CINXE.COM
Anatoly M Vershik - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Anatoly M Vershik - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Jxk+I0taespkbPX8KGGtVK5CSFA8GUxjEDIIIg+uCy9v6B+od/E10YFL2sioZLKM057GG/2uJyIUQfTpLgHBEA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="anatoly m vershik" /> <meta name="description" content="I am mathematician, 1933 w.b. Member of European Academy (2015),Priciple researcher at St.Petersburg branch of Mathematical Instituteof Russian Academy of…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113458213,"monthly_visitor_count_in_millions":113,"user_count":277526076,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732791456000); window.Aedu.timeDifference = new Date().getTime() - 1732791456000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/AnatolyVershik" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik","photo":"https://0.academia-photos.com/53951142/21048525/20537723/s65_anatoly.vershik.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/AnatolyVershik","location":"/AnatolyVershik","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/AnatolyVershik","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-163bfe64-7205-43d8-be7b-8441b73a3c74"></div> <div id="ProfileCheckPaperUpdate-react-component-163bfe64-7205-43d8-be7b-8441b73a3c74"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Anatoly M Vershik" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/53951142/21048525/20537723/s200_anatoly.vershik.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Anatoly M Vershik</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Anatoly" data-follow-user-id="53951142" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="53951142"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">63</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">84</p></div></a><a href="/AnatolyVershik/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">4,993</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">I am mathematician, 1933 w.b. Member of European Academy (2015),Priciple researcher at St.Petersburg branch of Mathematical Instituteof Russian Academy of Sciences.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53951142" href="https://www.academia.edu/Documents/in/Mathematics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/AnatolyVershik","location":"/AnatolyVershik","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/AnatolyVershik","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-8125f55b-34d2-4c93-aa4f-6c77041f0a5e"></div> <div id="Pill-react-component-8125f55b-34d2-4c93-aa4f-6c77041f0a5e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53951142" href="https://www.academia.edu/Documents/in/Economics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Economics"]}" data-trace="false" data-dom-id="Pill-react-component-794569b5-d7b3-4da9-bf42-0e7fd4eb6dc1"></div> <div id="Pill-react-component-794569b5-d7b3-4da9-bf42-0e7fd4eb6dc1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53951142" href="https://www.academia.edu/Documents/in/History"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["History"]}" data-trace="false" data-dom-id="Pill-react-component-b59e69a5-2964-4b7d-a7e3-d506977a46ed"></div> <div id="Pill-react-component-b59e69a5-2964-4b7d-a7e3-d506977a46ed"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53951142" href="https://www.academia.edu/Documents/in/Mathematical_Sciences"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematical Sciences"]}" data-trace="false" data-dom-id="Pill-react-component-dc38aff4-4ab4-45c8-b9de-38068e4c348e"></div> <div id="Pill-react-component-dc38aff4-4ab4-45c8-b9de-38068e4c348e"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Anatoly M Vershik</h3></div><div class="js-work-strip profile--work_container" data-work-id="91434756"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434756/Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies"><img alt="Research paper thumbnail of Central measures of continuous graded graphs: the case of distinct frequencies" class="work-thumbnail" src="https://attachments.academia-assets.com/94723713/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434756/Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies">Central measures of continuous graded graphs: the case of distinct frequencies</a></div><div class="wp-workCard_item"><span>European Journal of Mathematics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="83470e62a058c2f425ebdce5370cf0ae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94723713,"asset_id":91434756,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94723713/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434756"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434756"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434756; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434756]").text(description); $(".js-view-count[data-work-id=91434756]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434756; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434756']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434756, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "83470e62a058c2f425ebdce5370cf0ae" } } $('.js-work-strip[data-work-id=91434756]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434756,"title":"Central measures of continuous graded graphs: the case of distinct frequencies","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We define a class of continuous graded graphs similar to the graph of Gelfand-Tsetlin patterns, and describe the set of all ergodic central measures of discrete type on the path spaces of such graphs. The main observation is that an ergodic central measure on a subgraph of a Pascal-type graph can often be obtained as the restriction of the standard Bernoulli measure to the path space of the subgraph. This observation dramatically changes the approach to finding central measures also on discrete graphs, such as the famous Young graph. The simplest example of this type is given by the theorem on the weak limits of normalized Lebesgue measures on simplices; these are the so-called Cesàro measures, which are concentrated on the sequences with prescribed Cesàro limits (this limit parametrizes the corresponding measure). More complicated examples are the graphs of continuous Young diagrams with fixed number of rows and the graphs of spectra of infinite Hermitian matrices of finite rank. We prove existence and uniqueness theorems for ergodic central measures and describe their structure. In particular, our results 1) give a new spectral description of the so-called infinite-dimensional Wishart measures [15]-ergodic unitarily invariant measures of discrete type on the set of infinite Hermitian matrices; 2) describe the structure of continuous analogs of measures on discrete graded graphs. New problems and connections which appear are to be considered in new publications.","publication_name":"European Journal of Mathematics","grobid_abstract_attachment_id":94723713},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434756/Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies","translated_internal_url":"","created_at":"2022-11-23T04:13:40.056-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94723713,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723713/thumbnails/1.jpg","file_name":"2209.11733.pdf","download_url":"https://www.academia.edu/attachments/94723713/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Central_measures_of_continuous_graded_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723713/2209.11733-libre.pdf?1669209174=\u0026response-content-disposition=attachment%3B+filename%3DCentral_measures_of_continuous_graded_gr.pdf\u0026Expires=1732795055\u0026Signature=X1N6nhL8nOUuBeFqCT8pCtmkMAWDKlpjr5CXAfT1HrQTrVib0o75NjdgZCMq~kgEeN4sLtq0pfl-Hlv1IX8NQ0BuqSiIpoV79ex9jgtUPj6gEnJvz~oT98nDYhcQ9hfByaUPqyuiYwtrqZInnpWLGX44SKHFZWT-3AKrK-wkFizy8FzNWXjdTylfc2ypHgz9PdLLafRg5tEzavU3L65LbU567STjWmZy6VmzqL3IWsoPqnUC7E7zalpomaWyPYzHp~zRInkKlkvOCIaGp~TaoCOGFpyPRLkbJ6L089dr-3L1klGwDGO4hFZjFUrXKK5b2vPNgkwkmeOI2ni4RqxbGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":94723713,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723713/thumbnails/1.jpg","file_name":"2209.11733.pdf","download_url":"https://www.academia.edu/attachments/94723713/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Central_measures_of_continuous_graded_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723713/2209.11733-libre.pdf?1669209174=\u0026response-content-disposition=attachment%3B+filename%3DCentral_measures_of_continuous_graded_gr.pdf\u0026Expires=1732795055\u0026Signature=X1N6nhL8nOUuBeFqCT8pCtmkMAWDKlpjr5CXAfT1HrQTrVib0o75NjdgZCMq~kgEeN4sLtq0pfl-Hlv1IX8NQ0BuqSiIpoV79ex9jgtUPj6gEnJvz~oT98nDYhcQ9hfByaUPqyuiYwtrqZInnpWLGX44SKHFZWT-3AKrK-wkFizy8FzNWXjdTylfc2ypHgz9PdLLafRg5tEzavU3L65LbU567STjWmZy6VmzqL3IWsoPqnUC7E7zalpomaWyPYzHp~zRInkKlkvOCIaGp~TaoCOGFpyPRLkbJ6L089dr-3L1klGwDGO4hFZjFUrXKK5b2vPNgkwkmeOI2ni4RqxbGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":346,"name":"Ergodic Theory","url":"https://www.academia.edu/Documents/in/Ergodic_Theory"},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics"},{"id":63969,"name":"Non-European roots of mathematics","url":"https://www.academia.edu/Documents/in/Non-European_roots_of_mathematics"}],"urls":[{"id":26305197,"url":"https://link.springer.com/content/pdf/10.1007/s40879-022-00588-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434750"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434750/Contemporary_Mathematical_Physics"><img alt="Research paper thumbnail of Contemporary Mathematical Physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434750/Contemporary_Mathematical_Physics">Contemporary Mathematical Physics</a></div><div class="wp-workCard_item"><span>American Mathematical Society Translations: Series 2</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis (&quot;supermathematics&quot;). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topic</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434750"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434750]").text(description); $(".js-view-count[data-work-id=91434750]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434750']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434750, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434750]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434750,"title":"Contemporary Mathematical Physics","translated_title":"","metadata":{"abstract":"This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis (\u0026quot;supermathematics\u0026quot;). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topic","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"American Mathematical Society Translations: Series 2"},"translated_abstract":"This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis (\u0026quot;supermathematics\u0026quot;). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topic","internal_url":"https://www.academia.edu/91434750/Contemporary_Mathematical_Physics","translated_internal_url":"","created_at":"2022-11-23T04:13:35.653-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contemporary_Mathematical_Physics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434743"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/91434743/Probability_Measures_in_Infinite_Dimensional_Spaces"><img alt="Research paper thumbnail of Probability Measures in Infinite-Dimensional Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/91434743/Probability_Measures_in_Infinite_Dimensional_Spaces">Probability Measures in Infinite-Dimensional Spaces</a></div><div class="wp-workCard_item"><span>Investigations in the Theory of Stochastic Processes</span><span>, 1971</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434743"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434743"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434743; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434743]").text(description); $(".js-view-count[data-work-id=91434743]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434743; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434743']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434743, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434743]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434743,"title":"Probability Measures in Infinite-Dimensional Spaces","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1971,"errors":{}},"publication_name":"Investigations in the Theory of Stochastic Processes"},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434743/Probability_Measures_in_Infinite_Dimensional_Spaces","translated_internal_url":"","created_at":"2022-11-23T04:13:30.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Probability_Measures_in_Infinite_Dimensional_Spaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434734/Randomization_of_Algebra_and_Algebraization_of_Probability"><img alt="Research paper thumbnail of Randomization of Algebra and Algebraization of Probability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434734/Randomization_of_Algebra_and_Algebraization_of_Probability">Randomization of Algebra and Algebraization of Probability</a></div><div class="wp-workCard_item"><span>Mathematics Unlimited — 2001 and Beyond</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is probably difficult to find areas of XIXth Century mathematics more remote from each other t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is probably difficult to find areas of XIXth Century mathematics more remote from each other than algebra, the foundation of mathematics, and probability theory, a semi-applied area perceived from the time of its emergence as an almost experimental science. We note, in passing, that in the works of P. L. Chebyshev’s students, A. A. Markov and A. M. Lyapunov, many assertions of probability theory (for example, the central limit theorem) were proved with complete rigour in great generality. Nevertheless, it is no accident that one of the famous problems, proposed by D. Hilbert involved axiomatization of mechanics and axiomatization of probability theory: at that time one could not assume that these areas were fully mathematicized. In the first half of the XXth Century the works of A. N. Kolmogorov, S. N. Bernstein, von Mises et al. created the foundations of probability theory, which were unconditionally accepted by the mathematical community, and all doubts about whether or not this was mathematics were removed. However, probability theory has retained a certain isolation until now. It is difficult to explain this rationally. Certainly, a number of its methods are specific to that science and were difficult to understand even 20 years ago. For example, specialists on differential equations were for a long time unable to assimilate techniques of stochastic calculus, although results obtained by probabilistic methods in the theory of equations competed successfully with theorems obtained by classical methods.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434734]").text(description); $(".js-view-count[data-work-id=91434734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434734,"title":"Randomization of Algebra and Algebraization of Probability","translated_title":"","metadata":{"abstract":"It is probably difficult to find areas of XIXth Century mathematics more remote from each other than algebra, the foundation of mathematics, and probability theory, a semi-applied area perceived from the time of its emergence as an almost experimental science. We note, in passing, that in the works of P. L. Chebyshev’s students, A. A. Markov and A. M. Lyapunov, many assertions of probability theory (for example, the central limit theorem) were proved with complete rigour in great generality. Nevertheless, it is no accident that one of the famous problems, proposed by D. Hilbert involved axiomatization of mechanics and axiomatization of probability theory: at that time one could not assume that these areas were fully mathematicized. In the first half of the XXth Century the works of A. N. Kolmogorov, S. N. Bernstein, von Mises et al. created the foundations of probability theory, which were unconditionally accepted by the mathematical community, and all doubts about whether or not this was mathematics were removed. However, probability theory has retained a certain isolation until now. It is difficult to explain this rationally. Certainly, a number of its methods are specific to that science and were difficult to understand even 20 years ago. For example, specialists on differential equations were for a long time unable to assimilate techniques of stochastic calculus, although results obtained by probabilistic methods in the theory of equations competed successfully with theorems obtained by classical methods.