper presents an idea in Example-Based Machine ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013588]").text(description); $(".js-view-count[data-work-id=30013588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013588,"title":"Computing Transfer Score in Example-Based Machine Translation","internal_url":"https://www.academia.edu/30013588/Computing_Transfer_Score_in_Example_Based_Machine_Translation","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013448"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013448/Information_Retrieval_with_Word_Sense_Disambiguation_for_Spanish"><img alt="Research paper thumbnail of Information Retrieval with Word Sense Disambiguation for Spanish" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013448/Information_Retrieval_with_Word_Sense_Disambiguation_for_Spanish">Information Retrieval with Word Sense Disambiguation for Spanish</a></div><div class="wp-workCard_item"><span>Computacion Y Sistemas</span><span>, Mar 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Descripción: ONE OF THE PROBLEMS OF INFORMATION RETRIEVAL IN INTERNET AND DIGITAL LIBRARIES IS LO...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Descripción: ONE OF THE PROBLEMS OF INFORMATION RETRIEVAL IN INTERNET AND DIGITAL LIBRARIES IS LOW PRECISION: A HIGH NUMBER OF RETRIEVED DOCUMENTS OF LOW RELEVANCE. FOR EXAMPLE, A PERSON LOOKS FOR INFORMATION ABOUT JAGUARS (THE ANIMAL) AND THE DOCUMENTS RETRIEVED ARE ABOUT THE MODEL OF A CAR. THIS PROBLEM ARISES DUE TO AMBIGUITY OF DIFFERENT SENSES OF WORDS. THE TASK OF DETERMINING THE CORRECT INTERPRETATION OF A WORD ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013448"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013448"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013448; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013448]").text(description); $(".js-view-count[data-work-id=30013448]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013448; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013448']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013448]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013448,"title":"Information Retrieval with Word Sense Disambiguation for Spanish","internal_url":"https://www.academia.edu/30013448/Information_Retrieval_with_Word_Sense_Disambiguation_for_Spanish","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013443/An_lisis_morfol_gico_autom_tico_del_espa_ol_a_trav_s_de_generaci_n"><img alt="Research paper thumbnail of An�lisis morfol�gico autom�tico del espa�ol a trav�s de generaci�n" class="work-thumbnail" src="https://attachments.academia-assets.com/50471033/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013443/An_lisis_morfol_gico_autom_tico_del_espa_ol_a_trav_s_de_generaci_n">An�lisis morfol�gico autom�tico del espa�ol a trav�s de generaci�n</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">La mayoría de los sistemas de análisis morfológico están basados en el modelo conocido como la mo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">La mayoría de los sistemas de análisis morfológico están basados en el modelo conocido como la morfología de dos niveles. Sin embargo, este modelo no es muy adecuado para lenguajes con alternaciones irregulares de raíz (por ejemplo, el español o el ruso). En este trabajo describimos un sistema computacional de análisis morfológico para el lenguaje español basado en otro modelo, cuya idea principal es el análisis a través de generación. El modelo consiste en un conjunto de reglas para obtener todas las raíces de una forma de palabra para cada lexema, su almacenamiento en el diccionario, la producción de todas las hipótesis posibles durante el análisis y su comprobación a través de la generación morfológica. Se usó un diccionario de 40,000 lemas, a través del cual se pueden analizar más de 2,500,000 formas gramaticales posibles. Para el tratamiento de palabras desconocidas se está desarrollando un algoritmo basado en heurísticas. El sistema desarrollado está disponible sin costo para el uso académico.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1958ad086d5c3b405c859a15506c07a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471033,&quot;asset_id&quot;:30013443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471033/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013443]").text(description); $(".js-view-count[data-work-id=30013443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1958ad086d5c3b405c859a15506c07a1" } } $('.js-work-strip[data-work-id=30013443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013443,"title":"An�lisis morfol�gico autom�tico del espa�ol a trav�s de generaci�n","internal_url":"https://www.academia.edu/30013443/An_lisis_morfol_gico_autom_tico_del_espa_ol_a_trav_s_de_generaci_n","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471033,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471033/thumbnails/1.jpg","file_name":"escritos-morph.pdf","download_url":"https://www.academia.edu/attachments/50471033/download_file","bulk_download_file_name":"An_lisis_morfol_gico_autom_tico_del_espa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471033/escritos-morph-libre.pdf?1479799192=\u0026response-content-disposition=attachment%3B+filename%3DAn_lisis_morfol_gico_autom_tico_del_espa.pdf\u0026Expires=1740059530\u0026Signature=Oi~70SPC8LOPo5-uL~0sUaqFUILbXaaEySi8jzn5QWquZ2DdX2lCgk0VjZJbY69Hg-NbtgEayYVbFzS6RtIz8LV2i2O7cBpVSEi2eSAPjHAASUkyP2PXZJkYwY8ihXBDu27mftXhVIcx8k7P-qkKJbNjeDma0Ovdt53v53kjmH~~UDljnbMo6Bk44bOG2d28IXp0gbCmhysFHTccmf0P0T4uv197H1OR6P8ukVXaD1mpEA-6X7HrgNbrf50FhBG9hRmaKT9oPlgqRFw109Q7GlvAleR6FOfuzxssVuTLBHQicPSw67COWXDetJsbFEL-fJxlNiMo5SOVTYOVFhealw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013438"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013438/SC_spectra_A_linear_time_soft_cardinality_approximation_for_text_comparison"><img