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Mathematics Unlimited — 2001 and Beyond"},"translated_abstract":"It is probably difficult to find areas of XIXth Century mathematics more remote from each other than algebra, the foundation of mathematics, and probability theory, a semi-applied area perceived from the time of its emergence as an almost experimental science. We note, in passing, that in the works of P. L. Chebyshev’s students, A. A. Markov and A. M. Lyapunov, many assertions of probability theory (for example, the central limit theorem) were proved with complete rigour in great generality. Nevertheless, it is no accident that one of the famous problems, proposed by D. Hilbert involved axiomatization of mechanics and axiomatization of probability theory: at that time one could not assume that these areas were fully mathematicized. In the first half of the XXth Century the works of A. N. Kolmogorov, S. N. Bernstein, von Mises et al. created the foundations of probability theory, which were unconditionally accepted by the mathematical community, and all doubts about whether or not this was mathematics were removed. However, probability theory has retained a certain isolation until now. It is difficult to explain this rationally. Certainly, a number of its methods are specific to that science and were difficult to understand even 20 years ago. For example, specialists on differential equations were for a long time unable to assimilate techniques of stochastic calculus, although results obtained by probabilistic methods in the theory of equations competed successfully with theorems obtained by classical methods.","internal_url":"https://www.academia.edu/91434734/Randomization_of_Algebra_and_Algebraization_of_Probability","translated_internal_url":"","created_at":"2022-11-23T04:13:25.625-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Randomization_of_Algebra_and_Algebraization_of_Probability","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434728/A_nonholonomic_Laplace_operator"><img alt="Research paper thumbnail of A nonholonomic Laplace operator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434728/A_nonholonomic_Laplace_operator">A nonholonomic Laplace operator</a></div><div class="wp-workCard_item"><span>Journal of Soviet Mathematics</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds. The nonholonomic metric (Carnot-Carathéodory metric), the Carathéodory measure, and hypoharmonic functions are defined. A theorem on the comparison of the spectra is proved and the connection is established between the bases of eigenfunctions of the ordinary and nonholonomic Laplacians. Conjectures are formulated on the principal term of the spectral asymptotic expansion of the nonholonomic Laplacian, on the structure of the wave fronts, and on the propagation of singularities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434728]").text(description); $(".js-view-count[data-work-id=91434728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434728,"title":"A nonholonomic Laplace operator","translated_title":"","metadata":{"abstract":"In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds. The nonholonomic metric (Carnot-Carathéodory metric), the Carathéodory measure, and hypoharmonic functions are defined. A theorem on the comparison of the spectra is proved and the connection is established between the bases of eigenfunctions of the ordinary and nonholonomic Laplacians. Conjectures are formulated on the principal term of the spectral asymptotic expansion of the nonholonomic Laplacian, on the structure of the wave fronts, and on the propagation of singularities.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Journal of Soviet Mathematics"},"translated_abstract":"In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds. The nonholonomic metric (Carnot-Carathéodory metric), the Carathéodory measure, and hypoharmonic functions are defined. A theorem on the comparison of the spectra is proved and the connection is established between the bases of eigenfunctions of the ordinary and nonholonomic Laplacians. Conjectures are formulated on the principal term of the spectral asymptotic expansion of the nonholonomic Laplacian, on the structure of the wave fronts, and on the propagation of singularities.","internal_url":"https://www.academia.edu/91434728/A_nonholonomic_Laplace_operator","translated_internal_url":"","created_at":"2022-11-23T04:13:20.029-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_nonholonomic_Laplace_operator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":529366,"name":"Soviet mathematics","url":"https://www.academia.edu/Documents/in/Soviet_mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434714"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434714/Product_of_commuting_spectral_measures_need_not_be_countably_additive"><img alt="Research paper thumbnail of Product of commuting spectral measures need not be countably additive" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434714/Product_of_commuting_spectral_measures_need_not_be_countably_additive">Product of commuting spectral measures need not be countably additive</a></div><div class="wp-workCard_item"><span>Functional Analysis and Its Applications</span><span>, 1979</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434714"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434714"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434714; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434714]").text(description); $(".js-view-count[data-work-id=91434714]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434714; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434714']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434714, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434714]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434714,"title":"Product of commuting spectral measures need not be countably additive","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":1979,"errors":{}},"publication_name":"Functional Analysis and Its Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434714/Product_of_commuting_spectral_measures_need_not_be_countably_additive","translated_internal_url":"","created_at":"2022-11-23T04:13:12.786-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Product_of_commuting_spectral_measures_need_not_be_countably_additive","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":26305182,"url":"http://link.springer.com/content/pdf/10.1007/BF01076440.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434679/Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics"><img alt="Research paper thumbnail of Asymptotic Combinatorics with Application to Mathematical Physics" class="work-thumbnail" src="https://attachments.academia-assets.com/94723667/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434679/Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics">Asymptotic Combinatorics with Application to Mathematical Physics</a></div><div class="wp-workCard_item"><span>Asymptotic Combinatorics with Application to Mathematical Physics</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e46c159c12b990e979e363521f12b30" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94723667,"asset_id":91434679,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94723667/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434679]").text(description); $(".js-view-count[data-work-id=91434679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434679, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e46c159c12b990e979e363521f12b30" } } $('.js-work-strip[data-work-id=91434679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434679,"title":"Asymptotic Combinatorics with Application to Mathematical Physics","translated_title":"","metadata":{"publisher":"Springer Netherlands","grobid_abstract":"Softcover reprint of the hardcover 18t edition 2002 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilm ing, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Asymptotic Combinatorics with Application to Mathematical Physics","grobid_abstract_attachment_id":94723667},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434679/Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics","translated_internal_url":"","created_at":"2022-11-23T04:12:07.220-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94723667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723667/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/94723667/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotic_Combinatorics_with_Applicatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723667/1-libre.pdf?1669209192=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_Combinatorics_with_Applicatio.pdf\u0026Expires=1732795055\u0026Signature=Y6FZPQpgIBKaVHjGyT7t~EF0SwGd9OQjqM9pnZ7SPe7iPz6bjRUugCuIXpB6UddUBBS-QQaErPRP2-Clfwi3qoBjwH4Lv-3kl8Z-w6IRYxOxk-SvDmQ5X46IucmKMYYis-gdtOPDLVT-L7fFCv4~uf-HfF1vlHc-aa5jnE9bHDIQo4KOsVSI8KOs9~NsIpofnBy8Gh~RUMvfk1kQC9tByDo1UFOtGSm6mpJEw8ma5w-9qksfyNsNmRNu~sjoKQIoW4lVUIcYnMFUPDU-O4G4T9saw9ZKXG88ogQhgYFNeET4MoXZ8imS5Eoa8dtco0S3ahr5ZIbdoRKaIDG1t-kF6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":94723667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723667/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/94723667/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotic_Combinatorics_with_Applicatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723667/1-libre.pdf?1669209192=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_Combinatorics_with_Applicatio.pdf\u0026Expires=1732795055\u0026Signature=Y6FZPQpgIBKaVHjGyT7t~EF0SwGd9OQjqM9pnZ7SPe7iPz6bjRUugCuIXpB6UddUBBS-QQaErPRP2-Clfwi3qoBjwH4Lv-3kl8Z-w6IRYxOxk-SvDmQ5X46IucmKMYYis-gdtOPDLVT-L7fFCv4~uf-HfF1vlHc-aa5jnE9bHDIQo4KOsVSI8KOs9~NsIpofnBy8Gh~RUMvfk1kQC9tByDo1UFOtGSm6mpJEw8ma5w-9qksfyNsNmRNu~sjoKQIoW4lVUIcYnMFUPDU-O4G4T9saw9ZKXG88ogQhgYFNeET4MoXZ8imS5Eoa8dtco0S3ahr5ZIbdoRKaIDG1t-kF6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":13564,"name":"Enumerative combinatorics","url":"https://www.academia.edu/Documents/in/Enumerative_combinatorics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434616"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434616/The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_"><img alt="Research paper thumbnail of The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra $${\widehat{\mathfrak{sl}_2}}$$ sl 2 ^" class="work-thumbnail" src="https://attachments.academia-assets.com/94723637/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434616/The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_">The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra $${\widehat{\mathfrak{sl}_2}}$$ sl 2 ^</a></div><div class="wp-workCard_item"><span>Letters in Mathematical Physics</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55d9ee3bc473e8af0b33a961fbbce28b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94723637,"asset_id":91434616,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94723637/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434616"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434616"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434616; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434616]").text(description); $(".js-view-count[data-work-id=91434616]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434616; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434616']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434616, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55d9ee3bc473e8af0b33a961fbbce28b" } } $('.js-work-strip[data-work-id=91434616]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434616,"title":"The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra $${\\widehat{\\mathfrak{sl}_2}}$$ sl 2 ^","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We introduce and study the so-called serpentine representations of the infinite symmetric group S N , which turn out to be closely related to the basic representation of the affine Lie algebra sl 2 and representations of the Virasoro algebra.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Letters in Mathematical Physics","grobid_abstract_attachment_id":94723637},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434616/The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_","translated_internal_url":"","created_at":"2022-11-23T04:11:28.493-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94723637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723637/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/94723637/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Serpentine_Representation_of_the_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723637/1411-libre.pdf?1669209179=\u0026response-content-disposition=attachment%3B+filename%3DThe_Serpentine_Representation_of_the_Inf.pdf\u0026Expires=1732795055\u0026Signature=cG2PzEf~o2X8xx35ebyE1xMQFVVNbdfk1cfUg7SyXvDLf8Xn1d-l0MqbFFRB-wFIalRXN4QoYoqo-BdXGukrtT7LdhykdfC8FeV9ARUMajrfhr9ne74w2WJXbbmeuTb7DGagW0N1qmT-zN2GWSK0bAotsBnoziErcYtMaw1u1Btw~UBvQzfZjRTV~BGK1BWqgEGOL4x64TJ5uRRXIf4dGOQsRkAgomfq1VqYmDodMRFqWHo8GbEuWehCrmHTu71kKIkXnmpApSkejd~zPe6Nq14gtQNYSGMowSab4vt5-p3XlevJByL07A5832wB308qfvjIM6Wp1VI6rdOqtpWN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":94723637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723637/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/94723637/download_file?st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Serpentine_Representation_of_the_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723637/1411-libre.pdf?1669209179=\u0026response-content-disposition=attachment%3B+filename%3DThe_Serpentine_Representation_of_the_Inf.pdf\u0026Expires=1732795055\u0026Signature=cG2PzEf~o2X8xx35ebyE1xMQFVVNbdfk1cfUg7SyXvDLf8Xn1d-l0MqbFFRB-wFIalRXN4QoYoqo-BdXGukrtT7LdhykdfC8FeV9ARUMajrfhr9ne74w2WJXbbmeuTb7DGagW0N1qmT-zN2GWSK0bAotsBnoziErcYtMaw1u1Btw~UBvQzfZjRTV~BGK1BWqgEGOL4x64TJ5uRRXIf4dGOQsRkAgomfq1VqYmDodMRFqWHo8GbEuWehCrmHTu71kKIkXnmpApSkejd~zPe6Nq14gtQNYSGMowSab4vt5-p3XlevJByL07A5832wB308qfvjIM6Wp1VI6rdOqtpWN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":27500,"name":"Representation Theory","url":"https://www.academia.edu/Documents/in/Representation_Theory"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1554856,"name":"Affine Transformation","url":"https://www.academia.edu/Documents/in/Affine_Transformation"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216661/Lagrangian_Mechanics_in_Invariant_Form"><img alt="Research paper thumbnail of Lagrangian Mechanics in Invariant Form" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216661/Lagrangian_Mechanics_in_Invariant_Form">Lagrangian Mechanics in Invariant Form</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216661]").text(description); $(".js-view-count[data-work-id=85216661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216661,"title":"Lagrangian Mechanics in Invariant Form","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1995,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216661/Lagrangian_Mechanics_in_Invariant_Form","translated_internal_url":"","created_at":"2022-08-20T07:39:15.433-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Lagrangian_Mechanics_in_Invariant_Form","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":857497,"name":"Lagrangian Mechanics","url":"https://www.academia.edu/Documents/in/Lagrangian_Mechanics"},{"id":990287,"name":"Scientific World View","url":"https://www.academia.edu/Documents/in/Scientific_World_View"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216660/Asymptotics_of_Young_Diagrams_and_Hook_Numbers"><img alt="Research paper thumbnail of Asymptotics of Young Diagrams and Hook Numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/89983190/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216660/Asymptotics_of_Young_Diagrams_and_Hook_Numbers">Asymptotics of Young Diagrams and Hook Numbers</a></div><div class="wp-workCard_item"><span>The Electronic Journal of Combinatorics</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Asymptotic calculations are applied to study the degrees of certain sequences of characters of sy...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition $\mu$, we deduce several skew diagrams which are related to $\mu$. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know &quot;finite&quot;, nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ef4c4b64f42736c669e211a3dbd09d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983190,"asset_id":85216660,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983190/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216660]").text(description); $(".js-view-count[data-work-id=85216660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ef4c4b64f42736c669e211a3dbd09d6" } } $('.js-work-strip[data-work-id=85216660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216660,"title":"Asymptotics of Young Diagrams and Hook Numbers","translated_title":"","metadata":{"abstract":"Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition $\\mu$, we deduce several skew diagrams which are related to $\\mu$. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know \u0026quot;finite\u0026quot;, nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups.","publisher":"The Electronic Journal of Combinatorics","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"The Electronic Journal of Combinatorics"},"translated_abstract":"Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition $\\mu$, we deduce several skew diagrams which are related to $\\mu$. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know \u0026quot;finite\u0026quot;, nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups.","internal_url":"https://www.academia.edu/85216660/Asymptotics_of_Young_Diagrams_and_Hook_Numbers","translated_internal_url":"","created_at":"2022-08-20T07:39:15.156-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983190/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/89983190/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotics_of_Young_Diagrams_and_Hook_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983190/pdf-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotics_of_Young_Diagrams_and_Hook_N.pdf\u0026Expires=1732795055\u0026Signature=eAfkANGqlysYSLviEoWhGW-GIqh1wQgOklofWu2A3sFzbJpcLVZ9L7a2Am1Lp4FDwRR~~x4GcYqvzvPJIaY1KYuAAHvXizKRRDEt-tyEn5xfbRaDjqWpR8Cl-w85~fXG8ZkWZaZUmTLmec96-9eSyyzKwcIuQ187eFVOeKt8XOjZqqxm7GNaBFRmo9Zcc5NPO5uYDx0X4EsOyXZdZralT1OttJ2cZCy2RuRYF-58IEl50hZvQ1ozqU-zSR42-og0iOd5d7SPbVoVylfJpb-oc9csCV7w3QYtZaEg1EceSJRRJe~iDIlndlHY8ImHAeUMiuJUEMWAWJiT-eAbZVWOAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Asymptotics_of_Young_Diagrams_and_Hook_Numbers","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983190/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/89983190/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotics_of_Young_Diagrams_and_Hook_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983190/pdf-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotics_of_Young_Diagrams_and_Hook_N.pdf\u0026Expires=1732795056\u0026Signature=Ck5cYM8pgUFWJpT31q5gUTXxPbgG-1YVrhUeXp3ocqi7rTp-lXLnqQhz98qF6RCpGp8rorLlw570NcOFOi8T7Xd5QHCQQG6UL7OQ-iBxEfnwN6h6ncq~m2NbQeYjZwjShxlLvmUKQkNdYXA4fOS32qLo5FCIFG23JAzkmo519uf6hunNQ8UidhYd8w7~e3uvDZkFI37kkPgkAzrEoDGfiR0Txu~lnyTrYKd7xibaFXJ6Uo~P2~X-f7wnHeCFZl0BCJPfIweFmR40jgAklVd7xs5eVRCuHzWcdEz5JS8pVwEgCKsTs0qqePUc0Vg3idJr3ymf04gQw4SN1VmNmzxmJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":135503,"name":"Partition","url":"https://www.academia.edu/Documents/in/Partition"},{"id":150408,"name":"Symmetric group","url":"https://www.academia.edu/Documents/in/Symmetric_group"},{"id":2123395,"name":"Hook","url":"https://www.academia.edu/Documents/in/Hook"},{"id":3663999,"name":"Asymptotic method","url":"https://www.academia.edu/Documents/in/Asymptotic_method"}],"urls":[{"id":23158994,"url":"https://www.combinatorics.org/ojs/index.php/eljc/article/download/v4i1r22/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216659/The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups"><img alt="Research paper thumbnail of The absolute of finitely generated groups: I. Commutative (semi)groups" class="work-thumbnail" src="https://attachments.academia-assets.com/89983188/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216659/The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups">The absolute of finitely generated groups: I. Commutative (semi)groups</a></div><div class="wp-workCard_item"><span>European Journal of Mathematics</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4953b110dd8dc7fb41101249bf6f95e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983188,"asset_id":85216659,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983188/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216659]").text(description); $(".js-view-count[data-work-id=85216659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4953b110dd8dc7fb41101249bf6f95e7" } } $('.js-work-strip[data-work-id=85216659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216659,"title":"The absolute of finitely generated groups: I. Commutative (semi)groups","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We give a complete description of the absolute of commutative finitely generated groups and semigroups. The absolute (previously called the exit boundary) is a further elaboration of the notion of the boundary of a random walk on a group (the Poisson-Furstenberg boundary); namely, the absolute of a (semi)group is the set of ergodic central measures on the compactum of all infinite trajectories of a simple random walk on the group. Related notions have been discussed in the probability literature: Martin boundary, entrance and exit boundaries (Dynkin), central measures on path spaces of graphs (Vershik-Kerov). A central measure (with respect to a finite system of generators of a group or semigroup) is a Markov measure on the space of trajectories whose cotransition distribution at every point is the uniform distribution on the generators (i. e., a measure of maximal entropy). For a more general notion of measures with a given cocycle, see [15]. For the group Z, the problem of describing the absolute is solved exactly by the classical de Finetti's theorem. The main result of this paper, which is a far-reaching generalization of de Finetti's theorem, is as follows: the absolute of a commutative semigroup coincides with the set of central measures corresponding to (nonstationary) Markov chains with independent identically distributed increments. Topologically, the absolute is (in the main case) a closed disk of finite dimension.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"European Journal of Mathematics","grobid_abstract_attachment_id":89983188},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216659/The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups","translated_internal_url":"","created_at":"2022-08-20T07:39:14.874-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983188,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983188/thumbnails/1.jpg","file_name":"1801.02012v1.pdf","download_url":"https://www.academia.edu/attachments/89983188/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_absolute_of_finitely_generated_group.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983188/1801.02012v1-libre.pdf?1661007326=\u0026response-content-disposition=attachment%3B+filename%3DThe_absolute_of_finitely_generated_group.pdf\u0026Expires=1732795056\u0026Signature=ZCPR-zxy1M9z9Hdi2XWpQcDHl8rzUoKnWlbH-HYAdL2tXlW5mJES1xPx0zD9tgA2TbXL2aErOY6efuZ-Dbspc9Jxb0IlTwJbW7MbSlx-OrMcIz8EJPudQjIxB37CfBrKSh0oMii2lsaz8OpqKyUKpT-BM5aE~kJXcSAxxh5UhQF6y4NnG~xso7miOFvLIQu4RnT2XWED7sgo-3i5wHdQjlOMk8ApwYzh95xlN-k3IicaY7vCa8Kah6FVEtX2HcsrhQy7bSh8QkzyGOr7T-5hm9EDlqy5U85pvKY5B8EwDelVJsKWymZsNE3DVISmUesI9etbp2mhyiYncQBiawa9hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983188,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983188/thumbnails/1.jpg","file_name":"1801.02012v1.pdf","download_url":"https://www.academia.edu/attachments/89983188/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_absolute_of_finitely_generated_group.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983188/1801.02012v1-libre.pdf?1661007326=\u0026response-content-disposition=attachment%3B+filename%3DThe_absolute_of_finitely_generated_group.pdf\u0026Expires=1732795056\u0026Signature=ZCPR-zxy1M9z9Hdi2XWpQcDHl8rzUoKnWlbH-HYAdL2tXlW5mJES1xPx0zD9tgA2TbXL2aErOY6efuZ-Dbspc9Jxb0IlTwJbW7MbSlx-OrMcIz8EJPudQjIxB37CfBrKSh0oMii2lsaz8OpqKyUKpT-BM5aE~kJXcSAxxh5UhQF6y4NnG~xso7miOFvLIQu4RnT2XWED7sgo-3i5wHdQjlOMk8ApwYzh95xlN-k3IicaY7vCa8Kah6FVEtX2HcsrhQy7bSh8QkzyGOr7T-5hm9EDlqy5U85pvKY5B8EwDelVJsKWymZsNE3DVISmUesI9etbp2mhyiYncQBiawa9hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":346,"name":"Ergodic Theory","url":"https://www.academia.edu/Documents/in/Ergodic_Theory"},{"id":63969,"name":"Non-European roots of mathematics","url":"https://www.academia.edu/Documents/in/Non-European_roots_of_mathematics"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":498860,"name":"Semigroup","url":"https://www.academia.edu/Documents/in/Semigroup"}],"urls":[{"id":23158993,"url":"http://link.springer.com/article/10.1007/s40879-018-0263-8/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216658"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216658/Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph"><img alt="Research paper thumbnail of Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/89983191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216658/Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph">Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph</a></div><div class="wp-workCard_item"><span>Functional Analysis and Its Applications</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bf5c4f7bcd971b91236adab6d5bbe832" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983191,"asset_id":85216658,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983191/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216658"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216658]").text(description); $(".js-view-count[data-work-id=85216658]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216658']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216658, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bf5c4f7bcd971b91236adab6d5bbe832" } } $('.js-work-strip[data-work-id=85216658]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216658,"title":"Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We suggest a combinatorial classification of metric filtrations in measure spaces; a complete invariant of such a filtration is its combinatorial scheme, a measure on the space of hierarchies of the group Z. In turn, the notion of combinatorial scheme is a source of new metric invariants of automorphisms approximated via basic filtrations. We construct a universal graph endowed with an adic structure such that every automorphism can be realized in its path space.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Functional Analysis and Its Applications","grobid_abstract_attachment_id":89983191},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216658/Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph","translated_internal_url":"","created_at":"2022-08-20T07:39:14.624-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983191/thumbnails/1.jpg","file_name":"1812.07841v1.pdf","download_url":"https://www.academia.edu/attachments/89983191/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combinatorial_Invariants_of_Metric_Filtr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983191/1812.07841v1-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DCombinatorial_Invariants_of_Metric_Filtr.pdf\u0026Expires=1732795056\u0026Signature=H7~l7jJ9eVinxwWL2vtyJ9hD~bxtwAlFPw-lrrZRfyxxCRF6nsBDLb8Q3f4j6NxqZ-hgNjU1RIUQlQTErhb0-Ps0Egg9Oqhulmzio2XT4Nll2BXY9Qq9nqBg54IsB7H~6Cd9V4sGk7RhpFFkGNMoeJG-v6KMRD6oX4gYgw3M0BNJd4Ih~IUqC0LYuT1kTbo1N-n~IFLMtY~D4z2LsBmET2szxtX3RrsfKEGY8BVwiyvj1eunc74f-9haw0FGf4b3mvWkhX7KsOdqy~QP~S0qsdU8mNeiQzlN8esQt60t99Gf0kFWQE87RM8NOlQcz2DDMCyCW6pVguwC4SJ-EeOmVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983191/thumbnails/1.jpg","file_name":"1812.07841v1.pdf","download_url":"https://www.academia.edu/attachments/89983191/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combinatorial_Invariants_of_Metric_Filtr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983191/1812.07841v1-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DCombinatorial_Invariants_of_Metric_Filtr.pdf\u0026Expires=1732795056\u0026Signature=H7~l7jJ9eVinxwWL2vtyJ9hD~bxtwAlFPw-lrrZRfyxxCRF6nsBDLb8Q3f4j6NxqZ-hgNjU1RIUQlQTErhb0-Ps0Egg9Oqhulmzio2XT4Nll2BXY9Qq9nqBg54IsB7H~6Cd9V4sGk7RhpFFkGNMoeJG-v6KMRD6oX4gYgw3M0BNJd4Ih~IUqC0LYuT1kTbo1N-n~IFLMtY~D4z2LsBmET2szxtX3RrsfKEGY8BVwiyvj1eunc74f-9haw0FGf4b3mvWkhX7KsOdqy~QP~S0qsdU8mNeiQzlN8esQt60t99Gf0kFWQE87RM8NOlQcz2DDMCyCW6pVguwC4SJ-EeOmVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23158992,"url":"http://link.springer.com/article/10.1007/s10688-018-0236-1/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216657"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216657/Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_"><img alt="Research paper thumbnail of Cohomology in nonunitary representations of semisimple Lie groups (the group U(2, 2))" class="work-thumbnail" src="https://attachments.academia-assets.com/89983187/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216657/Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_">Cohomology in nonunitary representations of semisimple Lie groups (the group U(2, 2))</a></div><div class="wp-workCard_item"><span>Functional Analysis and Its Applications</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a32ed706aeab52cf63000805ec831c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983187,"asset_id":85216657,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983187/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216657"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216657"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216657; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216657]").text(description); $(".js-view-count[data-work-id=85216657]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216657; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216657']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216657, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a32ed706aeab52cf63000805ec831c3" } } $('.js-work-strip[data-work-id=85216657]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216657,"title":"Cohomology in nonunitary representations of semisimple Lie groups (the group U(2, 2))","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We suggest a method of constructing special nonunitary representations of semisimple Lie groups using representations of Iwasawa subgroups. As a typical example, we study the group U (2, 2).","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Functional Analysis and Its Applications","grobid_abstract_attachment_id":89983187},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216657/Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_","translated_internal_url":"","created_at":"2022-08-20T07:39:14.360-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983187/thumbnails/1.jpg","file_name":"1404.pdf","download_url":"https://www.academia.edu/attachments/89983187/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_in_nonunitary_representations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983187/1404-libre.pdf?1661007327=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_in_nonunitary_representations.pdf\u0026Expires=1732795056\u0026Signature=Aklef4ZQZHC0FZbVQDf43amNF2Ej4ewFyDktz9FvS10pYjWoeM4-QKVXoBAH~tNSWk4PBxkAmPKs2B7WrWHZslgCmAYPxsRjgzet9DJNanroNhpKZVozNNetY87dWGVS49XbzW08Ic1VATBng2TZHBhBsql5ILIplQNcwQWsaA4qPs2SVZ3bmtSqAlN2W6hLc8vZ9o8~yZwYLwAzYnxK7bxZVYO9-Xk2DSQVGpakAN-~JmbQtMc40vUOZNNVIBH0DQPhWdBLuIutc2pTYb08JcOpX1-6VaUJNIY3CEy30oeiqCsyT3uynyxeqO57uhg2akS2XkUlJCk5gn0JaeYgaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983187/thumbnails/1.jpg","file_name":"1404.pdf","download_url":"https://www.academia.edu/attachments/89983187/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_in_nonunitary_representations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983187/1404-libre.pdf?1661007327=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_in_nonunitary_representations.pdf\u0026Expires=1732795056\u0026Signature=Aklef4ZQZHC0FZbVQDf43amNF2Ej4ewFyDktz9FvS10pYjWoeM4-QKVXoBAH~tNSWk4PBxkAmPKs2B7WrWHZslgCmAYPxsRjgzet9DJNanroNhpKZVozNNetY87dWGVS49XbzW08Ic1VATBng2TZHBhBsql5ILIplQNcwQWsaA4qPs2SVZ3bmtSqAlN2W6hLc8vZ9o8~yZwYLwAzYnxK7bxZVYO9-Xk2DSQVGpakAN-~JmbQtMc40vUOZNNVIBH0DQPhWdBLuIutc2pTYb08JcOpX1-6VaUJNIY3CEy30oeiqCsyT3uynyxeqO57uhg2akS2XkUlJCk5gn0JaeYgaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23158991,"url":"http://link.springer.com/content/pdf/10.1007/s10688-014-0057-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216656"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216656/Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups"><img alt="Research paper thumbnail of Special Representations of the Iwasawa Subgroups of Simple Lie Groups" class="work-thumbnail" src="https://attachments.academia-assets.com/89983184/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216656/Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups">Special Representations of the Iwasawa Subgroups of Simple Lie Groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Sciences</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45c09a10cff7a5de6ec7078d76104568" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983184,"asset_id":85216656,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983184/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216656"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216656"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216656; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216656]").text(description); $(".js-view-count[data-work-id=85216656]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216656; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216656']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216656, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45c09a10cff7a5de6ec7078d76104568" } } $('.js-work-strip[data-work-id=85216656]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216656,"title":"Special Representations of the Iwasawa Subgroups of Simple Lie Groups","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"In the paper, a family of representations of maximal solvable subgroups of the simple Lie groups O(p, q), U (p, q), and Sp(p, q), where 1 ≤ p ≤ q, is introduced. These subgroups are called the Iwasawa subgroups of the corresponding simple groups. The main property of these representations is the existence of nontrivial 1-cohomology with values in the representations. For groups of rank 1, the representations from this family are unitary; for ranks greater than 1, they are nonunitary. The paper continues a series of our previous papers and serves as an introduction to the theory of nonunitary current groups. Bibliography: 9 titles.