alt="Research paper thumbnail of SC spectra: A linear-time soft cardinality approximation for text comparison" class="work-thumbnail" src="https://attachments.academia-assets.com/50470957/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013438/SC_spectra_A_linear_time_soft_cardinality_approximation_for_text_comparison">SC spectra: A linear-time soft cardinality approximation for text comparison</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Soft cardinality (SC) is a softened version of the classical cardinality of set theory. However, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Soft cardinality (SC) is a softened version of the classical cardinality of set theory. However, given its prohibitive cost of computing (exponential order), an approximation that is quadratic in the number of terms in the text has been proposed in the past. SC Spectra is a new method of approximation in linear time for text strings, which divides text strings into consecutive substrings (i.e., q-grams) of different sizes. Thus, SC in combination with resemblance coefficients allowed the construction of a family of similarity functions for text comparison. These similarity measures have been used in the past to address a problem of entity resolution (name matching) outperforming SoftTFIDF measure. SC spectra method improves the previous results using less time and obtaining better performance. This allows the new method to be used with relatively large documents such as those included in classic information retrieval collections. SC spectra method exceeded SoftTFIDF and cosine tf-idf baselines with an approach that requires no term weighing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="668baaf4885012a992e92c83e7267762" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50470957,&quot;asset_id&quot;:30013438,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50470957/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013438"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013438"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013438; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013438]").text(description); $(".js-view-count[data-work-id=30013438]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013438; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013438']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "668baaf4885012a992e92c83e7267762" } } $('.js-work-strip[data-work-id=30013438]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013438,"title":"SC spectra: A linear-time soft cardinality approximation for text comparison","internal_url":"https://www.academia.edu/30013438/SC_spectra_A_linear_time_soft_cardinality_approximation_for_text_comparison","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50470957,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50470957/thumbnails/1.jpg","file_name":"sc_spectra_-_soft_cardinality_for_text_comparison.pdf","download_url":"https://www.academia.edu/attachments/50470957/download_file","bulk_download_file_name":"SC_spectra_A_linear_time_soft_cardinalit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50470957/sc_spectra_-_soft_cardinality_for_text_comparison-libre.pdf?1479799251=\u0026response-content-disposition=attachment%3B+filename%3DSC_spectra_A_linear_time_soft_cardinalit.pdf\u0026Expires=1740059530\u0026Signature=Cfr2yeNUFCz680euWaErJU55nJFtC7w5MT4o4WqBFb3U0WUWm2MCg7p9cOHb9xto~F1rCyFDSWiodV8P1S6WsvHb89HOn~Kj~-krlXjjntbnnwJBkWggg0blNYQ0GX9qEicivxim7rlwWL9ZLriJnA9GhdQRMNkEvZZ-PQnwf2jC3Zvv47Z9jC3IjiHTmBUzG8r6JuKtFk1gexVTgyQ1vTkYoOj6Hns5atD0LEhD3TZ1S8gTtqCqtJZi25GEqBuUVkEnF3hWt0QwdG06bvMbqQzgUCQt5S9Wb2dOq2yxgcUZJJratXS1XavmHwtT7SB341HlU7lyLSrf2~7pDR9MVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013433"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013433/MICAI_2006_Advances_in_Artificial_Intelligence"><img alt="Research paper thumbnail of MICAI 2006: Advances in Artificial Intelligence" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013433/MICAI_2006_Advances_in_Artificial_Intelligence">MICAI 2006: Advances in Artificial Intelligence</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This book constitutes the refereed proceedings of the 5th Mexican International Conference on Art...