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Mathematical Sciences","grobid_abstract_attachment_id":89983184},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216656/Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups","translated_internal_url":"","created_at":"2022-08-20T07:39:14.073-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983184/thumbnails/1.jpg","file_name":"s10958-017-3408-2.pdf","download_url":"https://www.academia.edu/attachments/89983184/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Special_Representations_of_the_Iwasawa_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983184/s10958-017-3408-2-libre.pdf?1661007320=\u0026response-content-disposition=attachment%3B+filename%3DSpecial_Representations_of_the_Iwasawa_S.pdf\u0026Expires=1732795056\u0026Signature=JeceobJQFj8ZPm2tl3FwbHKvqSUlXXftAFQfbOjJC~b6A~YjvclFnnGFpPsVUEN4HxCYwrumdbt6is07OMFEGQl0vH08eCV4k3U~RTbCGr5yvHI1baV3cYFCh15054qWUd~cHtRO3nhsFiEEgJv9uQ6jxOXelRsMXejierfNm7nfNbTVBLojp9dfTEKKtbI4L~8KPoVjzoRRdMHvkKqSTFIucd2TigCd8Fzj9n8Ta5GYzJr7W4QNfMZdxP2-VWL1fE3r~KlszycKOsY6dlMyDsrpdEo39lGvOpvCA91nltKJ-XL7PIzkJPLD5hYxaFplUcbpfsfvP5v6NF5apq~05g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983184/thumbnails/1.jpg","file_name":"s10958-017-3408-2.pdf","download_url":"https://www.academia.edu/attachments/89983184/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Special_Representations_of_the_Iwasawa_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983184/s10958-017-3408-2-libre.pdf?1661007320=\u0026response-content-disposition=attachment%3B+filename%3DSpecial_Representations_of_the_Iwasawa_S.pdf\u0026Expires=1732795056\u0026Signature=JeceobJQFj8ZPm2tl3FwbHKvqSUlXXftAFQfbOjJC~b6A~YjvclFnnGFpPsVUEN4HxCYwrumdbt6is07OMFEGQl0vH08eCV4k3U~RTbCGr5yvHI1baV3cYFCh15054qWUd~cHtRO3nhsFiEEgJv9uQ6jxOXelRsMXejierfNm7nfNbTVBLojp9dfTEKKtbI4L~8KPoVjzoRRdMHvkKqSTFIucd2TigCd8Fzj9n8Ta5GYzJr7W4QNfMZdxP2-VWL1fE3r~KlszycKOsY6dlMyDsrpdEo39lGvOpvCA91nltKJ-XL7PIzkJPLD5hYxaFplUcbpfsfvP5v6NF5apq~05g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":23158990,"url":"http://link.springer.com/article/10.1007/s10958-017-3408-2/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216655"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216655/The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm"><img alt="Research paper thumbnail of The Characters of the Infinite Symmetric Group and Probability Properties of the Robinson–Schensted–Knuth Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216655/The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm">The Characters of the Infinite Symmetric Group and Probability Properties of the Robinson–Schensted–Knuth Algorithm</a></div><div class="wp-workCard_item"><span>SIAM Journal on Algebraic Discrete Methods</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s problem on longest increasing subsequences and to a law of large numbers for representations. An analogous theory for other graphs is discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216655"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216655"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216655; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216655]").text(description); $(".js-view-count[data-work-id=85216655]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216655; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216655']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216655, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216655]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216655,"title":"The Characters of the Infinite Symmetric Group and Probability Properties of the Robinson–Schensted–Knuth Algorithm","translated_title":"","metadata":{"abstract":"Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s problem on longest increasing subsequences and to a law of large numbers for representations. An analogous theory for other graphs is discussed.","publisher":"Society for Industrial \u0026 Applied Mathematics (SIAM)","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"SIAM Journal on Algebraic Discrete Methods"},"translated_abstract":"Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s problem on longest increasing subsequences and to a law of large numbers for representations. An analogous theory for other graphs is discussed.","internal_url":"https://www.academia.edu/85216655/The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm","translated_internal_url":"","created_at":"2022-08-20T07:39:13.775-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":150408,"name":"Symmetric group","url":"https://www.academia.edu/Documents/in/Symmetric_group"}],"urls":[{"id":23158989,"url":"https://epubs.siam.org/doi/pdf/10.1137/0607014"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216654/Classical_and_non_classical_dynamics_with_constraints"><img alt="Research paper thumbnail of Classical and non-classical dynamics with constraints" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216654/Classical_and_non_classical_dynamics_with_constraints">Classical and non-classical dynamics with constraints</a></div><div class="wp-workCard_item"><span>Lecture Notes in Mathematics</span><span>, 1984</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Without Abstract</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216654]").text(description); $(".js-view-count[data-work-id=85216654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216654,"title":"Classical and non-classical dynamics with constraints","translated_title":"","metadata":{"abstract":"Without Abstract","publication_date":{"day":null,"month":null,"year":1984,"errors":{}},"publication_name":"Lecture Notes in Mathematics"},"translated_abstract":"Without Abstract","internal_url":"https://www.academia.edu/85216654/Classical_and_non_classical_dynamics_with_constraints","translated_internal_url":"","created_at":"2022-08-20T07:39:13.583-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Classical_and_non_classical_dynamics_with_constraints","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":952571,"name":"Music Information Dynamics","url":"https://www.academia.edu/Documents/in/Music_Information_Dynamics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216653/On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization"><img alt="Research paper thumbnail of On topological questions of real complexity theory and combinatorial optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216653/On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization">On topological questions of real complexity theory and combinatorial optimization</a></div><div class="wp-workCard_item"><span>Lecture Notes in Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the real complexity theory and combinatorial optimization as the problems investigating the properties of sequences of semialgebraic sets, their singularities, boundaries etc. The main idea is to apply the methods of real analysis and singularity theory to the study of spaces of problems and to treat the main notions of complexity theory (P, NP, NP-completeness and others) as the complexity of different spectra of semialgebraic sets. An important role is played by a new class of examples, introduced by the author and his colleagues quite recently, i.e. the group, algebraic and geometric examples such as optimization on finite groups and their orbits in representations. The term &amp;quot;configurational topology&amp;#x27; is introduced in connection with the study of the topology of configuration spaces and ~{n~v&amp;#x27;s theorem on universality of configurations spaces or the spaces of convex polyhedrons from a topological point of view. Configurational topology studies topological spaces as configuration spaces, spaces of optimization problems etc. A more detailed description of the whole spectrum of these questions is to be published soon (see also [2,3,7] ).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216653]").text(description); $(".js-view-count[data-work-id=85216653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216653,"title":"On topological questions of real complexity theory and combinatorial optimization","translated_title":"","metadata":{"abstract":"In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the real complexity theory and combinatorial optimization as the problems investigating the properties of sequences of semialgebraic sets, their singularities, boundaries etc. The main idea is to apply the methods of real analysis and singularity theory to the study of spaces of problems and to treat the main notions of complexity theory (P, NP, NP-completeness and others) as the complexity of different spectra of semialgebraic sets. An important role is played by a new class of examples, introduced by the author and his colleagues quite recently, i.e. the group, algebraic and geometric examples such as optimization on finite groups and their orbits in representations. The term \u0026amp;quot;configurational topology\u0026amp;#x27; is introduced in connection with the study of the topology of configuration spaces and ~{n~v\u0026amp;#x27;s theorem on universality of configurations spaces or the spaces of convex polyhedrons from a topological point of view. Configurational topology studies topological spaces as configuration spaces, spaces of optimization problems etc. A more detailed description of the whole spectrum of these questions is to be published soon (see also [2,3,7] ).","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Lecture Notes in Mathematics"},"translated_abstract":"In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the real complexity theory and combinatorial optimization as the problems investigating the properties of sequences of semialgebraic sets, their singularities, boundaries etc. The main idea is to apply the methods of real analysis and singularity theory to the study of spaces of problems and to treat the main notions of complexity theory (P, NP, NP-completeness and others) as the complexity of different spectra of semialgebraic sets. An important role is played by a new class of examples, introduced by the author and his colleagues quite recently, i.e. the group, algebraic and geometric examples such as optimization on finite groups and their orbits in representations. The term \u0026amp;quot;configurational topology\u0026amp;#x27; is introduced in connection with the study of the topology of configuration spaces and ~{n~v\u0026amp;#x27;s theorem on universality of configurations spaces or the spaces of convex polyhedrons from a topological point of view. Configurational topology studies topological spaces as configuration spaces, spaces of optimization problems etc. A more detailed description of the whole spectrum of these questions is to be published soon (see also [2,3,7] ).","internal_url":"https://www.academia.edu/85216653/On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization","translated_internal_url":"","created_at":"2022-08-20T07:39:13.399-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2507,"name":"Combinatorial Optimization","url":"https://www.academia.edu/Documents/in/Combinatorial_Optimization"},{"id":3155,"name":"Complexity Theory","url":"https://www.academia.edu/Documents/in/Complexity_Theory"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216652/Topology_Ergodic_Theory_Real_Algebraic_Geometry"><img alt="Research paper thumbnail of Topology, Ergodic Theory, Real Algebraic Geometry" class="work-thumbnail" src="https://attachments.academia-assets.com/89983182/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216652/Topology_Ergodic_Theory_Real_Algebraic_Geometry">Topology, Ergodic Theory, Real Algebraic Geometry</a></div><div class="wp-workCard_item"><span>American Mathematical Society Translations: Series 2</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="187280cc0509ba8e84b995e7145260d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983182,"asset_id":85216652,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983182/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216652]").text(description); $(".js-view-count[data-work-id=85216652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "187280cc0509ba8e84b995e7145260d6" } } $('.js-work-strip[data-work-id=85216652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216652,"title":"Topology, Ergodic Theory, Real Algebraic Geometry","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"American Mathematical Society Translations: Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216652/Topology_Ergodic_Theory_Real_Algebraic_Geometry","translated_internal_url":"","created_at":"2022-08-20T07:39:13.201-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983182/thumbnails/1.jpg","file_name":"On_the_Pontrjagin_Viro_form.pdf","download_url":"https://www.academia.edu/attachments/89983182/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_Ergodic_Theory_Real_Algebraic_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983182/On_the_Pontrjagin_Viro_form-libre.pdf?1661007335=\u0026response-content-disposition=attachment%3B+filename%3DTopology_Ergodic_Theory_Real_Algebraic_G.pdf\u0026Expires=1732795056\u0026Signature=TaMY9-SKUcWuP1NSrH7gIiL9hYUmcqiiN4j9ynXeD5Ca7ujax~MACxwNIsE3rXqvDcYKCydejLNXxGUM1cPOYYAML0fQUp6nQUQ~NVCdLUwI6vwzG4JYmZcB534LLiNPicj-pqBdqjhLim79WnfY5uNvBf0V7WWsTptWH0MXL0iDKUJ5xcWqPB-sbKJggJvJlxieTu1ZlIJV9HJYv-pqVzj5jzXPofdgdFUnZmo-a~2q9wo95cRG6CgS0EQhmJRrhjp2SzZBnEMjJ9BmW4ztmnf2iMkfCMvA4bnPwxD1XaAycQl5ETM-K0LeXDayHtfmeZ~a72xeg9vem4q0HRI7zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Topology_Ergodic_Theory_Real_Algebraic_Geometry","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983182/thumbnails/1.jpg","file_name":"On_the_Pontrjagin_Viro_form.pdf","download_url":"https://www.academia.edu/attachments/89983182/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_Ergodic_Theory_Real_Algebraic_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983182/On_the_Pontrjagin_Viro_form-libre.pdf?1661007335=\u0026response-content-disposition=attachment%3B+filename%3DTopology_Ergodic_Theory_Real_Algebraic_G.pdf\u0026Expires=1732795056\u0026Signature=TaMY9-SKUcWuP1NSrH7gIiL9hYUmcqiiN4j9ynXeD5Ca7ujax~MACxwNIsE3rXqvDcYKCydejLNXxGUM1cPOYYAML0fQUp6nQUQ~NVCdLUwI6vwzG4JYmZcB534LLiNPicj-pqBdqjhLim79WnfY5uNvBf0V7WWsTptWH0MXL0iDKUJ5xcWqPB-sbKJggJvJlxieTu1ZlIJV9HJYv-pqVzj5jzXPofdgdFUnZmo-a~2q9wo95cRG6CgS0EQhmJRrhjp2SzZBnEMjJ9BmW4ztmnf2iMkfCMvA4bnPwxD1XaAycQl5ETM-K0LeXDayHtfmeZ~a72xeg9vem4q0HRI7zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1294782,"name":"Reaserch In a Field of Applied Mathematics and Mathematical Physics","url":"https://www.academia.edu/Documents/in/Reaserch_In_a_Field_of_Applied_Mathematics_and_Mathematical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216651/R_arrangements_convexes_des_marches_al_atoires"><img alt="Research paper thumbnail of R�arrangements convexes des marches al�atoires" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216651/R_arrangements_convexes_des_marches_al_atoires">R�arrangements convexes des marches al�atoires</a></div><div class="wp-workCard_item"><span>Ann Inst Henri Poincare Prob</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216651]").text(description); $(".js-view-count[data-work-id=85216651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216651, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216651,"title":"R�arrangements convexes des marches al�atoires","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Ann Inst Henri Poincare Prob"},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216651/R_arrangements_convexes_des_marches_al_atoires","translated_internal_url":"","created_at":"2022-08-20T07:39:12.975-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"R_arrangements_convexes_des_marches_al_atoires","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":611819,"name":"Discrete random variable","url":"https://www.academia.edu/Documents/in/Discrete_random_variable"},{"id":2564128,"name":"Strong law of large numbers","url":"https://www.academia.edu/Documents/in/Strong_law_of_large_numbers"}],"urls":[{"id":23158988,"url":"http://adsabs.harvard.edu/abs/1998anihp..34...73d"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216650/Anatoly_Vershik_Interview_June_4_1993"><img alt="Research paper thumbnail of Anatoly Vershik Interview June 4, 1993" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216650/Anatoly_Vershik_Interview_June_4_1993">Anatoly Vershik Interview June 4, 1993</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216650]").text(description); $(".js-view-count[data-work-id=85216650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216650,"title":"Anatoly Vershik Interview June 4, 1993","translated_title":"","metadata":{"publication_date":{"day":4,"month":6,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216650/Anatoly_Vershik_Interview_June_4_1993","translated_internal_url":"","created_at":"2022-08-20T07:39:12.744-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Anatoly_Vershik_Interview_June_4_1993","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":1236,"name":"Art","url":"https://www.academia.edu/Documents/in/Art"}],"urls":[{"id":23158987,"url":"http://ecommons.library.cornell.edu/handle/1813/15166"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12202364" id="papers"><div class="js-work-strip profile--work_container" data-work-id="91434756"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434756/Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies"><img alt="Research paper thumbnail of Central measures of continuous graded graphs: the case of distinct frequencies" class="work-thumbnail" src="https://attachments.academia-assets.com/94723713/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434756/Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies">Central measures of continuous graded graphs: the case of distinct frequencies</a></div><div class="wp-workCard_item"><span>European Journal of Mathematics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="83470e62a058c2f425ebdce5370cf0ae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94723713,"asset_id":91434756,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94723713/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434756"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434756"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434756; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434756]").text(description); $(".js-view-count[data-work-id=91434756]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434756; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434756']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434756, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "83470e62a058c2f425ebdce5370cf0ae" } } $('.js-work-strip[data-work-id=91434756]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434756,"title":"Central measures of continuous graded graphs: the case of distinct frequencies","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We define a class of continuous graded graphs similar to the graph of Gelfand-Tsetlin patterns, and describe the set of all ergodic central measures of discrete type on the path spaces of such graphs. The main observation is that an ergodic central measure on a subgraph of a Pascal-type graph can often be obtained as the restriction of the standard Bernoulli measure to the path space of the subgraph. This observation dramatically changes the approach to finding central measures also on discrete graphs, such as the famous Young graph. The simplest example of this type is given by the theorem on the weak limits of normalized Lebesgue measures on simplices; these are the so-called Cesàro measures, which are concentrated on the sequences with prescribed Cesàro limits (this limit parametrizes the corresponding measure). More complicated examples are the graphs of continuous Young diagrams with fixed number of rows and the graphs of spectra of infinite Hermitian matrices of finite rank. We prove existence and uniqueness theorems for ergodic central measures and describe their structure. In particular, our results 1) give a new spectral description of the so-called infinite-dimensional Wishart measures [15]-ergodic unitarily invariant measures of discrete type on the set of infinite Hermitian matrices; 2) describe the structure of continuous analogs of measures on discrete graded graphs. New problems and connections which appear are to be considered in new publications.","publication_name":"European Journal of Mathematics","grobid_abstract_attachment_id":94723713},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434756/Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies","translated_internal_url":"","created_at":"2022-11-23T04:13:40.056-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94723713,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723713/thumbnails/1.jpg","file_name":"2209.11733.pdf","download_url":"https://www.academia.edu/attachments/94723713/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Central_measures_of_continuous_graded_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723713/2209.11733-libre.pdf?1669209174=\u0026response-content-disposition=attachment%3B+filename%3DCentral_measures_of_continuous_graded_gr.pdf\u0026Expires=1732795055\u0026Signature=X1N6nhL8nOUuBeFqCT8pCtmkMAWDKlpjr5CXAfT1HrQTrVib0o75NjdgZCMq~kgEeN4sLtq0pfl-Hlv1IX8NQ0BuqSiIpoV79ex9jgtUPj6gEnJvz~oT98nDYhcQ9hfByaUPqyuiYwtrqZInnpWLGX44SKHFZWT-3AKrK-wkFizy8FzNWXjdTylfc2ypHgz9PdLLafRg5tEzavU3L65LbU567STjWmZy6VmzqL3IWsoPqnUC7E7zalpomaWyPYzHp~zRInkKlkvOCIaGp~TaoCOGFpyPRLkbJ6L089dr-3L1klGwDGO4hFZjFUrXKK5b2vPNgkwkmeOI2ni4RqxbGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Central_measures_of_continuous_graded_graphs_the_case_of_distinct_frequencies","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":94723713,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723713/thumbnails/1.jpg","file_name":"2209.11733.pdf","download_url":"https://www.academia.edu/attachments/94723713/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Central_measures_of_continuous_graded_gr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723713/2209.11733-libre.pdf?1669209174=\u0026response-content-disposition=attachment%3B+filename%3DCentral_measures_of_continuous_graded_gr.pdf\u0026Expires=1732795055\u0026Signature=X1N6nhL8nOUuBeFqCT8pCtmkMAWDKlpjr5CXAfT1HrQTrVib0o75NjdgZCMq~kgEeN4sLtq0pfl-Hlv1IX8NQ0BuqSiIpoV79ex9jgtUPj6gEnJvz~oT98nDYhcQ9hfByaUPqyuiYwtrqZInnpWLGX44SKHFZWT-3AKrK-wkFizy8FzNWXjdTylfc2ypHgz9PdLLafRg5tEzavU3L65LbU567STjWmZy6VmzqL3IWsoPqnUC7E7zalpomaWyPYzHp~zRInkKlkvOCIaGp~TaoCOGFpyPRLkbJ6L089dr-3L1klGwDGO4hFZjFUrXKK5b2vPNgkwkmeOI2ni4RqxbGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":346,"name":"Ergodic Theory","url":"https://www.academia.edu/Documents/in/Ergodic_Theory"},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics"},{"id":63969,"name":"Non-European roots of mathematics","url":"https://www.academia.edu/Documents/in/Non-European_roots_of_mathematics"}],"urls":[{"id":26305197,"url":"https://link.springer.com/content/pdf/10.1007/s40879-022-00588-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434750"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434750/Contemporary_Mathematical_Physics"><img alt="Research paper thumbnail of Contemporary Mathematical Physics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434750/Contemporary_Mathematical_Physics">Contemporary Mathematical Physics</a></div><div class="wp-workCard_item"><span>American Mathematical Society Translations: Series 2</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis (&quot;supermathematics&quot;). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topic</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434750"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434750]").text(description); $(".js-view-count[data-work-id=91434750]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434750']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434750, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434750]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434750,"title":"Contemporary Mathematical Physics","translated_title":"","metadata":{"abstract":"This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis (\u0026quot;supermathematics\u0026quot;). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topic","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"American Mathematical Society Translations: Series 2"},"translated_abstract":"This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis (\u0026quot;supermathematics\u0026quot;). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topic","internal_url":"https://www.academia.edu/91434750/Contemporary_Mathematical_Physics","translated_internal_url":"","created_at":"2022-11-23T04:13:35.653-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contemporary_Mathematical_Physics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434743"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/91434743/Probability_Measures_in_Infinite_Dimensional_Spaces"><img alt="Research paper thumbnail of Probability Measures in Infinite-Dimensional Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/91434743/Probability_Measures_in_Infinite_Dimensional_Spaces">Probability Measures in Infinite-Dimensional Spaces</a></div><div class="wp-workCard_item"><span>Investigations in the Theory of Stochastic Processes</span><span>, 1971</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434743"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434743"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434743; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434743]").text(description); $(".js-view-count[data-work-id=91434743]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434743; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434743']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434743, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434743]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434743,"title":"Probability Measures in Infinite-Dimensional Spaces","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1971,"errors":{}},"publication_name":"Investigations in the Theory of Stochastic Processes"},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434743/Probability_Measures_in_Infinite_Dimensional_Spaces","translated_internal_url":"","created_at":"2022-11-23T04:13:30.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Probability_Measures_in_Infinite_Dimensional_Spaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434734/Randomization_of_Algebra_and_Algebraization_of_Probability"><img alt="Research paper thumbnail of Randomization of Algebra and Algebraization of Probability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434734/Randomization_of_Algebra_and_Algebraization_of_Probability">Randomization of Algebra and Algebraization of Probability</a></div><div class="wp-workCard_item"><span>Mathematics Unlimited — 2001 and Beyond</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is probably difficult to find areas of XIXth Century mathematics more remote from each other t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is probably difficult to find areas of XIXth Century mathematics more remote from each other than algebra, the foundation of mathematics, and probability theory, a semi-applied area perceived from the time of its emergence as an almost experimental science. We note, in passing, that in the works of P. L. Chebyshev’s students, A. A. Markov and A. M. Lyapunov, many assertions of probability theory (for example, the central limit theorem) were proved with complete rigour in great generality. Nevertheless, it is no accident that one of the famous problems, proposed by D. Hilbert involved axiomatization of mechanics and axiomatization of probability theory: at that time one could not assume that these areas were fully mathematicized. In the first half of the XXth Century the works of A. N. Kolmogorov, S. N. Bernstein, von Mises et al. created the foundations of probability theory, which were unconditionally accepted by the mathematical community, and all doubts about whether or not this was mathematics were removed. However, probability theory has retained a certain isolation until now. It is difficult to explain this rationally. Certainly, a number of its methods are specific to that science and were difficult to understand even 20 years ago. For example, specialists on differential equations were for a long time unable to assimilate techniques of stochastic calculus, although results obtained by probabilistic methods in the theory of equations competed successfully with theorems obtained by classical methods.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434734]").text(description); $(".js-view-count[data-work-id=91434734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434734,"title":"Randomization of Algebra and Algebraization of Probability","translated_title":"","metadata":{"abstract":"It is probably difficult to find areas of XIXth Century mathematics more remote from each other than algebra, the foundation of mathematics, and probability theory, a semi-applied area perceived from the time of its emergence as an almost experimental science. We note, in passing, that in the works of P. L. Chebyshev’s students, A. A. Markov and A. M. Lyapunov, many assertions of probability theory (for example, the central limit theorem) were proved with complete rigour in great generality. Nevertheless, it is no accident that one of the famous problems, proposed by D. Hilbert involved axiomatization of mechanics and axiomatization of probability theory: at that time one could not assume that these areas were fully mathematicized. In the first half of the XXth Century the works of A. N. Kolmogorov, S. N. Bernstein, von Mises et al. created the foundations of probability theory, which were unconditionally accepted by the mathematical community, and all doubts about whether or not this was mathematics were removed. However, probability theory has retained a certain isolation until now. It is difficult to explain this rationally. Certainly, a number of its methods are specific to that science and were difficult to understand even 20 years ago. For example, specialists on differential equations were for a long time unable to assimilate techniques of stochastic calculus, although results obtained by probabilistic methods in the theory of equations competed successfully with theorems obtained by classical methods.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Mathematics Unlimited — 2001 and Beyond"},"translated_abstract":"It is probably difficult to find areas of XIXth Century mathematics more remote from each other than algebra, the foundation of mathematics, and probability theory, a semi-applied area perceived from the time of its emergence as an almost experimental science. We note, in passing, that in the works of P. L. Chebyshev’s students, A. A. Markov and A. M. Lyapunov, many assertions of probability theory (for example, the central limit theorem) were proved with complete rigour in great generality. Nevertheless, it is no accident that one of the famous problems, proposed by D. Hilbert involved axiomatization of mechanics and axiomatization of probability theory: at that time one could not assume that these areas were fully mathematicized. In the first half of the XXth Century the works of A. N. Kolmogorov, S. N. Bernstein, von Mises et al. created the foundations of probability theory, which were unconditionally accepted by the mathematical community, and all doubts about whether or not this was mathematics were removed. However, probability theory has retained a certain isolation until now. It is difficult to explain this rationally. Certainly, a number of its methods are specific to that science and were difficult to understand even 20 years ago. For example, specialists on differential equations were for a long time unable to assimilate techniques of stochastic calculus, although results obtained by probabilistic methods in the theory of equations competed successfully with theorems obtained by classical methods.","internal_url":"https://www.academia.edu/91434734/Randomization_of_Algebra_and_Algebraization_of_Probability","translated_internal_url":"","created_at":"2022-11-23T04:13:25.625-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Randomization_of_Algebra_and_Algebraization_of_Probability","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434728/A_nonholonomic_Laplace_operator"><img alt="Research paper thumbnail of A nonholonomic Laplace operator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434728/A_nonholonomic_Laplace_operator">A nonholonomic Laplace operator</a></div><div class="wp-workCard_item"><span>Journal of Soviet Mathematics</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds. The nonholonomic metric (Carnot-Carathéodory metric), the Carathéodory measure, and hypoharmonic functions are defined. A theorem on the comparison of the spectra is proved and the connection is established between the bases of eigenfunctions of the ordinary and nonholonomic Laplacians. Conjectures are formulated on the principal term of the spectral asymptotic expansion of the nonholonomic Laplacian, on the structure of the wave fronts, and on the propagation of singularities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434728]").text(description); $(".js-view-count[data-work-id=91434728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434728,"title":"A nonholonomic Laplace operator","translated_title":"","metadata":{"abstract":"In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds. The nonholonomic metric (Carnot-Carathéodory metric), the Carathéodory measure, and hypoharmonic functions are defined. A theorem on the comparison of the spectra is proved and the connection is established between the bases of eigenfunctions of the ordinary and nonholonomic Laplacians. Conjectures are formulated on the principal term of the spectral asymptotic expansion of the nonholonomic Laplacian, on the structure of the wave fronts, and on the propagation of singularities.