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This book constitutes the refereed proceedings of the 5th Mexican International Conference on Artificial Intelligence, MICAI 2006, held in Apizaco, Mexico in November 2006. It contains over 120 papers that address such topics as knowledge representation and reasoning, machine learning and feature selection, knowledge discovery, computer vision, image processing and image retrieval, robotics, as well as bioinformatics and medical applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013433"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013433"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013433; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013433]").text(description); $(".js-view-count[data-work-id=30013433]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013433; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013433']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013433]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013433,"title":"MICAI 2006: Advances in Artificial Intelligence","internal_url":"https://www.academia.edu/30013433/MICAI_2006_Advances_in_Artificial_Intelligence","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013429"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013429/Entailment_based_Fully_Automatic_Technique_for_Evaluation_of_Summaries"><img alt="Research paper thumbnail of Entailment-based Fully Automatic Technique for Evaluation of Summaries" class="work-thumbnail" src="https://attachments.academia-assets.com/50471026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013429/Entailment_based_Fully_Automatic_Technique_for_Evaluation_of_Summaries">Entailment-based Fully Automatic Technique for Evaluation of Summaries</a></div><div class="wp-workCard_item"><span>Research in Computing Science</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a fully automatic technique for evaluating text summaries without the need to prepare ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a fully automatic technique for evaluating text summaries without the need to prepare the gold standard summaries manually. A standard and popular summary evaluation techniques or tools are not fully automatic; they all need some manual process or manual reference summary. Using recognizing textual entailment (TE), automatically generated summaries can be evaluated completely automatically without any manual preparation process. We use a TE system based on a combination of lexical entailment module, lexical distance module, Chunk module, Named Entity module and syntactic text entailment (TE) module. The documents are used as text (T) and summary of these documents are taken as hypothesis (H). Therefore, the more information of the document is entailed by its summary the better the summary. Comparing with the ROUGE 1.5.5 evaluation scores over TAC 2008 (formerly DUC, conducted by NIST) dataset, the proposed evaluation technique predicts the ROUGE scores with a accuracy of 98.25% with respect to ROUGE-2 and 95.65% with respect to ROUGE-SU4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="73b686bc65acd516d8bce627506cf513" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471026,&quot;asset_id&quot;:30013429,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471026/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013429"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013429"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013429; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013429]").text(description); $(".js-view-count[data-work-id=30013429]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013429; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013429']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "73b686bc65acd516d8bce627506cf513" } } $('.js-work-strip[data-work-id=30013429]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013429,"title":"Entailment-based Fully Automatic Technique for Evaluation of Summaries","internal_url":"https://www.academia.edu/30013429/Entailment_based_Fully_Automatic_Technique_for_Evaluation_of_Summaries","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471026/thumbnails/1.jpg","file_name":"Entailment-based_Fully_Automatic_Techniq20161121-7106-2it3l8.pdf","download_url":"https://www.academia.edu/attachments/50471026/download_file","bulk_download_file_name":"Entailment_based_Fully_Automatic_Techniq.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471026/Entailment-based_Fully_Automatic_Techniq20161121-7106-2it3l8-libre.pdf?1479799198=\u0026response-content-disposition=attachment%3B+filename%3DEntailment_based_Fully_Automatic_Techniq.pdf\u0026Expires=1740059530\u0026Signature=Y3MnuVnEWM3bMZNEYVIBbo1ur0mRcACXc8GtbyKwWSN3GC-GUee6uNXpsCoQuGFqH0kNNd98Fj2eEeHojyTkByaNE3Ky3eUkZExog1EhBb~2PbDA-deH8PpRm0lYYqbtrmhRa73UkkZMtb9gNybYxqRZJ4b-MLLj6LAYRzAgN9YXtGoEsXD-ogKnqmZXjOLZ3EQkZFMzcYZKpSjDy7GjiG2ZKfTh0qTb-AQIpHxA2YrCyuOTXydRR0MD-GIw~lKDAT6OsKz3xdYDR3e5bvR4b050PESQ2Pgb7U78U8Z03QBA8tftOt7-W~jE38KXmV1JLSGFI0dChNzo7D9xXyU2~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013425/Aligned_Word_Networks_as_a_Resource_for_Extraction_of_Lexical_Translation_Equivalents_and_their_Application_to_the_Text_Alignment_Task"><img alt="Research paper thumbnail of Aligned Word Networks as a Resource for Extraction of Lexical Translation Equivalents, and their Application to the Text Alignment Task" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013425/Aligned_Word_Networks_as_a_Resource_for_Extraction_of_Lexical_Translation_Equivalents_and_their_Application_to_the_Text_Alignment_Task">Aligned Word Networks as a Resource for Extraction of Lexical Translation Equivalents, and their Application to the Text Alignment Task</a></div><div