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Journal of Soviet Mathematics"},"translated_abstract":"In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds. The nonholonomic metric (Carnot-Carathéodory metric), the Carathéodory measure, and hypoharmonic functions are defined. A theorem on the comparison of the spectra is proved and the connection is established between the bases of eigenfunctions of the ordinary and nonholonomic Laplacians. Conjectures are formulated on the principal term of the spectral asymptotic expansion of the nonholonomic Laplacian, on the structure of the wave fronts, and on the propagation of singularities.","internal_url":"https://www.academia.edu/91434728/A_nonholonomic_Laplace_operator","translated_internal_url":"","created_at":"2022-11-23T04:13:20.029-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_nonholonomic_Laplace_operator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":529366,"name":"Soviet mathematics","url":"https://www.academia.edu/Documents/in/Soviet_mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434714"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434714/Product_of_commuting_spectral_measures_need_not_be_countably_additive"><img alt="Research paper thumbnail of Product of commuting spectral measures need not be countably additive" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434714/Product_of_commuting_spectral_measures_need_not_be_countably_additive">Product of commuting spectral measures need not be countably additive</a></div><div class="wp-workCard_item"><span>Functional Analysis and Its Applications</span><span>, 1979</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434714"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434714"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434714; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434714]").text(description); $(".js-view-count[data-work-id=91434714]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434714; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434714']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434714, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91434714]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434714,"title":"Product of commuting spectral measures need not be countably additive","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":1979,"errors":{}},"publication_name":"Functional Analysis and Its Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434714/Product_of_commuting_spectral_measures_need_not_be_countably_additive","translated_internal_url":"","created_at":"2022-11-23T04:13:12.786-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Product_of_commuting_spectral_measures_need_not_be_countably_additive","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":26305182,"url":"http://link.springer.com/content/pdf/10.1007/BF01076440.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434679/Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics"><img alt="Research paper thumbnail of Asymptotic Combinatorics with Application to Mathematical Physics" class="work-thumbnail" src="https://attachments.academia-assets.com/94723667/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434679/Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics">Asymptotic Combinatorics with Application to Mathematical Physics</a></div><div class="wp-workCard_item"><span>Asymptotic Combinatorics with Application to Mathematical Physics</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e46c159c12b990e979e363521f12b30" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94723667,"asset_id":91434679,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94723667/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434679]").text(description); $(".js-view-count[data-work-id=91434679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434679, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e46c159c12b990e979e363521f12b30" } } $('.js-work-strip[data-work-id=91434679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434679,"title":"Asymptotic Combinatorics with Application to Mathematical Physics","translated_title":"","metadata":{"publisher":"Springer Netherlands","grobid_abstract":"Softcover reprint of the hardcover 18t edition 2002 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilm ing, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Asymptotic Combinatorics with Application to Mathematical Physics","grobid_abstract_attachment_id":94723667},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434679/Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics","translated_internal_url":"","created_at":"2022-11-23T04:12:07.220-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94723667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723667/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/94723667/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotic_Combinatorics_with_Applicatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723667/1-libre.pdf?1669209192=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_Combinatorics_with_Applicatio.pdf\u0026Expires=1732795055\u0026Signature=Y6FZPQpgIBKaVHjGyT7t~EF0SwGd9OQjqM9pnZ7SPe7iPz6bjRUugCuIXpB6UddUBBS-QQaErPRP2-Clfwi3qoBjwH4Lv-3kl8Z-w6IRYxOxk-SvDmQ5X46IucmKMYYis-gdtOPDLVT-L7fFCv4~uf-HfF1vlHc-aa5jnE9bHDIQo4KOsVSI8KOs9~NsIpofnBy8Gh~RUMvfk1kQC9tByDo1UFOtGSm6mpJEw8ma5w-9qksfyNsNmRNu~sjoKQIoW4lVUIcYnMFUPDU-O4G4T9saw9ZKXG88ogQhgYFNeET4MoXZ8imS5Eoa8dtco0S3ahr5ZIbdoRKaIDG1t-kF6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Asymptotic_Combinatorics_with_Application_to_Mathematical_Physics","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":94723667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723667/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/94723667/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotic_Combinatorics_with_Applicatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723667/1-libre.pdf?1669209192=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_Combinatorics_with_Applicatio.pdf\u0026Expires=1732795055\u0026Signature=Y6FZPQpgIBKaVHjGyT7t~EF0SwGd9OQjqM9pnZ7SPe7iPz6bjRUugCuIXpB6UddUBBS-QQaErPRP2-Clfwi3qoBjwH4Lv-3kl8Z-w6IRYxOxk-SvDmQ5X46IucmKMYYis-gdtOPDLVT-L7fFCv4~uf-HfF1vlHc-aa5jnE9bHDIQo4KOsVSI8KOs9~NsIpofnBy8Gh~RUMvfk1kQC9tByDo1UFOtGSm6mpJEw8ma5w-9qksfyNsNmRNu~sjoKQIoW4lVUIcYnMFUPDU-O4G4T9saw9ZKXG88ogQhgYFNeET4MoXZ8imS5Eoa8dtco0S3ahr5ZIbdoRKaIDG1t-kF6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":13564,"name":"Enumerative combinatorics","url":"https://www.academia.edu/Documents/in/Enumerative_combinatorics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91434616"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91434616/The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_"><img alt="Research paper thumbnail of The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra $${\widehat{\mathfrak{sl}_2}}$$ sl 2 ^" class="work-thumbnail" src="https://attachments.academia-assets.com/94723637/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91434616/The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_">The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra $${\widehat{\mathfrak{sl}_2}}$$ sl 2 ^</a></div><div class="wp-workCard_item"><span>Letters in Mathematical Physics</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55d9ee3bc473e8af0b33a961fbbce28b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94723637,"asset_id":91434616,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94723637/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91434616"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91434616"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91434616; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91434616]").text(description); $(".js-view-count[data-work-id=91434616]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91434616; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91434616']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 91434616, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55d9ee3bc473e8af0b33a961fbbce28b" } } $('.js-work-strip[data-work-id=91434616]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91434616,"title":"The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra $${\\widehat{\\mathfrak{sl}_2}}$$ sl 2 ^","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We introduce and study the so-called serpentine representations of the infinite symmetric group S N , which turn out to be closely related to the basic representation of the affine Lie algebra sl 2 and representations of the Virasoro algebra.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Letters in Mathematical Physics","grobid_abstract_attachment_id":94723637},"translated_abstract":null,"internal_url":"https://www.academia.edu/91434616/The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_","translated_internal_url":"","created_at":"2022-11-23T04:11:28.493-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":94723637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723637/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/94723637/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Serpentine_Representation_of_the_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723637/1411-libre.pdf?1669209179=\u0026response-content-disposition=attachment%3B+filename%3DThe_Serpentine_Representation_of_the_Inf.pdf\u0026Expires=1732795055\u0026Signature=cG2PzEf~o2X8xx35ebyE1xMQFVVNbdfk1cfUg7SyXvDLf8Xn1d-l0MqbFFRB-wFIalRXN4QoYoqo-BdXGukrtT7LdhykdfC8FeV9ARUMajrfhr9ne74w2WJXbbmeuTb7DGagW0N1qmT-zN2GWSK0bAotsBnoziErcYtMaw1u1Btw~UBvQzfZjRTV~BGK1BWqgEGOL4x64TJ5uRRXIf4dGOQsRkAgomfq1VqYmDodMRFqWHo8GbEuWehCrmHTu71kKIkXnmpApSkejd~zPe6Nq14gtQNYSGMowSab4vt5-p3XlevJByL07A5832wB308qfvjIM6Wp1VI6rdOqtpWN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Serpentine_Representation_of_the_Infinite_Symmetric_Group_and_the_Basic_Representation_of_the_Affine_Lie_Algebra_widehat_mathfrak_sl_2_sl_2_","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":94723637,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94723637/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/94723637/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1NSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Serpentine_Representation_of_the_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94723637/1411-libre.pdf?1669209179=\u0026response-content-disposition=attachment%3B+filename%3DThe_Serpentine_Representation_of_the_Inf.pdf\u0026Expires=1732795055\u0026Signature=cG2PzEf~o2X8xx35ebyE1xMQFVVNbdfk1cfUg7SyXvDLf8Xn1d-l0MqbFFRB-wFIalRXN4QoYoqo-BdXGukrtT7LdhykdfC8FeV9ARUMajrfhr9ne74w2WJXbbmeuTb7DGagW0N1qmT-zN2GWSK0bAotsBnoziErcYtMaw1u1Btw~UBvQzfZjRTV~BGK1BWqgEGOL4x64TJ5uRRXIf4dGOQsRkAgomfq1VqYmDodMRFqWHo8GbEuWehCrmHTu71kKIkXnmpApSkejd~zPe6Nq14gtQNYSGMowSab4vt5-p3XlevJByL07A5832wB308qfvjIM6Wp1VI6rdOqtpWN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":27500,"name":"Representation Theory","url":"https://www.academia.edu/Documents/in/Representation_Theory"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1554856,"name":"Affine Transformation","url":"https://www.academia.edu/Documents/in/Affine_Transformation"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216661/Lagrangian_Mechanics_in_Invariant_Form"><img alt="Research paper thumbnail of Lagrangian Mechanics in Invariant Form" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216661/Lagrangian_Mechanics_in_Invariant_Form">Lagrangian Mechanics in Invariant Form</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216661]").text(description); $(".js-view-count[data-work-id=85216661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216661,"title":"Lagrangian Mechanics in Invariant Form","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1995,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216661/Lagrangian_Mechanics_in_Invariant_Form","translated_internal_url":"","created_at":"2022-08-20T07:39:15.433-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Lagrangian_Mechanics_in_Invariant_Form","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":857497,"name":"Lagrangian Mechanics","url":"https://www.academia.edu/Documents/in/Lagrangian_Mechanics"},{"id":990287,"name":"Scientific World View","url":"https://www.academia.edu/Documents/in/Scientific_World_View"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216660/Asymptotics_of_Young_Diagrams_and_Hook_Numbers"><img alt="Research paper thumbnail of Asymptotics of Young Diagrams and Hook Numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/89983190/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216660/Asymptotics_of_Young_Diagrams_and_Hook_Numbers">Asymptotics of Young Diagrams and Hook Numbers</a></div><div class="wp-workCard_item"><span>The Electronic Journal of Combinatorics</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Asymptotic calculations are applied to study the degrees of certain sequences of characters of sy...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition $\mu$, we deduce several skew diagrams which are related to $\mu$. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know &quot;finite&quot;, nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7ef4c4b64f42736c669e211a3dbd09d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983190,"asset_id":85216660,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983190/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216660]").text(description); $(".js-view-count[data-work-id=85216660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7ef4c4b64f42736c669e211a3dbd09d6" } } $('.js-work-strip[data-work-id=85216660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216660,"title":"Asymptotics of Young Diagrams and Hook Numbers","translated_title":"","metadata":{"abstract":"Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition $\\mu$, we deduce several skew diagrams which are related to $\\mu$. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know \u0026quot;finite\u0026quot;, nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups.","publisher":"The Electronic Journal of Combinatorics","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"The Electronic Journal of Combinatorics"},"translated_abstract":"Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition $\\mu$, we deduce several skew diagrams which are related to $\\mu$. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know \u0026quot;finite\u0026quot;, nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups.","internal_url":"https://www.academia.edu/85216660/Asymptotics_of_Young_Diagrams_and_Hook_Numbers","translated_internal_url":"","created_at":"2022-08-20T07:39:15.156-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983190/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/89983190/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotics_of_Young_Diagrams_and_Hook_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983190/pdf-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotics_of_Young_Diagrams_and_Hook_N.pdf\u0026Expires=1732795055\u0026Signature=eAfkANGqlysYSLviEoWhGW-GIqh1wQgOklofWu2A3sFzbJpcLVZ9L7a2Am1Lp4FDwRR~~x4GcYqvzvPJIaY1KYuAAHvXizKRRDEt-tyEn5xfbRaDjqWpR8Cl-w85~fXG8ZkWZaZUmTLmec96-9eSyyzKwcIuQ187eFVOeKt8XOjZqqxm7GNaBFRmo9Zcc5NPO5uYDx0X4EsOyXZdZralT1OttJ2cZCy2RuRYF-58IEl50hZvQ1ozqU-zSR42-og0iOd5d7SPbVoVylfJpb-oc9csCV7w3QYtZaEg1EceSJRRJe~iDIlndlHY8ImHAeUMiuJUEMWAWJiT-eAbZVWOAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Asymptotics_of_Young_Diagrams_and_Hook_Numbers","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983190,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983190/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/89983190/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Asymptotics_of_Young_Diagrams_and_Hook_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983190/pdf-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotics_of_Young_Diagrams_and_Hook_N.pdf\u0026Expires=1732795056\u0026Signature=Ck5cYM8pgUFWJpT31q5gUTXxPbgG-1YVrhUeXp3ocqi7rTp-lXLnqQhz98qF6RCpGp8rorLlw570NcOFOi8T7Xd5QHCQQG6UL7OQ-iBxEfnwN6h6ncq~m2NbQeYjZwjShxlLvmUKQkNdYXA4fOS32qLo5FCIFG23JAzkmo519uf6hunNQ8UidhYd8w7~e3uvDZkFI37kkPgkAzrEoDGfiR0Txu~lnyTrYKd7xibaFXJ6Uo~P2~X-f7wnHeCFZl0BCJPfIweFmR40jgAklVd7xs5eVRCuHzWcdEz5JS8pVwEgCKsTs0qqePUc0Vg3idJr3ymf04gQw4SN1VmNmzxmJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":135503,"name":"Partition","url":"https://www.academia.edu/Documents/in/Partition"},{"id":150408,"name":"Symmetric group","url":"https://www.academia.edu/Documents/in/Symmetric_group"},{"id":2123395,"name":"Hook","url":"https://www.academia.edu/Documents/in/Hook"},{"id":3663999,"name":"Asymptotic method","url":"https://www.academia.edu/Documents/in/Asymptotic_method"}],"urls":[{"id":23158994,"url":"https://www.combinatorics.org/ojs/index.php/eljc/article/download/v4i1r22/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216659/The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups"><img alt="Research paper thumbnail of The absolute of finitely generated groups: I. Commutative (semi)groups" class="work-thumbnail" src="https://attachments.academia-assets.com/89983188/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216659/The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups">The absolute of finitely generated groups: I. Commutative (semi)groups</a></div><div class="wp-workCard_item"><span>European Journal of Mathematics</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4953b110dd8dc7fb41101249bf6f95e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983188,"asset_id":85216659,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983188/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216659]").text(description); $(".js-view-count[data-work-id=85216659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4953b110dd8dc7fb41101249bf6f95e7" } } $('.js-work-strip[data-work-id=85216659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216659,"title":"The absolute of finitely generated groups: I. Commutative (semi)groups","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"We give a complete description of the absolute of commutative finitely generated groups and semigroups. The absolute (previously called the exit boundary) is a further elaboration of the notion of the boundary of a random walk on a group (the Poisson-Furstenberg boundary); namely, the absolute of a (semi)group is the set of ergodic central measures on the compactum of all infinite trajectories of a simple random walk on the group. Related notions have been discussed in the probability literature: Martin boundary, entrance and exit boundaries (Dynkin), central measures on path spaces of graphs (Vershik-Kerov). A central measure (with respect to a finite system of generators of a group or semigroup) is a Markov measure on the space of trajectories whose cotransition distribution at every point is the uniform distribution on the generators (i. e., a measure of maximal entropy). For a more general notion of measures with a given cocycle, see [15]. For the group Z, the problem of describing the absolute is solved exactly by the classical de Finetti's theorem. The main result of this paper, which is a far-reaching generalization of de Finetti's theorem, is as follows: the absolute of a commutative semigroup coincides with the set of central measures corresponding to (nonstationary) Markov chains with independent identically distributed increments. Topologically, the absolute is (in the main case) a closed disk of finite dimension.