class="wp-workCard_item"><span>Polibits</span><span>, Dec 1, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013425]").text(description); $(".js-view-count[data-work-id=30013425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013425,"title":"Aligned Word Networks as a Resource for Extraction of Lexical Translation Equivalents, and their Application to the Text Alignment Task","internal_url":"https://www.academia.edu/30013425/Aligned_Word_Networks_as_a_Resource_for_Extraction_of_Lexical_Translation_Equivalents_and_their_Application_to_the_Text_Alignment_Task","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013422/Complex_named_entities_in_Spanish_texts_Structures_and_properties"><img alt="Research paper thumbnail of Complex named entities in Spanish texts: Structures and properties" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013422/Complex_named_entities_in_Spanish_texts_Structures_and_properties">Complex named entities in Spanish texts: Structures and properties</a></div><div class="wp-workCard_item"><span>Lingvisticae Investigationes</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: We present a linguistic analysis of Named Entities in Spanish texts. Our work is focuse...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: We present a linguistic analysis of Named Entities in Spanish texts. Our work is focused on the determination of the structure of complex proper names: names with coordinated constituents, names with prepositional phrases and names formed by several content words initialized by a capital letter. We present the analysis of circa 49,000 examples obtained from Mexican newspapers. We detailed their structure and give some notions about the context surrounding them. Since named entities belong to open class of ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013422]").text(description); $(".js-view-count[data-work-id=30013422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013422,"title":"Complex named entities in Spanish texts: Structures and properties","internal_url":"https://www.academia.edu/30013422/Complex_named_entities_in_Spanish_texts_Structures_and_properties","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013421"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013421/Modelling_Public_Sentiment_in_Twitter_Using_Linguistic_Patterns_to_Enhance_Supervised_Learning"><img alt="Research paper thumbnail of Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning" class="work-thumbnail" src="https://attachments.academia-assets.com/50471017/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013421/Modelling_Public_Sentiment_in_Twitter_Using_Linguistic_Patterns_to_Enhance_Supervised_Learning">Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper describes a Twitter sentiment analysis system that classifies a tweet as positive or n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper describes a Twitter sentiment analysis system that classifies a tweet as positive or negative based on its overall tweet-level polarity. Supervised learning classifiers often misclassify tweets containing conjunctions like &quot;but&quot; and conditionals like &quot;if&quot;, due to their special linguistic characteristics. These classifiers also assign a decision score very close to the decision boundary for a large number tweets, which suggests that they are simply unsure instead of being completely wrong about these tweets. To counter these two challenges, this paper proposes a system that enhances supervised learning for polarity classification by leveraging on linguistic rules and sentic computing resources. The proposed method is evaluated on two publicly available Twitter corpora to illustrate its effectiveness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="64e69b2e33b6bbf6ac24b9f714979542" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471017,&quot;asset_id&quot;:30013421,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471017/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013421"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013421"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013421; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013421]").text(description); $(".js-view-count[data-work-id=30013421]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013421; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013421']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "64e69b2e33b6bbf6ac24b9f714979542" } } $('.js-work-strip[data-work-id=30013421]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013421,"title":"Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning","internal_url":"https://www.academia.edu/30013421/Modelling_Public_Sentiment_in_Twitter_Using_Linguistic_Patterns_to_Enhance_Supervised_Learning","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471017,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471017/thumbnails/1.jpg","file_name":"Modelling_Public_Sentiment_in_Twitter_Us20161121-7102-rux75z.pdf","download_url":"https://www.academia.edu/attachments/50471017/download_file","bulk_download_file_name":"Modelling_Public_Sentiment_in_Twitter_Us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471017/Modelling_Public_Sentiment_in_Twitter_Us20161121-7102-rux75z-libre.pdf?1479799208=\u0026response-content-disposition=attachment%3B+filename%3DModelling_Public_Sentiment_in_Twitter_Us.pdf\u0026Expires=1740059530\u0026Signature=OefoYYiOdS1Tjv7YK8Cb1hV3Mt~DS-mjXNV-zBL-Yk4cbknM3n8Rw6OvAmsexUGcISe4~patAIw3E~t60oDrl0~873dNhShGHPtprIRKx86r-PBrBCm1CP11XssfDV9DfmuOdmLbeCroKiRL2bBqjGX6-XusP8YWWbMLV7qrdTz2Z9IwhT0n6S--84U-byxZGth1NzOlNdCrfhOSQeeNOPSPrc33zTbFqqJY4XLYcF86iFGPF9OqDOCWx5eqLu-0HOdAW4o8AtrN6wS05msrdLAtYHQ9tzmcVu3RnviPHS1Yd5NYcao4shgZPnApsEF6k8Uvs3JzBuElpzplNPKLRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013420"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013420/On_Fast_Path_Finding_Algorithms_in_AND_OR_Graphs"><img