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"European Journal of Mathematics","grobid_abstract_attachment_id":89983188},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216659/The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups","translated_internal_url":"","created_at":"2022-08-20T07:39:14.874-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983188,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983188/thumbnails/1.jpg","file_name":"1801.02012v1.pdf","download_url":"https://www.academia.edu/attachments/89983188/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_absolute_of_finitely_generated_group.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983188/1801.02012v1-libre.pdf?1661007326=\u0026response-content-disposition=attachment%3B+filename%3DThe_absolute_of_finitely_generated_group.pdf\u0026Expires=1732795056\u0026Signature=ZCPR-zxy1M9z9Hdi2XWpQcDHl8rzUoKnWlbH-HYAdL2tXlW5mJES1xPx0zD9tgA2TbXL2aErOY6efuZ-Dbspc9Jxb0IlTwJbW7MbSlx-OrMcIz8EJPudQjIxB37CfBrKSh0oMii2lsaz8OpqKyUKpT-BM5aE~kJXcSAxxh5UhQF6y4NnG~xso7miOFvLIQu4RnT2XWED7sgo-3i5wHdQjlOMk8ApwYzh95xlN-k3IicaY7vCa8Kah6FVEtX2HcsrhQy7bSh8QkzyGOr7T-5hm9EDlqy5U85pvKY5B8EwDelVJsKWymZsNE3DVISmUesI9etbp2mhyiYncQBiawa9hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_absolute_of_finitely_generated_groups_I_Commutative_semi_groups","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983188,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983188/thumbnails/1.jpg","file_name":"1801.02012v1.pdf","download_url":"https://www.academia.edu/attachments/89983188/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_absolute_of_finitely_generated_group.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983188/1801.02012v1-libre.pdf?1661007326=\u0026response-content-disposition=attachment%3B+filename%3DThe_absolute_of_finitely_generated_group.pdf\u0026Expires=1732795056\u0026Signature=ZCPR-zxy1M9z9Hdi2XWpQcDHl8rzUoKnWlbH-HYAdL2tXlW5mJES1xPx0zD9tgA2TbXL2aErOY6efuZ-Dbspc9Jxb0IlTwJbW7MbSlx-OrMcIz8EJPudQjIxB37CfBrKSh0oMii2lsaz8OpqKyUKpT-BM5aE~kJXcSAxxh5UhQF6y4NnG~xso7miOFvLIQu4RnT2XWED7sgo-3i5wHdQjlOMk8ApwYzh95xlN-k3IicaY7vCa8Kah6FVEtX2HcsrhQy7bSh8QkzyGOr7T-5hm9EDlqy5U85pvKY5B8EwDelVJsKWymZsNE3DVISmUesI9etbp2mhyiYncQBiawa9hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":346,"name":"Ergodic Theory","url":"https://www.academia.edu/Documents/in/Ergodic_Theory"},{"id":63969,"name":"Non-European roots of mathematics","url":"https://www.academia.edu/Documents/in/Non-European_roots_of_mathematics"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":498860,"name":"Semigroup","url":"https://www.academia.edu/Documents/in/Semigroup"}],"urls":[{"id":23158993,"url":"http://link.springer.com/article/10.1007/s40879-018-0263-8/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216658"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216658/Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph"><img alt="Research paper thumbnail of Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/89983191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216658/Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph">Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph</a></div><div class="wp-workCard_item"><span>Functional Analysis and Its Applications</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bf5c4f7bcd971b91236adab6d5bbe832" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983191,"asset_id":85216658,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983191/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216658"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216658]").text(description); $(".js-view-count[data-work-id=85216658]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216658']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216658, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bf5c4f7bcd971b91236adab6d5bbe832" } } $('.js-work-strip[data-work-id=85216658]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216658,"title":"Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We suggest a combinatorial classification of metric filtrations in measure spaces; a complete invariant of such a filtration is its combinatorial scheme, a measure on the space of hierarchies of the group Z. In turn, the notion of combinatorial scheme is a source of new metric invariants of automorphisms approximated via basic filtrations. We construct a universal graph endowed with an adic structure such that every automorphism can be realized in its path space.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Functional Analysis and Its Applications","grobid_abstract_attachment_id":89983191},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216658/Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph","translated_internal_url":"","created_at":"2022-08-20T07:39:14.624-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983191/thumbnails/1.jpg","file_name":"1812.07841v1.pdf","download_url":"https://www.academia.edu/attachments/89983191/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combinatorial_Invariants_of_Metric_Filtr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983191/1812.07841v1-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DCombinatorial_Invariants_of_Metric_Filtr.pdf\u0026Expires=1732795056\u0026Signature=H7~l7jJ9eVinxwWL2vtyJ9hD~bxtwAlFPw-lrrZRfyxxCRF6nsBDLb8Q3f4j6NxqZ-hgNjU1RIUQlQTErhb0-Ps0Egg9Oqhulmzio2XT4Nll2BXY9Qq9nqBg54IsB7H~6Cd9V4sGk7RhpFFkGNMoeJG-v6KMRD6oX4gYgw3M0BNJd4Ih~IUqC0LYuT1kTbo1N-n~IFLMtY~D4z2LsBmET2szxtX3RrsfKEGY8BVwiyvj1eunc74f-9haw0FGf4b3mvWkhX7KsOdqy~QP~S0qsdU8mNeiQzlN8esQt60t99Gf0kFWQE87RM8NOlQcz2DDMCyCW6pVguwC4SJ-EeOmVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Combinatorial_Invariants_of_Metric_Filtrations_and_Automorphisms_the_Universal_Adic_Graph","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983191/thumbnails/1.jpg","file_name":"1812.07841v1.pdf","download_url":"https://www.academia.edu/attachments/89983191/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combinatorial_Invariants_of_Metric_Filtr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983191/1812.07841v1-libre.pdf?1661007324=\u0026response-content-disposition=attachment%3B+filename%3DCombinatorial_Invariants_of_Metric_Filtr.pdf\u0026Expires=1732795056\u0026Signature=H7~l7jJ9eVinxwWL2vtyJ9hD~bxtwAlFPw-lrrZRfyxxCRF6nsBDLb8Q3f4j6NxqZ-hgNjU1RIUQlQTErhb0-Ps0Egg9Oqhulmzio2XT4Nll2BXY9Qq9nqBg54IsB7H~6Cd9V4sGk7RhpFFkGNMoeJG-v6KMRD6oX4gYgw3M0BNJd4Ih~IUqC0LYuT1kTbo1N-n~IFLMtY~D4z2LsBmET2szxtX3RrsfKEGY8BVwiyvj1eunc74f-9haw0FGf4b3mvWkhX7KsOdqy~QP~S0qsdU8mNeiQzlN8esQt60t99Gf0kFWQE87RM8NOlQcz2DDMCyCW6pVguwC4SJ-EeOmVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23158992,"url":"http://link.springer.com/article/10.1007/s10688-018-0236-1/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216657"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216657/Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_"><img alt="Research paper thumbnail of Cohomology in nonunitary representations of semisimple Lie groups (the group U(2, 2))" class="work-thumbnail" src="https://attachments.academia-assets.com/89983187/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216657/Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_">Cohomology in nonunitary representations of semisimple Lie groups (the group U(2, 2))</a></div><div class="wp-workCard_item"><span>Functional Analysis and Its Applications</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a32ed706aeab52cf63000805ec831c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983187,"asset_id":85216657,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983187/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216657"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216657"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216657; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216657]").text(description); $(".js-view-count[data-work-id=85216657]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216657; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216657']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216657, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a32ed706aeab52cf63000805ec831c3" } } $('.js-work-strip[data-work-id=85216657]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216657,"title":"Cohomology in nonunitary representations of semisimple Lie groups (the group U(2, 2))","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We suggest a method of constructing special nonunitary representations of semisimple Lie groups using representations of Iwasawa subgroups. As a typical example, we study the group U (2, 2).","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Functional Analysis and Its Applications","grobid_abstract_attachment_id":89983187},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216657/Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_","translated_internal_url":"","created_at":"2022-08-20T07:39:14.360-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983187/thumbnails/1.jpg","file_name":"1404.pdf","download_url":"https://www.academia.edu/attachments/89983187/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_in_nonunitary_representations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983187/1404-libre.pdf?1661007327=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_in_nonunitary_representations.pdf\u0026Expires=1732795056\u0026Signature=Aklef4ZQZHC0FZbVQDf43amNF2Ej4ewFyDktz9FvS10pYjWoeM4-QKVXoBAH~tNSWk4PBxkAmPKs2B7WrWHZslgCmAYPxsRjgzet9DJNanroNhpKZVozNNetY87dWGVS49XbzW08Ic1VATBng2TZHBhBsql5ILIplQNcwQWsaA4qPs2SVZ3bmtSqAlN2W6hLc8vZ9o8~yZwYLwAzYnxK7bxZVYO9-Xk2DSQVGpakAN-~JmbQtMc40vUOZNNVIBH0DQPhWdBLuIutc2pTYb08JcOpX1-6VaUJNIY3CEy30oeiqCsyT3uynyxeqO57uhg2akS2XkUlJCk5gn0JaeYgaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cohomology_in_nonunitary_representations_of_semisimple_Lie_groups_the_group_U_2_2_","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983187,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983187/thumbnails/1.jpg","file_name":"1404.pdf","download_url":"https://www.academia.edu/attachments/89983187/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cohomology_in_nonunitary_representations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983187/1404-libre.pdf?1661007327=\u0026response-content-disposition=attachment%3B+filename%3DCohomology_in_nonunitary_representations.pdf\u0026Expires=1732795056\u0026Signature=Aklef4ZQZHC0FZbVQDf43amNF2Ej4ewFyDktz9FvS10pYjWoeM4-QKVXoBAH~tNSWk4PBxkAmPKs2B7WrWHZslgCmAYPxsRjgzet9DJNanroNhpKZVozNNetY87dWGVS49XbzW08Ic1VATBng2TZHBhBsql5ILIplQNcwQWsaA4qPs2SVZ3bmtSqAlN2W6hLc8vZ9o8~yZwYLwAzYnxK7bxZVYO9-Xk2DSQVGpakAN-~JmbQtMc40vUOZNNVIBH0DQPhWdBLuIutc2pTYb08JcOpX1-6VaUJNIY3CEy30oeiqCsyT3uynyxeqO57uhg2akS2XkUlJCk5gn0JaeYgaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23158991,"url":"http://link.springer.com/content/pdf/10.1007/s10688-014-0057-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216656"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216656/Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups"><img alt="Research paper thumbnail of Special Representations of the Iwasawa Subgroups of Simple Lie Groups" class="work-thumbnail" src="https://attachments.academia-assets.com/89983184/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216656/Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups">Special Representations of the Iwasawa Subgroups of Simple Lie Groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Sciences</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45c09a10cff7a5de6ec7078d76104568" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983184,"asset_id":85216656,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983184/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216656"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216656"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216656; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216656]").text(description); $(".js-view-count[data-work-id=85216656]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216656; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216656']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216656, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45c09a10cff7a5de6ec7078d76104568" } } $('.js-work-strip[data-work-id=85216656]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216656,"title":"Special Representations of the Iwasawa Subgroups of Simple Lie Groups","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"In the paper, a family of representations of maximal solvable subgroups of the simple Lie groups O(p, q), U (p, q), and Sp(p, q), where 1 ≤ p ≤ q, is introduced. These subgroups are called the Iwasawa subgroups of the corresponding simple groups. The main property of these representations is the existence of nontrivial 1-cohomology with values in the representations. For groups of rank 1, the representations from this family are unitary; for ranks greater than 1, they are nonunitary. The paper continues a series of our previous papers and serves as an introduction to the theory of nonunitary current groups. Bibliography: 9 titles.