alt="Research paper thumbnail of On Fast Path-Finding Algorithms in AND-OR Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/50471041/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013420/On_Fast_Path_Finding_Algorithms_in_AND_OR_Graphs">On Fast Path-Finding Algorithms in AND-OR Graphs</a></div><div class="wp-workCard_item"><span>Math Probl Eng</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bad974148cec424a9f2de61bc07b5ab4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471041,&quot;asset_id&quot;:30013420,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471041/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013420"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013420"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013420; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013420]").text(description); $(".js-view-count[data-work-id=30013420]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013420; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013420']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bad974148cec424a9f2de61bc07b5ab4" } } $('.js-work-strip[data-work-id=30013420]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013420,"title":"On Fast Path-Finding Algorithms in AND-OR Graphs","internal_url":"https://www.academia.edu/30013420/On_Fast_Path_Finding_Algorithms_in_AND_OR_Graphs","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471041,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471041/thumbnails/1.jpg","file_name":"On_fast_path-finding_algorithms_in_AND-O20161121-7106-1ycm92x.pdf","download_url":"https://www.academia.edu/attachments/50471041/download_file","bulk_download_file_name":"On_Fast_Path_Finding_Algorithms_in_AND_O.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471041/On_fast_path-finding_algorithms_in_AND-O20161121-7106-1ycm92x-libre.pdf?1479799186=\u0026response-content-disposition=attachment%3B+filename%3DOn_Fast_Path_Finding_Algorithms_in_AND_O.pdf\u0026Expires=1740046033\u0026Signature=VProMDmsuElYGN-PGipMKooHyGdQlUuaTmT3qz7gINfQrO7sFfxSYk41lZiexIrT34L9nDvoc5ASO9cU9JJZRKsz7CD-eJU8h6wGrEjxuhylcC3t-zv9Dpa-ITBfwrg~BwD3S1GCkwL-VSov9XWStLW1lUXqO9T57yF6gzQaa8U2PDVyDFKHeXNbPl6WRz9QM09mfIpsiwBj4d4acktvcJKDavHIOFJh-xWgSsgZPXBWBbrWh4SCeVsBIhzFpYuzQetqfOgfiw~CvEauVMLM-Lm-fZzAqT0FNhz9z~LWfvoFq8jy8kKymroW~Lwwqr8huPKITC6SMrCwc2otP2eNhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013419/Extracting_WordNet_like_Top_Concepts_from_Explanatory_Dictionaries"><img alt="Research paper thumbnail of Extracting WordNet-like Top Concepts from Explanatory Dictionaries" class="work-thumbnail" src="https://attachments.academia-assets.com/50470947/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013419/Extracting_WordNet_like_Top_Concepts_from_Explanatory_Dictionaries">Extracting WordNet-like Top Concepts from Explanatory Dictionaries</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Correct interpretation of the text frequently requires knowledge of semantic categories of nouns,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Correct interpretation of the text frequently requires knowledge of semantic categories of nouns, especially in languages with free word order. For example, in Spanish the phrases pintó un cuadro un pintor (lit. painted a picture a painter) and pintó un pintor un cuadro (lit. painted a painter a picture) mean the same: &#39;a painter painted a picture&#39;; with the only way to tell the subject from the object being by knowing that pintor &#39;painter&#39; is causal agent cuadro is a thing. We present a method for extracting semantic information of this kind from existing machine-readable human-oriented explanatory dictionaries. First, we extract from the dictionary an is-a hierarchy and manually mark the categories of a few top-level concepts. Then, for a given word, we follow the hierarchy upward until finding a concept whose semantic category is known. Application of this procedure to two different human-oriented Spanish dictionaries gives additional information as compared with using solely Spanish EuroWordNet. In addition, we show the results of an experiment conducted to evaluate the similarity of word classification with this method.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a5fb826ed6171e397568e1e3005cb08" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50470947,&quot;asset_id&quot;:30013419,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50470947/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013419]").text(description); $(".js-view-count[data-work-id=30013419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a5fb826ed6171e397568e1e3005cb08" } } $('.js-work-strip[data-work-id=30013419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013419,"title":"Extracting WordNet-like Top Concepts from Explanatory Dictionaries","internal_url":"https://www.academia.edu/30013419/Extracting_WordNet_like_Top_Concepts_from_Explanatory_Dictionaries","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50470947,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50470947/thumbnails/1.jpg","file_name":"extracting_wordnet-like_top_concepts_from_explanatory_dictionaries.pdf","download_url":"https://www.academia.edu/attachments/50470947/download_file","bulk_download_file_name":"Extracting_WordNet_like_Top_Concepts_fro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50470947/extracting_wordnet-like_top_concepts_from_explanatory_dictionaries-libre.pdf?1479799249=\u0026response-content-disposition=attachment%3B+filename%3DExtracting_WordNet_like_Top_Concepts_fro.pdf\u0026Expires=1740059530\u0026Signature=da15778by8nsAQJqzo7JwnUFB5i8mk2LH3V~C5zVv~UoX7R7QFTXWaBXCWmH1L9TYVaYTl3fmPrs6XM4Hdfk6cx6Td-jHfocLPu3shKBLsB6u9HzpC~vaee1YRfyrBvjImPKIQO4QPbNpHE6o5jeEXkjECYzoSd~zSlNSZKiFB0UmSD3tKxpBEszAmZ-pI2CVwNjeohWbBnu~KNT38ZWTip88sRXgzjwt82xGURtYyM3K1m-kJ2uqaK4J7C6mhU1vvAEQKbxu27g6QAb6uzfnWQcnCyJG4SxHwTo6hqmepxQEljnDqSbDONTVXkkHLk9USTzRIodw0LusnOesMmEKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013418/Computational_Linguistics_and_Intelligent_Text_Processing_10th_International_Conference_CICLing_2009_Mexico_City_Mexico_March_1_7_2009_Proceedings"><img alt="Research paper thumbnail of Computational Linguistics and Intelligent Text Processing, 10th International Conference, CICLing 2009, Mexico City, Mexico, March 1-7, 2009. Proceedings" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013418/Computational_Linguistics_and_Intelligent_Text_Processing_10th_International_Conference_CICLing_2009_Mexico_City_Mexico_March_1_7_2009_Proceedings">Computational Linguistics and Intelligent Text Processing, 10th International Conference, CICLing 2009, Mexico City, Mexico, March 1-7, 2009. Proceedings</a></div><div class="wp-workCard_item"><span>Cicling</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This book constitutes the proceedings of the 11th International Conference on Computational Lingu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This book constitutes the proceedings of the 11th International Conference on Computational Linguistics and Intelligent Text Processing, held in Iaşi, Romania, in March 2010. The 60 paper included in the volume were carefully reviewed and selected from numerous submissions. The book also includes 3 invited papers. The topics covered are: lexical resources, syntax and parsing, word sense disambiguation and named entity recognition, semantics and dialog, humor and emotions, machine translation and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013418]").text(description); $(".js-view-count[data-work-id=30013418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013418,"title":"Computational Linguistics and Intelligent Text Processing, 10th International Conference, CICLing 2009, Mexico City, Mexico, March 1-7, 2009. Proceedings","internal_url":"https://www.academia.edu/30013418/Computational_Linguistics_and_Intelligent_Text_Processing_10th_International_Conference_CICLing_2009_Mexico_City_Mexico_March_1_7_2009_Proceedings","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013417"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013417/A_Hybrid_Question_Answering_System_for_Multiple_Choice_Question_MCQ_"><img alt="Research paper thumbnail of A Hybrid Question Answering System for Multiple Choice Question (MCQ)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013417/A_Hybrid_Question_Answering_System_for_Multiple_Choice_Question_MCQ_">A Hybrid Question Answering System for Multiple Choice Question (MCQ)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The article presents the experiments carried out as part of the participation in the mai...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The article presents the experiments carried out as part of the participation in the main task (English dataset) of QA4MRE@CLEF 2013. In the developed system, we first combine the question Q and each candidate answer option A to form (Q , A) pair. Each pair has been considered a Hypothesis (H). We have used Morphological Expansion to rebuild the H. Then, each H has been verified by assigning a matching score. Stop words and interrogative words are removed from each H and query words are identified to retrieve the most relevant sentences from the associated document using Lucene. Relevant sentences are retrieved from the associated document based on the TF-IDF of the matching query words along with n-gram overlap of the sentence with the H. Each retrieved sentence defines the Text T. Each T-H pair is assigned a ranking score that works on textual entailment principle. The inference weight i.e., matching score has automatically been assigned to each answer options based on their inference matching. Each sentence in the associated document has contributed an inference score to each H. The candidate answer option that receives the highest inference score has been identified as the most relevant option and selected as the answer to the given question.