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Mathematical Sciences","grobid_abstract_attachment_id":89983184},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216656/Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups","translated_internal_url":"","created_at":"2022-08-20T07:39:14.073-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983184/thumbnails/1.jpg","file_name":"s10958-017-3408-2.pdf","download_url":"https://www.academia.edu/attachments/89983184/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Special_Representations_of_the_Iwasawa_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983184/s10958-017-3408-2-libre.pdf?1661007320=\u0026response-content-disposition=attachment%3B+filename%3DSpecial_Representations_of_the_Iwasawa_S.pdf\u0026Expires=1732795056\u0026Signature=JeceobJQFj8ZPm2tl3FwbHKvqSUlXXftAFQfbOjJC~b6A~YjvclFnnGFpPsVUEN4HxCYwrumdbt6is07OMFEGQl0vH08eCV4k3U~RTbCGr5yvHI1baV3cYFCh15054qWUd~cHtRO3nhsFiEEgJv9uQ6jxOXelRsMXejierfNm7nfNbTVBLojp9dfTEKKtbI4L~8KPoVjzoRRdMHvkKqSTFIucd2TigCd8Fzj9n8Ta5GYzJr7W4QNfMZdxP2-VWL1fE3r~KlszycKOsY6dlMyDsrpdEo39lGvOpvCA91nltKJ-XL7PIzkJPLD5hYxaFplUcbpfsfvP5v6NF5apq~05g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Special_Representations_of_the_Iwasawa_Subgroups_of_Simple_Lie_Groups","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983184/thumbnails/1.jpg","file_name":"s10958-017-3408-2.pdf","download_url":"https://www.academia.edu/attachments/89983184/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Special_Representations_of_the_Iwasawa_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983184/s10958-017-3408-2-libre.pdf?1661007320=\u0026response-content-disposition=attachment%3B+filename%3DSpecial_Representations_of_the_Iwasawa_S.pdf\u0026Expires=1732795056\u0026Signature=JeceobJQFj8ZPm2tl3FwbHKvqSUlXXftAFQfbOjJC~b6A~YjvclFnnGFpPsVUEN4HxCYwrumdbt6is07OMFEGQl0vH08eCV4k3U~RTbCGr5yvHI1baV3cYFCh15054qWUd~cHtRO3nhsFiEEgJv9uQ6jxOXelRsMXejierfNm7nfNbTVBLojp9dfTEKKtbI4L~8KPoVjzoRRdMHvkKqSTFIucd2TigCd8Fzj9n8Ta5GYzJr7W4QNfMZdxP2-VWL1fE3r~KlszycKOsY6dlMyDsrpdEo39lGvOpvCA91nltKJ-XL7PIzkJPLD5hYxaFplUcbpfsfvP5v6NF5apq~05g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":23158990,"url":"http://link.springer.com/article/10.1007/s10958-017-3408-2/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216655"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216655/The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm"><img alt="Research paper thumbnail of The Characters of the Infinite Symmetric Group and Probability Properties of the Robinson–Schensted–Knuth Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216655/The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm">The Characters of the Infinite Symmetric Group and Probability Properties of the Robinson–Schensted–Knuth Algorithm</a></div><div class="wp-workCard_item"><span>SIAM Journal on Algebraic Discrete Methods</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s problem on longest increasing subsequences and to a law of large numbers for representations. An analogous theory for other graphs is discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216655"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216655"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216655; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216655]").text(description); $(".js-view-count[data-work-id=85216655]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216655; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216655']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216655, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216655]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216655,"title":"The Characters of the Infinite Symmetric Group and Probability Properties of the Robinson–Schensted–Knuth Algorithm","translated_title":"","metadata":{"abstract":"Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s problem on longest increasing subsequences and to a law of large numbers for representations. An analogous theory for other graphs is discussed.","publisher":"Society for Industrial \u0026 Applied Mathematics (SIAM)","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"SIAM Journal on Algebraic Discrete Methods"},"translated_abstract":"Connections between the Robinson–Schensted–Knuth algorithm, random infinite Young tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s problem on longest increasing subsequences and to a law of large numbers for representations. An analogous theory for other graphs is discussed.","internal_url":"https://www.academia.edu/85216655/The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm","translated_internal_url":"","created_at":"2022-08-20T07:39:13.775-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Characters_of_the_Infinite_Symmetric_Group_and_Probability_Properties_of_the_Robinson_Schensted_Knuth_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":150408,"name":"Symmetric group","url":"https://www.academia.edu/Documents/in/Symmetric_group"}],"urls":[{"id":23158989,"url":"https://epubs.siam.org/doi/pdf/10.1137/0607014"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216654/Classical_and_non_classical_dynamics_with_constraints"><img alt="Research paper thumbnail of Classical and non-classical dynamics with constraints" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216654/Classical_and_non_classical_dynamics_with_constraints">Classical and non-classical dynamics with constraints</a></div><div class="wp-workCard_item"><span>Lecture Notes in Mathematics</span><span>, 1984</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Without Abstract</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216654]").text(description); $(".js-view-count[data-work-id=85216654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216654,"title":"Classical and non-classical dynamics with constraints","translated_title":"","metadata":{"abstract":"Without Abstract","publication_date":{"day":null,"month":null,"year":1984,"errors":{}},"publication_name":"Lecture Notes in Mathematics"},"translated_abstract":"Without Abstract","internal_url":"https://www.academia.edu/85216654/Classical_and_non_classical_dynamics_with_constraints","translated_internal_url":"","created_at":"2022-08-20T07:39:13.583-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Classical_and_non_classical_dynamics_with_constraints","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":952571,"name":"Music Information Dynamics","url":"https://www.academia.edu/Documents/in/Music_Information_Dynamics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216653/On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization"><img alt="Research paper thumbnail of On topological questions of real complexity theory and combinatorial optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216653/On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization">On topological questions of real complexity theory and combinatorial optimization</a></div><div class="wp-workCard_item"><span>Lecture Notes in Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the real complexity theory and combinatorial optimization as the problems investigating the properties of sequences of semialgebraic sets, their singularities, boundaries etc. The main idea is to apply the methods of real analysis and singularity theory to the study of spaces of problems and to treat the main notions of complexity theory (P, NP, NP-completeness and others) as the complexity of different spectra of semialgebraic sets. An important role is played by a new class of examples, introduced by the author and his colleagues quite recently, i.e. the group, algebraic and geometric examples such as optimization on finite groups and their orbits in representations. The term &amp;quot;configurational topology&amp;#x27; is introduced in connection with the study of the topology of configuration spaces and ~{n~v&amp;#x27;s theorem on universality of configurations spaces or the spaces of convex polyhedrons from a topological point of view. Configurational topology studies topological spaces as configuration spaces, spaces of optimization problems etc. A more detailed description of the whole spectrum of these questions is to be published soon (see also [2,3,7] ).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216653]").text(description); $(".js-view-count[data-work-id=85216653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216653,"title":"On topological questions of real complexity theory and combinatorial optimization","translated_title":"","metadata":{"abstract":"In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the real complexity theory and combinatorial optimization as the problems investigating the properties of sequences of semialgebraic sets, their singularities, boundaries etc. The main idea is to apply the methods of real analysis and singularity theory to the study of spaces of problems and to treat the main notions of complexity theory (P, NP, NP-completeness and others) as the complexity of different spectra of semialgebraic sets. An important role is played by a new class of examples, introduced by the author and his colleagues quite recently, i.e. the group, algebraic and geometric examples such as optimization on finite groups and their orbits in representations. The term \u0026amp;quot;configurational topology\u0026amp;#x27; is introduced in connection with the study of the topology of configuration spaces and ~{n~v\u0026amp;#x27;s theorem on universality of configurations spaces or the spaces of convex polyhedrons from a topological point of view. Configurational topology studies topological spaces as configuration spaces, spaces of optimization problems etc. A more detailed description of the whole spectrum of these questions is to be published soon (see also [2,3,7] ).","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Lecture Notes in Mathematics"},"translated_abstract":"In this paper we continue the line started in ~,2,3] and formulate a ~umber of problems of the real complexity theory and combinatorial optimization as the problems investigating the properties of sequences of semialgebraic sets, their singularities, boundaries etc. The main idea is to apply the methods of real analysis and singularity theory to the study of spaces of problems and to treat the main notions of complexity theory (P, NP, NP-completeness and others) as the complexity of different spectra of semialgebraic sets. An important role is played by a new class of examples, introduced by the author and his colleagues quite recently, i.e. the group, algebraic and geometric examples such as optimization on finite groups and their orbits in representations. The term \u0026amp;quot;configurational topology\u0026amp;#x27; is introduced in connection with the study of the topology of configuration spaces and ~{n~v\u0026amp;#x27;s theorem on universality of configurations spaces or the spaces of convex polyhedrons from a topological point of view. Configurational topology studies topological spaces as configuration spaces, spaces of optimization problems etc. A more detailed description of the whole spectrum of these questions is to be published soon (see also [2,3,7] ).","internal_url":"https://www.academia.edu/85216653/On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization","translated_internal_url":"","created_at":"2022-08-20T07:39:13.399-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_topological_questions_of_real_complexity_theory_and_combinatorial_optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2507,"name":"Combinatorial Optimization","url":"https://www.academia.edu/Documents/in/Combinatorial_Optimization"},{"id":3155,"name":"Complexity Theory","url":"https://www.academia.edu/Documents/in/Complexity_Theory"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216652/Topology_Ergodic_Theory_Real_Algebraic_Geometry"><img alt="Research paper thumbnail of Topology, Ergodic Theory, Real Algebraic Geometry" class="work-thumbnail" src="https://attachments.academia-assets.com/89983182/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216652/Topology_Ergodic_Theory_Real_Algebraic_Geometry">Topology, Ergodic Theory, Real Algebraic Geometry</a></div><div class="wp-workCard_item"><span>American Mathematical Society Translations: Series 2</span><span>, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="187280cc0509ba8e84b995e7145260d6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89983182,"asset_id":85216652,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89983182/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216652]").text(description); $(".js-view-count[data-work-id=85216652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "187280cc0509ba8e84b995e7145260d6" } } $('.js-work-strip[data-work-id=85216652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216652,"title":"Topology, Ergodic Theory, Real Algebraic Geometry","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"American Mathematical Society Translations: Series 2"},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216652/Topology_Ergodic_Theory_Real_Algebraic_Geometry","translated_internal_url":"","created_at":"2022-08-20T07:39:13.201-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89983182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983182/thumbnails/1.jpg","file_name":"On_the_Pontrjagin_Viro_form.pdf","download_url":"https://www.academia.edu/attachments/89983182/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_Ergodic_Theory_Real_Algebraic_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983182/On_the_Pontrjagin_Viro_form-libre.pdf?1661007335=\u0026response-content-disposition=attachment%3B+filename%3DTopology_Ergodic_Theory_Real_Algebraic_G.pdf\u0026Expires=1732795056\u0026Signature=TaMY9-SKUcWuP1NSrH7gIiL9hYUmcqiiN4j9ynXeD5Ca7ujax~MACxwNIsE3rXqvDcYKCydejLNXxGUM1cPOYYAML0fQUp6nQUQ~NVCdLUwI6vwzG4JYmZcB534LLiNPicj-pqBdqjhLim79WnfY5uNvBf0V7WWsTptWH0MXL0iDKUJ5xcWqPB-sbKJggJvJlxieTu1ZlIJV9HJYv-pqVzj5jzXPofdgdFUnZmo-a~2q9wo95cRG6CgS0EQhmJRrhjp2SzZBnEMjJ9BmW4ztmnf2iMkfCMvA4bnPwxD1XaAycQl5ETM-K0LeXDayHtfmeZ~a72xeg9vem4q0HRI7zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Topology_Ergodic_Theory_Real_Algebraic_Geometry","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[{"id":89983182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89983182/thumbnails/1.jpg","file_name":"On_the_Pontrjagin_Viro_form.pdf","download_url":"https://www.academia.edu/attachments/89983182/download_file?st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&st=MTczMjc5MTQ1Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topology_Ergodic_Theory_Real_Algebraic_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89983182/On_the_Pontrjagin_Viro_form-libre.pdf?1661007335=\u0026response-content-disposition=attachment%3B+filename%3DTopology_Ergodic_Theory_Real_Algebraic_G.pdf\u0026Expires=1732795056\u0026Signature=TaMY9-SKUcWuP1NSrH7gIiL9hYUmcqiiN4j9ynXeD5Ca7ujax~MACxwNIsE3rXqvDcYKCydejLNXxGUM1cPOYYAML0fQUp6nQUQ~NVCdLUwI6vwzG4JYmZcB534LLiNPicj-pqBdqjhLim79WnfY5uNvBf0V7WWsTptWH0MXL0iDKUJ5xcWqPB-sbKJggJvJlxieTu1ZlIJV9HJYv-pqVzj5jzXPofdgdFUnZmo-a~2q9wo95cRG6CgS0EQhmJRrhjp2SzZBnEMjJ9BmW4ztmnf2iMkfCMvA4bnPwxD1XaAycQl5ETM-K0LeXDayHtfmeZ~a72xeg9vem4q0HRI7zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1294782,"name":"Reaserch In a Field of Applied Mathematics and Mathematical Physics","url":"https://www.academia.edu/Documents/in/Reaserch_In_a_Field_of_Applied_Mathematics_and_Mathematical_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216651/R_arrangements_convexes_des_marches_al_atoires"><img alt="Research paper thumbnail of R�arrangements convexes des marches al�atoires" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216651/R_arrangements_convexes_des_marches_al_atoires">R�arrangements convexes des marches al�atoires</a></div><div class="wp-workCard_item"><span>Ann Inst Henri Poincare Prob</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216651]").text(description); $(".js-view-count[data-work-id=85216651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216651, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216651,"title":"R�arrangements convexes des marches al�atoires","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Ann Inst Henri Poincare Prob"},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216651/R_arrangements_convexes_des_marches_al_atoires","translated_internal_url":"","created_at":"2022-08-20T07:39:12.975-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"R_arrangements_convexes_des_marches_al_atoires","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":611819,"name":"Discrete random variable","url":"https://www.academia.edu/Documents/in/Discrete_random_variable"},{"id":2564128,"name":"Strong law of large numbers","url":"https://www.academia.edu/Documents/in/Strong_law_of_large_numbers"}],"urls":[{"id":23158988,"url":"http://adsabs.harvard.edu/abs/1998anihp..34...73d"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85216650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85216650/Anatoly_Vershik_Interview_June_4_1993"><img alt="Research paper thumbnail of Anatoly Vershik Interview June 4, 1993" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85216650/Anatoly_Vershik_Interview_June_4_1993">Anatoly Vershik Interview June 4, 1993</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85216650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85216650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85216650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85216650]").text(description); $(".js-view-count[data-work-id=85216650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85216650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85216650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85216650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85216650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85216650,"title":"Anatoly Vershik Interview June 4, 1993","translated_title":"","metadata":{"publication_date":{"day":4,"month":6,"year":1993,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/85216650/Anatoly_Vershik_Interview_June_4_1993","translated_internal_url":"","created_at":"2022-08-20T07:39:12.744-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53951142,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Anatoly_Vershik_Interview_June_4_1993","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":53951142,"first_name":"Anatoly","middle_initials":"M","last_name":"Vershik","page_name":"AnatolyVershik","domain_name":"independent","created_at":"2016-09-24T21:54:16.311-07:00","display_name":"Anatoly M Vershik","url":"https://independent.academia.edu/AnatolyVershik"},"attachments":[],"research_interests":[{"id":1236,"name":"Art","url":"https://www.academia.edu/Documents/in/Art"}],"urls":[{"id":23158987,"url":"http://ecommons.library.cornell.edu/handle/1813/15166"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "39a7f7a83450ae38dd5b7d681954bdfcff8ed638369753238662b53f5a0a6772", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="8OaTCNOE5635hRz4+6lqmOqXfoGpzbUSorllOLFqyom4F7KD7y+othyiM8x7rHVAl0vwymh63lOmypnzkMUAtg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/AnatolyVershik" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="sTE6xoge++pl8UMikr/owMDMVsT6wroYolTGvVTiBrP5wBtNtLW08YDWbBYSuvcYvRDYjzt10VmmJzp2dU3MjA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>