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013417"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013417"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013417; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013417]").text(description); $(".js-view-count[data-work-id=30013417]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013417; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013417']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013417]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013417,"title":"A Hybrid Question Answering System for Multiple Choice Question (MCQ)","internal_url":"https://www.academia.edu/30013417/A_Hybrid_Question_Answering_System_for_Multiple_Choice_Question_MCQ_","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013416"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013416/Multiple_Choice_Question_MCQ_Answering_System_for_Entrance_Examination"><img alt="Research paper thumbnail of Multiple Choice Question (MCQ) Answering System for Entrance Examination" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013416/Multiple_Choice_Question_MCQ_Answering_System_for_Entrance_Examination">Multiple Choice Question (MCQ) Answering System for Entrance Examination</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The article presents the experiments carried out as part of the participation in the pil...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The article presents the experiments carried out as part of the participation in the pilot task of QA4MRE@CLEF 2013. In the developed system, we have first generated answer pattern by combining the question and each answer option to form the Hypothesis (H). Stop words and interrogative word are removed from each H and query words are identified to retrieve the most relevant sentences from the associated document using Lucene. Relevant sentences are retrieved from the associated document based on the TF-IDF of the matching query words along with n-gram overlap of the sentence with the H. Each retrieved sentence defines the Text T. Each T-H pair is assigned a ranking score that works on textual entailment principle. A matching score is automatically assigned to each answer options based on the matching. A parallel procedure also generates the possible answer patterns from given questions and answer options. Each sentence in the associated document is assigned an inference score with respect to each answer pattern. Evaluated inference score for each answer option is added with the matching score. The answer option that receives the highest selection score is identified as the most relevant option and selected as the answer to the given question.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013416"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013416"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013416; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013416]").text(description); $(".js-view-count[data-work-id=30013416]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013416; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013416']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013416]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013416,"title":"Multiple Choice Question (MCQ) Answering System for Entrance Examination","internal_url":"https://www.academia.edu/30013416/Multiple_Choice_Question_MCQ_Answering_System_for_Entrance_Examination","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30013415/Foundations_of_Computational_Linguistics_Man_Machine_Communication_in_Natural_Language_Roland_Hausser_Friedrich_Alexander_Universitat_Erlangen_Nurnberg_Berlin_Springer_1999_xii_534_pp_hardbound_ISBN_3_540_66015_1_54_00"><img alt="Research paper thumbnail of Foundations of Computational Linguistics: Man-Machine Communication in Natural Language Roland Hausser (Friedrich-Alexander-Universitat Erlangen-Nurnberg) Berlin : Springer , 1999 , xii+534 pp; hardbound, ISBN 3-540-66015-1 , $54.00" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/30013415/Foundations_of_Computational_Linguistics_Man_Machine_Communication_in_Natural_Language_Roland_Hausser_Friedrich_Alexander_Universitat_Erlangen_Nurnberg_Berlin_Springer_1999_xii_534_pp_hardbound_ISBN_3_540_66015_1_54_00">Foundations of Computational Linguistics: Man-Machine Communication in Natural Language Roland Hausser (Friedrich-Alexander-Universitat Erlangen-Nurnberg) Berlin : Springer , 1999 , xii+534 pp; hardbound, ISBN 3-540-66015-1 , $54.00</a></div><div class="wp-workCard_item"><span>Coli</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013415]").text(description); $(".js-view-count[data-work-id=30013415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30013415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013415,"title":"Foundations of Computational Linguistics: Man-Machine Communication in Natural Language Roland Hausser (Friedrich-Alexander-Universitat Erlangen-Nurnberg) Berlin : Springer , 1999 , xii+534 pp; hardbound, ISBN 3-540-66015-1 , $54.00","internal_url":"https://www.academia.edu/30013415/Foundations_of_Computational_Linguistics_Man_Machine_Communication_in_Natural_Language_Roland_Hausser_Friedrich_Alexander_Universitat_Erlangen_Nurnberg_Berlin_Springer_1999_xii_534_pp_hardbound_ISBN_3_540_66015_1_54_00","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30013414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30013414/An_Automatic_System_for_Modality_and_Negation_Detection"><img alt="Research paper thumbnail of An Automatic System for Modality and Negation Detection" class="work-thumbnail" src="https://attachments.academia-assets.com/50471016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30013414/An_Automatic_System_for_Modality_and_Negation_Detection">An Automatic System for Modality and Negation Detection</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The article presents the experiments carried out as part of the participation in the pilot task (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The article presents the experiments carried out as part of the participation in the pilot task (Modality and Negation) 1 of QA4MRE@CLEF 2012. Modality and Negation are two main grammatical devices that allow to express extra-propositional aspects of meaning. Modality is a grammatical category that allows to express aspects related to the attitude of the speaker towards statements. Negation is a grammatical category that allows to change the truth value of a proposition. The input for the systems is a text where all events expressed by verbs are identified and numbered the output should be a label per event. The possible values are: mod, neg, neg-mod, none. In the developed system, we first build a database for modal verbs of two categories: epistemic and deontic. Also, we used a negative verb list of 1877 verbs. This negative verb list has been used to identify negative modality. We extract the each tagged events from each sentences. Then our system check modal verbs by that database from each sentences. If any modal verbs is found before that an event then that event should be modal verb and tagged as mod. If modal verb is there and also negeted words is found before that evet then that event should negeted mod and tagged as neg-mod. If no modal verb is found before that an event but negeted word are found before that event then that event should be negeted and tagged as neg. Otherwise the event should tagged as none. We trained our system by traing data (sample data) that was provided by QA4MRE organizer. Then we are tested our system on test dataset. In test data set there are eight documents, two per each of the four topics such as Alzheimer, music and society, AIDs and climate change. Our system overall accuracy is 0.6262 (779 out of 1244).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7472279421e14846405b9d13cdb6ae8e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50471016,&quot;asset_id&quot;:30013414,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50471016/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30013414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30013414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30013414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30013414]").text(description); $(".js-view-count[data-work-id=30013414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30013414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30013414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7472279421e14846405b9d13cdb6ae8e" } } $('.js-work-strip[data-work-id=30013414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30013414,"title":"An Automatic System for Modality and Negation Detection","internal_url":"https://www.academia.edu/30013414/An_Automatic_System_for_Modality_and_Negation_Detection","owner_id":35873,"coauthors_can_edit":true,"owner":{"id":35873,"first_name":"Alexander","middle_initials":null,"last_name":"Gelbukh","page_name":"AlexanderGelbukh","domain_name":"ipn","created_at":"2009-03-19T16:53:22.413-07:00","display_name":"Alexander Gelbukh","url":"https://ipn.academia.edu/AlexanderGelbukh"},"attachments":[{"id":50471016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50471016/thumbnails/1.jpg","file_name":"An_Automatic_System_for_Modality_and_Neg20161121-7106-1y9k1ad.pdf","download_url":"https://www.academia.edu/attachments/50471016/download_file","bulk_download_file_name":"An_Automatic_System_for_Modality_and_Neg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50471016/An_Automatic_System_for_Modality_and_Neg20161121-7106-1y9k1ad-libre.pdf?1479799199=\u0026response-content-disposition=attachment%3B+filename%3DAn_Automatic_System_for_Modality_and_Neg.pdf\u0026Expires=1740059530\u0026Signature=I2hbBb9ZarJx60b~QIU1a-M7-oYgK8onj1GnDzTh6bNzcT3Grpna2IthJuvO4aNxXACJm~9JqncskW-wwQIIPx~Brgh6INGU9ifRcSPuyzKfOXg5C2mHdKHanbyjnvvFyna3gPznPPE4kQeu8Kq68WEXcBawQSQ9E-e4~EQw9hc~JDT70O4t625mrap4WZ1IaYTsH1P2J9E9uehhUvJzOcr5TOrCazBNkbJIeL-nPphNauz5qi2SfZ~EWmvLrip5Mr90OMJNHS10LAEQUdfBzfx-wAzUgq7K~dNL~WC5nrlxXhoUHPEVxlXT0cw~4lWVO6hsVuw-NJq4yXcFNsUxCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "008f50442f889e436bea1f3fd8572d5872ff158b369772c089ee05dd35e92539", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="UG5LNG8vY_yDcuo30MQekc0OoqBWSKr8_LOj0R5q20pK09eblMhWZ2YD3XSCj3hmZLOQog8r3IyDUZqLQUwydA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ipn.academia.edu/AlexanderGelbukh" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="nl54jySUpUVDNVxBgOMPmhiAS0hgm-ZRJZBtzONbfRaE4-Qg33OQ3qZEawLSqGltsT15Sjn4kCFaclSWvH2UKA" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10